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Resumo 

O crescente interesse em estruturas em compósitos desencadeou um desenvolvimento das tecnologias 

e métodos de fabrico até aos dias de hoje, cujo impulso é garantido de se manter. Em particular, na 

indústria aeronáutica, os compósitos tornaram-se o material predominantemente utilizado, dadas as 

suas vantagens sobre os materiais metálicos. No entanto, devido à competitividade económica do 

sector, os fabricantes têm de lidar de melhor forma com as exigências de custos. 

Este trabalho descreve a captura e reutilização de dados históricos do processo, sobre múltiplos 

programas de aeronaves, com o intuito de desenvolver uma abordagem capaz de gerar boas 

estimativas de custos de novos componentes numa fase de concepção de projecto. As amostras 

recolhidas preenchem uma série de relações tecno-económicas, desenvolvidas para estimar os 

parâmetros e requisitos do processo de fabrico, a partir de um conjunto de propriedades geométricas 

dos componentes. Por sua vez, estes métodos são integrados num modelo de custos baseado no 

processo, que traduzem a informação gerada do mesmo, numa avaliação final dos custos de fabrico. 

Além disso, a abordagem tradicional determinística da estimação de custos é substituída por métodos 

estocásticos, que reproduzem as variabilidades dos processos. Desta forma, obtêm-se uma visão mais 

ampla dos custos esperados, consequência das variabilidades inerentes aos processos. 

Os resultados obtidos indicam uma boa concordância com os custos do fabricante (MAPE=16,4%, 

NRMSE=5,1%), validando a aplicabilidade da ferramenta desenvolvida. Assim, é oferecida uma 

solução para a falta de avaliações do impacto económico de decisões de projecto e processo de um 

componente, antecedentes à sua industrialização. 

 

Palavras-Chave: Compósitos; PBCM; Modelação de custos; Indústria Aeronáutica. 
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Abstract 

The growing interest in composites structures triggered a development in composites manufacturing 

technologies and methods up to the present day, whose momentum is certain to be carried into the 

future. Particularly, in the aerospace industry, composites have become the predominantly used 

material given its many advantages over traditional metallic materials. However, because of the sector´s 

economic competitiveness, manufacturers have to better deal with cost requirements. 

This research describes the capture and reuse of rich historic process data, over multiple aircraft 

programs, to develop an approach capable of generating good cost estimations of new components in 

a preliminary design stage. The collected samples populate a series of tecno-economic relations, 

developed to estimate manufacturing process parameters and requirements, based on a set of 

components’ geometric properties. In turn, these methods are integrated into a process-based cost 

model, that translates the generated process information into the final manufacturing cost assessment. 

Additionally, the traditional deterministic approach to cost modelling is replaced in favour of developed 

stochastic methods that inherit process uncertainties. By doing so, a broader view of expected costs is 

provided, which reflects existing process variabilities. 

Results obtained in this approach indicate close agreement with the manufacturer cost assessments 

(MAPE=16.4%, NRMSE=5.1%), validating the applicability of the developed cost tool in estimating 

projects’ manufacturing costs. Ultimately, the tool provides a solution to the lack of readily available cost 

assessments prior to process industrialization and may help designers to overcome the challenge of 

evaluating design and process decision consequences on final product cost. 

Keywords: Composites; PBCM; Cost Modelling; Aeronautics Industry. 
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1. Introduction 

Large competitiveness in commercial aircraft manufactures, stimulate a constant push towards 

producing more economically efficient airplanes to stay ahead of competitors and attract potential 

buyers. When doing so, manufactures are faced with the challenge of further developing established 

technologies and explore emerging ones on how to save manufacturing costs, through a more efficient 

use of its resources. Since the early 1990s composites have been making their way into the aerospace 

market and have been increasingly used [1]. This penetration has only become possible with the 

automation of layup processes such as Automated Tape Laying (ATL) and Automated Fibre Placement 

(AFP), which significantly increased the rate and consistency to which the material is placed when 

compared to the more traditional method of manual layup [2]. Even though composite materials are 

typically more expensive than the widely used aluminium alloys, they do come with the benefits of 

producing lighter components resulting in a lighter airplane that in turn consumes less fuel. Also, 

composites offer increased resistance to fatigue and corrosion allowing for some additional savings in 

aircraft maintenance costs. Both aspects drive overall operational costs down, allowing for a lower cost 

per passenger to be achieved which is of interest to commercial airliners when assessing aircraft 

acquisition. However, for the manufacturer to achieve profitable returns, a lot of effort should be put into 

the early stages of product development since a major part of the project cost is committed during this 

phase [3] and, once production takes place, excessive manufacturing costs are often irreversible [4]. 

Therefore, it is of the utmost importance to provide tools that allow designers and cost engineers to work 

more closely together and to support them during design iterations on how overall manufacturing costs 

are being influenced. 

With the increased interest of manufacturers, in using Carbon Fiber Reinforced Polymers (CFRP), as 

well as other materials such as Glass Fibers (GFRP) or Aramid Fibers (AFRP), great improvements 

have been made in developing materials with better mechanical properties, as well as the technologies 

that process and shape these materials into working structures [5]. However, with newer and different 

technologies different technical challenges arise, to which engineers must adapt their designs (Design 

for Manufacturing), while making conscious decisions to achieve management imposed cost targets 

(Design to Cost), aware of each technology's strengths and weaknesses. Additionally, there is often an 

overlap between technologies, i.e. two or more different technologies that can achieve the same result 

in terms of mechanical performance but with significant differences in terms of manufacturing cost. Thus, 

the decision-making process becomes even more difficult and careful consideration of multiple process 

variables have to be taken into account. Understanding what drives the differences in the final 

manufacturing cost is extremely valuable for manufacturers who try to reduce production costs. But, 

more often than not, cost and design expertise are held by different people, requiring a combined effort 

and efficient sharing of information to successfully drive manufacturing cost down and achieve a more 

economically effective component. Additional challenges lie in the process and methods of determining 

the key factors that ultimately influence costs, often biased and subjective to one’s expertise on the 

matter, e.g. operational time, material quantities.    



2 

In order to achieve a better balance between cost and performance, there must be some enlightenment 

on what are the main aspects that ultimately affect costs. In turn, these aspects would provide relevant 

information that engineers could use in the early stages of design to steer and streamline development 

into a more affordable solution. 

The nature of costs that impact final product costs, is distinct between different steps and areas of the 

manufacturing process. Another trait of manufacturing processes is their well-known variance, i.e. they 

do not always perform under the same conditions. For example, human work performance is variable 

by nature, leading to an inconsistency on final product costs – either by variations in cycle times or non-

quality aspects such as scrap or reworks – meaning that producing the same component will not always 

have the same costs as initially planned, under normal operating conditions. Recognizing this fact, the 

present thesis focusses on making use of available industrial data, to translate labour, materials and 

machine costs, among other sources of cost, into a final assessment of the expected manufacturing 

costs in the environment of an aircraft manufacturer. Ultimately, the goal of this work is to provide an 

analytical tool that can help engineers to better understand, during the design process and early stages 

of process industrialization, possible future manufacturing costs in order to weight on the economic 

viability for possible changes to the manufacturing process, in a more streamlined way. 

To achieve these objectives, this research was conducted at an aircraft manufacturer industrial setting 

that mainly focus on the manufacturing and assembly of composite aircraft components and structures 

that range from their executive, commercial and defense divisions. A typical composite part 

manufacturing process can be long and complex, sometimes taking multiple days to complete with many 

different steps in between. Understanding and capturing the process dynamics for each of the different 

parts manufactured was only made possible due to the visits to the factory on a weekly basis, for in situ 

observations of the processes, enabling key insights from both the operators and engineers to be 

documented. The main purpose of these visits was for the acquirement of manufacturing data, 

automatically recorded throughout the multiple process steps by company software. This data provided 

a wide spectrum of analysis, with a history that traces back to 2012/2013, for over 680 components, 

manufactured through various methods and supporting composite based technologies. Each 

component manufacturing process was broken down into its core steps - from raw material storage to 

non-destructive testing -  and information from past production runs was analyzed with the intent of 

capturing the dominant features that impact and influence the different variables that ultimately drive 

costs – known as cost drivers. Regression analysis was employed throughout the study, to determine 

possible relations between identified cost drivers and component geometric attributes. These geometric 

attributes are therefore used as primary inputs, to develop probability distributions to model the cycle 

times of the various manufacturing steps as a stochastic variable. This information coupled with factory 

data for materials, machines, and other operational costs is added into Process-Based Cost Models 

(PBCM) [6] with the intent to simulate its manufacturing costs. Additionally, a Monte Carlo simulation is 

performed using the developed model, which enables a cost distribution to be obtained that reflects 

existing process variations. Ultimately, the developed model cost results enable the economic 
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assessment of currently available technologies at the factory, as well as explore manufacturing 

alternatives or future process improvements impacts on cost. 

This document is organized in the following way: Chapter 2, provides a brief overview of composites' 

penetration into the aerospace industry, evolution, and prospects. Considering the industrial 

environment where this work is inserted, a description of some of the available composite technologies 

is also provided to familiarize the reader with its current capabilities and limitations. Lastly, a rundown 

over some of the most popular cost modelling methods is provided. 

Chapter 3 describes the different manufacturing processes currently explored under the studied 

industrial framework, the different available data that was collected, and the methods used to develop 

the models that enable the cost estimations. 

In Chapter 4, additional methods and tools are explored and developed, to enhance current PBCMs, by 

limiting the number of inputs required, to a reasonable amount of quantitative component’s geometric 

characteristics, while at the same time introducing real manufacturing variability to the cost estimation. 

The following chapter, Chapter 5, focusses on testing and verifying the developed model throughout the 

available set of components, and exploring its results. Additionally, the model is used to evaluate cost 

impacts stemming from technological or process improvements, which are essential to assess when 

making future process decisions. 

Lastly, in Chapter 6, conclusions about the developed work are drawn out, and future work suggestions 

are provided. 
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2. State of the Art  

The desire to enhance performance on aircrafts is constantly driving the development of high-

performance structural materials. Composite materials play a significant role in current and future 

aerospace components, as they offer exceptional strength and stiffness to weight ratios, allowing for 

superior structures to be obtained. Composite materials come in many shapes and forms, but most 

commonly, they are composed of relatively strong and stiff fibers, embedded in a softer and more 

compliant constituent forming the matrix. Wood is an example of a natural composite material, 

composed of aligned cellulose fibers in a lignin matrix. Man-made composite materials used in 

aerospace and other industries are mostly comprised of carbon or glass fibers, both of which are very 

stiff for their density, but brittle, hence they are embedded in a soft polymer matrix. In a very simplistic 

way, this combination of materials with complementary properties, form a new material (Fiber Reinforced 

Polymer) with most of the benefits (high strength, stiffness, toughness and low density) and few or none 

of the weaknesses of the individual components. Aircraft manufacturers try to make extensive use of 

these materials, that although more expensive than most common metals, result in lighter airplanes, 

that in turn consume less fuel, becoming extremely attractive to commercial airliners that seek to acquire 

new planes, able to operate at lower costs and enable a reduced cost per passenger to be achieved. 

 History of Composites in Aerospace 

Forty years ago, aluminum dominated the aerospace industry. It was considered to be lightweight and 

state-of-the-art, therefore as much as 70% of an aircraft was once made of aluminum, from the fuselage 

to main engine components. Other metals such as titanium and stainless steel also have applications 

in aerospace, and new alloys are constantly being developed to offer ever-increasing performance in 

structural pieces like fasteners, landing gears, and actuators that require raw strength rather than 

lightweight properties.  

Despite the dominant run of metal materials in aerospace, with composite materials such as continuous 

carbon fibers becoming commercially available from 1966 [7] on-wards, the industry very rapidly began 

growing an interest for this new material even though the use of composite materials was not at all new, 

with reports of the use of a glass fiber sandwich on a fuselage skin dating back to 1945 [1]. 

Initially, composite materials were only used in secondary structures, but as experience and 

development of these materials increased, so did its use, becoming a common application in fuselages 

and wings. Percentage by structural weight was initially small and mainly used in military applications, 

at around 2% in the case of the F15, in 1972. But these numbers rose, and by the time of the F18 – 

around 6 years later – it had increased to 19% [8]. Commercial aircraft manufacturers quickly took notice 

of the advantages brought by these new materials:  

Firstly, unlike conventional metallic materials that are isotropic i.e. their properties (strength, stiffness, 

etc.) are all the same in any direction, fibrous composites are anisotropic i.e. their properties vary 
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depending on the direction of the load with respect to the orientation of the fibres. Initially, this may seem 

as an undesired characteristic, but by stacking multiple layers of material with the fraction of a millimetre 

in thickness, and aligning the fibres according to the direction of the expected loads, engineers can tailor 

the properties of the laminate to better withstand the loads to which it will be subjected. By doing so, 

material and therefore weight can be saved, by removing unnecessary excess when compared to their 

metallic counterparts [9]. 

Secondly, more complex shapes can be achieved, with a bigger level of integration, meaning that two 

or more individual parts can be joined together and built as one single component. This in turn reduces 

the need for fasteners and joints to which the advantages are twofold: a fastener requires a hole, which 

therefore acts as a stress concentration point that may lead to crack initiation. Also, by removing 

fasteners, assembly times can be brought down, as well as overall component weight.  

In the end, it falls to the manufacturer to balance his decision between cost and performance and 

whether to use composites materials or not, since traditionally, composites are more expensive than 

metallic materials. 

Airbus took the first step in 1983 with their A300 and A310 models that featured a composite material 

rudder, and then in 1985 the vertical fin. The latter resulted in a reduction from 2000 individual parts to 

fewer than 100 in its composite counterpart, lowering its weight and production time. These early 

successes with composites prompted its use for the entire tail structure of the A320, as well as some 

other components, detailed in Figure 1, composing 28% of its airframe weight.  

 

Figure 1 - Composite Materials Applications on Airbus A320 [8] 

Similarly, the A340 and A380 models, also bear use to composite structures that contributed to weight 

savings around 20%, and between 15% to 30% respectively, along with some additional savings in 

production times when compared to their aluminium counterparts. 
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Boeing also made use of composites in its commercial aircrafts as early as Airbus, but in 2007 they took 

a striking step forward introducing the 787 Dreamliner with an unprecedented 80% and  50% of its 

airframe volume and weight respectively, comprised of advanced composites materials which included 

the first-ever carbon fibre fuselage and wings with an aerodynamic design that improved fuel efficiency, 

which could not be easily achieved in metallic wings [10]. This revolutionary design was mostly based 

on Boeing’s attempt to respond to airliners' demands that, with the increase in fuel costs, underlined 

their interests in having more fuel-efficient aircrafts and to operate at lower per-passenger costs [11]. 

This extensive use of composites contributed to the aircraft's reduced weight, that coupled with a new 

generation, more-efficient jet engines, offered a 20% better fuel economy and an equal reduction in 

pollutant emissions. In addition to that, with the superior resistance of composites to corrosion and 

fatigue, Boeing developed a maintenance schedule that would allow airliners to extend maintenance 

checks and reduce total scheduled labour hours by 60%, which in turn, would also contribute to lower 

operational costs [12]. 

Airbus paid close attention to these developments, and 2 years later presented its competitor to Boeing’s 

787 Dreamliner, the Airbus A350XWB. This airplane explores the same benefits of composites as the 

Boeing 787 with 83% of its volume and 52% weight comprised of composite materials. Both models 

currently hold the most extensive use of composites on commercial aircrafts (Figure 2), and only 

confirms the upward trend of adopting composites as the favourable material to reduce weight and 

achieve higher fuel efficiency.   

 

Figure 2 - Breakdown of weight content by material types in Boeing 787 and Airbus A350 XWB. 
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In the years to come, it is not certain whether these numbers in composite weight percentage will rise 

or not with yet to come aircraft programs, but composites demand and consumption are sure to increase 

as interest grows from other industrial segments [13][14][15]. 

 

Figure 3 - a) Global CFRP demand in thousand tonnes (*estimated). b) Global demand in CF by industrial sector 
in thousand tonnes (2013) [14] 

Boeing claims that its newest 777X model - with expected first deliveries by 2020 – will be the largest 

and most efficient twin-engine jet in the world with 10% lower fuel consumption and emissions as well 

as 10% lower operational costs than its competitors [16]. Early estimations indicate that each of these 

newer aircraft carbon fibre wings, will consume as much material as an entire 787 Dreamliner and that 

alone should increase and sustain carbon fibre demand in the aerospace sector for the next decade 

[17]. This increase in consumption naturally requires additional investments in technologies that give 

shape to these materials and allow for a steady production flow of parts. From this perspective, Boeing 

invested over 1 Billion dollars in new facilities that accommodate three of the world’s largest autoclave 

units, together with automated layup manufacturing equipment from Eletroimpact Inc. which cements 

the interest in composites from one of the leading aerospace manufactures for years to come [18]. 

 

 Advanced Composite Manufacturing Technologi-

es 

Carbon fiber composites manufacturing still requires a great amount of manual work due to parts 

intricacies that may be inaccessible to machines, or in situations where the machine acquisition 

investment might not compensate for the targeted production volume. Notwithstanding, for the past 

decades, the manual process of depositing sheets of composite material on top of each other – also 

referred as hand-layup – as the standard process for composites manufacturing is falling more and more 

out of use, as for larger components, the low rates of material deposition achieved (~1kg/h) are not on 

par with the current demands of production. Not only that, but manual processes are also highly variable, 

as the alignment of the fiber directions and correct positioning of the sheets are dependent on the worker 

level of skill and precision, which may not always achieve the same results, generating a lot of material 

waste and scrapped components in the process. Therefore, since the early days of composites, 
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manufacturers have been trying to develop equipment that would allow for an increase in material 

deposition rates, in order to unlock composites manufacturing to its full potential.  These shortcomings 

in composites manufacturing are nowadays significantly reduced by automated processes that can 

perform at high levels of precision and consistency.  

The two most common technologies currently in use in the aerospace industry are Automated Tape 

Laying (ATL) and Automated Fiber Placement (AFP). Besides these two, there is a wide range of other 

available technologies, each more suitable for a particular part characteristic of the component to be 

manufactured. However, there is not a single technology that is only suitable to a particular set of 

components, rather, there is a span of technologies that could achieve the same results but requiring 

different operational conditions. As it will be shown in the next sections, both ATL and AFP have some 

overlaps in terms of the types of components they produce, although each comes with its advantages 

and limitations. The question then lies in which technology achieves a better or equal result at a more 

affordable cost, resulting in a more cost-competitive component. 

2.2.1. Automated Tape Layout (ATL) 

Since carbon fibers became commercially available by 1966 [7] manufacturers started to wrap their 

efforts into developing technologies that could improve productivity and consistency when using these 

materials. The first ATL systems were conceived by the end of the 1960s and by the middle 1970s they 

were in applicable use, although, at that time, they were mostly built in-house as part of a component 

center production system (Figure 4).  

 

Figure 4 – Layout of an automated laminating system [19] 

At that time, it was argued that the slow speeds of these systems did not yet achieve the desired 

productivity levels, and were reported to be on par with hand-layup processes in terms of deposition 

rates [19]. However, the big advantage already possessed by these systems, was the ability to greatly 

reduced layup errors, resulting in material savings between 70% and 90% comparatively to hand-up 

[20][21]. 
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During the 80s and throughout the 90s, lots of developments and competing concepts emerged, yet, 

some limitations regarding the difficulty in depositing material over curved surfaces, accurate pressure 

and temperature control - that could ensure correct tack level of the laminate and enable tape 

attachment - still made it difficult to offset the high initial investment of ATL as productivity levels 

remained low (10-20m/min). 

In today’s time, most of these problems have been overcome, and ATL is a well-established technology 

in the manufacturing of composites parts, considered to be an additive process as the part is built by 

adding the material in opposition to material removal in machining [22]. These systems are usually built 

in horizontal gantries or vertical column configuration that hold the machine’s head where the material 

is stored, and are responsible for delivering the material tapes onto the surface of the mold. 

a)  

 

b) 

 

Figure 5 - a) Schematic of an ATL layup head [23] b) Gantry type ATL machine, laying prepreg material onto an 
open mold [24] 

Depending on the level of curvature of the surface, these prepreg tapes could vary from 75 to 150 and 

300 mm wide – with lower curvatures allowing for a wider tape - and are placed parallelly to each other 

with gaps no bigger than 1mm, so that it is not impactful to the mechanical performance of the 

component. The machine first attaches the tip of a pre-determined length of material on the mold, using 

a soft silicone roller, and then accelerates to deliver the remaining length of material using controlled 

force. At the end of the ply’s course, the head decelerates and cuts the tape automatically, in order to 

start a new one. This is only possible due to the Computer Numerical Control (CNC) systems that 

execute these predefined paths with high accuracy and reproducibility, allowing the minimization of 

layup errors. Current systems are capable of reaching linear speeds up to 0.83 m/s and accelerations 

up to 0.5m/s2 with layup rates varying from 10 to 150 kg/h depending on the level of complexity of the 

component [5][25]. In terms of material waste that result from the layup process itself (technical scrap), 

it is claimed that with increasing part size, these tend to decrease from 30% and can be as low as 2% 

to 4% [20], meanwhile, efficiency follows an opposite trend, and increases with part size [26][6]. This 

has to do with the fact that with bigger parts the machine spends most of its time at maximum laying 

speed, not having to decelerate and cut the material to readjust its position and start a new ply as often. 
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2.2.2. Automated Fiber Placement (AFP) 

The first AFP system introduced in 1974, was based on an ATL machine with the ability of slicing down 

the wide tape into smaller 3.2mm slices that could be delivered at individual speeds, allowing for a better 

deposition of material onto curved shapes (Figure 6).  

 

Figure 6 - Schematics of tape slicing mechanism of the first AFP system [27]  

Controlled pressure and temperature are just as important as in ATL for the same reasons, however, 

due to the increase in the number of narrower independent tapes placed at the same time, an even 

greater accuracy control is needed, otherwise, it will result in gaps between the material that may affect 

the mechanical performance of the component [28]. Another challenge that emerges in AFP, has to do 

with the possible welding of the tape ends, known as splicing, that required the development of better 

cutting systems to mitigate its effect.  

Current AFP structures are very similar to ATL (Figure 7), with most equipment employing the horizontal 

gantry or vertical column configuration, while some might use robotic arms that offer better tailoring for 

specific applications [5].  

 

Figure 7 - AFP gantry structure with tow holder on top of the horizontal column, laminating over an open mold 
[29]. 

These systems deposit multiple tows of material - stored inside the machine head or on-top of its gantry 

structure - with widths typically of 3.2, 6.4, or 12.7 mm, termed bands. A band forms a course, and a 
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sequence of courses forms a ply that covers the desired surface area of the mold in a specific direction. 

Presently, up to 32 tows can be delivered at a time, with the ability to independently control each tow 

speed as well as the number of tows delivered at the time, enabling a better layup over complex 

geometries and curves, as well as deposition along curvilinear paths [5]. This ability - known as tow 

steering - is very useful as it allows for better optimization of the laminate directions producing highly 

efficient load-bearing parts. Another advantage of this independent tow control is the possibility to 

individually cut and adjust the number of tows, which in turn leads to lower scrap rates when compared 

to ATL (Figure 8).  

 

Figure 8 - Difference in technical scrap generated in ATL and AFP, resulting from the larger surface of material 
deposited than the part surface [6]. 

Performing at speeds up to 1 m/s and accelerations 2 m/s2, it is possible to achieve deposition rates up 

to 150 kg/h. This productivity falls significantly when depositing material over more complex surfaces, 

despite its better ability to perform under these conditions compared to ATL. 

2.2.3. Hot-Drape Forming (HDF) 

Hot Drape Forming (HDF) is a thermoforming process that was originally developed for forming 

thermoplastic composites in the 1980s as an alternative and more efficient way to achieve geometrically 

complex composite parts, but nowadays it is also applicable to thermosets [30][31]. Unlike ATL or AFP, 

HDF is not considered as a lay-up technology,  as no material is deposited during its process, instead, 

it can be seen as an auxiliary technology to be used in combination with any of the previous two, or 

even hand-layup. 

The idea behind this technology is to firstly produce a flat prepreg stack either by any automated process 

or hand-layup and then conform the material to the curved geometry of a tool. Deformation of the 

material is achieved inside the equipment (Figure 9) by the application of heat and vacuum between the 

tool and a membrane above the material, pressing it against the tool during a certain period, dependent 

on part geometry and dimensions (Figure 10). Finally, the preformed curved part is cured inside an 

autoclave or oven, under applied pressure to consolidate and produce the final composite component. 
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Figure 9 - HDF machine cycle source: https://pinetteemidecau.eu/en/preforming-solutions/hdf-hot-drape-forming-
preform-production 

 

Figure 10 - Illustration of the composite forming process [32] 

By using this method, it is possible to significantly reduce the layup time of the component onto three-

dimensional tools, into a single step forming process, therefore reducing part costs. However, some 

technical challenges may hinder the process. Heat is applied to soften the material and reduce the highly 

viscous resin on prepreg surfaces that generate high interply friction between multiple sheets of material 

[33]. This friction reduces the slippage between the material sheets, causing interply shear stress that 

ultimately results in ply wrinkling or fiber buckling, both highly undesired as they compromise the 

structural integrity of the component. For this reason, some studies suggest that HDF may not be 

suitable for manufacturing large and thick components [34].  

As previously mentioned, heat can be applied to reduce the effects of fiber wrinkling and buckling, but 

even this more conventional method has its limits, as prolonged exposition to high temperature could 

initiate the curing process, which is undesirable during the forming cycle. Recent studies propose the 

application of dry lubrification layers in between the prepreg layers to reduce interply friction [32]. These 

lubricant layers can be formed either by thin veils or powders, that not only promote interply slippage 

but have also been reported to increase the component interlaminar fracture toughness [35][36]. 

Overall, HDF is a viable solution when evaluating potential manufacturing alternatives and has been 

successfully implemented in thermoset composite structures [37][38]. Ultimately, whether a 

manufacturer chooses to employ this technique or not, will come down between the balance in potential 

time savings in its other equipment such as ATL or AFP, freeing up space for other components to be 

produced, and the initial investment that has to be made in order to acquire the machine.  
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 Cost Modelling in Aerospace 

With the development of automated technologies, newer processes and methodologies to manufacture 

composites components emerged, becoming ever so difficult to make a conscious and informed 

decision on the most cost-effective manufacturing route. This is true not only in the aerospace industry 

but in any other industry. Being cost an important decision metric in assessing product viability, a lot of 

effort is put in trying to control possible manufacturing costs with design decisions at the very early 

stages of engineering design, and it is usually done under two different approaches: design for cost 

(DFC) and design to cost (DTC). DFC makes conscious use of engineering process information during 

design to reduce life cycle cost (LCC), whereas DTC is driven by management-imposed cost targets 

resulting in iterative redesigns of a project until the content of the project meets a given budget [39]. 

However, it is believed that imposing strict cost targets leads to inferior designs that ultimately still 

overshoot estimated costs [40]. Rather, emphasis should be put in providing designers supportive 

costing tools that could determine cost impacts based upon design decisions. 

Despite this rather obvious statement, cost modelling is knowledge intensive and usually requires 

expertise in several different disciplines for an accurate understanding of a company’s processes and 

ensure that the model is provided with accurate data, to generate a meaningful cost estimate in a timely 

manner. 

Cost modelling is defined as:” the process of predicting or forecasting the cost of a work activity or output 

by interpreting historical data” [64]. Currently, there are three well-recognized methods used in the 

evaluation of potential costs: analogous, parametric, and bottom-up. 

(1) Analogous 

The analogous method is also synonymous with case-based reasoning tools. This method is 

characterized by adjusting the cost of similar past projects relative to differences between it and the 

target product. Past project data are organized and stored to later retrieve its information and help 

identify a cost value for a new project, but in order to do so, it is required to first capture the knowledge 

of experts that can formalize the process into similarity functions and analogy rules [41]. Those could 

later be used to attain the desired estimates, but formalizing this knowledge can be a very complex 

process that still requires some assumptions to be made, and its utilization is subject to the expertise 

and understanding of the user [42][43]. 

One of the strengths of this method is the possibility to utilize a single historical data point as support 

for the estimate of a new project that does not incorporate many different design features or utilize new 

processes for the company. However, there is always an associated risk in affecting the accuracy of 

those estimates when dealing with a limited set of information, and its effectiveness relies heavily on the 

ability to correctly identify the differences between the two cases. Standardization helps to ensure that 

the process is as rigorous as possible, seeking to achieve better results. Examples can be found in the 

literature [44], as well as cost estimates using this methodology [43]. 
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(2) Parametric 

Parametric cost models were developed in the 1950s by the Rand Corporation [45] and have thus 

become very popular within the aerospace industry. This cost estimating techniques usually employ cost 

estimating relations (CER’s) in the form of mathematical algorithms to establish cost estimates. It usually 

relies on linear regression for the development of CER’s, where the focus is in establishing possible 

relationships between different parameters – referred as cost drivers - that are observed to change as 

cost changes [46]. These are typically project parameters know to be highly influential in the change of 

costs.  

With the use of historical data, it is then possible to establish relations between cost as the dependent 

variable, and the selected cost drivers as independent variables and infer the statistical accuracy of 

these relationships to check for their validity. The process of establishing CER’s is performed across all 

the relevant cost sources - from the cost of materials, fabrication, inspection, etc. - and combined, they 

account for the product’s total cost.  

This way, it is then possible to generate a cost estimate for a similar product, or products, inside the 

range of the historical data set used, mindful that the accuracy of this estimate is only as good as the 

combined correlation accuracies of all the individual CER’s. 

(3) Bottom-up 

Bottom-up cost modelling relies on detailed engineering analysis and calculation for the various system 

components, and the aggregated sum of each estimate equals the estimate of the entire project. This 

approach is the most accurate in estimating project costs, but it also requires the most time. The process 

typically starts by entailing each team responsible for a basic task in the work structure of the project 

with the opportunity to produce the estimate relative to their work. Because each team is performing the 

work relative to its estimate, it is believed that they are in a better position to achieve accurate results. 

However, as mentioned earlier, this process requires detailed information about the project designs, 

which may not be readily available at an early stage, hence, if an early estimate was to be produced, it 

would require the use of parametric or analogous methods. 

 

Advanced estimating techniques 

More recently, different methods are starting to emerge that follow more complex methodologies, 

attributed to advances made in other disciplines, such as computer science that ultimately set off the 

development of such methods. A few examples are (1) Feature-based modelling, (2) fuzzy logic, and 

(3) neural networks. 

(1) Feature-based modelling 

Feature-based modelling - as suggested by its name - uses the design features of the manufactured 

object as relational drivers of costs. By doing so, objects can be categorized into classes of similar 

features, giving the possibility for the cost functions to be attributed to the classes itself, and not the 

individual object. Another result from this process is that by linking costs to certain object features, that 
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information itself can be fed back to the designer who ultimately becomes more conscious of design 

decisions and how themselves can directly influence costs. 

One example is to associate certain product features with the production time and resultant costs to 

achieve that same feature. However, this process can become cumbersome, when multiple operations 

are carried out for groups of inter-related features which makes it difficult to allocate the exact cost for 

each feature. With the growth of CAD technology and 3D modelling, most manufacturers have a good 

supply of readily available geometric data where it is possible to draw which features should be selected 

and linked to the company’s historical manufacturing data to evaluate costs.  

 

Figure 11 - Examples of design feature definitions 

Typically, the more features a product has the more designing, manufacturing, and planning it will 

require [47], leading to an increase in costs. Although not yet fully established, companies appreciate 

the concept as this methodology is usually a more apparent way for engineers to decompose and define 

costs based on design. 

 

(2) Fuzzy logic 

Most traditional cost modelling tools are deterministic and do not account for the uncertainty of many of 

the parameters in the industrial environment. Fuzzy logic was originally created to bridge the gap 

between the binary world of digital computing and that of continuous intervals, as displayed in nature, 

but it also proved to be capable to quantify vagueness in human knowledge in a formal manner. By 

applying fuzzy logic approach, it is possible to address the uncertainty in cost estimation and it is 

appropriate in situations where the understanding of very complex models is limited or judgmental and 

heavily based on human perception and decision making [48][49]. It can be viewed as a form of Artificial 

Intelligence that formulates the human thought process and has been applied to the realm of aerospace 

cost estimating. 

 

 



16 

(3) Neural networks 

Neural networks have been implemented in cost modelling applications with the view of linking historic 

costing information with design stimuli [50]. In its essence, it is a computational model, that is fed with a 

range of product-related attributes and historic cost data and simulates the various procedural 

permutations and combinations between the product related attributes and costs to repeatedly arrive at 

a logical cost conclusion. This is referred to as training of the network, and during this process, the 

network learns to develop the links between cost as the effect and attributes as the cause. It is stated, 

that these methods, under the correct conditions, can produce better cost estimates [51][52], however, 

this technique does not simplify the overall analysis, as it must still define the problem domain and 

supply the model with relevant cost data perceived to be important, where the accuracy of the estimate 

is only as good as the quality and quantity of the input learning data. 

Another important observation is the “black box” nature of the process, as the relationships developed 

within the model are not as explanatory as regression approaches where the cause and effect are 

clearer. Consequently, this approach may not be appropriate for users that need a transparent analysis 

of the reasons behind the cost estimate, which is a fundamental requirement for the designer who wants 

to be able to learn from the estimating procedure on how his designs influence costs. 
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3. Data and Methods  

This chapter provides an overview of all the gathered data, detailing the type and source of data that 

was made available by the company, as well as the methods that were used for its cleaning and 

exploration. The resulting samples were used to populate the developed methods that form the core of 

this thesis. In turn, the developed methods provide vital pieces of information that must be known within 

the cost modelling problem, allowing for a manufacturing cost assessment to be obtained.  

Understanding the dynamics in the manufacturing processes is of key relevance in cost modeling, as it 

underlines each cost origin, and provides the necessary insight to develop appropriate cost models. 

Therefore, in this chapter, the reader is initially presented with a description of the factory framework 

and the different manufacturing methods that currently take place in the manufacturer’s composite 

facilities.  

Lastly, a thorough description of the process-based cost model (PBCM) and its cost relations are given, 

which translate the various manufacturing process data into its manufacturing costs. 

 Manufacturing Process Description  

In this section, a generic manufacturing process is presented, to give a perspective over the multiple 

steps necessary to obtain a carbon fiber composite component and point out the fundamental 

characteristics of each process step, in order to capture their potential impacts in final component cost. 

The first step (S_1) in the manufacturing process begins with the necessary prepreg materials being 

removed from cold storage units (CSU 1 and CSU 2 in Figure 12), twenty-four hours prior to their use. 

These cold storage units are needed because most of the materials are pre-impregnated with bonding 

resins – hence the name prepreg – and must be stored at sub-zero temperatures otherwise, the curing 

process starts to take place. During this twenty-four hour period at room temperature, the materials 

become more malleable, and at the same time, any moister that could negatively impact the mechanical 

properties of the final part evaporates [53]. Once at room temperature the materials are rendered 

useless if not processed during a certain time window. 

 

Figure 12 - Simplified factory plant and workstations. (To respect confidentiality, this information has been 
concealed) 
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In the second step (S_2), the materials are laid onto a CNC cutting table where multiple sections of 

material are cut to the specified dimensions. Afterwards, these material sections are stored and packed 

into labelled plastic bags (Figure 13), to avoid contamination from air particles and facilitates its 

transportation to the succeeding manufacturing steps. 

 

Figure 13 - Labelled prepreg material KIT [54] 

Step three (S_3), starts with the preparation of the mold in either workstation 1 (WS_1) or workstation 2 

(WS_2). Here, the mold is cleaned, a release agent is applied onto its surface and only then the materials 

prepared in S_2 are manually deposited in the appropriate positions with the aid of LASER projection 

systems, that provide reference points for the operators performing the task. Depending on the 

component being produced, the combination of materials used may change, but there are normally three 

standard options: Glass Fibre, Copper Mesh, and Carbon Fibre. Whether all three or any other 

combination of these materials is applied, depends on the type and application of the component. As an 

example, if the component is part of any external structure, a copper mesh is usually applied onto its 

outer surface to promote a low resistance path to discharge points, warding against any damage to the 

plane structure or electrical equipment from potential lightning strikes [55]. After the careful placement 

of these different material layers, the mold surface is sealed by covering its area with a special plastic 

film and by placing an adhesive tape along its contour, that eliminates any gaps between the mold 

surface and the plastic material so that vacuum can be created. Once the pressure is lowered inside 

this sealed area, the plastic material presses onto the prepreg layers previously laid, compacting them 

into each other to reduce its volume and decrease any intralaminar voids from air trapped between the 

layers, in a process often referred as debulking. At this point, the manufacturing process is ready to be 

moved to a further step – step 4 (S_4).  

S_4 is characterized as the major material deposition step in the process, often performed by one of the 

available automatic laying processes - either ATL or AFP - depending on the component’s type. The 

mold is placed under the layup machine gantry structure, and the layers are individually added. Each 

deposited layer is visually inspected by the machine operator to ensure that there are no overlapping or 

wide gaps between the prepreg strips, or any wrinkles that may have formed during the process, which 

could cause the operator to redo the deposition of that layer or individual strip. This action of pausing 

the machine, visually inspecting and resuming the operation is time consuming and greatly contributes 

to the increase in the cycle time of this step. 

Once all the layers have been deposited by the machine, step 5 (S_5) can take place either in 

Workstation 3 (WS_3) or Workstation 4 (WS_4), respectively depending on the previous step being ATL 
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or AFP. Here, similarly to S_3, manual work is performed. Additionally, the component receives an 

identification tag, and thermocouple probes are inserted along its surface in non-structural areas of the 

laminate for temperature control during the autoclave curing cycle. Once all the preparations are over, 

the mold containing the laminate is moved inside the autoclave, where the curing cycle takes place 

(S_6).  

Inside the autoclave, the prepreg material is cured by undergoing a high temperature and pressure cycle 

that takes several hours. The increase in temperature promotes the polymerization of the resins present 

in the material, accelerating the curing process whereas pressure further compacts the material layers 

onto the mold surface to acquire its shape and to reduce intralaminar voids that may have formed from 

air entrapment during the layup cycles. If present, these voids will negatively impact the mechanical 

strength and integrity of the component [56]. The demolding step – step 7 (S_7) – begins after the curing 

cycle, where the multiple layers of laminated material have been stiffly bonded onto each other, granting 

the component its mechanical strength and shape once it is removed from the mold. 

In the next step (S_8), the part is held in place with auxiliary tools in a CNC machine where a cutting 

tool follows the edges of the part to achieve the components’ final geometry by trimming any excess 

materials. The trimming process requires a lot of precision and must comply with two important technical 

aspects. First, the cut must be precise enough to guarantee the tight tolerances that are often practiced 

in the aerospace industry, which can be as low as a micron (µ = 1 x 10-6 m). Second, the cut must be 

clean enough to ensure that no delamination between the composite layers occurs or that the surface 

is left with any burs or chips, that could lead to future damage propagation and result in the component’s 

failure [57]. Both these conditions should be met, otherwise the component may fail to pass non-

destructive testing, resulting in either a repair to be issued or, if the damage is too severe, for the 

complete scrapping of the part.  Material trimming is followed by light manual finish (S_9) and carries 

the component into its final step - step 10 (S_10) – where non-destructive testing of the component is 

performed. There, ultrasound equipment is used to detect the presence of potential flaws hidden inside 

the material that could affect its integrity. This process is typically performed by automated equipment 

on larger surfaces, as well as manual scanning on areas inaccessible to the machine. 

From this point onward the component is forwarded to the assembly line for its installation in an aircraft 

structure, which is later moved into the shipping area where it is packed and stored, waiting to be 

transported to another factory and assembled into the aircraft. The described manufacturing process is 

illustrated in Figure 14, where each block represents a different manufacturing step. 

 

Figure 14 - Generic ATL / AFP manufacturing process steps 
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In Figure 14 WCXXXX labels, refer to work centers. These work centers, labelled accordingly by the 

company, designate the type of activities and the equipment used, as well as its physical space, or 

spaces. For example, workstations 1 through 4 (WS 1 to WS 4 in Figure 12), performed activities are 

simultaneously designated by the labels WC0008 and WC0017, as those areas are responsible for the 

mold preparation, and manual lay-up of materials, respectively. 

One should note that after going through the manufacturing processes described above, the produce 

parts follow to the assembly line, which by itself must deal with the assembly of thousands of individual 

elements that compose the final structure. However, focused on the development of tools that, based 

on historical data, can estimate the manufacturing cost of parts made of composite materials, the 

assembly costs were excluded from this work. 

 Components and Manufacturing Processes 

Composites manufacturing technologies allow the production of components with different shapes and 

sizes. Currently, the manufacturer makes use of its automatic layup technologies to mostly manufacture 

multiple skins and spars. In this current sample, there are some noticeable differences in the 

components’ overall dimensions and technical requirements, resulting in a diversified range of 

manufacturing processes and technologies used (Table 1).  

 

Table 1 – List of manufactured components and respective technologies used in its processes 

There are two different manufacturing processes currently explored in the manufacturing of the spars, 

with both sharing some similarities in the initial and closing manufacturing stages. The main differences 

lie in the way they are laminated. While one follows the more generic approach of directly adding the 

multiple layers of material on top of a mold with the desired shape (Figure 14), the other instead deposits 

the carbon fiber plys onto a flat surface, where the material is then manually relocated to an appropriate 

mold and together they are transferred to the hot drape forming machine for attaining its final shape 

(Figure 15). In a parallel task, some sacrifice layers are deposited following a similar approach which 

are then manually added to the outer surfaces of the already conformed spar. These layers provide no 
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structural benefits to the spar but, they offer some surplus of material, ensuring that the desired 

dimensional precision is achieved during the CNC machining step. 

 

Figure 15 - Manufacturing process flowchart for aircraft C spars. Orange steps are performed synchronously to 
the main manufacturing process in yellow. (Information has been omitted to respect confidentiality.) 

Co-cured reinforced skins involve manufacturing processes with significantly higher complexity. 

Typically, wing type structural elements of an aircraft are composed of an outside skin, reinforced with 

spars, ribs, and stringers. In some cases, these elements are manufactured separately and then put 

together in the assembly line. With composites elements, however, it is possible to layup the materials 

for these components individually - in this case, the skin and stringers - and then, these uncured parts 

are pre-assembled together before the autoclave cycle, where the curing and bonding occur at the same 

time resulting in a single reinforced component (Figure 16 and Figure 17). 

 

Figure 16 - Manufacturing process flowchart for aircraft C skins 1 & 2. Orange steps are performed synchronously 
to the main manufacturing process in yellow. (Information has been omitted to respect confidentiality.) 



22 

 

Figure 17 - Manufacturing process flowchart for aircraft C skins 3 & 4. Orange steps are performed synchronously 
to the main manufacturing process in yellow. (Information has been omitted to respect confidentiality.) 

These manufacturing processes require additional investments, as both skin and stringers 

manufacturing tasks must be performed at the same time, parallel to each other, in order to reduce the 

overall process cycle time while at the same time ensuring the proper alignment between components, 

just like an assembly line would, with the use of assembly jigs and appropriate support tooling.  

There are multiple advantages when performing this manufacturing technique. The bonding between 

the two surfaces usually overwrites the need for mechanical fasteners mounting, which would otherwise 

need a hole to be made and act as a potential stress concentration point. Not having to perform any of 

these tasks, greatly reduces assembly times and part count, thus reducing costs [58]. However, careful 

considerations must be made to assess the economic viability in the additional tooling investments 

needed for the manufacturing stage, in detriment of investments for the assembly stage, as well as the 

technical challenges that arise when performing this complex process. 

 Data Collection 

In today’s manufacturing environments data plays an important role to make thoughtful business 

decisions and to provide insights on how plants are running by observing trends in production and labour 

times. With the information retrieved from adequate data, manufactures are able to reduce waste and 

processes’ variabilities allowing for improvements in product quality and yield [59].  

For aircraft manufacturers, data not only works as a source of useful information from a management 

point of view, opening many of the previously stated opportunities, but it is also used as a source of 

validation of the quality and integrity of any part that is produced.  

Since the start of factory activities, until when the data was retrieved, more than six-hundred and eighty 

composite parts have been successfully manufactured, split among 14 different components. Table 2 

shows the corresponding manufactured quantities of each different component and the associated 

technologies used in its manufacturing.  
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Table 2 – Parts data set and respective manufacturing technologies used. 

The following sections go into detail on how the available industrial data was collected, filtered, and 

stored so that it could be later employed in the developed cost estimation models as a reliable and 

meaningful source of information. 

3.3.1. Cycle Times 

Prior to the beginning of any operation, the operators confirm in the workstation’s computer, that they 

are about to start their tasks. This action stores a timestamp, as well as the current operation that is 

about to take place for that specific component. When an operation is concluded, the operators close it. 

Both these interactions with the computer – starting and ending of the operation – feeds the information 

to a database, and the internal software automatically calculates the difference between end and start 

time, resulting in the operation duration  (Figure 18). 

 

Figure 18 - Cycle time data gathering representation 

 

This process is repeated throughout the different manufacturing steps, which can have one of more 

individual operations, as shown in Figure 19. 
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Figure 19- Part operations plan example 

The set of 14 different components, manufactured across multiple steps, along several years and in 

different quantities (Table 2), resulted in the collection of over 48,000 individual operations time entries. 

These were filtered and rearranged to allow for preliminary data exploration. The collected data 

presented some inconsistencies:  in a very small number of operations the durations - automatically 

calculated by the internal software - were incorrect, while a more considerable amount had either 

extremely small or exceedingly long durations.  Independent of the magnitude, these situations indicate 

that the operators did not follow the normal procedure (Figure 18), and closed the operation before 

performing the task, or forgot to register its conclusion. It is important that both these cases of software 

and operator misstep are avoided in the future, as it defeats the purpose of monitoring tasks for data 

analysis. For the purpose of this work they were filtered out to allow for any significant analysis to be 

performed. 

In addition, the software calculated entries accounted for the duration of labour performed by a single 

worker in a single operation, meaning that the sum of durations of all the operations in that step would 

be equal to the total labour performed by all the workers, and not the process step cycle time itself. It is 

important to separate these two quantities, as labour and cycle times account for different cost drivers. 

Figure 20 shows an example of a set of operations performed in a random manufacturing step. Each 

bar accounts for the duration of an operation performed by a certain worker which is the difference 

between end time (𝑦 ) and start time (𝑥 ). Total labour time is defined by the sum of each operator’s task 

duration (Equation 1) while cycle time is the difference between the last operation end time, and the first 

operation start time, minus any idle time in between (Equation 2). 

 

Figure 20 - Representation of duration times for a manufacturing component step 
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With this in mind, a MATLAB script was created that imported every timestamp entry to calculate the 

multiple cycle times of each step according to Equation 2 and as illustrated in Figure 21, before being 

stored to an EXCEL sheet for future use. 

 𝐿𝑎𝑏𝑜𝑢𝑟 𝑇𝑖𝑚𝑒 =  (𝑦 − 𝑥 ) +  (𝑦 − 𝑥 ) +  (𝑦 − 𝑥 ) + (𝑦 − 𝑥 ) (1) 

 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 =  (𝑦 − 𝑥 )  −  (𝑥 − 𝑦 ) (2) 

 

Figure 21 – Representation of Labour and Cycle Time difference 

From the data set, a total of 7,589 individual cycle times were outputted. This number is much lower 

than the initial input sample of 48,000 registers because, rather than summing and counting the 

durations of every elementary operation performed by the operators involved in a particular process 

step (Figure 19), the multiple entries are aggregated into the duration of the process step considering 

labour overlapping. Also, the elimination of the cycle times that are either too short or too long  - from 

operator or software inconsistencies - reduced the amount of outputted cycle times. 

 

Table 3 – Number of cycle time outputs by manufactured component from MATLAB script filtering, representing 
the final working data set for cycle times. 

From Table 3, it stands out the significant difference between the number of outputs for aircraft's A 

components, compared to other components. This is mostly attributed to aircraft’s A manufacturing 

program being much older than any of the other two, hence a larger number of its units had been 

produced until the moment when the data was collected (May 2019). Also, it should be noted no 

distinction between left or right components is made in the description, as in fact, they are mirror images 

of each other, with equal manufacturing processes. Therefore, the data sets of either left or right 

components were combined. 
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3.3.2. Non-Qualities 

Depending on the manufacturing step, there is always a probability of any sort of defects to occur. While 

some might not be significant, others might impact not only the component integrity but also the process 

performance and component cost, as extra resources may be needed, and extra work must be 

performed to address the issue. Another important element is the point in time the defects are uncovered 

and identified. The further the component has progressed in its manufacturing process, the more 

expensive a defect becomes. If for example, a miss-aligned ply is placed during a hand-layup cycle in 

the initial steps of the manufacturing process and is only detected in the last step of NDT, it could 

potentially mean that all the labour and resources allocated until that final evaluation step could go to 

waste if the component has to be scrapped. However, if this issue were uncovered much earlier in the 

process, a significant portion of these costs are avoided (Figure 22). 

 

Figure 22 – Avoidable wasted resources by implementing intermediate inspection  

Manufactures understand this dynamic and mitigate its effects by implementing intermediate inspections 

throughout the manufacturing process, which opens a chance for defects to be detected and addressed, 

before moving forward to more critical steps where the impact in production costs would be greater. 

In this study, we make use of data collected across intermediate inspection operations as well as final 

NDT inspections. From the initial set of nearly seven hundred parts, there were †1counts of non-qualities, 

that were possible to trace back to their origin and detection steps in each of the manufactured parts 

(Figure 23). 

These † non-qualities are divided into 4 different categories: Scrap, Repair, Rework and Use as Is 

(Figure 24) 

 Scrap:  It is the most severe of non-qualities as this means that the defect encountered is beyond 

repair and the complete component is lost. 

 Rework: A rework is ordered when the defect (normally a common one) can be corrected and 

the solution is already set in place to solve it. The affected area is reworked following the 

established procedure. 

 Repair: Similar to a rework, it is possible to salvage the component, but additional analysis has 

to be made to evaluate the extent of the damage and repair, thus incurring additional indirect 

costs before being able to develop the proper rework procedure. 

 
† Total number of non-qualities has been omitted to respect confidentiality.  
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 Use as Is: It is the most common of non-qualities and the least impactful, as no further action 

has to be made and the component can move forward in the manufacturing steps. 

 

Figure 23 – Aircraft A components non-qualities origin and detection distribution. Wider arrows represent a bigger 
weight of non-qualities assigned from the detection to the origin center. Percentages represent the proportions of 

overall non-qualities occurrences at each “step” for that specific component. 

 

Figure 24 – Non-qualities total occurrences by category. (To respect confidentiality, the total number of 
occurrences has been omitted) 

It is worth noting that, to finish nearly seven hundred good parts (Table 2), it was necessary to launch 

more into production, since some of them are scrapped during the process. This is an important 

observation, as yield determination should take into consideration the set of initiated parts that ended 

up as scrap. 

At first, when a non-quality is detected, a preliminary evaluation is performed to assess its condition. 

This evaluation results in the component being tagged into any of the four different categories. However, 



28 

this does not imply that this first assessment is exempt from changes as shown by the sanky diagram 

in Figure 25. A component with an initial flaw identified as Use as Is, could evolve into a more severe 

and unanticipated problem further down the production line, hindering the process and issuing the need 

for a repair or rework, or, at the worst possible case a scrap. 

 

Figure 25 – Sanky diagram representation of non-qualities category changes and final classification of “non-
quality” parts. (Information is omitted to respect confidentiality.) 

Conversely, in the case of an initially issued repair or rework, there is the possibility for the procedure 

to be either successful or unsuccessful. If it is successful, the component status is updated and cycles 

through its remaining manufacturing stages, as for the later, it opens again the possibility for a second 

attempt of repair/rework, unless there is substantial damage that could lead to the inevitable scrapping 

of the part. 

In short, no initial decisions regarding the status of a non-quality are final, with the exception for scrap. 

This exchange between decisions, results in additional non-quality occurrences, with each interaction 

having a different cost impact that must be accounted for. 

3.3.3. Materials and Equipment 

Another major cost driver in manufacturing is the raw materials used, as well as the equipment and 

manufacturing tools that must be acquired in order to produce the composite's components. For the 

available set of 20 parts (Table 1), it was possible to collect the various material quantities and respective 

average unit prices for each part, as illustrated in Table 4 for aircraft’s A skin 4. 

 

Table 4 – Example of material data for aircraft A skin 4. (The remaining parts’ material data, as well as the unit 
costs have been omitted in order to respect confidentiality) 

Detailed geometric data about the tooling used in each parts’ manufacturing process was also collected, 

e.g. dimensions and surface area. For a company, acquiring manufacturing toolings such as molds and 
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jigs represents an additional expense that is diluted on the number of parts produced. Knowing this, a 

summary of each parts’ tooling acquisition cost was also provided by the company so that they could 

be considered in the cost analysis (Annex 1 ). Minor and secondary tools such as portable automated 

cutters, x-cutters, scissors, or spatulas used throughout the manual steps of the processes were 

unaccounted, as their costs are orders of magnitude lower than other previously mentioned tools. 

Lastly, acquisition costs for the equipment and machinery used throughout the process were also 

collected. These include the cold storage units, automated material cutting table, ATL, AFP, Autoclave, 

Hot-Drape Forming, CNC trimming machine as well as NDT equipment (Annex 1 ). 

3.3.4. Geometric and Complexity Part Data 

Part specific data, CAD files and drawings (Figure 26) of the parts were equally made available by the 

company, so that information about the geometric properties could be collected, namely the surface 

area of the part in contact with the mold, its volume, and perimeter that encompass both the outside 

contour and inner cut-out openings that serve as access points during assembly tasks (Table 5).  

 
Figure 26 - 2D drawing of aircraft A skin 4 

 

 
Table 5 - Geometric properties of 

aircraft A skin 4 

 

Part complexity data is considered throughout the literature to have an impact on process step times 

[25]. ATL and AFP are the most affected, as the part geometry influences the operation layup rates, 

having a high impact on cycle times. Hence, geometry complexity indicators are usually taken into 

consideration to calculate these rates, as part area, or any other simple geometric property alone is not 

able to accurately explain and define layup rates and thus estimate the cycle time. 

Therefore, three complexity metrics were defined and computed, with the purpose of capturing the 

relation between manufacturing times and geometric properties, increasing the information that 

characterizes each part and allowing a better estimation of operations cycle times. One of these 

complexity metrics is defined in respect to the integration of stringers or secondary parts to the primary 

part, which is regarded as an increase to the complexity of the manufacturing process. This metric is 

calculated as in Equation (3), where  𝑁º  is the number of stringers integrated into the primary 

part, 𝐴  is the contact area between the stringer and the primary part, and 𝐴  is the surface area 

of the primary part in contact with the mold surface. 

 
𝐶 = 1 + 𝑁º ×

𝐴

𝐴
 

(3) 

Area [m2] 4.51

Volume [m3] 0.014

Perimeter[m] 18.18

Dimension X [m] 6.81

Dimension Y [m] 2.29
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The other two metrics are retrieved from 2D technical drawings, available for each part at two different 

views. A top view, in the XY plane (Figure 26), and a side view, in the XZ plane. From these two views 

it is possible to extract the complexity metric of the part contour (𝐶 ) and its overall curvature (𝐶 ), 

respectively. In order to do so, an algorithm was implemented in MATLAB in which the component’s 2D 

shapes are analyzed and a complexity metric is defined based on Lempel-Ziv complexity [60]. The 

algorithm’s objective is to measure the part contour complexity since it can be directly tied to specific 

operations cycle times (e.g. shape contour directly impacts trimming cycle times). The algorithm starts 

by reading the part’s image and transforming it into a series of points (Figure 27a). Then, this initial set 

of points is reduced to the essential number of points that represent the geometry of the part (Figure 

27b), eliminating those that do not add relevant information, thus reducing the computing power needed 

to perform the complexity measurements. Visual confirmation of the final result is performed, to ensure 

that no information from the original shape has been lost that could otherwise compromise the final 

result. 

 

Figure 27 - a) Original 2D shape contour with 1750 points. b) Simplified 2D shape with 175 points 

Then, angle measurements between the normal vector to the part’s contour and the horizontal are made 

along the contour points. Lastly, the complexity metric is obtained by employing the Lempel-Ziv 

complexity to the array of angle measurements, and the result grows as the sequence grows in length 

and irregularity, in this case, the angle variations between neighboring points. 

 

Figure 28 – Example of local points angle measurements between countor normal vector and horizontal 
reference. 

This method was applied to every component, and a summary of each part geometric properties, as 

well as its complexity metrics, are presented in Annex 1 . 
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 Process-Based Cost Model 

After understanding the different manufacturing processes and having gathered data on relevant cost 

drivers, the challenge, then, is how to model and represent the interrelationships between part and 

process information and part final cost, in order to achieve a tool that allows cost estimation during a 

process planning stage. Process-Based Cost Models (PBCM) are one adequate approach that has been 

fairly studied in the literature, not only for their ability to calculate costs based on technical relations, 

empirical estimates, best guesses and literature input data, but also as a tool for strategic analysis of 

the impact of design, material, and process choices on the product final cost. 

The following sections detail the cost model structure employed, and the analytical models developed 

to combine these different variables across the different manufacturing steps into a cost metric. 

3.4.1. PBCM Concept and Structure 

One of the interests of using cost as a basis for decision making is the simplicity and tangibility of the 

metric. The notion of cost is a part of everyone’s day-to-day experience, therefore serving as a well-

established metric for evaluating process and product alternatives. It is often necessary to make 

decisions in terms of process and product, long before the consequences of these choices are known, 

hence a strong effort has been driven to devise methods to predict its economic consequences. 

Process-Based Cost Models follow a structure decomposed into three interconnected models: a 

technical process model, a production operation model, and a financial accounting model (Figure 29). 

1) At the core of any manufacturing process, there is a set of technologies, employed to 

accomplish productions that have requirements in terms of equipment, labor, materials, and 

energy. The process model overviews the set of operations that have to take place within 

the processes, structuring the problem and underlying the technical needs to achieve the 

desired goal, providing an answer to the question of “What is needed?”. 

2) While the process model deals with the identification of what is needed, the operations 

model aims at determining the amount of resources used and consumed - including the 

operational inefficiencies - in order to achieve the desired production output.  

3) After the enumeration of needs and respective quantities have been carried out, the 

financial model converts these amounts of resources into their economic costs, by simply 

accounting the factors required by their purchase price. 

 

Figure 29 - Process based cost model decomposition 
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In the developed models, production costs are calculated on a per year basis and are divided into two 

categories: variable and fixed costs (Table 6). Fixed costs are usually calculated based on annual 

equivalent rents associated with the capital investments in equipment, tooling, and building, and are 

therefore independent of the production volume. This means that as more parts are produced, the lower 

the per unit cost, as there are more parts to dilute the costs. However, depending on the accounting 

method employed by the company, this last statement does not always hold and will be discussed further 

into this work.  

Conversely, annual variable costs are dependent on the production volume, as they are mostly 

associated with the materials, energy, and labour. They increase with annual production volume but are 

kept constant on a per unit basis, as they are the same between equal components. 

 

Table 6 - Variable and fixed cost in PBCM 

3.4.2. PBCM Requirements and Cost Estimating Relations 

The preliminary overview of the processes – discussed in section 3.1 - is the first step in process cost 

modelling,  as it allows for the identification of the major cost drivers and technological needs (e.g. 

equipment, tooling, materials, time) in each of the process steps, while at the same time filtering out 

minor steps that otherwise, would only add complexity to the analyses for marginal gains in results 

credibility. 

Operational Model 

The materials and time requirements drive almost every quantification of resource consumption or usage 

included in the operational model. 

To quantify the required raw materials it is necessary to include the materials that are integrated into the 

final parts together with the materials losses along the process. There are two types of material losses: 

scrap and technical scrap. Technical scrap are material losses inherent to the technologies involved. 

One example would be the excess material that is deposited extending over the edges of the part 

surface, or any material cutting operations that are required to adjust the material to the correct 

dimensions, resulting in losses of material. On the other hand, scrap accounts for material losses due 

to the parts in the process that, facing some sort of problem during its production, have to be discarded. 

In order to account for the effects of these issues, a mass balance is performed across every step, to 

determine the amount of materials required and the work-in-process parts passing through each step to 

achieve the expected production volume (Equation 4). In its simplest form, the input of process step 𝑖 +

1 is the output of process step 𝑖 (Figure 30), and it is constructed backwards, with the required production 

Variable Cost Fixed Cost

Material Cost Equipment Cost

Energy Cost Tooling Cost

Labor Cost Building Cost

Scrap Cost Fixed Overhead Cost
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volume as the output in the last step leading to the material input in the first process step, accounting 

for the material losses in between. 

 

Figure 30 - Framework of non-quality losses in process step i. 

 
𝑁𝑃 =  

𝑁𝑃

1 − (𝑆𝑐𝑟𝑝 + 𝑟𝑤 ×  𝑟𝑤𝑠𝑐𝑟𝑝 + 𝑟𝑒𝑝 × 𝑟𝑒𝑝𝑠𝑐𝑟𝑝 )
 

(4) 

In Equation 4, 𝑆𝑐𝑟𝑝  , 𝑟𝑤  and 𝑟𝑒𝑝  are the percentages of scrapped, reworked, and repaired parts from 

the overall volume of production in process step 𝑖, respectively. Meanwhile, 𝑟𝑤𝑠𝑐𝑟𝑝  and 𝑟𝑒𝑝𝑠𝑐𝑟𝑝  are 

the percentage of parts that do not pass rework or repair i.e. the number of parts from the total volume 

of production, with some sort of defect which the operations of rework or repair were not able to fix. 

As a result, material quantities for each of the 𝑗 different materials, and material losses (𝑆𝑐𝑟𝑎𝑝 ) can be 

directly calculated from Equation (5 & 6), respectively, at every ith process step.  

 𝑀𝑎𝑡  , =  𝑀𝑎𝑡     × 𝑁𝑃  (5) 

 
𝑆𝑐𝑟𝑎𝑝 =  (𝑀𝑎𝑡  , × 𝜌 )  ×  𝑁𝑃 × (𝑇𝑒𝑐ℎ𝑆𝑐𝑟𝑎𝑝 + 𝑠𝑐𝑟𝑝 + 𝑟𝑤 × 𝑟𝑤𝑠𝑐𝑟𝑝

+ 𝑟𝑒𝑝  × 𝑟𝑒𝑝𝑠𝑐𝑟𝑝 ) 

(6) 

Where 𝜌  is the material area density in (kg/m2), so that material losses are accounted in kg. 

In the steps of manual labour, there is usually the application of materials such as peel-ply, breather, 

and vacuum bag. These will fall into a category called consumable materials and their expenditure is 

assumed to be equal to the part surface area upon which they are applied.  

 𝐶𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒  = 𝑃𝑎𝑟𝑡 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 × 𝑁𝑃    (7) 

Also, knowing that some parts may need reworks or repairs, the required materials to perform these 

activities are included in the analysis to account for their costs. Each 𝑗 material is calculated separately, 

as a small percentage of its initial required quantity.  

 𝑅𝑒𝑤𝑜𝑟𝑘 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ,  = 𝑀𝑎𝑡  ,  × 𝑟𝑤  % × 𝑀𝑎𝑡 𝑟𝑒𝑞 𝑖𝑛 𝑟𝑒𝑤𝑜𝑟𝑘%  ×  𝑁𝑃    (8) 

 𝑅𝑒𝑝𝑎𝑖𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 ,  = 𝑀𝑎𝑡  ,  × 𝑟𝑒𝑝  % × 𝑀𝑎𝑡 𝑟𝑒𝑞 𝑖𝑛 𝑟𝑒𝑝𝑎𝑖𝑟%   ×  𝑁𝑃  

 

(8) 
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The equipment time usage necessary to accomplish the required yearly production volume is another 

important cost driver. It should be noted that in a factory environment, equipment time can be split into 

available and unavailable time. 

 

Figure 31 - Factory environment equipment utilization times 

Unavailable time accounts for the time parcels in which it is not possible to produce parts, due to 

unplanned breakdowns, workers paid and unpaid breaks, or on-shift maintenance (Figure 31). This time, 

associated with the idle time (equipment not working but available to work), corresponds to the total 

downtime.  

In opposition, the uptime represents the portion of time when the equipment is operational, and the 

production is taking place. In an environment where the same equipment can be used to produce 

different components (non-dedicated equipment), this uptime can be further divided to account for the 

time consumed for each of the different components. Whether the company assigns the according time 

consumptions to each individual part or, the total uptime divided by the total number of parts produced, 

is the difference between activity-based costing (ABC) and absorption costing, respectively, which are 

two of the most common accounting methods. In this study, we employ the former, by determining the 

allocation of equipment for each part as in Equation 9. 

 
𝐴𝑙𝑙𝑜𝑐 =  

𝑇𝑟𝑒𝑞 

𝑈𝑝𝑡𝑖𝑚𝑒
 

(9) 

 𝑇𝑟𝑒𝑞 = 𝐶𝑇  ×  𝑁𝑃  (10) 

 𝑈𝑝𝑡𝑖𝑚𝑒 = 𝐷𝑎𝑦𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 × 24 ℎ − (𝐼𝑑𝑙𝑒 + 𝑈𝑛𝑝𝑙. 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠
+ 𝑃𝑎𝑖𝑑 𝐵𝑟𝑒𝑎𝑘𝑠 + 𝑈𝑛𝑝𝑎𝑖𝑑 𝐵𝑟𝑒𝑎𝑘𝑠 + 𝑂𝑛 𝑆ℎ𝑖𝑓𝑡 𝑀𝑎𝑖𝑛𝑡) 

(11) 

Where 𝑇𝑟𝑒𝑞  (Equation 10) is the total cycle time required in step 𝑖 (𝐶𝑇 ) to achieve the targeted 

production volume (𝑁𝑃 ), and 𝑈𝑝𝑡𝑖𝑚𝑒  (Equation 11) is the total operational time minus the 

aforementioned downtime at that same step. 

This allocation, 𝐴𝑙𝑙𝑜𝑐 , represents the percentage of uptime at step 𝑖 that is dedicated to the 

manufacturing of a specific part and influences the equivalent annual cost of the equipment and building 

associated to that part only. Under this approach, equipment costs and building costs are no longer 

viewed as a fixed cost, as they are in fact, no longer independent from production volume, meaning that 

an increase or decrease in the latter, will no longer influence the cost per unit. Nevertheless, we will 

keep referring to equipment and building costs as fixed costs to stay coherent with the aforementioned 

notation (Table 6). 
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Financial Model 

At the core of the financial model of the PBCM, is a set of relations responsible for translating the 

requirements and necessary quantities defined for consumptions (materials and energy) and resources 

time usage (labour, equipment, space, tooling) into costs. The sum of all cost items results in the 

component final cost. 

Material Cost 

Knowing the necessary quantities of each material across the multiple manufacturing steps for the 

annual production volume, it is then possible to multiply these quantities by their specific acquisition 

costs and obtain the costs of materials for the intending production volumes.  

The cost of the part raw materials can then be calculated by Equation (12), in which 𝐶𝑜𝑠𝑡  ,  is the 

specific cost of each material j (cost per unit of area): 

 
𝑀𝑎𝑡  =  𝐶𝑜𝑠𝑡  , × 𝑀𝑎𝑡  ,   

(12) 

Consumables and additional materials needed for rework and repair operations are accounted 

separately, but then later added as part of material expenses. 

 𝐶𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒  = 𝐶𝑜𝑠𝑡 × 𝑃𝑎𝑟𝑡 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 × 𝑁𝑃  (13) 

 
𝑅𝑒𝑤𝑜𝑟𝑘 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  = 𝐶𝑜𝑠𝑡  × 𝑅𝑒𝑤𝑜𝑟𝑘 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ,    

(14) 

 
𝑅𝑒𝑝𝑎𝑖𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙   = 𝐶𝑜𝑠𝑡  × 𝑅𝑒𝑝𝑎𝑖𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ,  

(15) 

Unlike metal materials that could be recycled and provide an additional source of revenue, in 

composites, material losses need to be disposed of, incurring additional costs during that process. 

These costs are determined by multiplying the material losses (in weight) by the cost of disposal per 

kilogram of materials (𝐶𝑜𝑠𝑡  ). 

 𝑆𝑐𝑟𝑎𝑝  = 𝐶𝑜𝑠𝑡  ×  𝑆𝑐𝑟𝑎𝑝  (16) 

Labour Cost 

Labour cost can be defined as  

 𝐿𝑎𝑏𝑜𝑢𝑟  =  𝐶𝑇 × 𝑛º𝑤  × 𝑑𝑒𝑑 × 𝑤$ × 𝑁𝑃  (17) 

where 𝑛º𝑤  and 𝑑𝑒𝑑  are the number of workers and the percentage of their dedication to the process 

step 𝑖, 𝑤$  is the average wage per hour, and 𝐶𝑇  is the cycle time of that process. In processes involving 
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machine operations, cycle time includes part loading, unloading, and inspection together with the 

machine operation time itself.  

Energy Cost 

Energy cost is the power consumption of the equipment used in each manufacturing step 𝑖 (𝑃𝐶 ), 

multiplied by the energy unit cost (𝐸𝐶) and the total time required to achieve the desired production 

volume. 

 𝐸𝑛𝑒𝑟𝑔𝑦  =  𝑃𝐶 × 𝐸𝐶 × 𝑁𝑃 × 𝐶𝑇  (18) 

Machine, Tooling and Building Fixed Costs 

For the equipment, facilities, and tools, initials investments must be made. To account the impact of 

these investments in the manufacturing costs across the multiple years of operations, these initial 

investments are discounted into a set of annual payments, called equivalent annual cost (EAC), that 

translate the annual cost of owning, operating and maintaining an asset over its life span. It is a useful 

measure often used by companies to compare the cost-effectiveness of different assets. 

The initial investments can be determined by the following equations: 

 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 =  𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑎𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡  × 𝑛º𝑢𝑛𝑖𝑡𝑠  (19) 

 𝑇𝑜𝑜𝑙𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 =  𝑇𝑜𝑜𝑙𝑠 𝑎𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡  × 𝑛º𝑢𝑛𝑖𝑡𝑠  (20) 

 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 = (1 + 𝐼𝑑𝑙𝑒 𝑠𝑝𝑎𝑐𝑒%) × 𝑠𝑝𝑟𝑒𝑞 × 𝑏𝑢𝑖𝑙𝑑  (21) 

𝑏𝑢𝑖𝑙𝑑  represents the infrastructure cost per unit of area, and 𝑠𝑝𝑟𝑒𝑞, the area required for the manual 

and/or automated activities to take place. These investments (𝐼 ) are then translated to their respective 

equivalent annual costs as 

 
𝐸𝐴𝐶 = 𝐼

(1 + 𝑟) × 𝑟

(1 + 𝑟) − 1
 

(22) 

 

where 𝑛 , is the useful life in years of asset j, and 𝑟 its discount rate. 

Knowing each of the respective EAC, it is possible to calculate the machine, tooling, and building costs. 

 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐶𝑜𝑠𝑡 = 𝐸𝐴𝐶 × (1 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒%) ×  𝐴𝑙𝑙𝑜𝑐  (23) 

 𝑇𝑜𝑜𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = 𝐸𝐴𝐶  (24) 

 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡  = 𝐸𝐴𝐶  × 𝐴𝑙𝑙𝑜𝑐    (25) 
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Machine costs also account for maintenance, determined as a small percentage of the EAC of the 

machine. Both building and machine costs are multiplied by the allocation in order to account for the 

portion of individual cost incurred from each part’s volume of production, for using the equipment and 

space associated with the related step where the operations took place, as previously discussed. In 

opposition, one should note that tooling is part-specific, therefore its cost is fully allocated to the 

respective part.  

Fixed Overhead Costs 

Overhead costs are associated with the engineering support or any other form of indirect expense to 

the manufacturing process, and are determined as an additional percentage of direct labour costs.  

 𝐹𝑖𝑥𝑒𝑑 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐶𝑜𝑠𝑡𝑠 =  𝐿𝑎𝑏𝑜𝑢𝑟 𝐶𝑜𝑠𝑡𝑠  × (1 + 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠%) (26) 

Final Costs and intermediate model verification 

Under the described approach, five different PBCMs were created in EXCEL spreadsheets, each 

tailored to a specific manufacturing process and set of technologies. In each model, every block in the 

process flowcharts corresponds to a process step, where both variable and fixed costs are calculated 

employing the aforementioned cost relations, using the gathered data (section 3.2)  as inputs (Figure 

32). 

Model inputs are divided into two main groups. Global inputs that are transversally used across all PBCM 

(Table 7), and process step specific inputs that correspond to the necessary quantities in each step, 

such as the number of workers and machines to perform that particular step (Table 8).  

  

 
Table 7 - Process global inputs 

 

 
Table 8 - Process step specific inputs 
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Figure 32 – PBCM cost estimation flowchart 

The component final cost is obtained by adding each cost item across the multiple process steps. The 

results are plotted in Figure 33. An initial cost model evaluation was performed by comparing the models’ 

estimations with the manufacturer’s cost accounting results, which are assumed as the true/real 

manufacturing costs of each component. As a first model iteration – hereinafter referred to as α-PBCM 

– the obtained results display a good approximation to real costs, with a mean average percentage error 

(MAPE) of 15.1% and normalized root mean square error (NRMSE) of 4.3%.  

 

Figure 33 - Scatter plot of each component cost result from the developed model (α-PBCM), compared to the real 
component cost average provided by the manufacturer. 
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This comparison serves as an intermediate gauging on the agreement between the two different models 

results – the company cost accounting and the PBCM based cost – and, in a way, ensures that a proper 

translation of manufacturing inputs into costs is being made by the developed cost relations. 

Nevertheless, additional work must be performed to overcome one of the biggest challenges of these 

estimates when assessing the production costs of a new component at the very front end of its process 

design. Usually, some of the required inputs for these estimates are analogously determined using 

historical process data from a similar component. By doing so, the accuracy of the resulting data is 

highly dependent on the experience and knowledge of the estimation expert [43]. One should want to 

move away from this methodology, as biased inputs could significantly affect cost results of the final 

estimate. Thus, more appropriate methods should be employed, in order to attenuate many of the 

human fallibilities that could have a negative impact on the accuracy of the cost result. With the 

abundance of available data in this study - both in process historic data and in component specific data 

– the following research question arises (RQ): Can techno-economic relations/regressions be 

constructed based on historical parts data with enough merit to be used in the cost estimation 

model of the new component?  

This question is addressed in the following chapters, along with one very important trait, often ignored 

in most cost estimation methods – process variability. Manufacturing processes do not always perform 

under the same conditions, leading to variations in cycle times that ultimately impact production costs. 

Still, these are often left unaccounted by most cost estimation practices. With the current model as it 

stands, there is also little chance to replicate these processes’ variabilities in a timely manner. 

However, it is possible to further develop the current model, and build additional modules that would 

allow for an automated replication of real process variations to be introduced. Consequently, cost results 

could, therefore, be an economic reflection of the physical process variability. 

Moreover, cycle time, tooling costs, and material quantities are known to be dependent on the 

components’ geometric properties. Based on historical data, relations between the components’ 

geometric characteristics and cycle times, material quantities, and other cost items will be explored. The 

set of developed relations shall estimate the aforementioned quantities and feed the information to the 

cost model that ultimately estimates cost. Additionally, by basing the relations on geometry inputs - 

obtained at a conceptual level of process design – it is expected to enable an early cost estimation 

response, where it is most valuable. 
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4. Modelling Process Variability 

Depending on the component - as previously stated - there are intrinsic characteristics that could lead 

to differences in the manufacturing processes that they undergo, resulting in changes in the equipment, 

tooling, and materials used. Also, no two equal components take exactly the same time or face the same 

problems, leading to significant cost differences that may be overlooked when estimating costs 

deterministically or based on a few production runs.   

One of the main objectives of this work is, based on historical data, estimate cost considering (1) the 

introduction of the effect of process variability, retrieved from past data, in the different activities across 

the manufacturing processes, (2) and turning knowledge explicit through empirical relations, between 

part geometry and process requirements. In this way, future component estimates could be made 

regarding its processes’ requirements, solely based on the new component specifications. 

The following sections describe in further detail how, with the gathered data, it was possible to create 

the relations between part characteristics and process variables, such as cycle times, non-quality 

occurrence, tooling, and material costs.    

 Cycle Times as stochastic variables 

The analyzed composite manufacturing processes are highly automated in critical tasks such as material 

lay-up and trimming through the use of computer numeric control equipment, but there is still a significant 

contribution from manual sources of labor, as even these machines need some level of human 

interaction. While the automated processes themselves perform at reproducible speeds, operators do 

not, and could arguably influence operations cycle times and consequently the final component cost. 

a) 

 

b) 

 

Figure 34 - a) ATL cycle times histogram; b) CNC trimming cycle times histogram. Samples obtained from past 
production runs of the same component. (Cycle time values have been omitted to respect confidentiality.) 

Figure 34 a) and b) show two examples of gathered cycle times from past production runs in two different 

manufacturing steps for the same component. It is possible to observe a considerable variability in cycle 

times, with some significantly deviated observations representing the incorrect measurements described 

in section 3.3.1. These outliers are removed from the data samples, to minimize the introduction of bias 
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and error in subsequent analysis. The elimination was mostly supported on information gathered from 

the interactions with factory workers and engineers and their empirical knowledge on each individual 

step and component. Thus, the cleaned data set is assumed as representative of the cycle time 

behaviour and variations in every manufacturing process. 

Probability functions are a common method to represent and describe stochastic variables in real-world 

data and industrial settings. Most commonly, data is interpreted and assumed as normally distributed, 

allowing for the obtainment of valuable information on processes performances and its variabilities [61]. 

To assume the normality of data, graphical exploration, and formal statistical tests are frequently used 

and necessary.   

There are a significant number of these tests available, among the most common are the Shapiro-Wilk, 

Kolmogorov-Smirnov, and Anderson-Darling tests [62]. Performing the Anderson-Darling test at a 5% 

significance level returns that both samples are not normally distributed, with adjusted statistic (adstat) 

values above their respective critical values (cv) as shown in Table 9. 

 

Table 9 - Anderson-Darling Normality Test Results on ATL and CNC Trimming cycle time data sets, for one of the 
manufacturer’s components. 

This test yields similar results across all other work centers data, where each component manufacturing 

operations take place. Thus, a different probability distribution method needs to be followed. 

Beta and Triangular distributions are two methods that could be built based on the existing data samples 

and used to model historic cycle time data [63]. Triangular distributions pose as a more appealing 

method, given the simplicity in the estimation of its parameters [63]. A typical application consists in 

establishing a minimum (𝑎) and maximum (𝑏) parameters, and a most likely value (𝑐), from the cycle 

time data samples.  

The most likely value (𝑐), is usually determined based on the median, which introduces less skewness 

to the data when compared to other methods based on the average. Equation 27 gives the value for c 

when the sample median (𝑚) falls in the interval of [𝑏 −
√

 , 𝑎 +
√

] [64]. 

 

 𝑐 =

⎩
⎪
⎨

⎪
⎧𝑏 −

2(𝑏 − 𝑚)

(𝑏 − 𝑎)
           𝑚 <

𝑎 + 𝑏

2

𝑎 +
2(𝑎 − 𝑚)

(𝑏 − 𝑎)
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

(27) 

Given all three parameters, it is then possible, through Equations 28 and 29, to represent the probability 

density function (PDF) and inverse cumulative distribution function (INVCDF), respectively [65]. 

ATL CNC Triming
n (sample size) 124 117

adstat 0.998 5.685
cv 0.747 0.747
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𝑓(𝑡) =

⎩
⎪
⎨

⎪
⎧ 2(𝑡 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
           𝑎 < 𝑡 < 𝑐

2(𝑏 − 𝑡)

(𝑏 − 𝑎)(𝑏 − 𝑐)
           𝑐 ≤ 𝑡 < 𝑏.

 

 

(28) 

 

𝐹 (𝑢) =
  𝑎 + (𝑏 − 𝑎)(𝑐 − 𝑎)                          0 < 𝑢 <

𝑐 − 𝑎

𝑏 − 𝑎

𝑏 − (𝑏 − 𝑎)(𝑏 − 𝑐)(1 − 𝑢)         
𝑐 − 𝑎

𝑏 − 𝑎
≤ 𝑢 < 1.

 

 

(29) 

Continuing with the two previous examples in Figure 34, and selecting the parameters 𝑎 and 𝑏 as the 

minimum and maximum values of the data set, respectively, enables the use of Equation 27 to calculate 

𝑐 (Table 10).   

 

Table 10 - Triangular distribution function parameters 

These parameters (Table 10), are then applied to Equations 28 & 29, in order to generate the PDF and 

INVCDF, respectively (Figure 35). 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 35 - a) ATL step triangular PDF b) CNC trimming step triangular PDF c) ATL step triangular INVCDF d) 
CNC trimming step triangular INVCDF 

While the PDF represents the likelihood of a cycle time of a specific component to fall between given 

ranges, it is the INVCDF that holds the best practical use. By assigning random values 𝑢, between [0,1], 

it is possible to generate multiple cycle times, within the defined bounds [𝑎,𝑏], that follow the same 

behaviour as the original data and could replicate the variability of each manufacturing work center 

(Figure 36). 

ATL CNC Triming
median (m) 7.58 6.15

a 4 2
c 8.27 5.77
b 10 11
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a) 

 

b) 

 

Figure 36 - Comparison between Original and Generated Cycle Times for: a) ATL; b) CNC Trimming (Cycle time 
values have been omitted to respect confidentiality.) 

This method (Figure 37) can be applied across the multiple manufacturing steps of each component in 

order to generate synthetic cycle times that follow the historical patterns observed for the sample of 14 

different parts. The next section presents the research done intending to understand how these cycle 

times are correlated with the parts geometric and technological characteristics.  

 

Figure 37 – General procedure to generate synthetic Cycle Times 

  Modelling Cycle Times as a function of part 

characteristics 

Each component process step requires 3 parameters (a, b, c) to model its cycle time distribution. The 

current sample of components and their respective manufacturing steps resulted in 486 manually set 

parameters. This procedure is time consuming and is dependent on having past recorded data for a 

particular part. If a new component has to be produced it would most likely have different and unknown 

cycle times distributions. Thus, new parameters would need to be set, even if the part goes through the 

same process steps. In order to overcome these issues, and more easily take advantage of the historical 

data to determine cycle times of new components, new methods should be implemented. 

It can be argued that a new component with a larger surface area should result in increased cycle times 

during the ATL layup process. Similarly, in the case of CNC trimming, a component with a larger 

contour/perimeter is also expected to take a longer time to finish its cycle – assuming constant feed 

rates - but by how much? The hypothesis that, depending on the type of operation, there is one or 

multiple component properties that clearly influence cycle times deserves to be investigated. 
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The challenge lies in identifying which of the component properties hold a stronger relationship with 

each process step cycle time. Ultimately, if the hypothesis is validated it will enable the estimation of the 

triangular distribution parameters to model the new distributions. This will allow the modelling of cycle 

times at each work center as a function of the chosen component geometric properties. 

Simple Linear Regression (SLR) and Multiple Linear Regression (MLR) were used as a medium to 

assess the relationship strength- or if any correlation does exist - between the dependent and 

independent variables, i.e. cycle times and component properties, respectively. Additionally, in the 

future, it can be used to predict the dependent variable for new values (within the domain) of the 

independent variables. This is possible by writing the linear combinations of the determined β-

coefficients that scale the independent variables 𝑥 into the dependent variable 𝑦, resulting from the 

regression studies. Equation 30, represents a multiple regression model with 𝑘 predictor variables 

𝑥 , 𝑥 , … , 𝑥  (part characteristics) and an estimated dependent variable 𝑦 (cycle time), where β0 is the 

linear intercept when the independent variables are set to zero. 

 𝑦 = 𝛽 + 𝛽 𝑥 + 𝛽 𝑥 + ⋯ 𝛽 𝑥  (30) 

The process of finding the set of component geometric properties that better describes each work center 

cycle time is done by generating 100 synthetic cycle times - from the initially determined distributions - 

for each component whose manufacturing tasks are performed in that respective work center. These 

generated cycle times form the dependent variables working set, while the independent variables are 

their respective properties namely: component’s surface area in contact with the mold surface (A), 

perimeter (P), volume (V), and complexity metrics (CXY, CXZ, and CINT ) (Figure 38). 

 

Figure 38 – MLR data assembly for each manufacturing work center. n stands for the number of different parts 
that go through the particular work center. 

Surface area, perimeter, and volume are studied both separately and in combinations of two, while CXY, 

CXZ, and CINT, are paired in combinations with the previous 3, contributing for 9 additional multiple 
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regression models. In total, the search is performed across 15 different models, for each work center 

within the studied industrial environment. For this set of potential models, the best subset of properties 

is identified based on three different criteria: R-squared (R2), Pearson Coefficient (Pc), and p-value.  

 R2 is a measure that represents the proportion of a dependent variable variance, which is 

explained by the independent variables. This coefficient ranges from 0 to 1. In general, the 

higher it is, the better the current model replicates the outcomes of the dependent variable. 

 Pc measures the correlation strength between the dependent and independent variables. It has 

a value between 1 and -1, where 1 indicates a perfect positive linear correlation, and -1 a perfect 

negative linear correlation.  

 p-value tests whether the current model is statistically significant, by testing the null hypothesis 

(H0). The null hypothesis (H0) states that there are no useful linear relationships between the 

independent and dependent variables and that any correlation is most likely due to scattering 

and randomness of data. For a confidence level of 95%, if the p-value is less than 0.05, the null 

hypothesis is rejected. 

Figure 39a) and Figure 39b) illustrate the scatterplots of SLR and MLR models, respectively, for the 

example of the cycle times of ATL stage using the component surface area (A) and CINT as independent 

variables.  

a) 

 

b) 

 
Figure 39 - a) ATL cycle times as a simple linear regression of parts area; b) ATL cycle times as a multiple linear 

regression of parts area and C_XY. 

Despite both of these models holding statistical significance, considering the low p-values (Table 11), 

the one that considers as independent variables the area and the complexity metric is superior. This 

additional metrics ( 𝑥 = 𝐶 ) resulted in an increase of 11.4% and 21,6% in Pc and R2, respectively, 

pointing to a better fitting of cycle times. 

 x1=Area x1=Area,  x2=𝑪𝑰𝒏𝒕 

Pc 0.82 0.93 
R2 0.68 0.87 

p-value 2E-273 0 
Table 11 - Comparison between SLR and MLR fitting criteria 
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This same analysis was performed across each work center for the set of 15 models (Table 13) in order 

to identify the independent variables that demonstrated the stronger correlations. The best fits of each 

work center are recorded in Table 12. 

 

Table 12 – Independent variables best fit of cycle times multiple linear regression for each work center. 

Interestingly, it can be observed that almost every work center's best fit is a linear combination of a 

geometric property and a complexity metric (Table 12). Also, in most of the analysed cases, the pairing 

between the two geometric properties did not significantly contribute to an increase in the overall 

precision of the model. In statistical analysis, there is often the risk of collinearity between predictor 

variables i.e. when two variables express a linear relationship between themselves. Because most 

geometric shapes properties are correlated – even if not linearly – the combination between two of them 

contributes very little to a better fitting of the models, as observed, in Table 13. 

On the other hand, complexity metrics do not face the same problems of correlation, and thus, when 

paired with one of the geometric properties, they positively add relevant information to the models, 

resulting, in some cases, in increases up to 87% in R2 and 98% in Pc values when compared with the 

simple regression of that geometric property alone. 
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Table 13 – Statistical criteria summary of regression study for all work centers
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Some work centers have poor fits (WC0001, WC0004, WC0006), but others offer a strong correlation 

and predictive power that may balance the overall manufacturing process cycle time estimation. 

This exploratory search was a stepping block to determine which component geometric properties could 

offer the best cycle time estimates for each work center. Knowing which properties are more useful for 

determining the cycle times for the different work centers, new multiple linear regression models were 

built involving the triangular distribution parameters (a,b,c) as independent variables. This enables the 

determination of cycle times distributions that inherit the process variabilities, given the component 

geometric properties. A benefit of the approach of fitting the distribution parameters is to estimate the 

cycle times variability for new parts avoiding any manual input, based on human expertise. The 

approach allows to obtain an expected distribution of cycle times based only on the parts’ characteristics, 

namely part’s geometric properties and complexity metrics, and on past variability of similar parts. From 

the estimated parameters, the INVCDF can be determined, and cycle times within a particular work 

center can be estimated for any desired component, as represented in Figure 40. 

Table 14, summarizes the β-coefficients for each work center that formulate the MLR models to estimate 

the minimum (a), maximum (b), and most likely (c) distribution values, according to Equation 30. 

 

Figure 40 - New component cycle times distribution estimation and cycle times generation flowchart 

. 
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Table 14 - β -coefficients from MLR models for a, b and c parameters estimation 
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 Modelling Non-Qualities 

As previously mentioned in section 3.3.2 there are four different types of non-qualities: Scrap, Repair, 

Rework, and Use as Is, in decreasing order of severity. Any of these four types can occur at any given 

manufacturing step. Therefore, it would be useful to be able to predict the outcome of these events, at 

any given step, and account for its possible impacts on manufacturing costs. 

In probability theory, binomial distributions are categorized as discrete probability functions of a random 

variable X that measures the number of successes, with a probability of success 𝑝, in a sequence of 𝑛 

independent experiments [66]. This could metaphorically translate to the amount of each type of non-

quality (X) to occur, in a sequence of n production runs (production volume). In short, binomial 

distributions can be used to answer the following question: “Given the current efficacy (1 − 𝑝) of the 

activities completed in this step, how many non-qualities of each type will there be, for a certain amount 

of parts being produced (𝑛)?” 

In order to implement this type of distribution to the desired effect, a few conditions must be satisfied: 

1. The experiment consists of 𝑛 identical trials, where 𝑛 is finite. 

2. There are only two possible outcomes in each trial. Success, or failure. 

3. The probability for success p remains the same for each trial in n. 

4. All the trials are independent. 

For this particular application, these could be interpreted as such: 

1. The experiment consists of 𝑛 identical production runs or manufacturing cycles. 

2. For each type of non-quality (𝑋 - scrap, repair, rework, use as is), it either occurs (success) or 

not (failure). 

3. The ratio between the number of non-qualities occurrences and the total number of parts 

produced stays the same during each production run. 

4. Each production run is independent from previous runs. 

On these grounds, the probability of getting exactly 𝑘 successes in 𝑛 trials is given by the probability 

mass function (PMF), in Equation 31, 

 
𝑓(𝑘, 𝑛, 𝑝) = 𝑃𝑟(𝑋 =  𝑘 ) =  

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑝 (1 − 𝑝) , 

 

𝑛 ∈ ℕ  
𝑝 ∈ [0,1] 
𝑘 = 0,1,2, … , 𝑛  

(31) 

where 𝑝 is the probability of success for the type of non-quality being evaluated. 

This probability of success (𝑝), for any of these four types of non-qualities, can be estimated by the ratio 

between the number of production cycles executed at each step, and the number of each non-quality 

occurrence at that respective step.  
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Equations 32 to 35 calculate each of the non-qualities type probabilities’ success, represented in Table 

15. 

  
𝑝 =

#𝑟𝑒𝑤𝑜𝑟𝑘𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖

#𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖
 

(32) 

 
𝑝 =

#𝑟𝑒𝑝𝑎𝑖𝑟 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖

#𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖
 

(33) 

 
𝑝 =

#𝑠𝑐𝑟𝑎𝑝𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖

#𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖
 

(34) 

 
𝑝   =

#𝑢𝑠𝑒 𝑎𝑠 𝑖𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖

#𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑖
 

(35) 

 

Table 15 - Summary of non-qualities probability of success at each work center.(Values have been omitted to 
respect confidentiality.) 

To determine this probable number of non-qualities at each process activity, the inverse cumulative 

distribution function (INVCDF), was employed. For a given 𝑢, defined as the confidence level of the 

estimate, the INVCDF is defined as 

 𝐹 (𝑢; 𝑛, 𝑝) = 𝑘 ,  

Where 𝑘 is the smallest integer such that,  

 
𝑢 ≤

𝑛!

𝑖! (𝑛 − 𝑖)!
𝑝 (1 − 𝑝)  , 

𝑛 ∈ ℕ  
𝑝 ∈ [0,1] 
𝑢 ∈ [0,1] 
𝑖 = 0,1,2, … , 𝑘  

(33) 

This way, given a certain confidence level (𝑢) it is possible to determine the minimum number of 

expected occurrences (𝑘) of a certain non-quality at every step of the manufacturing process, based on 

the empirical chance of that non-quality to occur (𝑝) and the targeted production volume (𝑛) of the 

component being made. The confidence level (u), can be adjusted; Higher confidence levels will 

translate into a higher number of occurrences of non-qualities to be included in the cost model, which 

ultimately leads to more conservative and increased non-quality costs. 



52 

Lastly, the determined number of occurrences (#𝑁𝑄) is divided by the number of parts (𝑁𝑃 ) to measure 

the ratio of occurrences at that given step (𝑋  %), required for the calculations of scrap costs in the 

process, as described in section 3.4.2.  

 
𝑋  % =

#𝑁𝑄

𝑁𝑃
 ,            𝑋 = {𝑠𝑐𝑟𝑎𝑝, 𝑟𝑒𝑝𝑎𝑖𝑟, 𝑟𝑒𝑤𝑜𝑟𝑘, 𝑢𝑠𝑒 𝑎𝑠 𝑖𝑠} 

(34) 
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 Modelling Tooling Costs and Materials Quantities 

Different components have different requirements in terms of tooling and materials used. So, to estimate 

their costs, it is necessary to determine which tools and materials are going to be used and in what 

quantities. 

Thus, following a similar approach as to what was done with cycle times, the available component’s 

geometric properties were correlated with the tooling and materials data, in order to create regression 

models able to estimate tooling costs and materials quantities based on a new part geometry.  

Because of the heterogeneity of the materials in the different parts, three distinct groups were created. 

Group 2 consists of spar type parts (Table 16), which, regardless of the differences in technology and 

processes, they are made of the same basic materials, although involving different classes within each 

material, which will ultimately be reflected in the different price points. Group 1 & 3 are comprised of 

very similar skin type components. However, Group 3 has additional co-cured stringers, which requires 

an additional resin film to be placed between the contact areas of the skin and the stringer, to promote 

bonding during the curing cycle. Also, the mixes between materials in these two groups are slightly 

different which could increase the variance in latter estimates, hence the separation of the two. 

 

Table 16 - Component group identification and main materials used 

Simple linear regression was used to fit the quantities of each material for each of the three groups as 

a function of the part surface area (Figure 41, Figure 42, Figure 43). Again, the idea is to use these 

regressions in the PBCM in order to allow for simple estimations of new components material quantities, 

and their respective costs.  
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Figure 41 - Group 2 material quantity regression as function of parts’ surface area in contact with mold surface 

 
Figure 42 - Group 1 materials quantities linear 

regressions, as a function of parts’ surface area in 
contact with the molds’ surface 

 
Figure 43 - Group 3 materials quantities regressions, as 

a function of parts’ surface area in contact with the 
molds’ surface 

Tooling cost estimation follows a very similar approach. As mentioned in section 3.2, there is usually a 

main mold upon which the material is laminated, and depending on the type of manufacturing process, 

additional tooling can be required. These additional tools represent an added cost that must be brought 

into the equation, in order to properly assess the manufacturing costs of these special processes. 

By plotting the current main mold and additional tooling costs versus the part surface area, it is possible 

to obtain the relationship between these two different quantities using SLR analysis (Figure 44, Figure 

45) 
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These regression models could be directly introduced into the PBCM allowing for the estimation of the 

necessary quantities of materials and tooling costs, limiting the inputs to a single variable of part surface 

area, instead of the multiple entries for each type of material and tooling.  

Table 17 and Table 18 summarizes the accuracy of the implemented regressions for material quantities 

and tooling cost, respectively. It the cases of GF prepreg in Group 1 and Copper Mesh in both Group 2 

and Group 3, the goodness-of-fit in very low and the p-value exceeds the 0.05 threshold, suggesting the 

lack of statistical significance in the regression. Ultimately, estimating the aforementioned quantities 

may yield poor results. 

 

Table 17- Statistical criteria summary and regression coefficients for material quantities 

 

Table 18 – Statistical criteria summary and regression coefficients for tooling costs 

 

 

 
Figure 44 – Main mold cost linear regression. Part 
surface area refers parts’ area in contact with mold 

surface. 

 
Figure 45 – Extra tooling costs linear regression. Part 
surface area refers to parts’ area in contact with mold 

surface. 



56 

 Proposed Process-Based Cost Model 

After modelling the cycle times, non-qualities, material quantities, and tooling investment with respect 

to the part geometric properties, it is then possible to take advantage of these relations to build a new 

PBCM capable of estimating the cost of a new composite component in manufacturer’s industrial 

environment. 

Comparatively to the previous cost model, the α-PBCM (section 3.4), the amount of inputs required is 

significantly reduced. The inputs for the α-PBCM must be manually introduced, and the more steps the 

process has, the more inputs are required, many involving best guesses, resulting in a slow and arduous 

task. Moreover, to estimate the cost of new parts using the α-PBCM faces the obstacle of lack of data 

as its manufacturing process might not be yet designed or implemented. Integrating capabilities of 

estimating cycle times, non-quality effects and material, tooling, and equipment requirements based on 

knowledge retrieved from historical data, this new PBCM (β-PBCM) allows the cost estimation of new 

components not yet under production since it only requires component geometric characteristics as 

input. By estimating most of the process information from a limited set of part geometric properties, the 

new model reduces the number of inputs that must be manually introduced and at the same time 

automatically generates the necessary inputs for the cost estimations, based on the past performance.  

These methods developed from section 4.2 to 4.4, can be viewed as additional modules built into the α-

PBCM for estimating a specific input, namely cycle times, non-qualities occurrences, material quantities 

and tooling investments for the desired component. Furthermore, given the simplicity in the required 

inputs, it is expected that even at the early stages of design, this information is already fully available, 

thus allowing for cost estimation to be made at that point. 

 

Figure 46 – New PBCM final component cost calculation framework 
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Figure 46 illustrates the basic framework of the developed PBCM, hereinafter referred to as β-PBCM, 

and the estimation modules behind it. For a manufacturing process and each of its steps, material 

quantities, tooling investments, cycle times, and non-quality occurrences are determined from an initial 

set of the component’s geometric properties. Then, these estimated intermediate quantities are fed into 

each process step cost relations, where they are translated into their respective cost items. Additionally, 

because each step cycle time is generated from and expected distribution, it is possible to perform a 

Monte Carlo simulation to study the influence of time variability on manufacturing costs. 
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5. Results and Discussion 

The main goal with the developed cost model is to be able to estimate the manufacturing costs of new 

structural parts made of carbon fiber composites, taking advantage of historical data from previously 

produced parts. It is intended to assess the cost impact of different designs and manufacturing routes, 

and therefore introduce cost as a decision variable since the early design and planning stages. 

In this context, the validation of the outputs of the model is of extreme importance. 

The component’s final cost can be broken down either into the cost of each manufacturing step or into 

the different classes of cost items i.e. machine costs, material costs, labour costs, etc. This separation 

of costs favors a detailed analysis of the origin of costs, that can potentially allow for the identification 

and understanding of major sources of cost. 

This next chapter focusses on these two topics, as well as exploring future technology tendencies than 

may impact manufacturing costs. Lastly, a sensitivity analysis is performed across every manufacturing 

step, evaluating possible performance improvements and deriving cost changes, underlying the 

potential for future interventions and process developments. 

 

 Test Case 

The use of the developed models for a component cost estimation begins by collecting the geometric 

properties and compute the complexity metrics of the desired component. Generally, the geometry and 

complexity metrics entail the use of a CAD model to more easily extract its geometric features, alongside 

the MATLAB complexity script, in order to determine the complexity inputs. For this test case, aircraft’s 

A Skin 4 (Figure 26) is used. Its input data is presented in Table 19. 

 

Table 19 – Aircraft A Skin 4 geometric and complexity properties 

Based on these simple inputs, the model automatically estimates material quantities and tooling 

investments (Table 20). As a skin type component, with no co-curing of stringers or any additional 

reinforcements, the material quantities of aircraft’s A Skin 4 are estimated from the Group 1 regression 

model (Figure 42).  In this process, only the main mold is needed, whose cost is estimated from the 

equations in Figure 44.  

Area 

[m2]

Perimeter 
[m]

Volume 

[m3]
C_XY C_XZ C_int

4.511 18.18 0.014 6.491 3.369 1
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Table 20 - Estimated material quantities and tooling investment cost. 

Similarly, for each step of the manufacturing process, cycle times and non-quality occurrences are 

estimated based on the triangular and binomial distributions, previously described in sections 4.2 and 

4.3, respectively.  

Considering the global inputs (Table 7), and step specific inputs (Table 8) a Monte Carlo simulation is 

performed for each stochastic variable. By doing so, the manufacturing cost distribution is obtained 

(Figure 45). 

 

Figure 47 – Monte Carlo simulation 10000x output histogram for aircraft’s A skin 4 unit cost estimation.  

The costs in Figure 47 are the result of 10000 simulation runs for aircraft’s A Skin 4. At each run, every 

manufacturing step cycle time is picked at random inside its respective time distribution, thus producing 

a cost distribution. This process of randomly picking a cycle time is the same as described in section 

4.2, Figure 40. 

It is interesting to note that, despite the cycle times at each work center being modeled according to a 

triangular distribution, the component final costs follow a normal distribution. This is a well-known 

consequence of the central limit theorem (CLT), stating that when independent samples from any 

distribution are added, their sum approximates a normal distribution even if the original samples 

themselves are not normally distributed. This assumption can be further supported by the Q-Q plots of 

the output data from the Monte Carlo simulation (Figure 48), where it is possible to observe that most 

of the points follow the ideal line of the normal distribution. 
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Figure 48 - Q-Q plot for the Monte Carlo output data in aircraft’s A Skin 4 cost simulation. 

The expected value of component cost can be determined as the average of all simulations, which in 

turn should be used as the cost metric reference when evaluating manufacturing and technology 

alternatives.  

The range of costs resulting from the simulation, consequence of the different processes cycle time 

variabilities provides a realistic notion of final cost variability (Table 21). In this way, we move away from 

the more traditional and deterministic approach to cost estimation, where a single cost is provided and 

any cost differences that are likely to occur are neither contemplated of taken into account in the early 

project decisions. In this case, the average cost of the final component is expected to be within the 

interval [12,646; 14,774] with a confidence level of 95%, being this uncertainty due to variabilities on 

cycle times similar to the ones observed in the past.  

 

Table 21 – Average component cost and cost variability after Monte Carlo simulation for Aircraft A Skin 4. 
(standard deviation = σ; average=µ) 

Additionally, one could evaluate each manufacturing step (Figure 49) costs individually.  

 

Figure 49 - Flowchart of aircraft’s A skin 4 manufacturing process.  
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Some of the different process steps are grouped into larger steps, lettered from A to K in this example. 

This is because some manufacturing steps generate small contributions to the overall cost and are part 

of pre/post-processing steps to other, more impactful and primary steps in the manufacturing process. 

Thus, by aggregating some of these steps it is possible to tone down on the complexity of the analysis, 

and the amount of necessary calculations. Process steps costs are presented in Table 22, followed by 

a graphical representation of each step contribution in Figure 50. 

 

Table 22 - Manufacturing steps cost of aircraft’s A skin 4 and number of parts (NP) produced for an annual 
production volume of 35 parts (effect of quality issues). (†Absolute cost values and step NP have been omitted to 

respect confidentiality.) 

 

Figure 50 – Aircraft A skin 4 manufacturing steps cost items distribution. Annex 3 contains the remaining 
components manufacturing steps cost items distributions. (Cost values have been omitted to respect 

confidentiality.) 

Table 22 also shows the increase in the required number of parts that must be produced to reach the 

targeted production volume of 35 units per year, since along the manufacturing process there is a loss 

in the number of required parts, due non-quality issues covered in previous sections. Therefore, it is 

necessary to launch more parts into production to compensate for the predicted losses. This increased 

number of parts has obvious effects in final component costs, as it represents an increase in both the 

amount of materials needed for the additional parts, as well as additional production time. Thus, from 

this combined increase in both materials and overall manufacturing time, unit component cost is higher 

than otherwise not having these issues emerge. 
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A more detailed analysis of each process step cost helps to better understand which cost items of the 

process are having a bigger impact on costs, and why costs were initially broken down into the different 

sources of variable and fixed costs. This cost breakdown can be performed at two different levels: at the 

process step level and the global process level. 

 
Figure 51 – Step (C) - ATL; Manufacturing costs items 

distribution 

 
Figure 52 – Step (G) –CNC trimming; Manufacturing 

costs items distribution 

At the process step level, the predominant cost item depends clearly on the technology and resources 

involved in each step. Material cost represents more than half (~57%) of the cost of ATL step (Figure 

51), with machine and tooling costs being the second largest contributors to cost. This cost distribution 

is associated with the fact that most of the raw material necessary for the manufacturing of this 

component is used at this stage by the ATL machine, which, in turn, requires a mold for the material to 

be deposited. The combination of these three factors – materials, equipment, and tooling - is what drives 

most of the cost, but despite the high operation cost of the machine and the mold investment, material 

costs far outweigh the contributions from the previous two. On the other hand, in the part trimming (step 

G), the scenario is tremendously different (Figure 52). Here the cost of the equipment (CNC machine) 

used for part trimming clearly dominates cost. 

Every process step performs a distinctive operation with distinctive characteristics in the manufacturing 

process, thus resulting in different cost distributions, as shown in the two previous examples. Ultimately, 

final component cost item distribution will be the combined result of each step distribution, which can be 

more weighed on material costs, machine, tooling, etc., and depends on the overall manufacturing 

strategy (Figure 53). 

 

Figure 53 – Aircraft A skin 4 overall manufacturing costs breakdown. The remaining final cost distributions are 
shown in Annex 2 . 
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Materials and machine costs emerge as the two main sources of cost for aircraft’s A Skin 4. Most of the 

material costs of the process originate from the ATL step, while machine costs are distributed across 

different steps of the process, namely Trimming, Autoclave, ATL, and NDT where high intensive capital 

equipment is needed (Figure 50). Comparatively, energy, labour, and overheads are significantly 

smaller. Building and tooling – with tooling being highly dependent on the process – represent a smaller 

portion of costs and smaller still are scrap costs, which in any case cannot be considered neglectable. 

Production volume can also be considered, in order to explore the benefits of economy of scale (Figure 

54). 

 

Figure 54 - Production Volume impact on aircraft A skin 4 manufacturing costs per part. (Cost values have been 
omitted to respect confidentiality.) 

With the increase of production volume, there is a bigger diffusion of fixed costs, hence the observed 

reduction in component final costs. On the other hand, variable costs do not benefit from the same 

effect, as their costs – mostly associated with materials, labour, and energy – rise proportionally with 

the increase of production volume, and thus are maintained constant per unit produced.  

As for the rest of the studied sample, applying the respective cost models yielded the cost distributions 

presented in Table 23 and Table 24.  

 

Table 23 – Final components cost sources distribution.(Values have been omitted to respect confidentiality) 
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In general, machine and materials costs represent the biggest expenditures in most of the manufacturing 

processes, followed by overheads, energy, and tooling costs. Scrap costs favourably take one of the 

smallest fractions of total costs, indicative of relatively good processes’ efficacy. Be that as it may, these 

numbers represent the developed models’ interpretation of the physical manufacturing reality, thus, it 

can only be expected that in this approximation there may be some tenuous deviations between the 

model results and the reality. 
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Table 24 – Manufacturing steps average costs and standard deviation according to estimated cycle time distributions. *Process step not part of the component manufacturing 
process.(Cost values have been omitted to respect confidentiality.)
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 Developed model validation and accuracy 

Model validation is important to understand the reliability of the models’ results so that any future 

decisions regarding process changes provide the desirable results indicated by it. One of the few ways 

to assess model acceptance is by comparing its cost outputs with real cost references, in this case, the 

manufacturer’s own costing values for each of the different components (Figure 55). The real costs' data 

that was made available, is relative to five months of operations, with the latest time entry being relative 

to the end of February 2020. 

 

Figure 55 – Scatter plot of component cost distribution from the developed model (β-PBCM), compared to the real 
components’ average costs provided by the manufacturer. Cost distribution for a 95% confidence interval, 

composed by 10000x simulations of its respective component cost. 

Figure 55 demonstrates comparable results to the initial model (α-PBCM) that used real and manually 

inputted data, gathered from the current implemented processes (Figure 33). The results achieved by 

the developed model (β-PBCM) that uses multiple linear regressions,  to estimate cycle times, materials 

consumption, and tooling costs based on part geometry data, show a very good fit with the parts’ real 

costs. Certainly, due to possible intermediate estimation discrepancies between estimated and true 

cycle times, material quantities, and tooling costs, deviations are expected. That is true, but overall, final 

component cost accuracy remains acceptable, with values for Mean Average Percentual Error (MAPE) 

and Normalized Root Mean Square Error (NRMSE) of 16.4% and 5.1%, respectively. Regarding final 

cost distributions itself (Figure 56), there is a good level of agreement and overlapping of the models’ 

distributions with real costs distributions, however, in a few cases, the latter shows an increased 

variance not fully contemplated by the model. One reason for this, in some cases, might stem from the 

reduced amount of parts produced, suggesting that the manufacturing process is still in early learning 

stages. Also, the variance in the more mature processes – with more components produced to date 
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(Table 2) – further supports this previous argument, as it is comparatively smaller than in the newer 

manufacturing processes, in which lower volumes are involved. 

 

Figure 56 – Manufacturer’s Components Cost Distribution compared to β-PBCM cost distributions. *Insufficient 
data/no cost variations during the provided data period. 

The results shown thus far can somehow be taken as a validation of the β-PBCM behaviour in the 

estimation of components’ costs, considering these are based on relationships established between 

components simple geometric properties and cost relevant data. Consequently, this last observation 

closes the initial research question (RQ): Can techno-economic relations/regressions be constructed 

based on historical parts data with enough merit to be used in the cost estimation model of the new 

component? One should note that this validation is in its essence a fitting validation. And in that sense, 

it can be argued that the descriptive power of the developed model is validated. Certainly, this does not 

guarantee its estimation (predictive) power. However, as far as new components, whose cost are to be 

estimated, are withing the bounds of characteristics to the ones used in this research, it can be expected 

that the model estimations have enough merit to be used to support decision making at the process 

design stage. 

Transversely to all estimation methods, there are always three possible outcomes: The value is 

overestimated, underestimated, or perfectly estimated. Even in the unlikelihood of obtaining an exact 

match to the true/real value, having low deviations should produce reasonably accurate final cost results 

– assuming the competence of the implemented cost relations. However, poor estimations i.e. high 

deviations from the true observed values, can just as equally generate acceptable cost results. Initially, 

this may seem counter intuitive, but there is always the chance that two or more quantities could balance 

each other’s relative deviations, resulting in error mitigation and thus, reach an admissible final cost 

estimation. All in all, depending on the magnitude of each estimated quantity relative deviation, these 

can work towards or against producing a more favourable result. Even if the former does occur, it adds 

no additional merit to the model itself. 

The developed model (β-PBCM) provides intermediate estimations on cycle time, material quantities, 

and tooling costs to generate cost estimates for each manufacturing step, and the sum of these costs 

results in the final component cost. Unlike material and tooling estimations, that only influence material 

and tooling costs respectively, cycle times have an impact on multiple cost sources, namely: machine, 
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labour, energy, overheads, and building costs. These cost items will hereinafter be referred to as time-

dependent cost items, as they are intrinsically associated with time itself. 

Ultimately, it is expected, that any final cost deviation between the two models (α and β) stems from 

deviations between the true and estimated values of the three intermediate quantities – cycle times, 

materials, and tooling. 

 

Figure 57 – Differences between the initial model (α-PBCM) and final implemented model (β-PBCM) costs, 
compared to the Real Costs. Detail A: Lack of agreement from α -PBCM (𝜀 ), combined with intermediate 

quantities estimation errors (𝜀 ), resulting in β -PBCM lack of agreement (𝜀 ). 

Observing Figure 57, more often than not, the results achieved with the developed β-PBCM are more 

deviated from the true values (collected from the manufacturer) than the ones obtained with the α -

PBCM model, i.e 𝜀  higher than 𝜀 . That is expected, as the α -PBCM was developed to use explicitly 

the field data as intermediate inputs in opposition to the β-PBCM model that generates these inputs 

based on regression relations over primary data of the part geometry. Overall, the β-PBCM cost results 

show an error increase of approximately 9% compared to the initial model (α-PBCM). 

Table 25 presents the cost differences between the two PCBM models. It shows that the differences are 

not equal across every step, nor across every component. 

 

Table 25 - Manufacturing steps relative cost difference in β-PBCM compared to α-PBCM costs. *Process step not 
part of component’s manufacturing process. 
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In some steps, the relative cost deviations are quite significant, hinting at significant error on the 

estimation of intermediate quantities. Even so, final component cost is not as heavily influenced by the 

suggested numbers across the different steps for two reasons. Different steps have different operational 

costs, due to the type of technologies involved and its supporting equipment’s, meaning that high relative 

cost deviations, may translate into much smaller absolute cost deviations. Also, while some steps are 

overestimated, others are underestimated, balancing the total estimation error, into a more acceptable 

final error. This, in turn, confirms the initial hypothesis that the individual errors of each step might 

balance each other in the final result. 

For the reasons stated above, each step cost difference becomes more perceptible in absolute terms 

(Table 26). It is possible to see that, in some steps, smaller relative differences in terms of cost resulted 

in higher absolute differences, and thus, higher impacts on the final cost difference. The opposite also 

happens. The total balance from all the steps deviations results in the final cost deviations between the 

two models (𝜀 ). 

 

Table 26 - Manufacturing steps absolute cost difference in β -PBCM compared to α-PBCM costs. *Process step 
not part of component’s manufacturing process. 

The differences between the two models are due to the regression estimation errors for cycle time, 

materials, and tooling. Therefore, the errors of the β-PBCM  (𝜀 ), shown in Figure 57, are related to the 

initial model lack of agreement (𝜀 ), coupled with the intermediate quantities estimation errors (𝜀 ), 

which, in itself, are a function of time, material, and tooling costs errors. Further breaking down these 

models’ cost differences into the time-dependent costs, materials costs, and tooling costs, provides a 

better sense of the impact of each individual quantity error and weight to the cost differences (Table 27). 
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Table 27 - Time-dependent, material, and tooling costs differences between α- and β-PBCM estimations at each 
process step. 

As expected, it is found that absolute cost differences are mostly attributed to time-dependent and 

materials costs. Also, these errors are more noticeable in critical process steps, typically involving the 

use of expensive equipment with high operational costs. For this reason, any discrepancies regarding 

these operation’s cycle time estimates, will results in higher absolute differences in cost, when compared 

to other process steps. 

Recalling the cycle time estimation method, the cycle time distribution parameters (a,b,c) are determined 

from multiple regression models using as independent variables the most appropriated components’ 

geometric properties, for every manufacturing process step. These parameters define the cycle time 

distribution from which each cycle time is picked in the simulation process. Consequently, each of these 

estimated parameters can introduce an error, depending on their deviations to the true value, as 

described in Figure 58. Thus, depending on the magnitude of each parameter deviation, the distribution 

average could increase or decrease, leading to higher or lower cycle times to be estimated. Additionally, 

the distribution variance can also be affected, leading to a wider or narrower time spread. These 

situations become unrepresentative of the current industrial performance, which is an undesirable 

characteristic in operation planning purposes.  

Table 28 presents the percentual comparison between the estimated cycle times distribution average 

and the real cycle times average collected in the company registers. 
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Figure 58 - Triangular distribution parameters variation possibilities. Each of the independent distribution 
parameters can be underestimated (-) or overestimated (+). 

 

Table 28 -Percentual differences in estimated cycle time distributions averages to the real cycle times average. 
**Insufficient manufacturing data to allow for the definition of the initial parameters. *Work center not part of 

components’ manufacturing process. Annex 4 shows both the model and the gathered data individual averages. 

The observed differences between cycle time distribution averages are quite significant for some cases 

and are highly correlated to the time-dependent cost differences from Table 27. In turn, one possible 

reason behind these work centre cycle time discrepancies could be tied to the recency in some 

components’ manufacturing processes and thus, reduced amount of parts produced (Table 3). This led 

to a scarcity and scattering of data which had negative impacts when trying to find techno-economic 

correlations. Over time, with the increase in production runs, more adequate fittings are expected to be 

made. It should be noted however, that correlation does not always imply causation, meaning that 

despite having found a good statistical correlation between the component geometric properties and 

cycle time (Table 13), does not mean that some other property, unbeknown and outside of the range of 

available properties, could not produce a better fit. The underlying conclusion is that the models can be 

quite sensitive to changes in cycle times, affecting their overall capability in correctly assessing 

component costs.  

From the observations stated above, it is suggested that in the future, better methods - besides MLR - 

should be explored to attenuate these issues. This is not only true for cycle times, but for materials and 

tooling costs as well. Compared to cycle times, these later quantities estimations errors have a lower 

impact on the cost estimation scheme, but the simple regression methods they are based on have the 

potential for further improvement and enable better cost estimations to be made, given larger sample 

sizes. 
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 PBCM as a Decision-Making Tool 

Besides being utilized to estimate manufacturing costs, PBCMs can also be used as a testbench to 

enable the finetuning of process variables, with the intent of studying its influence in production costs 

and evaluate the most economical manufacturing routes. However, with hundreds of different variables, 

some more controllable than others, it becomes difficult to target those that may provide meaningful 

results or significantly influence component final costs. With this in mind, the scope of this analysis 

involves three different scenarios, where mainly cycle time, materials costs and material quantities are 

the main cost items driving decisions. These scenarios are as follow: 

 Scenario A: Considers the drop of the market price of the materials used, and consequently a 

component cost reduction. This reduction in material price can be linked to future improvements 

in material manufacturing processes, that ultimately drive prices down [67][68].  

 Scenario B: Explores potential technological progress on composite manufacturing 

technologies, enabling higher rates of deposition and therefore smaller cycle times during 

automatic layup steps [69]. Improvements to layup times can also be achieved by optimizing 

the machine layup paths and stoppages [70]. 

 Scenario C: Takes into account potential reductions to overall material usage for the 

manufacturing of the component. This could be achieved in two ways: (1) materials mechanical 

properties improve over time, and to achieve the same mechanical strength, smaller quantities 

are required [71]; (2) by developing further knowledge on composite materials behavior, design 

safety factors can be reduced and design can be optimized with lower materials usage [72]. 

 

Figure 59 – Aircraft A skin 4 scenarios cost reduction comparison. (Cost values have been omitted to respect 
confidentiality.) 

Figure 59 details the component cost reduction, concerning a 5% decrement in the quantities associated 

with each scenario. Scenario A considers the lowering of material price and achieves a 1,49% reduction 

to final component cost per 5% decrement of price.  
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Scenario B considers possible technical evolutions in current layup technologies, that may improve 

overall deposition rates. With this increase in deposition rates, lower cycle time times can be achieved, 

resulting in higher efficiencies in product manufacturing, thus reducing final component costs. The cost 

impact of this reduction – 0,5% reduction per 5% cycle time decrement - is not as effective as it was 

evidenced in Scenario A. Therefore, an equivalent percentual reduction to cycle times has diminishing 

returns when compared to a reduction to material costs, which hints at the preference of one over the 

other. Still, it should be noted that this cycle time reduction was only targeted at the layup step. 

Implementing this cycle time decrease across multiple process steps would yield cost reductions that 

far surpass any realistic material cost reduction. 

The premise for Scenario C, revolves in reductions to overall material usage, owing to technological 

improvements on material properties, or design optimizations, that allow smaller quantities of material 

to be used, while still guarantying the components’ mechanical integrity. Since there is a reduction in 

the amount of material being deposited during the automated layup cycle, an equal reduction on cycle 

time is to be expected. Therefore, under this scenario, there is a double reduction in cost drivers - one 

in material quantities, and another in the automated layup cycle time. This is effectively a combination 

of Scenario A and B, as the percentual material cost and quantities drop, have the same effect. For the 

aforementioned reasons, this scenario generates the greatest gains in terms of cost reduction, with a 

cost drop of 1,72% in the final cost. 

Additionally, these scenarios can be explored considering two similar manufacturing routes for the same 

component, where the main difference lies in the automatic deposition technology used, namely ATL or 

AFP, in order to assess the economic viability of one over the other (Figure 60). 

 

Figure 60 – Aircraft A Skin 4 manufacturing costs comparison using ATL or AFP as main layup technology. ** 
26% decrement under scenario C. (Cost values have been omitted to respect confidentiality.) 

The differences in cost are very noticeable when the only difference in the manufacturing route is on 

whether using AFP instead of ATL. These are mostly due to the increased cost in both materials and 

AFP equipment as well as the apparent lower processing performance of AFP, resulting in increased 

cycle times when compared to ATL. These differences between the cycle times estimated for the two 

technologies are quite significant and could be tied to an estimation failure of AFP cycle times for this 

case. This might stem, once again, from the lack of data regarding the AFP process (Table 2), when 
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compared to ATL, which besides reducing the fitting power of the regression, may signal a technological 

process in an early development phase in the company, yet far from its maturity.  

For the component currently produced under the ATL route to be manufactured by AFP (Figure 60) 

without losing economic competitiveness, it would require a reduction of 26% in both material quantities 

and layup cycle time. Interestingly, in one other study, it was concluded that a 5% reduction to material 

costs, would make AFP less costly than ATL [6]. That such a small reduction would suffice in making 

AFP more cost efficient, suggests that the cost of equipment and materials considered for the two 

technologies were not as distinct as observed in this study. What the current model and data suggest, 

for this example, is that ATL is the better solution to have implemented, from an economical point of 

view. If AFP was to be considered - or the only viable option due to geometrical constraints - only trough 

very aggressive reductions, hardly achievable in the foreseeable future, in materials quantities and layup 

cycle times, could it become as economically competitive as ATL. This sort of conclusion is extremely 

useful to be drawn out, especially at the early stages of design, where different manufacturing routes 

are being assessed, or when considering present manufacturing processes changes.  

Cycle Time Sensitivity 

Cycle times have noticeably influenced components’ costs and in some process steps, cycle time 

sensitivity is more exposed, due to its greater effects on costs. In such particular steps, managing and 

possibly improving its performance could contribute to the final components’ final cost reductions. Thus, 

in future interests for operations improvements, effort and resources would be better allocated into 

refining these steps performances, than in other less rewarding. In order to track down these specific 

cases, a cycle time sensitivity analysis was performed across each work center, and components’ cost 

changes due to forced cycle time variations were recorded. These variations are explored by overriding 

each process work centers’ maximum and most likely cycle time, to a percentage of their initial values, 

as described in Figure 61 a). From this lowering of cycle times, a cost reduction is observed in the final 

cost distribution, Figure 61 b), alongside final cost distribution spread reductions. 

a) 

 

b) 

 
Figure 61 – a) Forced cycle time shift, by reducing the maximum and most likely cycle times. Percentual ∆𝑡  

reduction equal to percentual ∆𝑡   b) Example of cost distribution reduction (∆$) as a result of the forced time shift. 
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Table 29 - Final components’ cost decrease as a result of a 15% reduction of current maximum and most likely 
cycle times for each work center. Total reduction represents a 15% reduction across all work centers 

simultaneously 

From Table 29, some conclusions can be drawn out. Work centers that display the highest sensitivities 

to cycle time variation are tied to manufacturing steps that are mostly dominated by machine operations, 

where either increases or decreases to cycle times will massively influence final component costs. 

Contrarily, less critical and manual tasks, usually performed as intermediate steps of the manufacturing 

process, not involving the use of major equipment, have a very small to gain in reducing its cycle time.  

These analyses are constantly being pushed by companies, looking for continuum improvements that 

can effectively reduce manufacturing costs, and thus, to have a clear target as to where the effort should 

be channelled, is always of great help to meet those goals. 

Similar studies could be conducted in order to understand how different manufacturing parameters 

influence components’ costs, besides cycle time and material quantities. Being able to perform these 

tests, at any given project stage, further cements the usefulness of having a tool that can accurately 

represent cost changes owning to process parameters variations. Ultimately, the developed model 

allows for thoughtful and readily available decisions to be made regarding manufacturing processes, 

mindful of their impacts on costs. 
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6. Conclusions and Future work 
In the current manufacturing paradigm, the control of manufacturing costs should begin at the product 

and process design stages. When manufacturing operations are already taking place, actions for cost 

reduction have normally a narrower impact and/or involve high investments, which are too expensive 

[4][44]. Therefore, cost engineering within aircraft design, and certainly in many other areas, should play 

a more significant role inside the multidisciplinary design teams, to more effectively balance trade-offs 

between cost and performance. However, there is still the need for tools that help cost engineers to 

work in tandem with product and process designers, in order to make reasonable and measured cost 

estimations, often difficult to perform due to the lack of detailed design information during the initial 

stages of development. With this in mind, this work was set out to attenuate these issues, by developing 

a tool based on Process-Based Cost Models (PBCMs) to provide a manufacturing cost assessment, 

based on a limited amount of inputs, easily obtained even at the early stages of design. For a particular 

industrial environment and for aeronautics components made of composites, this was done taking 

advantage of a significant amount of rich historical data to generate techno-economic regressions that 

materialize powerful knowledge, which can then feed the core of the PBCM tool.  

Across many different manufacturing industries, process variability is often encountered, influencing 

operations cycle time and therefore the component’s final cost. To emulate its effects in the developed 

cost model, the common deterministic approach to cost modelling was abandoned, and instead, a 

stochastic method was introduced. It was shown that the modelled variabilities can significantly impact 

the components’ final cost, and provide a broader view of expected costs, that may surpass the cost 

target. Additionally, by introducing cost variability into the cost estimation process, additional awareness 

is raised on the need for close process monitoring, allowing for the identification of process steps whose 

improvements can deliver positive results in terms of final cost reduction. Outside of the cost estimation 

process, the modelled variabilities can also be used for process capacity planning purposes. Using part-

specific data as the basis for cycle time determination proved to be efficient in the current cost estimation 

scheme, although, in the future, the method could be further refined in several ways by (1) adding 

additional part properties (independent variables) to the time regressions or (2) adopting non-linear 

fittings or machine learning methods. Either in the current of future states, these methods would benefit 

from the maturity of some of the current processes, whose data randomness and uncertainty from the 

limited number of production runs hinder the accuracy of the developed methods. 

Non-qualities are estimated based on a method that assumes that their occurrence is random and 

independent from one another. For the intended purposes of cost estimation, this is an effective and 

reasonable approach, but these events are usually dominated by the principle of causality – a cause 

that triggers an event. Given the abundance and detail of the available data, future studies should be 

performed that explore the possible cause-and-effect mechanisms in non-quality occurrences.  Any 

new-found knowledge could be applied in line with the cost modelling problem, but more importantly, it 
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would provide valuable information to non-quality causes and how to better prevent them, so that its 

effects are less noticeable on future costs.  

It was also found that tooling costs were surprisingly well correlated with part surface area, and a simple 

linear regression was used to describe its costs based on the parts’ surface area. A similar approach 

was followed to determine the manufacturing process material quantities, but the method was not as 

suited as it was with tooling costs, given the clustering of different part types. The heterogeneity between 

the different parts results in different material demands that stem from the type of component itself, 

rather than some quantitative part property such as its area.  For that reason, future methods should be 

able to combine qualitative and quantitative data to distinguish the different types of components and 

consequently better determine their required material quantities. 

From the cost analysis of the studied sample, the results show the bigger the part, the higher the material 

percentage cost represents in the total manufacturing costs, followed by machine costs. In processes 

involving multiple parts integrations, labour and tooling costs become more significant, given the 

increased manufacturing steps required and additional tools to ensure the correct alignment of parts. 

The results from this study support the initial hypothesis that manufacturing cost can be automatically 

estimated based on simple geometric characteristics available in the very front end of the design and 

process planning if good historical data is available. It should be noted, however, that the predictive 

power of the current method is not fully validated, and further testing with parts outside of the learning 

sample would be required. Still, given the method’s descriptive power, it can be expected acceptable 

predictive results on components’ costs, whose properties are within the bounds of the studied samples. 

The achieved estimation errors of the manufacturing costs are substantially low 

(MAPE=16.4%;NRMSE=5.1%), and a clear step forward to support engineering decision making before 

production is initiated, or to launch cost reduction initiatives in current processes. Additionally, with 

further development, the cost estimation could be embedded as a CAD tool and become a design 

parameter during parts’ design stages. In the future, the scope of this analysis may be broadened to 

include assembly costs and thus enable the economic evaluation of one of composites main advantages 

that is part consolidation.  
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Annex 1 – Tooling costs data and geometric part data (Detailed data has been omitted to respect 

confidentiality) 
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Annex 2 – Components Final Cost Sources Distributions 
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Annex 3 – Components manufacturing steps cost sources distribution (Absolute cost 

values have been omitted from the axis to respect confidentiality.) 
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Annex 4 – Work centers’ MLR model distribution average cycle time and historic data distribution 

averages

 

Work centers’ distribution average cycle time obtained from MLR models. *Work center not part of components’ 

manufacturing process 

 

Work centers’ distribution average cycle time, obtained from historic data. **Insufficient manufacturing data to allow 

for initial parameters definition. *Work center not part of components’ manufacturing process 

 

 

 

 

 

 

 


