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ABSTRACT
Bike sharing demand is increasing in large cities worldwide. The
proper functioning of bike-sharing systems is, nevertheless, depen-
dent on a balanced geographical distribution of bicycles throughout
a day. In this context, understanding the spatiotemporal distribution
of check-ins and check-outs is key for station balancing and bike
relocation initiatives. Still, recent contributions from deep learning
and distance-based predictors show limited success on forecasting
bike sharing demand. This consistent observation is hypothesized
to be driven by: i) the strong dependence between demand and
the meteorological and situational context of stations; and ii) the
absence of spatial awareness as most predictors are unable to model
the effects of high-low station load on nearby stations.

This work proposes a comprehensive set of new principles to
incorporate both historical and prospective sources of spatial, mete-
orological, situational and calendrical context in predictive models
of station demand. To this end, a new recurrent neural network
layering composed by serial long-short term memory (LSTM) com-
ponents is proposed with two major contributions: i) the feeding
of multivariate time series masks produced from historical context
data at the input layer, and ii) the time-dependent regularization
of the forecasted time series using prospective context data. This
work further assesses the impact of incorporating different sources
of context, showing the relevance of the proposed principles for the
community even though not all improvements from the context-
aware predictors yield statistical significance.
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• Computing methodologies → Neural networks; • Applied
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1 INTRODUCTION
Transportation dynamics are changing in large cities worldwide
[8, 15, 23]. Modes of shared mobility are rising in popularity, par-
ticularly bike sharing modes propelled by structural shifts in the
culture and cycling infrastructures of urban systems [4, 30]. World-
wide, the total number of bikes is estimated to have increased from
700,000 bikes in 2014 towards over 18 million in 2018 [27]. To re-
duce the carbon fingerprint and meet this demand, over 1600 Bike
Sharing Systems (BSS) are now operating and rapidly expanding
[27] as they offer a reliable, low-cost and environmental-friendly
mode of short-distance transportation. Most public BSS support
cycling traffic along a network of docking stations, as opposed to
dockless bike sharing systems [29].

In contrast with other modes of transportation, the operation
and planning of public BSS in metropolitan areas are hindered by
unique challenges. First, the demand is unevenly distributed both
geographically and temporally, with stations in residence and office
areas being either frequently full or empty during peak hours, thus
preventing local check-ins and check-outs and consequently ham-
pering user trust [11, 26]. Second, bike sharing demand is affected
by significant externalities, including daily variations on the users’
profile and endeavors impacting their preference towards a given
mode of mobility [16]. Balancing initiatives, including the ongoing
bike relocation or dynamic user incentives for taking specific routes
along certain time windows can be placed to counter-act this effect
[26]. Yet, their efficacy is largely dependent on the ability to model
and forecast the demand of BSS stations.

In this context, predicting bike sharing demand at fine spatial and
temporal levels is essential for the proper operation and planning of
public BSS. Despite the large attention placed by the communities of
urban computing, machine learning, and intelligent transportation
systems on this task [6, 20–22], BSS demand prediction is recogniz-
ably a difficult task. State-of-the-art predictors, whether grounded
on classical, distance-based or neural processing principles, show
unexpectedly large forecasting errors in comparison with other
transportation modes [19]. In addition to the aforementioned chal-
lenges, the difficulty on predicting demand is linked with the fact
that bike sharing demand is significantly dependent on:

• the situational and calendrical context. The occurrence of
public events and the presence of calendar-driven context –
including academic breaks, festivities and weekly-monthly-
yearly seasonal factors – affect demand, and can significantly
alter expectations on station load [19];

• the meteorological context. Weather factors, including precip-
itation, humidity and significant deviations to the perceived
temperature are known to condition user decisions [16];

• spatial context (station-wise interdependencies). States of
full and empty station load not only hamper the demand
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analysis on the stations subjected to check-in and check-out
impediments, but also affect the demand of nearby stations,
which will receive an indirect increase in the demand for
bike check-ins and check-outs that should be separated from
their true demand under normal conditions. In this context,
variables such as distance between stations, station capacity
and other interdependence factors impact demand [10, 11].

Recent contributions have been proposed to consider calendrical
constraints [16]; offer meteorological-based corrections by either
segmenting data [9] or extending the learning process [1]; or model
spatial dependencies using influence factors [35] or graph neural
networks [25]. Despite their relevance, state-of-the-art contribu-
tions for predictive tasks generally fail to model the joint impact
that these multiple sources of context exert on bike sharing demand.

In addition, existing work generally fails to separate the impor-
tant role of both historical and prospective sources of context. For
instance, historical weather data are important to assert the true
impact of weather variables in demand, while prospective weather
forecasts essential to adjust predictions. Context-sensitive models
generally tackle one of these two modes, either historical sources
of context to consistently remove context-dependent factors from
predictions or prospective sources to embed context-dependent
factors throughout predictions.

This work proposes a predictive deep learning approach that is
able to incorporate heterogeneous sources of spatial, meteorological
and calendrical context – both historical and prospective – into the
time series forecasting task. To this end, we propose a new class of
recurrent neural layering for context-sensitive demand prediction.
Motivated by the solid performance of long-short termmemory net-
works (LSTMs) in traffic data analysis, this work proposes a serial
composition of recurrent components using two major principles:

(1) to take advantage of the inherent ability of LSTMs to learn
from multivariate time series data in order to model corre-
lations between demand variables and an arbitrarily-high
number of context variables derived from the available his-
torical context. To this end, a set of simplistic yet effective
masking procedures are proposed;

(2) to include an additional LSTM or gated recurrent unit (GRU)
layering for the time-dependent regularization of the fore-
casted signal using prospective context data collected along
the horizon of prediction.

This proposal is motivated and assessed in the context of BSS
demand prediction given its paramount relevance in this domain.
In particular, our work further introduces a study case – GIRA,
the public BSS in the Lisbon city (77 stations, approximately 700
bikes and 700 to 1500 daily trips) – and evaluates the impact of
incorporating available sources of context in the ability to predict
the demand along the GIRA’s bike sharing system. The gathered
results show the role of specific sources of historical and prospective
context data in shaping demand forecasts, motivating the relevance
of the proposed principles to support BSS balancing and planning.

The major contributions of this work are three-fold: i) extension
of LSTM-based predictive models to incorporate heterogeneous
sources of context data from masking principles; ii) serial com-
position of LSTM components for the time-dependent regulariza-
tion of the forecasted signal based on prospective context data;

and iii) comprehensive assessment of the impact of the proposed
context-awareness forecasters against state-of-the-art forecasters
at different spatial and temporal granularities.

The manuscript is structured as follows. Section 2 provides es-
sential background on bike sharing systems, time series forecasting,
and urban sources of context. Section 3 surveys relevant work on
context-sensitive prediction. Section 4 introduces the proposed ap-
proach, describing principles on how to incorporate historical and
prospective context data within the learning process. Section 5
assesses the impact of these principles. Finally, concluding remarks
and implications are synthesized in section 6.

2 BACKGROUND
Bike sharing systems
Bike sharing systems (BSS) allow users to access bicycles on an
as-needed basis using docking or dockless infrastructure. BSS are
constituted by two entities: agents (users) and the environment
(bikes and stations). A bike station is described by the number
of docks (station capacity) and number of docked bikes (station
load). Agents change the environment by performing check-out
acts (picking-up bikes) and check-in acts (dropping-off bikes).

In the context of this work, bike demand is defined as the number
of check-in and check-out acts that should be supported at a specific
station in a given time to fill the user’s needs.

BSS traffic data are the monitored check-ins and check-outs along
the network of stations per user, accompanied by information on
the station capacity and load.

Context data are data produced from alternative urban sources
of interest, including public events (situational), weather records
(meteorological), seasonal determinants (calendrical), among others.

Given a bike sharing system, the target task in this work is to
forecast bike demand at desirable spatial and temporal levels from
available traffic and context data.

Time series modeling and forecasting
Traffic and context data are generally represented as time series, a
set of ordered observations x1..𝑇 = (x1, ..., x𝑇 ), each observation
x𝑡 being recorded at a specific time point 𝑡 . Time series can be
univariate, x𝑡 ∈ R, or multivariate, x𝑡 ∈ R𝑚 , where𝑚 > 1 is the
multivariate order (number of variables).

Given a time series x, themodeling task aims at finding an abstrac-
tion that describes x, while the forecasting task aims to estimate
ℎ upcoming observations, x𝑇+1..𝑇+ℎ , from available observations
x1..𝑇 . Descriptive and predictive tasks typically aim at respectively
modeling and forecasting a single variable (the target variable).

In multivariate data settings, non-target variables are used to
guide the learning of descriptive and predictive models.

Classical approaches for time series analysis generally rely on
statistical principles, including decomposition, auto-regression, dif-
ferencing and exponential smoothing operations. Time series can
be decomposed into trend, seasonal, cyclical, and irregular compo-
nents using additive or multiplicative models [14]. Although these
models are inherently descriptive in nature, the components can be
projected along a time horizon for predictive ends. Alternatively,
auto-regressive and moving-average models can be combined to
either describe or forecast stationary time series [37]. These models
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can be extended with simplistic differencing operations for dealing
with non-stationarity, and their learning guided in the presence of
seasonal terms. Classical alternatives use exponential smoothing
principles to describe and predict time series [37]. Holt-Winters
offers a form of triple exponential smoothing (at level ℓ𝑡 , trend 𝑏𝑡
and seasonal 𝑠𝑡 components). According to an additive model,

x̂𝑡+ℎ = (ℓ𝑡 + h𝑏𝑡 )𝑠𝑡+ℎ−𝑑 (𝑘+1) where (1)

ℓ𝑡 = 𝛼
x𝑡
𝑠𝑡−𝑑

+ (1 − 𝛼) (ℓ𝑡−1 + 𝑏𝑡−1), (2)

𝑏𝑡 = 𝛽∗ (ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1, (3)

𝑠𝑡 = 𝛾
𝑥𝑡

(ℓ𝑡−1 + 𝑏𝑡−1)
+ (1 − 𝛾 )𝑠𝑡−𝑑 . (4)

Advances from machine learning aim at mitigating the chal-
lenges faced by classical approaches. In this context, time series are
generally segmented to compose a dataset that guides the learning
of the target descriptive and predictive models under a specific loss
criteria. Among the wide-diversity of contributions on (multivari-
ate) time series analysis, two major groups of approaches are here
highlighted. First, distance-based approaches for time series descrip-
tion and prediction that rely on similarities between (multivariate)
time series (lazy learning) and expectations (barycenter computa-
tion) [3]. Second, neural network approaches rely on the composition
of simple linear functions (neurons) to learn complex mappings.
In the context of time series analysis, the mapping can either be
descriptive (e.g. auto-encoders) or predictive (e.g. regressors) [2].

Recurrent neural networks (RNNs) capture the temporal depen-
dencies within a time series, subjecting each observation to a neural
network and feeding the result to the successor observation (hence
recurrent),

h𝑡 = 𝑓 (h𝑡−1, x𝑡 ), (5)
where h𝑡 is the output produced at time point 𝑡 and 𝑓 is the neural
function. As neurons are linear functions of inputs𝑤𝑖 ,

∑
𝑖 𝑤𝑖 ,

h𝑡 = tanh(W𝑥,𝑡−1h𝑡−1 +W𝑡h𝑥,𝑡 ), (6)
where W𝑡 is a matrix of input weights at state 𝑡 and tanh is the
hyperbolic tangent (activation) function. The output state is defined
asW𝑦,𝑡h𝑡 , whereW𝑦,𝑡 is the set weights at the output state.

RNNs suffer from memory loss, the well-studied vanishing gra-
dient problem [13], being generally unable to detect seasonal time
series aspects. Long Short Term Memory networks (LSTMs) are ex-
tended RNNs able to learn long-term dependencies. LSTMs are
composed by a memory unit (cell) and three regulators (gates) that
control the flow of information inside the LSTM – the preserved
information (forget gate), the updatable inputs (input gate) and
the candidate outputs (output gate). Gated Recurrent Units (GRUs)
exclude the output gate, providing a simpler network that generally
yield improvements in denoising tasks [7].

Context
Diverse sources of urban context data are known to have soft-
to-strong correlations with traffic dynamics [? ], suggesting their
relevance to guide descriptive and predictive learning tasks. These
sources can be divided according to: i) calendrical sources, pro-
viding relevant information associated with academic and holiday
periods, as well as daily, weekly, monthly and yearly seasonality;
ii) situational sources, including historical and prospective public
events (such as conventions, festivals, concerts, sport events) and

road interdictions (including construction works); iii) meteorologi-
cal sources, comprising observed and forecasted weather variables
(such as perceived temperature, humidity, wind intensity, precip-
itation, visibility); and iv) spatial sources capturing geographical
dependencies with potential value for traffic data analysis [5].

3 RELATEDWORK
Recent attention has been paid on how to incorporate context
factors to understand mobility dynamics and support traffic data
analysis [19]. These factors are typically divided on whether they
can be planned [18] – including football matches, concerts, festivals,
construction works, urban planning – or not [32] – weather, air
quality, traffic accidents, emergencies. The former factors are often
referred as planned special events (PSE) [18]. Some of the challenges
of integrating spatiotemporal context and its role in developing
smart cities are discussed by Sagl et al. [28].

In this paper, we are interested in three large family of studies:
i) studies that assess the correlation impact of context factors; ii)
studies that place general principles on how to use context for
guiding forecasting tasks; and iii) deep learning studies able to
incorporate context factors within neural network learning.

In the first category, Tomaras et al. [35] proposed the use of
a metric, influence factor, to measure the impact of social events
in the demand of nearby bike stations. The influence factor is a
ratio between the sum of the drop-off and pick-up when an event
happens, and drop-off and pick-up in a typical day. This factor can
be used as a correction factor for descriptive and predictive models.
Kwoczek et al. [17] proposed a method to predict and visualize
traffic congestions caused by planned special events. Public events
are generally characterized by two waves of congestion: people
arriving and leaving the event. Recognizing the difficulty of estimat-
ing the impact of these waves (the popularity of event), the authors
developed a system to predict the waves using nearest neighbors
from past PSEs and showed that event-sensitive predictions yield
improvements. Soltani et al. [31] conducted a web-based survey
from public BSS and private BSS users (OfO and O’Bike) at Ade-
laide, Australia, and explored key findings to support policy makers.
Context factors, including relatively low car dependency; young
user profile; large share of students, visitors, and non-australian
residents; safety concerns; and facility conditions were shown to
highly impact demand. Yang et al. [38] studied the impact that a
new metro line has in dockless bike sharing systems. To this end,
they considered around 80,000 dockless bikes in Nanchang, China
to capture changes in behaviours and patterns in the urban flow.

In the second category, studies that have considered context to
enrich forecasting, Gallop et al. [12] explore complex serial correla-
tion patterns between weather and bike traffic and use this effect
to adjust the error terms of the classic autoregressive integrated
moving average (ARIMA) models. They further suggest that this
correction can be used to affect historical data in an effort to cre-
ate context-independent models that facilitate traffic data analysis
tasks. El-Assi et al. [9] provide a multi-level model considering the
impact of land use, built environment, and weather measures on
bike share ridership. Similarly, Tran et al. [36] consider the problem
of predicting bike-sharing system flow. To this end, they propose the
use of a regression model and further consider the effects from five
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categories of context variables: public transport, socio-economic,
topographic, bike-sharing network, and leisure variables. Ashqar
et al. [1] consider a data-fusion approach towards the analysis of
context-enriched bike demand. They propose the use of random
forests to rank context predictors and consider them to develop
a forecasting model using a guided forward step-wise regression
approach. They found that time-of-day, temperature and humidity
are significant predictors. Thomas et al. [33] studied cycle flows
from utilitarian and recreational paths in the Netherlands. A bi-
level model for predicting the demand for cycling was used. The
lower level describes how cyclists value the weather. The upper
level is the relation between demand and this weather value. Most
fluctuations are described by the model.

In the third category, studies that have used context to enrich
forecasting using neural networks, Thu et al. [34] propose multi-
layer perceptron regressors from multi-source context data to pre-
dict bike pick-up demands from New York city BSS considering
clusters of stations based on their geographical locations and tran-
sition patterns. The proposed networks combine weather factors
(condition, temperature, wind speed, and visibility) and taxi trip
records. Despite its relevance, temporal dependencies between ob-
servations are disregarded. Pan et al. [24] incorporate weather
record data at input layer of LSTMs to improve the prediction of
bike sharing demand for balancing of distribution of bikes across
stations. Results evidenced improvements against context-unaware
LSTMs. Recent contributions on deep learning research also show
the possibility of incorporating specific forms of calendrical and
spatial awareness [5, 25].

4 SOLUTION: CONTEXT-AWARE LSTMS
We propose a new recurrent neural network layering able to incor-
porate both historical and prospective sources of context to guide
forecasting tasks. The proposed architecture is a sequential compo-
sition of two components, 𝐶1 and 𝐶2. 𝐶1 is a LSTM that receives
context-enriched multivariate inputs and returns the forecasted
series as the output. 𝐶2 is a LSTM (or a gated recurrent unit) that
receives as input the forecasted series from 𝐶1 and prospective
sources of context along the horizon of prediction and returns the
true forecasting. Sections 4.1 and 4.2 respectively describe how
historical and prospective sources can be fed into the proposed
architecture, and further discuss their significance.

4.1 Incorporating historical context: masking
To incorporate historical sources of context data, we take advantage
of the fact that LSTMs are inherently prepared to learn mapping
functions from multivariate time series into the target univariate
time series (demand variable along a prediction horizon). In this way,
an arbitrarily-highmultiplicity of context variables can be combined
at the input layer of the 𝐶1 component to guide the learning task.
Sections 4.1.2 to 4.1.5 offer important masking principles on how
to compose the multivariate time series from difference context
sources. For the purpose of illustrating the principles introduced
along these sections, consider that the task at hands is to learn a
predictive model that forecasts the number of hourly bicycle check-
outs for the upcoming days at a given station using a two-year
historical data with an hourly aggregation,

. xexample = (x0ℎ:1/1/2018, x1ℎ:1/1/2018, .., x23ℎ:31/12/2019),
= ((9), (6), .., (10)),

a series to be further segmented for the purpose of learning.
Under masking principles, sources of historical context are hy-

pothesized to guide the forecasting task in two major ways. First,
by looking to the past and modeling how a certain context vari-
able affects bike demand at a given station offers the possibility of
removing context-dependent factors. Considering wind intensity
as an illustrative context variable, deviations from regular wind
ranges can be considered by the LSTM unit to better model the
co-observed demand.

Second, some sources of historical context can be correlated
with future context and/or demand. Therefore, this relation can be
directly learned by the LSTM unit to shape short-term forecasts.
For instance, strong wind intensity at a given hour may decrease
the observed demand with effect lasting up to three hours.

4.1.1 Station context. In addition to the target variable, comple-
mentary demand variables can be inputted to guide the prediction.
For instance, the analysis of check-ins can be complemented with
the volume of check-outs to account for correlated deviations.

Another example is to consider the load state of the station as
we know that states of high-load (low-load) can impact check-outs
(check-ins). Illustrating, xexample=((check-in=9,check-out=6,load=0.9),
..,(check-in=10,check-out=12,load=0.3)), is an augmented series with
a multivariate order of 3.

4.1.2 Calendrical context. Four masks are suggested:
• a day mask can be added to the time series with information
pertaining to the week-day of each observation,

xexample = ((9,𝑚𝑜𝑛𝑑𝑎𝑦), (6,𝑚𝑜𝑛𝑑𝑎𝑦), .., (10, 𝑡𝑢𝑒𝑠𝑑𝑎𝑦)) .
In this way, LSTMs are inputted with information that helps
them internally separating neural pathways in accordance
with the week-day. This is a simplistic yet essential guid-
ing information whenever segmentation creates instances
starting at different timings.
In addition, this masking principle can act as way of aug-
menting data as it allows for the combined inclusion of week-
ends and weekday periods in the forecasting task, instead of
learning separate forecasting models.
If weekdays show similar patterns of demand, simpler daily
masks can be applied using mappings of lower cardinality,
such as {weekday, saturday, sunday};

• a holiday mask can be added as a separated binary variable in
order to indicate whether a given observation was produced
or not within a holiday;

• an hour mask can be added as an additional variable to guide
the learning task whenever the segmentation step does not
guarantee that every data instance starts at the same time
step. As a result, daily seasonalities can be implicitly captured
within the LSTM as a non-linear function of the hour within
the day. If the time granularity of the demand series is finer
(coarser) than hour, a finer (coarser) mask can be produced.
For instance, a mapping {dawn, morning, afternoon, evening}
is adequate for temporally misaligned data instances and
time windows with up to 6 hours;
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• other relevant masks, include academic period masks or fes-
tivity period masks that may not necessarily coincide with
the aforementioned holiday mask. In the context of our work,
the influence of these masks were found to be essential.

4.1.3 Situational context. Similarly to the masks produced from
year and academic calendars, situational masks mark periods where
events of interest may impact the demand observed at a given
station. The major difference between these sources of context
is the fact that situational context is usually circumscribed to a
specific geographical area, therefore only impacting a subset of
stations from a given BSS. Given a station, the situational variables
produced using these masking principles generally correspond to
public events (concerts, conventions or sport events) that occur
within a maximum distance from the target station.

Situated events can produce varying levels of impact on the
demand at a given station. For instance, stations nearby a stadium
and a small concert hall should be able to differentiate between
sport events and concerts. In this context, these masks can explicitly
capture themagnitude of an event, as well as variations on that same
magnitude throughout the period where the effects of the event
lasts. Illustrating, (0, 0, 1, 3, 3, 1, 1, 3, 3, 1, 0...) series may correspond
to a mask modeling the magnitude of a gathering that can be placed
as a complementary inputted series to guide the learning.

4.1.4 Meteorological context. Meteorological variables, including
wind intensity and precipitation, can be as well inputted to guide
the learning. The closest meteorological station can be selected or
k-nearest stations to compute the weather series (under distance-
weighting schema). Additional weather variables can be produced
from the raw weather records produced by meteorological stations,
including the perceived temperature or integrative scores.

A high number of weather variables leads to high a multivariate
order of the inputted, which can hamper the learning if not enough
historical observations are available. In this context, variable selec-
tion can be considered to guarantee that only the most informative
weather variables are inputted.

4.1.5 Spatial context. In the context of station-wise dependencies,
we propose a geographical mask, referred as the nearby mask. The
nearby mask is the occupation ratio of the neighbouring stations.

Algorithm 1: Create nearby mask algorithm
1 Function create_nearby_mask(𝑆𝑆, 𝑆, 𝑅,𝑇𝑆):
2 nearby_station = []
3 lat_center, long_center = calculate_centroid(𝑆𝑆)
4 foreach station 𝑠𝑖 ∈ 𝑆 do
5 distance = Euclidean((lat_center, long_center), (𝑠𝑖 .lati, 𝑠𝑖 .long))
6 if distance < radius then
7 nearby_station.append(𝑠𝑖 )
8 end
9 end

10 foreach station 𝑠𝑖 ∈ nearby_station do
11 𝑇𝑆 = update_series

(
𝑇𝑆,

𝑠𝑖 .num_bikes
𝑠𝑖 .location_capacity

)
12 end
13 End Function

The algorithm to create the nearby variables, Algorithm 1, receives
the target station or cluster of stations under analysis, 𝑆𝑆 , a distance
radius, 𝑅, list of all stations, 𝑆 , and time series 𝑇𝑆 . Algorithm 1 has
three-steps: 1) computes the centroid of the selected stations, line
3; 2) finds all the stations inside the 𝑅 radius using the previous
centroid as the centre (lines 4–8), and updates the time series with
the occupation ratio of the nearby stations (lines 10–12).

Under the nearby mask, the target LSTMs are now able to con-
sider the impact that stations with high- and low-load have on the
demand of nearby stations. Here, the occupation ratio is proposed
in contrast with full-and-empty station states to allow for more flex-
ible learning (nearly full stations may be full in the upcoming time
steps). Still, alternative encodings can be proposed by customizing
line 11 of Algorithm 1.

4.2 Incorporating prospective context:
time-dependent regularization

Prospective sources of context, including weather forecasts or
planned events, may be available along the horizon of prediction. In
this context, their use can further guide the learning. Recall that the
proposed architecture is a composition of two components, 𝐶1 and
𝐶2. 𝐶1 is a LSTM that receives multivariate inputs (in accordance
with the principles introduced along section 4.1) and returns the
forecasted series as the output. 𝐶2 is a recurrent neural component
that receives the forecasted series from 𝐶1 and the prospective
sources of context along the horizon of prediction as inputs, and
returns the true forecasting. In this context, 𝐶2 can be though as a
context-aware denoiser or time-dependent regularizer of the fore-
casts. Empirical analysis show optimal performance when 𝐶2 is a
LSTM unit. Nevertheless, a gated recurrent unit (GRU) provides a
competitive alternative given the properties of this step.

Under the proposed architecture, masking principles – similarly
to the ones introduced along section 4.1 – can be considered to
compose the multivariate time series to be inputted to the 𝐶2 com-
ponent. In this context:

• calendrical masks can be produced to regularize the fore-
casts whenever the prediction horizon contains holidays or
any other meaningful season (such as academic break). In
addition, and more generally, time and day masks can be as
well inputted for a calendric-guided revision of forecasts;

• situational masks can be produced from planned events
available from cultural and sport agendas, as well as semi-
structured repositories containing information on the usage
of public spaces. See section 4.1.3 for principles on duration-
and intensity-sensitive encodings for situational masks;

• meteorological masks can be produced from weather fore-
casts. As weather forecasts are typically produced under a
coarse-grained time granularity, upsampling may be neces-
sary to guarantee the weather and demand series share the
same granularity. See section 4.1.4 for principles on station
and variable selection;

• spatial masks can be derived from forecasts of nearby sta-
tions’ load (see principles in section 4.1.5) when load fore-
casts are able to satisfy upper bounds on the observed error.

By incorporating prospective sources of context, the𝐶1-forecasted
demand series can now be further subjected to context-dependent
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corrections, guiding the forecasting task. For instance, periods with
forecasts of high wind intensity can suffer an adjustment on the
𝐶1-based demand expectations by capturing relationships between
the multivariate input series and the true forecast.

4.3 Learning schema
To guarantee the proper learning of the proposed neural networks,
considerations associated with both the segmentation and the learn-
ing setting should be placed. Given a specific horizon of predictionℎ
and its time resolution Δ, the series should be segmented in a set of
instances, each instance being a pair (input, output) where the input
is a series with at least twice the length of the prediction horizon
(by default 7 × ℎ), the output is the subsequent ℎ-length series, and
both series have the same time resolution, Δ. Segmentation is fur-
ther characterized by the presence of a sliding window to compose
the data instances. By default, the sliding window corresponds to a
single day (24 hours).

The above principles are applied to segment series in the con-
text of a single dataset. For a more robust validation of predictors,
cross-validation is suggested. Particular attention should be paid
to guarantee the soundness of the cross-validation setting given
the inherent time frame of the series data. Algorithm 2 shows how
multiple datasets are produced. In this context, series is the inputted
(univariate or multivariate) time series with a time frame Δ given
by the user; window_size is the length in days of each dataset, and
step_size is the lag value between datasets in days. Figure 1 provides
an example of the algorithm 2, where window_size =𝑇 − 2, step_size
= 1 and datasets is the resulting set of three datasets.

Algorithm 2: Split dataset algorithm
1 Function create_subdatasets(dataset, window_size, step_size):
2 datasets = {}
3 end_dataset_index = window_size - 1
4 while end_subdataset_index ≤ |series | do
5 begin_dataset_index = end_dataset_index - window_size
6 dataset = series[begin_dataset_index:end_dataset_index]
7 datasets = datasets ∪ {dataset}
8 end_dataset_index += step_size
9 end

10 return datasets
11 End Function

Figure 1: Example of algorithm 2 with 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 of 1

After applying Algorithm 2, we split each sub-dataset into train,
validation and test data, guaranteeing that training data instances

always precede validation and testing data instances in order to
better mimic real-time testing scenarios.

4.3.1 Hyperparameter otimization. Each dataset is scaled using a
min-max normalization to improve the LSTM performance. The
min-max scaler parameters are learned from the training data in-
stances for each dataset. The test and validation segments are also
normalized using the scaler learned from the training segment.

Parameterizations associated with the proposed layering archi-
tecture were empirically conducted using a sensitivity analysis on
the number, size, type and composition of layers, as well as on the
results yield by different loss functions (including cosine, mean
absolute error, mean squared error) and forms of regularization.

All the additional parameters – including activation functions,
presence of drop-out layers, optimizers, batch size and learning
rates – were fixed using Bayesian optimization. The optimized
metric was the mean absolute error produced over all the training
segments. Early stopping from validation errors is considered.

5 RESULTS
Results are organized in three major steps. First, we introduced
background considerations on the: i) target public BSS (GIRA) and
considered sources of context, ii) assessment setting, and iii) general
exploratory statistics on GIRA’s bike demand. Second, we provide
a thourough comparison of state-of-the-art forecasters against the
proposed context-aware predictors. Third, we offer a greater detail
on the performance of the proposed context-aware predictors, de-
scribing the impact that different sources of context have on the
forecasting residues.

The proposed context-aware predictors were implemented using
tensorflow, python. The remaining state-of-the-art predictors were
implemented using facilities from statsmodels, tslearn (barycenter
calculus) and scikit-learn packages in python. The parameters of
the state-of-ther-art predictors (such as smoothing factors in Holt-
Winters or 𝑘 in 𝑘-nearest neighbor regressors) were subjected to
Bayesian optimization..

Case study: GIRA
To comprehensively assess the proposed contributions, we consider
the Lisbon’s public BSS, termed GIRA, under the joint responsibility
of EMEL and the Lisbon’s city Council. The data associated with
the target GIRA network contains all bike trip records from No-
vember 2018 until April 2019, with timestamps for every change in
stations’ state and the corresponding load value. Structural changes
to the stations’ capacity associated with the BSS expansion are also
considered. Given the station load data, the check-out and check-
in events within the Lisbon’s public BSS were inferred from the
differences on the load state of each station along time..

Lisbon’s urban context
Historical and prospective weather record data was sourced by
Instituto Português do Mar e da Atmosfera (IPMA) and Instituto
Superior Técnico (IST). Humidity, wind speed (km/hour), pressure,
precipitation and temperature (Celsius) weather variables were
sourced. Four meteorology stations available. The station closer to
a station is selected for providing weather data. When analyzing
clusters of stations, the centroid of each centroid is computed in
order to identify the closest meteorology station.
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Situational context data was derived from: the Lisbon’s cultural
agenda, road construction works, and the city Council’s records on
the occupation of large public spaces and stadiums. Finally, calen-
drical context data was sourced from available civil and academic
calendars, and spatial context data inferred from the GIRA dataset..

Station clusters
Bike demand analysis can be pursued at different spatial granu-
larities in accordance with the targeted aim, such as establishing
balancing initiatives (finer granularity) or general planning deci-
sions (coarser granularity). To this end, we predict bike demand
at three distinct levels: i) station level; ii) cluster of stations; and
iii) BSS level (all stations). To help the city Council understanding
demand, we identify three clusters of interest: IST cluster, Saldanha
cluster and Oriente cluster, represented in Figure 2.

(a) Oriente cluster (b) Saldanha cluster (c) IST cluster

Figure 2: Selected clusters of stations (screenshot from ILU App)

Each of these clusters yield unique aspects of interest. The IST
cluster has a high share of students since its stations are close to the
campus of Instituto Superior Técnico’s faculty. Saldanha cluster has
a high share of workers since its stations are located within a well-
known business district. Finally, Oriente cluster has a high share
of tourists since its stations are located near Parque das Nações, a
place with diverse cultural, expo and leisure attractions.

TheOriente cluster is the larger cluster, encompassing 6 docking
stations and a total capacity of 144 bicycles. The Saldanha cluster
has 3 stations with a total capacity of 44 bicycles. Even though, IST
cluster has only 2 stations, it is capable of holding 51 bicycles..

Exploratory statistics
Figures 3 and 4 provide a high-level view on how the demand
varies for the GIRA’s BSS as whole (cumulative demand from all
stations). Figure 3 offers a view on how demand is distributed along
a normal week, evidencing the calendrical differences and the effect

Figure 3: Half-hourly volume of check-outs/ins within GIRA.

produced by public events at Saturday night. Figure 4 captures
the variability of demand along the targeted period, where the
bounds (standard deviation) confirm that bike sharing demand is
susceptible to diverse idiosyncrasies causing significant variability.

Figure 4: Daily volume and variation of check-outs and check-ins
at a single GIRA’s station (November 2018 to April 2019).

Comparison of state-of-the-art forecasters
Tables 1 and 2 gather the predictive performance of state-of-the-art
forecasters, focusing respectively on check-ins and check-outs at
different spatial granularities (system-, cluster- and station-wise
levels). The prediction horizon is 24 hours under a 30-minutes time
step. The mean absolute error (MAE) and root mean squared error
(RMSE) were the selected forecasting metrics. The average and
standard deviation estimates for these metrics were computed from
the residues gathered from all testing data instances from each one
of the three data folds (according to section 4.3).

From the state-of-the-art predictors, a variant of existing kNN
forecasters, combining neighborhood search and barycenter com-
putation from sets of 𝑘 time series, is proposed given its superior
performance. In this context, barycenter forecasters can be though
as kNN forecasters when 𝑘 equals the number of training data
instances. Dynamic time wrapping (DTW) is considered as a simi-
larity metric to tolerate temporal misalignments.

Five major remarks are observed. First, classical approaches, in-
cludingHolt-Winters, are unable to properly deal with the arbitrarily-
high variability of bike sharing demand as seasonal and trend mod-
eling is generally insufficient to handle the peculiarities of the tar-
geted bike trip data. Second, distance-based predictors yield slightly
worse yet competitive results against the proposed LSTM-based
predictors. Third, the proposed context-aware LSTM-based predic-
tors generally offer slight improvements against context-unaware
LSTM-based predictors, yet the improvements do not yield statisti-
cally significant differences1. Fourth, from the different sources of
context, the individual use of meteorological sources and the joint
use of meteorological-and-spatial sources of context are the optimal
settings. Finally, historical and prospective sources of context have
similar impact on the forecasting performance.

Figure 5 provide a more detailed view on the performance of the
proposed 𝑘NN predictors, showing the impact of locality – 𝑘 ≥ 5 –,
and tolerating misalignments – DTW is comparable to Euclidean
distance to compute both neighborhoods and barycenters.

1Residues normally distributed. Unilateral paired 𝑡 -tests with 𝑝-value above 0.01.

7



BuildSys, 2020, Yokohama, Japan Sardinha et al.

Figure 5: MAE performance of proposed 𝑘NN with varying 𝑘 and
distance (Euclidean vs DTW in neighborhoods and barycenters) to
forecast demand for the whole GIRA network.

Context impact on demand predictors
Figures 6 and 7 provide two illustrative data instances that clearly
show the impact of incorporating meteorological context data on
the forecasts. Figure 6 considers the check-in demand at the whole
network level, clearly showing the indisputable role of incorporat-
ing weather record data for improving predictions. Figure 7 consid-
ers the check-in demand at the Oriente cluster level, showing the
impact from the integration of multiple sources of context.

Figure 6: Aleatory testing data instance: true observations vs.
LSTM forecasts vs. weather-aware LSTM-based forecasts consider-
ing check-ins for all GIRA stations.

Figure 7: Hard testing data instance: true observations vs. LSTM
forecasts vs. context-aware LSTM-based forecasts considering
check-ins for Oriente cluster of stations.

Figures 8 and 9 measure the impact from incorporating different
context variables, including historical and available prospective
variables. Previous experimental settings are preserved for this
analysis. Three major observations. First, from weather variables,
wind intensity and precipitation variables offer the largest guidance.
Second, the use of complementary demand series (section 4.1.1) and
spatial masks (section 4.1.5) impact predictions as well, although
the differences on the averaged error are not statistically significant.
Finally, we observe that the incorporation of historical context has
slightly higher positive impact on predictions in comparison with
prospective context. We hypothesize that this observation is a result
of the inherent uncertainty factors associated with the sources of
prospective context.

Figure 8: Performance impact of historical and prospective
weather variables on the forecasted check-ins at GIRA’s network.

Figure 9: Performance impact of joint prospective-and-historical
context variables on the demand forecasts at GIRA’s network.

Context-aware forecasters: parameters
Figures 10 and 11 provide two illustrative analyzes of the impact of
two parameters – batch size and optimizer – on the performance
of the target context-aware predictors. These figures suggest the
use of small batch sizes and Adam optimization. Similar analyzes
conducted for the parameters listed in section 4.3.1 confirm the
adequacy of the fixed architectural and learning parameters. Ad-
ditional illustrative parameters include the presence of drop-out
layers, 1𝐸 − 5 learning rate, and 𝐿1 norm regularization.

Figure 10:Batch size impact on GIRA network check-ins prediction.
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Table 1: Comparison of forecasting errors (MAE and RMSE) of state-of-the-art predictors: check-in demand at 30 minutes granularity.

Senario 1: all stations Senario 2: Oriente cluster Senario 3: single station

MAE RMSE MAE RMSE MAE RMSE

KNN - DTW 16.57± 2.27 23.52± 3.84 2.42±0.23 3.81±0.48 0.35±0.06 0.79±0.14
KNN - Euclidean 17.03±3.72 24.06±6.02 2.46±0.35 3.82 ±0.64 0.34±0.06 0.78 ±0.14
Barycenter - DBA 19.81±3.32 27.87±4.86 2.47±0.43 3.82 ±0.54 0.34 ± 0.05 0.85 ± 0.15
Barycenter - Euclidean 17.01±3.42 24.81±5.35 2.11±0.25 3.25 ±0.44 0.35 ±0.05 0.70 ± 0.21
Barycenter - DTW 18.57±3.28 26.87±4.92 2.16±0.26 3.35 ±0.46 0.36 ± 0.05 0.71 ± 0.22

Holts-Winters 24.11±6.19 33.94±14.88 3.17±0.45 4.64 ±0.45 1.01± 0.33 1.99 ± 0.73

LSTM check-in 15.07±3.41 20.87±3.4 2.26±0.23 3.45 ±0.23 0.24± 0.05 0.72 ± 0.14
LSTM check-in and check-out 14.49±3.14 20.48±3.15 2.17±0.22 3.38 ±0.21 0.24 ± 0.05 0.72 ± 0.14
LSTM day mask 13.97±3.97 20.35±3.97 2.24±0.23 3.51 ±0.22 0.24± 0.05 0.72 ± 0.14
LSTM nearby - - 2.23±0.26 3.38 ±0.26 0.36 ± 0.05 0.68 ± 0.14
LSTM all meteo 15.75±3.80 22.01±3.80 2.31±0.19 3.62 ±0.19 0.24 ± 0.05 0.72±0.14
LSTM all meteo and nearby - - 2.12±0.27 3.45 ±0.68 0.36 ± 0.05 0.68 ± 0.14

Table 2: Comparison of forecasting errors (MAE and RMSE) of state-of-the-art predictors: check-out demand at 30 minutes granularity.

Senario 1: all stations Senario 2: Oriente cluster Senario 3: single station

MAE RMSE MAE RMSE MAE RMSE

KNN - DTW 17.37± 2.72 24.21±3.64 2.44±0.42 3.64±0.55 0.36±0.05 0.88±0.18
KNN - Euclidean 17.20±3.15 23.78±4.43 2.54±0.33 3.77 ±0.44 0.34±0.06 0.81 ±0.21
Barycenter - DBA 19.70±3.06 27.18±5.05 2.35±0.26 3.82 ±0.56 0.36 ± 0.08 0.81 ± 0.14
Barycenter - Euclidean 15.62±3.18 22.30±5.29 2.11±0.29 3.33 ±0.55 0.36 ±0.05 0.67 ± 0.14
Barycenter - DTW 18.25±2.95 25.85±4.96 2.16±0.31 3.48 ±0.56 0.36 ± 0.03 0.66 ± 0.12

Holts-Winters 25.00±4.94 34.78±4.94 2.91±0.35 4.21 ±0.35 3.10± 1.48 4.14 ± 1.79

LSTM check-out 15.73±1.59 22.31±3.59 2.32±0.29 3.37 ±0.29x 0.35 ± 0.05 0.71 ± 0.21
LSTM check-in and check-out 16.08±1.84 23.00±3.22 2.24±0.22 3.46±0.41 0.35 ±0.05 0.70± 0.21
LSTM day mask 16.60±4.50 23.35±4.50 2.34±0.32 3.48 ±0.32 0.36 ± 0.05 0.71 ± 0.21
LSTM nearby - - 2.16±0.22 3.30 ±0.44 0.35± 0.05 0.71 ± 0.21
LSTM all meteo 16.02±1.70 23.14±3.40 2.42 ±0.32 3.62± 0.49 0.36 ± 0.06 0.72± 0.23
LSTM all meteo and nearby - - 2.16 ±0.22 3.30± 0.43 0.35 ± 0.05 0.71± 0.21

Figure 11:Optimizer impact on check-out forecasts at GIRA network.

6 DISCUSSION
This work proposed neural processing principles to leverage the
performance of prediction tasks in the presence of heterogeneous
sources of context data. Motivated by the intrinsic challenges asso-
ciated with the operation and planning of bike sharing systems, we
show the relevance of the proposed approach for demand analysis
in this domain, particularly hampered by the spatial dependencies
between stations, amongst other significant externalities.

Two major contributions were introduced to this end. First, we
propose a serial composition of LSTMs, taking advantage of their in-
herent ability to capture cross-variable relationships frommultivari-
ate time series data. In this context, we propose masking principles
to derive complementary series’ variables from spatial, meteoro-
logical and calendrical sources of context. Second, we propose a

time-dependent denoiser of the forecasted series using prospective
sources of context data collected along the horizon of prediction.

In addition to these contributions, a new class of distance-based
forecasters is also introduced, combining the advantages of lazy
learning with the advances on the calculus of bary-centers from
time series data.We show they are competitivewith context-unaware
LSTMs, and use them to further confront the performance and be-
havior of the proposed context-aware LSTMs.

Results gathered over the Lisbon’s public bike sharing system
(GIRA) confirm the role of the above contributions, even though
not all improvements yield statistically significant differences.

To our knowledge, this work provides the first attempt to sys-
tematically combine diverse sources of context, as well as seize
the benefits that can be propelled by the use of both historical and
prospective context data. The proposed principles are simplistic,
yet effective, thus being now accessible for researchers worldwide
as viable techniques to incorporate a wide diversity of available
sources of context data in neural-based predictive models. The in-
troduce principles also form a sound and comprehensive basis for
the assessment of future context-aware predictors.
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