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General Relativity (GR) is an extremely successful description of the gravitational interaction at
different scales. One of its most dazzling and profound consequences is that gravitational collapse
of massive stars gives rise to black holes. These are ubiquitous objects in our universe, and are
now routinely observed and studied in the gravitational-wave band (currently the LIGO/Virgo
constellation) but also in the electromagnetic band (with the GRAVITY instrument, the Event
Horizon telescope and X-ray telescopes). To study black holes and test the underlying theory of
gravity, a precise and complete knowledge of their dynamics is required, in addition to a knowledge of
how matter behaves in curved spacetime. In the thesis, we focus on scalar and vector fields around
spinning black holes. We present new results concerning massive vector fields in the vicinities
of Schwarzschild-anti-de Sitter black holes. In particular, we provide a first principle analysis of
vector fields in these geometries, using both a vector spherical harmonics decomposition and one
recent ansatz to separate the relevant equations in spinning geometries, the Frolov-Krtouš-Kubizňák-
Santos (FKKS) ansatz. We show that the FKKS ansatz is able to describe two polarizations: the
longitudinal and the transversal polarization described by the electric modes. The quasinormal
modes of such black holes and fields are calculated for both approaches in the non-rotating limit,
providing further support to our results.
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I. INTRODUCTION

Special Relativity [1] was formulated by Einstein in
1905 to solve the inconsistency between mechanics and
electrodynamics, known to exist since the publication of
Maxwell equations [2]. The main point of this theory
states that the laws of physics are the same under Lorentz
transformations. Thus, the dimensions of time and space
must be fused into a 4-dimensional manifold called space-
time. Nevertheless, it was noticed that Newton’s law of
gravity couldn’t be added to special relativity because it
is not covariant under Lorentz transformations. Follow-
ing the work of mathematicians such as Marcel Gross-
mann and Levi Civita, Einstein used differential geome-
try as a tool to formulate the theory of General Relativ-
ity (GR). Generally, spacetime is described by a mani-
fold with an associated metric, which gives the notion of
length. There is also the Riemann tensor, which gives a
notion of curvature and can be written in terms of the
metric and its derivatives. In Special Relativity, space-
time has the Minkowski metric [3], which is flat meaning
the Riemann tensor vanishes everywhere. General Rela-
tivity extends this to include gravity by stating that the
curvature of spacetime may be nonzero and is related to
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its energy content through the Einstein equations

Rab −
1

2
Rgab + Λgab =

8πG

c4
Tab , (1)

where Rab is the Ricci tensor, R is the Ricci scalar, Tab is
the stress-energy tensor, G is the gravitational constant,
c is the speed of light and Λ is the cosmological constant.
In this theory, gravity gains a new interpretation: the
energy of each object deforms spacetime and, in turn,
the deformed spacetime ”tells” them how to move.

Since the series of publications on GR in 1915, many
observations have been done throughout the century to
test GR. Back at the time, it was known that Mercury’s
orbit had an anomalous precession [4] that could be ex-
plained by GR [5] and not by Newton’s gravity. The
first observation that corroborated the theory was done
by Eddington et al. [6], consisting of the measurement
of light deflection near the sun. Nowadays, GR remains
consistent with most of the experiments and observations
such as the observation of gravitational lensing, the de-
tection of gravitational redshifts, and most recently with
the detection of gravitational waves by the Laser Interfer-
ometer Gravitational-wave Observatory (LIGO)/Virgo
[7] and the observation of the M87 central supermassive
black hole’s shadow by the Event Horizon Telescope [8].

Still, some observations cannot be explained solely by
GR and the observed matter. The theory is only consis-
tent if an additional matter that interacts very weakly,
called dark matter, is considered. A famous candidate to
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describe this matter is the axion [9] (scalar field), that
can additionally solve the strong CP problem [10], in
Quantum Chromodynamics (QCD). There is another un-
resolved question which is quantum gravity, an attempt
to join GR with Quantum Field Theory. Recent ad-
vances have been made with the AdS/CFT conjecture
[11], which requires a 5-dimensional asymptotically anti-
de Sitter spacetime. This is one of the motivations to
study these spacetimes.

From the solutions of the vacuum Einstein equation, it
may arise regions of spacetime called black holes. These
are mostly born from the collapse of very massive stars
[12]. Any object that falls into a black hole can never
escape to infinity, not even light, and so black holes can’t
be observed directly. So, the best way to study black
holes is to analyze the behavior of matter, such as scalar
or vector fields, in their vicinity.

In the thesis, the main area of study is the behavior
of classical fields in a spacetime containing a black hole.
Generally, this can be done by using a given lagrangian
for the field in curved spacetime and computing the corre-
sponding Euler-Lagrange equations [13]. Then for a fixed
background metric, the equations for the field perturba-
tions can be obtained. Analytically, one tries to apply
the method of separation of variables and then integrate
each separated equation (which in most cases numerical
integration must be done).

The most simple case treated and well studied in the
literature is the scalar field. Bosonic vector fields are
still being studied and their treatment presents more of a
challenge in spacetimes with rotating black holes. There
is a common feature of fields while interacting with ro-
tating black holes: they exhibit superradiance [14]. This
is characterized by the transfer of energy from a rotating
object (in this case a black hole) to the field, if the ratio
between its energy and angular momentum is lower than
the rotation frequency of the object. Superradiance is
a general effect also present in the interaction between
particles and a medium in the form of Cherenkov radi-
ation, as discussed in Ref. [15]. There is a recent work
that showed the existence of superradiance in plasmas as
well, check Ref. [16].

In Schwarzschild spacetime (static black hole), the
electromagnetic perturbations were calculated in Ref.
[17], using the vector spherical harmonics to separate
the equations and the treatment was generalized after-
ward to a massive vector field [18]. The extension to
Schwarzschild-(anti)-de Sitter spacetimes was also made
in Refs. [19] and [20].

In Kerr spacetime (rotating black hole), the calculation
of vector field perturbations is more complicated since
there is no spherical symmetry. Nonetheless, the elec-
tromagnetic perturbations were computed by Teukolsky
[21], using the Newman-Penrose formalism [22] to obtain
separated equations. Another method of calculation re-
garding the electromagnetic field and the separation of
its equations was done in Ref. [23] using an ansatz re-
lated to Teukolsky’s solution, for Myers-Perry geometry

[24] (a generalization of Kerr geometry in higher dimen-
sions). Only on a recent work done by V .P. Frolov et
al [25–27] the same was done for massive vector fields
in Kerr-NUT-(A)dS spacetimes (another generalization
of Kerr for higher dimensions, including Newmann-Unti-
Tamburino parameters and the cosmological constant).
They use an ansatz related to hidden symmetries that
exist in Kerr-NUT-(A)dS, mostly referred to in the liter-
ature as Frolov-Krtouš-Kubizňák-Santos (FKKS) ansatz.
It remains unclear if this ansatz describes all the degrees
of freedom of the massive vector field. The purpose of the
thesis is to investigate this issue in the Schwarzschild-AdS
geometry.

Thus, a general review of the addressed developments
is presented in the thesis. Additionally, the comparison
between a generalization of the work in Ref. [18] for
Schwarzschild-(A)dS and the corresponding limit of the
FKKS ansatz is shown. For this purpose, analytical cal-
culations are made, complemented with the calculation
of the quasinormal modes.

II. PROCA FIELD PERTURBATIONS IN
SCHWARZSCHILD-ADS

The action for a vector field Aa in a curved spacetime
is given by

S = −
∫

d4x
√
−g(LA − LE) , (2)

LE =
R− 2Λ

16π
, (3)

LA =
FabF

ab

16π
+
m2
A

8π
AaA

a , (4)

Fab = ∇aAb −∇bAa , (5)

following the notation in Ref. [28] with G = c = 1, except
for a general minus sign in Fab. From the Euler-Lagrange
equations, it follows that the field must obey

∇bF ab +m2
AA

a = 0 , (6)

with the internal equations

F[ab;c] = 0 , (7)

and the spacetime metric must obey the Einstein equa-
tion (1) where

Tab =
1

4π

[
FaeFbfg

ef +m2
AAaAb − gabLA

]
. (8)

The above system consists of nonlinear coupled partial
differential equations. Due to its complexity, an approx-
imation of weak fields can be made in order to proceed
with the analysis. Only the perturbations of the field
are considered and the metric is fixed as a background.
Generally, known physical fields generate a negligible cur-
vature compared with astrophysical objects. Thus, this
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approximation is valid in most scenarios. The perturba-
tions of the field are then described by equation (6). The
metric considered here is the Schwarzschild-AdS, given
by

ds2 = −fdt2 + f−1dr2 + r2(dθ2 + sin2 θdφ2) , (9)

f =
r2

R2
Λ

+ 1− 2M

r
, (10)

where M is the mass of the black hole (in this case),
and R2

Λ = 3
|Λ| . The Schwarzschild-AdS metric describes

an empty spherically symmetric spacetime with negative
cosmological constant. At the center region, there is a
static black hole with the event horizon located at r+

(the positive root of f).
The lagrangean of the massless vector field is invariant

under the gauge transformation Aa → Aa + χ,a, where
χ is a scalar. It is possible to partially fix the gauge by
imposing the Lorenz condition

∇aAa = 0 . (11)

For the massive case, the Lorenz condition needs to be
obeyed since it naturally arises from the field equations.
Thus, it can be used to simplify (6), obtaining the Proca
equations

gcd∇c∇dAa −
(
m2
A −

3

R2
Λ

)
Aa = 0 . (12)

A. Separation of Variables

In the Schwarzschild-AdS spacetime, the Proca equa-
tions (12) can be separated using vector spherical har-
monics [29]

Klm = Ylme(t) , (13)

Ylm = Ylme(r) , (14)

Ψlm = ∂θYlme(θ) +
1

sin θ
∂φYlme(φ) , (15)

Φlm = − 1

sin θ
∂φYlme(θ) + ∂θYlme(φ) , (16)

where Y lm are the spherical harmonics and

e(t) = ∂t , e(r) = ∂r , (17)

e(θ) =
∂θ
r
, e(φ) =

1

r sin θ
∂φ . (18)

Inherent to the existence of spherical symmetry, these
objects are well known from quantum mechanics [30] as
they can be obtained by the sum of a spin S = 1 with the
angular momentum L. Therefore, the field may assume
the following ansatz

Aa =
1

r

4∑
i=1

∑
lm

ciu
`m
(i) (t, r)Z(i)`m

a (θ, φ) , (19)

where c1 = c2 = 1, c3 = c4 = (`(`+ 1))−
1
2 and

Z(1)`m
a = (1, 0, 0, 0)Y `m , (20)

Z(2)`m
a = (0, f−1, 0, 0)Y `m , (21)

Z(3)`m
a =

r√
`(`+ 1)

(0, 0, ∂θ, ∂φ)Y `m , (22)

Z(4)`m
a =

r√
`(`+ 1)

(
0, 0,

∂φ
sin θ

,− sin θ∂θ

)
Y `m . (23)

Inserting this ansatz into the Proca equations (12), the
system for the functions u(i) is obtained as follows

D̂u(1) + (∂rf)(u̇(2) − u′(1)) = 0 , (24)

D̂u(2) + (∂rf)(u̇(1) − u′(2)) +
2f2

r2
(u(3) − u(2)) = 0 (25)

D̂u(3) +

[
2f`(`+ 1)

r2
u(2)

]
= 0 , (26)

D̂u(4) = 0 , (27)

where u̇(i) =
du(i)

dt , u′(i) =
du(i)

dr∗ , dr∗
dr = f−1 and

D̂ = −∂2
t + ∂2

r∗ − f
[`(`+ 1)

r2
+m2

A

]
. (28)

It must be noted that u(4) describes the magnetic modes
and the other functions describe the electric modes.
These definitions are associated to the different way the

Z
(i)`m
a transform under parity.
Inserting the ansatz in the Lorenz condition, one ob-

tains

∇aAa =
1

rf

[
u′(2) − u̇(1) +

f

r
(u(2) − u(3))

]
= 0 . (29)

This condition can be used to simplify equation (25) into

D̂u(2) =
2f

r2

(
1− 3M

r

)
(u(2) − u(3)) . (30)

Therefore, the system consists of equations (24), (30),
(26) and (27), together with the Lorenz condition (29).
The equations for u(2) and u(3) are coupled together, un-
like the equation for u(4) which is totally decoupled. The
dynamic part of u(1) can be described by the Lorenz con-
dition, where as the static part must be obtained from
equation (24).

This analysis is very similar to Ref. [18], where the
equations in Schwarzschild spacetime were presented.

1. Monopole case

The monopole case ` = 0 for the massive vector field
simplifies the system considerably. The functions u(3)
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and u(4) vanish since Y 00 is a constant. The equation for
u(2) can then be written as

u′′(2) − ü(2) − f
[
m2
A +

2

r2

(
1− 3M

r

)]
u(2) = 0 . (31)

The dynamic part of u(1) can be obtained directly from
the Lorenz condition

u̇(1) = u′(2) +
f

r
u(2) , (32)

whereas the static part (u(1)s) can be obtained from equa-
tion (24)

∂2
ru(1)s =

m2
A

f
u(1)s . (33)

III. HIDDEN SYMMETRIES AND THE FKKS
ANSATZ

Symmetries are the most useful tools in physics since
they provide conserved quantities. Explicit symmetries
are the easiest to find because they correspond to isome-
tries of the spacetime. Examples of these type of symme-
tries are the spherical symmetry and translation of time,
corresponding to the conservation of angular momentum
and energy of a particle, respectively. It is defined that
such symmetries have conserved quantities of the form

Q = ξapa , (34)

where ξa is the Killing vector field associated to the sym-
metry and pa is the momentum of the particle. There is,
though, another type of symmetries that correspond to
conserved quantities of the form

Q = ka1...anpa1
...pan , (35)

where k is a Killing tensor. These are an example of the
so called hidden symmetries. Unlike the explicit ones,
they can only be observed in the phase space.

The object of interest here related to these hidden sym-
metries is the principal tensor hab, a closed conformal
Killing-Yano 2-form (anti-symmetric tensor). This ob-
ject is able to generated a set of symmetries, allowing
the integration of the equations of motion. A thorough
review is done in Ref. [25] and it is presented in the thesis
as well. The principal tensor is described by

∇ahbc = 2ga[bξc] , ξb =
1

D − 1
∇chcb , (36)

together with the integrability conditions

∇a∇bhcd =
2

2−D

(
Raeδ

b
[ch

e
d] +

1

2
R a
fe [cδ

b
d]h

fe
)
, (37)

2R
[a
eδ
b]
[ch

e
d]

D − 2
−Rabe[ch

e
d] +R

[a
fe [cδ

b]
d]h

fe = 0 . (38)

These conditions give the following properties about the
principal tensor: it commutes with the Ricci tensor and
ξc is a Killing vector field. Additionally, the system com-
posed by equations (36)-(38) is overdetermined, meaning
the principal tensor only exists in special kinds of space-
times. Fortunately, it was found that the Kerr-NUT-
(A)dS family belongs to this group. This family describes
a generalization of Kerr black holes for higher dimen-
sions, with NUT parameters and cosmological constant.
The Kerr-NUT-(A)dS metric for D = 2n+ ε dimensions
can be written as

g =

n∑
µ=1

[
Uµ
Xµ

dx2
µ +

Xµ

Uµ

( n−1∑
k=0

A(k)
µ dψk

)2
]

+ ε
c

A(n)

( n∑
j=0

A(j)dψj

)2

, (39)

where

A(j)
µ =

n∑
ν1,...,νj=1

ν1<ν2<...<νj
ν 6=µ

x2
ν1
x2
ν2
...x2

νj , (40)

A(j) =

n∑
ν1,...,νj=1

ν1<ν2<...<νj

x2
ν1
x2
ν2
...x2

νj , (41)

Uµ =

n∏
ν=1
ν 6=µ

(x2
ν − x2

µ) , (42)

and the functions Xµ are chosen such that the vacuum
Einstein equation is satisfied, having the form

Xµ =

{
−2bµxµ +

∑n
k=0 ckx

2k
µ for D even,

− c
x2
µ
− 2bµ +

∑n
k=1 ckx

2k
µ for D odd.

. (43)

The constants ck, bµ and c are associated with the pa-
rameters of the spacetime, for example b1 is related to
the mass M and cn is related to the cosmological con-
stant. The principal tensor has then an expression given
by

h =

n∑
µ=1

n−1∑
k=0

xµA
(k)
µ dxµ ∧ dψk . (44)

A. Kerr-AdS spacetime

The Kerr-AdS spacetime describes a spacetime con-
taining a rotating black hole in 4 dimensions with nega-
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tive cosmological constant and its metric is

ds2 =
Σ

∆Λ
dr2 +

Σ

∆θ
dθ2 − ∆Λ

Σ

[
dt− a sin2 θdφ

]2
+

∆θ sin2 θ

Σ

[
adt− (a2 + r2)dφ

]2
. (45)

Σ = r2 + a2 cos2 θ , (46)

∆Λ = r2 − 2Mr + a2 +
r2

R2
Λ

(r2 + a2) , (47)

∆θ = 1− a2

R2
Λ

cos2 θ , (48)

where a is related to the angular momentum of the black
hole. This metric can be obtained from (39) by making
the transformation

(ψ0, x1, x2, ψ1) =

(
t− aφ, ir, a cos θ,

φ

a

)
. (49)

The functions Xµ are

X1 = −∆Λ , (50)

X2 = −a2 sin2 θ∆θ . (51)

B. Proca field and FKKS ansatz

The equations of the massive vector field are separated
naturally in Schwarzschild-(A)dS due to spherical sym-
metry. In spacetimes such as Kerr or more generically
Kerr-AdS, there is only axisymmetry which by itself is
not enough to separate the equations. Still, the equa-
tions for the massless vector field in Kerr were separated
by Teukolsky [21] using the Newman-Penrose formalism
[22], that consisted in moving to a frame of 4 null ba-
sis vectors. Extending this to the massive case was a
very hard task. Only recently an ansatz given in Ref.
[26, 27], called the FKKS ansatz, was able to achieve the
separation in the Kerr-NUT-(A)dS spacetime, using the
machinery of the principal tensor, and it can be written
as

Aa = Bab∇bZ , Bab(gbc − βhbc) = δac , (52)

where β is a complex constant and Z is a complex func-
tion given by

Z =

n∏
ν=1

Rν(xν)exp

(
i

n−1∑
k=0

Lkψk

)
. (53)

The polarization tensor Bab can be put in terms of a
β dependent Killing tensor generated by the principal
tensor. Inserting (52) into the Proca equation (6) and
the Lorenz condition (11), in summary, one obtains

( n∑
ν=1

1

UνRν
C̃νRν

)
−m2

A = 0 , (54)

n∑
ν=1

1

(1 + β2x2
ν)UνRν

C̃νRν = 0 , (55)

where

C̃νZ = (1 + β2x2
ν)∂xν

( Xν

1 + β2x2
ν

∂xνZ
)

+
1

Xν

(
n−1∑
k=0

(−x2
ν)n−1−k∂ψk

)2

Z

+ β

n−1∑
k=0

β2−2n+2k 1− β2x2
ν

1 + β2x2
ν

∂ψkZ . (56)

The eigenvalue problem can be resumed into

C̃νZ =

n−1∑
k=0

(−x2
ν)n−1−kCkZ , (57)

where Ck are constants of separation. Again, making
the substitution into the Proca equation and the Lorenz
condition, one obtains

C0 = m2
A ,

n−1∑
k=0

Ckβ
2k = 0 . (58)

The last equation restricts the possible values of β. It can
be interpreted that a different value for this parameter
indicates a different polarization. Still, it is unclear if
this ansatz describes all the polarizations.

In the Kerr-AdS geometry, the ansatz for the complex
field Z simplifies to

Z = R(r)S(θ)exp
(
− iωt+ imφφ

)
, (59)

where the correspondence

L0 = −ω , L1 = a(mφ − ωa) , (60)

has been used. The equations (57) turn into



6

∂r

[
∆Λ

qr
∂rR(r)

]
+

[
K2
r

qr∆Λ
+ i

2− qr
q2
rβ

σ +
m2
A

β2

]
R(r) = 0 , (61)

1

sin θ
∂θ

[
qΛ sin θ

qθ
∂θS(θ)

]
−

[
K2
θ

qθqΛ sin2 θ
+ i

2− qθ
q2
θβ

σ +
m2
A

β2

]
S(θ) = 0 , (62)

qΛ = 1− a2

R2
Λ

cos2 θ , qr = 1− β2r2 , qθ = 1 + β2a2 cos2 θ , (63)

Kr = amφ − (a2 + r2)ω , Kθ = mφ − aω sin2 θ , σ = aβ2(mφ − ωa)− ω . (64)

The condition (58) can be satisfied by setting C1 =
m2
A

β2 .

This allows one to write the eigenvalue equations solely
in terms of β, as shown above. With an expression for

the scalar Z, it is possible to obtain the corresponding
Proca field by (52), where the polarization tensor is given
by

B = Bs + Ba , (65)

Bs =
∆Λ

qrΣ
∂2
r +

qΛ

qθΣ
∂2
θ −

1

qr∆ΛΣ

[
(r2 + a2)∂t + a∂φ

]2
+

1

ΣqθqΛ sin2 θ

[
a sin2 θ∂t + ∂φ

]2
, (66)

Ba =
βr

qrΣ

[
(r2 + a2)(∂r∂t − ∂t∂r) + a(∂r∂φ − ∂φ∂r)

]
+
βa sin 2θ

2Σqθ

[
a(∂t∂θ − ∂θ∂t) +

1

sin2 θ
(∂φ∂θ − ∂θ∂φ)

]
, (67)

where Bs and Ba are the symmetric and the anti-
symmetric part of B, respectively.

1. Schwarzschild-AdS limit

The case for the Schwarzschild-AdS can be obtained
by doing the limit a → 0. Thus, the angular equation
(62) turns into

1

sin θ
∂θ

[
sin θ∂θS

]
−

m2
φ

sin2 θ
S +

[
i
ω

β
− m2

A

β2

]
S = 0 . (68)

The solutions for this equation are the spherical harmon-
ics Y lm. The values for the parameter β can then be
found by setting

i
ω

β
− m2

A

β2
= `(`+ 1) . (69)

Thus, there are two different values for β for each ` > 0:
β+ and β− given by

β± = iω
1±

√
1 +

4m2
A`(`+1)

ω2

2`(`+ 1)
. (70)

For the monopole case (` = 0), the parameter β is given
by

βmono = −im
2
A

ω
. (71)

These two different β’s correspond to a polarization. A
further quick analysis on the expression suggests that
β− describes the longitudinal polarization, since setting
mA = 0 makes it vanish.

The equation for R(r) is given by

∂r

[r2f

qr
∂rR

]
+
[ω2r2

fqr
− iω 2− qr

q2
rβ

+
m2
A

β2

]
R = 0 , (72)

and from (65)-(67) the tensor Bab becomes

Bsym = − 1

qrf
∂2
t +

f

qr
∂2
r +

1

r2
∂2
θ +

1

r2 sin2 θ
∂2
φ , (73)

Banti =
βr

qr
(∂r∂t − ∂t∂r) . (74)

Thus, it is possible to obtain the expression for the co-
variant components of the massive vector field in function
of the scalar R(r) and the spherical harmonics Y (θ, φ)

Aa =
(
− iω

qr
+
βrf

qr
∂r,

1

qr
∂r − i

ωβr

qrf
, ∂θ, ∂φ

)
RY . (75)
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Comparing (75) with (19), it can be seen that the FKKS
ansatz in Schwarzschild-AdS limit (a → 0) does not de-
scribe the magnetic polarization (u(4) in (19)). By in-
specting the definition of the principal tensor (44), one
of the eigenvalues of h is given by x2 = a cos θ. By doing
the Schwarzschild-AdS limit, the eigenvalue goes to zero
and so the principal tensor is degenerate. This fact might
be the cause for the absence of the magnetic modes.

The important aspect of ansatz (75) is that there is
a natural decoupling of the two polarizations contained
in the electric modes, in opposite to the treatment of
section II. In the thesis, it is proven analytically that
this expression continues to obey the Proca equations
(25), (26) and the Lorenz condition (29), by considering
the correspondence

u(1) = − iωr
qr

R(r) +
βr2f

qr
∂rR(r) , (76)

u(2) =
rf

qr
∂rR(r)− iωβr

2

qr
R(r) , (77)

u(3) = `(`+ 1)R(r) . (78)

IV. QUASINORMAL MODES IN
SCHWARZSCHILD-ADS

With the separated equations found, the analysis of the
system is concluded by integrating them. The quasinor-
mal modes are defined by solutions that solve the equa-
tions of the field with a purely incoming wave at the
event horizon and a purely outgoing wave at infinity, as
boundary conditions. In the case of AdS spacetimes, the
boundary conditions are equivalent to u(i) → 0 at infin-
ity.

A. Normal modes in AdS limit

In the limit of pure AdS (M → 0), the equation (27)
is simplified into

∂2
r∗u(4)

u(4)
+

[
ω2 − `(`+ 1)

R2
Λ sin

(
r∗
RΛ

) − m2
A

cos
(
r∗
RΛ

)] = 0 , (79)

where r∗ = RΛ arctan
(

r
RΛ

)
. Fortunately, this equation

can be solved analytically. By performing the transfor-

mation z = sin
(
r∗
RΛ

)
into (79) and assume an ansatz of

the type

u(4) = zα(1− z)βψ , (80)

α =
1

4

[
1 +

√
1 + 4`(`+ 1)

]
, (81)

β =
1

4

[
1 +

√
1 + 4m2

AR
2
Λ

]
, (82)

The equation assumes the form of the hypergeometric
differential equation

z(1− z)∂2
zψ +

[
c− (a+ b+ 1)z

]
∂zψ − abψ = 0 , (83)

where

a = α+ β +
ωRΛ

2
, b = α+ β − ωRΛ

2
, (84)

c =
1

2
+ 2α . (85)

The solutions of this equation are described by the hy-
pergeometric function 2F1. Thus,

u(4) = H1z
α(1− z)β 2F1[a, b, c; z]

+H2z
1
2−α(1− z)β 2F1[d− c, e− c, 2− c; z] , (86)

where H1, H2 are constants, d = 1 + a and e = 1 + b.
Since there is no event horizon, the boundary condition
that must be satisfied is u(4) → 0 at r → 0 (z → 0). The
hypergeometric function assumes the value of unity when
z = 0. Since α, β ≥ 1

2 , the second solution explodes, thus
H2 must be set to 0.

The solution must be transformed in order to be an-
alyzed near z = 1 (r → +∞). Following Ref. [31], one
has

2F1[a, b, c; z] =
Γ(c)Γ(w)

Γ(c− a)Γ(c− b) 2F1[a, b, 1 + v; 1− z]

+ (1− z) 1
2−2β Γ(c)Γ(v)

Γ(a)Γ(b) 2F1[a, b, 1 + w; 1− z] , (87)

where w = c − a − b, v = a + b − c and Γ is the gamma
function. If all the gamma functions are finite, the solu-
tion explodes at z = 1 since β ≥ 1

2 . The only way for
u(4) to vanish is if either a or b is a negative integer (−n).
Without loss of generality, one can choose

b = −n → ωRΛ = 2n+ `+
3

2
+

1

2

√
1 + 4m2

AR
2
Λ , (88)

thus obtaining the normal modes for u(4). Surprisingly,
the equation for the monopole (31) in the AdS limit can
be put also in the form of (79) with ` = 1. By fixing this
value of `, equation (88) describes the normal modes of
the monopole as well. This treatment was done in Ref.
[20] but it has a mistake in the expression for b. This
statement is supported by numerical calculations.

B. Treatment in Schwarzschild-AdS

In Schwarzschild-AdS, it is possible to write every com-
ponent of the vector field as an expansion series

U(i) = u(i)e
i(t+r∗)ω =

∞∑
n=0

a(i)
n (x− x+)n , (89)
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where x = 1
r and x+ = 1

r+
. The equation (27) for u(4)

can be written as[
(x− x+)s(x)∂2

x + t(x)∂x +
u(x)

x− x+

]
U(4) = 0 . (90)

where

u(x) = −(x− x+)
[
x2`(`+ 1) +m2

A

]
, (91)

t(x) = x2∂x

( f
r2

)
+ 2iωx2 , (92)

s(x) =
f

r2(x− x+)
x2 , (93)

f

r2
= R−2

Λ + x2 − 2Mx3 . (94)

These polynomials can be expanded around x+ so that

it is possible to write for example u(x) =
∑Nd
j=0 uj(x −

x+)j . Equation (90) can then be reduced to a recurrence
relation

an = − 1

Pn

n−1∑
j=0

(
j(j − 1)sn−j + jtn−j + un−j

)
aj , (95)

Pn = n(n− 1)s0 + nt0 . (96)

The quasinormal modes can be found by imposing that
the series vanishes at x→ 0 (r → +∞)

N∑
j=0

a
(4)
j (−x+)j = 0 . (97)

This is the Horowitz-Hubeny method [32] for the calcu-
lation of quasinormal modes in Schwarzschild-AdS.

The Proca equations (30) and (26) are coupled, so they
required a more careful treatment. An extension of the
method described above can be made, substituting the
coefficients by matrices. Using expansion (89), this two
equations turn into

(x− x+)s(x)∂2
xU + t(x)∂xU +

u(x)

x− x+
U

+
1

x− x+
K.U = 0 , (98)

U =

[
U(2)

U(3)

]
, (99)

where all the polynomials are the same as in the case of
u(4) and

K

(x− x+)
=

[
−2x2(1− 3Mx) 2x2(1− 3Mx)

2x2`(`+ 1) 0

]
. (100)

By defining

an = Mna0 , an =

[
a

(2)
n

a
(3)
n

]
, M0 = I =

[
1 0
0 1

]
, (101)

The Proca equations for u(2) and u(3) are reduced to the
recurrence relation

Mn = − 1

Pn

n−1∑
j=0

Vnj .Mj , (102)

Vnj =
[
j(j − 1)sn−j + jtn−j + un−j

]
I + Kn−j . (103)

The quasinormal modes can then be obtained by impos-
ing that both series vanish simultaneously at x → 0,
meaning

det

(
N∑
j=0

Mj(−x+)j

)
= 0 . (104)

The treatment for the FKKS ansatz requires more com-
plex manipulations in equation (72), as shown in the the-
sis. It is possible to apply the same method done for u(4)

and a similar equation to (90) is obtained, with different
polynomials

s(x) = x2 f

r2

(x2 − β2)

x− x+
, (105)

t(x) = (x2 − β2)(2iωx2 + 2x3 − 6Mx4)− 2x3 f

r2
, (106)

u(x) = (x− x+)
[
(x2 − β2)(m2

A + `(`+ 1)x2)

− 2iω(x3 + βx2)
]
. (107)

C. Results

The computation of the quasinormal modes was done
numerically using Mathematica, with N = 40. The quasi-
normal modes for u(4) with ` = 1 are presented in the the-
sis for different ranges in the parameters. In the massless
case, the results are consistent with Ref. [19]. The quasi-
normal modes for the monopole using both the treatment
in section II and the FKKS ansatz are also presented in
the thesis and they seem consistent with Ref. [20]. The
most important results are the comparison of the quasi-
normal modes between the treatment with vector spheri-
cal harmonics (VSH) in section II and the FKKS ansatz,
for ` = 1. A sample of these results are presented in table
I. They seem to coincide up to a deviation of O(0.1).

In the computation of the quasinormal modes regard-
ing the system of equations for u(2) and u(3), there were
higher monotones that could not be found and that were
present in the FKKS ansatz. It might be possible that
the fact of having two polarizations in the system re-
quires an higher value of N so that these monotones can
be found. Also regarding the system, only by inference
one can distinguish each polarization. Fortunately, this
is well characterized in the FKKS ansatz by the different
values of β, allowing an easier distinction.
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r+ = RΛ r+ = 100RΛ

mARΛ ωRΛ (VSH) ωRΛ (FKKS) ωRΛ (VSH) ωRΛ (FKKS)
0.01 1.554 − 0.542 i 1.554 − 0.542 i (0) − 149.984 i (0) − 149.984 i
0.10 1.557 − 0.552 i 1.557 − 0.552 i (0) − 152.099 i (0) − 152.099 i
0.20 1.568 − 0.583 i 1.568 − 0.584 i (0) − 158.432 i (0) − 158.432 i
0.30 1.585 − 0.633 i 1.584 − 0.633 i (0) − 168.817 i (0) − 168.817 i
0.40 1.607 − 0.699 i 1.606 − 0.699 i (0) − 183.291 i (0) − 183.291 i
0.50 1.634 − 0.777 i 1.632 − 0.777 i (0) − 202.684 i (0) − 202.684 i

(a) Transversal polarization (β+).

r+ = RΛ r+ = 100RΛ

mARΛ ωRΛ (VSH) ωRΛ (FKKS) ωRΛ (VSH) ωRΛ (FKKS)
0.01 3.331 − 2.489 i 3.330 − 2.489 i 184.968 − 266.394 i 184.968 − 266.395 i
0.10 3.339 − 2.500 i 3.339 − 2.501 i 185.604 − 267.461 i 185.578 − 267.524 i
0.20 3.362 − 2.531 i 3.362 − 2.534 i 187.452 − 270.612 i 187.355 − 270.817 i
0.40 3.446 − 2.645 i 3.444 − 2.652 i 193.925 − 282.119 i 193.650 − 282.498 i
0.50 3.501 − 2.722 i 3.498 − 2.729 i 198.077 − 289.799 i 197.761 − 290.138 i

(b) Longitudinal polarization (β−).

TABLE I: Quasinormal modes (ωRΛ) of the Proca’s electric modes in Schwarzschild-AdS with ` = 1, for
r+ = {RΛ, 100RΛ}, with variable mA. A comparison between the treatment with vector spherical harmonics (VSH)

and the FKKS ansatz is presented.

V. CONCLUSIONS

In this thesis, the topics of scalar fields and vector fields
in spacetimes containing a black hole were reviewed. This
subject is important to understand black holes better,
to test GR and to possibly describe new physics such
as dark matter. The equations for the scalar field in
Kerr geometry were separated. The treatment of a min-
imally coupled scalar field is well studied in the litera-
ture. For a scalar field with Gauss-Bonnet coupling in
Kerr geometry, it was demonstrated that the equations
couldn’t be separated due to the angular dependence
of the Kretschmann scalar. The equations for the vec-
tor field in Kerr were also separated in the thesis. The
treatment of massless vector fields was originally done
by Teukolsky [21]. It is known that both fields can ex-
hibit superradiance [33] in Kerr geometry, which was also
shown. The generalization of Teukolsky’s work for a mas-
sive vector field took more or less 30 years to appear
with the construction of the FKKS ansatz [27], which
uses hidden symmetries of Kerr-NUT-(A)dS to separate
the Proca equations. A review about this ansatz, the
principle tensor and the Kerr-NUT-(A)dS spacetime was
presented.

A question still lingers about the FKKS ansatz: Does
it describe all the degrees of freedom of the massive vector
field? The objective of the thesis was to investigate this
in Schwarzschild-AdS geometry, the non-rotating limit
of Kerr-AdS. The objective was accomplished by mak-
ing analytical and numerical comparisons between this
ansatz and the typical treatment with vector spherical
harmonics.

It was concluded that the FKKS ansatz is able to

describe two of the three polarizations of the massive
vector field in Schwarzschild-AdS: the longitudinal and
the transversal polarizations corresponding to the elec-
tric modes [18] of the field. The absence of the magnetic
modes in the ansatz may be due to the degeneracy of
the principal tensor in the non-rotating limit. The an-
alytical correspondence between the two treatments was
obtained and revealed a transformation that decouples
the two polarizations in the Proca equations. Indeed, an
advantage of working with the FKKS ansatz is the nat-
ural decoupling of the polarizations, opposed to the typ-
ical treatment. The numerical comparison consisted in
the calculation of the quasinormal modes for each ansatz
and they seem to coincide with a maximum deviation
of O(0.1), thus corroborating the drawn conclusion. Fi-
nally, it is worth mentioning that the calculation of the
monopole’s normal modes in anti-de Sitter done in Ref.
[20] had a mistake and was corrected here.

To extend this work, the FKKS ansatz in Kerr-AdS
spacetime should be studied. The Newman-Penrose for-
malism used by Teukolsky in Kerr is also valid in Kerr-
AdS [34]. This means a possible comparison can be
made between the FKKS ansatz in the massless limit
and the treatment with this formalism. The comparison
has important significance since a better identification
of the polarizations can be made. Also, the principal
tensor is non-degenerate in this geometry, in opposite to
Schwarzschild-AdS. Thus, one should be hopefully able
to find the magnetic modes.

Another work of interest would be to study extensions
of the FKKS ansatz and the principal tensor even
further. It is known that the principal tensor generates
a Killing tower: a set of Killing objects that translate to



10

symmetries. A legitimate question would be for example:
Are these symmetries able to separate the equations
of vector fields with higher order coupling terms to
the curvature? If such ansatz exists, it may imply a
different dependence in the principal tensor. Also, an
interesting question would be: Is it possible to extend
this for field with tensor nature, such as massive gravi-
tons? An affirmative answer to these questions would
be important for developments in the study of such fields.
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