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ABSTRACT
This article presents a novel deep learning approach for spatio-
temporal forecasting with remote sensing data. I specifically pro-
pose a neural network architecture derived from a previous model
named Spatio-Temporal Convolutional Sequence to Sequence Net-
work (STConvS2S), which is entirely based on convolutions, ex-
tending it in several directions. In particular, besides considering
optimizations such as training based on AdaMod or recently in-
troduced normalization-activation layers, I propose to replace the
decoder component of STConvS2S, based on temporal convolutions,
with an alternative that leverages a recurrent backbone based on
LSTMs together with the idea of feed-backward decoding, specifi-
cally by re-using the weights of the convolutions from the encoder,
when generating the predictions from intermediate representations.
Experiments using datasets from previous studies, consisting of ob-
servations of air temperature and rainfall, show that the proposed
Spatio-Temporal Recurrent Feed-Backward Decoding (ST-RFD) ar-
chitecture significantly outperforms STConvS2S and other baseline
models, in tasks related to forecasting future observations. On ex-
periments related to the reconstruction of missing time-steps, some
of the proposed extensions lead to improvements over the original
STConvS2S, although ST-RFD failed to outperform other models. I
believe the two tasks differ in the way short-term and long-term
context should be used, motivating additional research into how
models can be made to better aggregate both types of information.
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1 INTRODUCTION
A widespread collection of satellites are nowadays being used to
observe the Earth, monitoring natural systems and man-made struc-
tures bymeasuring a variety of variables at consistent time intervals
and spatial resolutions. Given this influx of remote sensing data, ma-
chine learning approaches are becoming commonplace for various
practical applications. In this study, I focus specifically on fore-
casting tasks, consisting on the prediction of particular time-steps
in a series of gridded remote sensing data (e.g., forecasting future
values conditioned by past observations, or reconstructing missing
time-steps). Common examples of applications for these methods
include forecasting meteorological variables, such as precipitation,
air temperature, wind speed, among many others, or reconstructing
missing data, e.g. due to cloud coverage, for environmental indices
such as NDVI. This type of data often contain a mixture of spatial
and temporal dependencies, indicating how different spatial loca-
tions exhibit related patterns (in particular, spatial neighbours tend
to be related) and how the observed variables evolve over time. Due
to the stochastic nature of the underlying variables, prediction mod-
els must be capable of capturing complex and non-linear patterns,
while simultaneously leveraging the aforementioned dependencies
in order to obtain accurate results.

Neural network models for predicting gridded values of remote
sensing observations are currently gaining increased popularity.
These include approaches such as ConvLSTM [25], capable of cap-
turing both spatial and temporal contexts by combining ideas from
Recurrent Neural Network (RNN) architectures with the convolu-
tion operation typically seen in Convolutional Neural Networks
(CNNs) for image processing. Given these properties, ConvLSTM
units have become a basic building block for a variety of neural
architectures proposed in recent studies dealing with forecasting
from gridded spatio-temporal data [16, 29, 35].

More recently, Nascimento et al. [20] studied effective and com-
putationally efficient alternatives to capture both spatial and tempo-
ral patterns using exclusively convolutional structures, proposing
an encoder-decoder model named Spatio-Temporal Convolutional
Sequence to Sequence Network (STConvS2S), comprised of sequen-
tial convolutional blocks with factorized filters. Each convolutional
3D filter is factorized into separate 2D and 1D filters, with the en-
coder using the former to model the spatial context, and the decoder
using the latter to model the temporal context.

This paper proposes several extensions to the STConvS2S ar-
chitecture, leveraging recent advances in the literature in order to
further improve results. Specifically, I propose the following main
extensions to the original model:
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• Replace the RMSProp optimizer, originally used by Nasci-
mento et al. when training STConv2S2 models, with the
more recent AdaMod [8] optimizer;

• Replace the traditional normalization and activation oper-
ations with an adapted version of the batch-based evolved
normalization-activation layer from Liu et al. [17].

• Replace the decoding component from STConvS2S, based on
dilated temporal convolutions, with a recurrent block that
leverages feed-backward decoding [28] (i.e., an idea recently
proposed in the context of semantic segmentation models for
images, in which weights from the 2D convolutions used in
encoder layers of the model are used in the reverse direction
to form the decoder, reducing the total number of model
parameters required for processing).

The proposed additions to the STConv2S2 architecture were evalu-
ated on tasks related to predicting patches of observations that are
one or five time-steps in the future, given a sequence of patches
with previous observations. Moreover, the proposed model was
also evaluated in a missing data completion scenario, where the
task corresponds to reconstructing a complete input sequence with
a random time-step missing. For both scenarios, tests relied on the
CHIRPS [10] rainfall dataset and on the CFSR [24] air temperature
dataset, also used in the forecasting experiments from Nascimento
et al. [20]. The results show that the proposed extensions all con-
tribute to improved predictions, leading to new state-of-the-art
results on the aforementioned datasets. In particular, the model
using Spatio-Temporal Recurrent Feed-Backward Decoding (ST-
RFD) significantly outperformed STConvS2S and other baselines
in tasks related to forecasting future observations. On the experi-
ments related to the reconstruction of a missing time-step, some
of the proposed extensions lead to improvements over the original
STConvS2S, although ST-RFD failed to outperform other models. I
believe the two tasks differ in the way short-term and long-term
context should be used, motivating additional research into how
models can be made to better aggregate both types of information.

The rest of this article is organized as follows: Section 2 provides
an overview on previous research in the area. Section 3 details the
extensions to STConvS2S considered in our approach. Section 4
presents the evaluation methodology, detailing the datasets and the
obtained results. Finally, Section 5 provides concluding remarks
and discusses possible directions for future work.

2 RELATEDWORK
Conventional Recurrent Neural Network (RNN) architectures, e.g.,
based on Long Short-Term Memory (LSTM) units [12], are com-
monly employed on forecasting tasks involving time-series data.
However, these models consider the input data as sequences of
vectors, thus not exploiting the spatial context present in spatio-
temporal structures (e.g., raster representations for remote sensing
data, consisting of patches with neighbouring cells) provided as in-
put. To address this limitation, Shi et al. [25] combined convolution
operations with LSTMs, simultaneously exploiting the abilities of
Convolutional Neural Networks (CNNs) and RNNs to effectively
model spatial and temporal information, respectively. In the pro-
posed Convolutional LSTM (ConvLSTM) approach, all input data
structures are 3D tensors, with the first dimension corresponding

to either the number of measurements or the number of feature
maps, and the last two dimensions representing the spatial dimen-
sions (i.e., width and height). By replacing the product operation
in the original LSTM with the convolution operation, denoted as
∗ in the equations shown next, the future states of a certain cell
are now defined as a function of the inputs and past states of its
local neighbours. Consider that 𝐼 , 𝐹 , 𝑂 , and 𝐺 denote the four stan-
dard LSTM gates/operations, 𝑡 represents a time-step, ⊙ denotes an
element-wise product, 𝐻 and 𝐶 represent the hidden state and cell
state, respectively, and that 𝑋 represents the input. The ConvLSTM
is formally defined as follows.

𝐼𝑡 = 𝜎 (𝑊ℎ𝑖 ∗ 𝐻𝑡−1 +𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊𝑐𝑖 ⊙ 𝐶𝑡−1 + 𝑏𝑖 )

𝐹𝑡 = 𝜎

(
𝑊ℎ𝑓 ∗ 𝐻𝑡−1 +𝑊𝑥 𝑓 ∗ 𝑋𝑡 +𝑊𝑐 𝑓 ⊙ 𝐶𝑡−1 + 𝑏 𝑓

)
𝑂𝑡 = 𝜎 (𝑊ℎ𝑜 ∗ 𝐻𝑡−1 +𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊𝑐𝑜 ⊙ 𝐶𝑡 + 𝑏𝑜 )

𝐺𝑡 = tanh
(
𝑊ℎ𝑔 ∗ 𝐻𝑡−1 +𝑊𝑥𝑔 ∗ 𝑋𝑡 + 𝑏𝑔

)
𝐶𝑡 = 𝐹𝑡 ⊙ 𝐶𝑡−1 + 𝐼𝑡 ⊙ 𝐺𝑡

𝐻𝑡 = 𝑂𝑡 ⊙ tanh(𝐶𝑡 )

(1)

A variety of complex architectures can be built using ConvLSTM
building blocks [1, 13, 16, 29, 35]. In the original study, the authors
developed a typical encoder-decoder structure comprised of multi-
ple stacked ConvLSTM layers, with each decoder layer initializing
its hidden states from the output of the corresponding encoder layer.
Final predictions are given by the concatenation of the hidden states
from the decoder network, followed by a 1 × 1 convolution. This
architecture was applied on a radar echo dataset for precipitation
nowcasting, considering the task of predicting the next 5 time-steps
given the previous 5. Although the predictions were blurrier than
those from other baseline approaches, the ConvLSTMmodel clearly
outperformed every model under comparison, reacting better to
sudden changes (i.e., more extreme values) in the inputs, and overall
achieving more accurate results.

Inspired by the aforementioned ConvLSTM architecture, Wang
et al. [29] proposed another recurrent model named PredRNN,
which captures spatial and temporal features in a unified mem-
ory pool. In PredRNN, the states of an adapted LSTM cell can travel
along both vertically between layers and horizontally across states.
The authors introduced a new cell state in each LSTM unit, i.e. the
spatio-temporal memory cell state𝑀𝑡 , that flows in a zigzag direc-
tion, first upwards across layers and then forwards over time. This
extension to standard LSTM units, called Spatio-Temporal Long
Short-Term Memory (ST-LSTM), allows simultaneous flow of both
spatial and temporal memory, enabled by the state 𝑀𝑡 , and the
standard temporal memory, enabled by the state 𝐶𝑡 , present in tra-
ditional ConvLSTMs. In order to maintain both memory cell states,
a new set of gates was constructed to manage the information flow
for𝑀𝑡 , in addition to the original gates that handle 𝐶𝑡 . Let 𝐶𝑙𝑡 de-
note the standard temporal cell state at layer 𝑙 , delivered from the
previous unit at 𝑡 − 1, and let𝑀𝑙

𝑡 denote the spatio-temporal mem-
ory cell state, delivered vertically from the 𝑙 − 1 layer at time-step 𝑡 .
The ST-LSTM cells are formally defined as follows.
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𝐼𝑡 = 𝜎

(
𝑊ℎ𝑖 ∗ 𝐻 𝑙

𝑡−1 +𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑏𝑖
)

𝐹𝑡 = 𝜎

(
𝑊ℎ𝑓 ∗ 𝐻 𝑙

𝑡−1 +𝑊𝑥 𝑓 ∗ 𝑋𝑡 + 𝑏 𝑓
)

𝐺𝑡 = tanh
(
𝑊ℎ𝑔 ∗ 𝐻 𝑙

𝑡−1 +𝑊𝑥𝑔 ∗ 𝑋𝑡 + 𝑏𝑔
)

𝐶𝑙𝑡 = 𝐹𝑡 ⊙ 𝐶𝑙𝑡−1 + 𝐼𝑡 ⊙ 𝐺𝑡

𝐼
′
𝑡 = 𝜎

(
𝑊𝑚𝑖 ∗𝑀𝑙−1

𝑡 +𝑊
′
𝑥𝑖 ∗ 𝑋𝑡 + 𝑏

′
𝑖

)
𝐹
′
𝑡 = 𝜎

(
𝑊𝑚𝑓 ∗𝑀𝑙−1

𝑡 +𝑊
′

𝑥 𝑓
∗ 𝑋𝑡 + 𝑏

′

𝑓

)
𝐺

′
𝑡 = tanh

(
𝑊𝑚𝑔 ∗𝑀𝑙−1

𝑡 +𝑊
′
𝑥𝑔 ∗ 𝑋𝑡 + 𝑏

′
𝑔

)
𝑀𝑙
𝑡 = 𝐹

′
𝑡 ⊙ 𝑀𝑙−1

𝑡 + 𝐼
′
𝑡 ⊙ 𝐺

′
𝑡

𝑂𝑡 = 𝜎

(
𝑊ℎ𝑜 ∗ 𝐻 𝑙

𝑡−1 +𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊𝑐𝑜 ∗𝐶𝑙𝑡 +𝑊𝑚𝑜 ∗𝑀𝑙
𝑡 + 𝑏𝑜

)
𝐻 𝑙
𝑡 = 𝑂𝑡 ⊙ tanh(𝑊1×1 ∗ [𝐶𝑙𝑡 , 𝑀𝑙

𝑡 ])
(2)

The final hidden states are defined as the concatenation of each
memory state derived from different directions, represented as
[𝐶𝑙𝑡 , 𝑀𝑙

𝑡 ], followed by a 1 × 1 convolution to ensure consistent di-
mensionality between states. The authors defined the PredRNN as
a multi-layer architecture employing ST-LSTMs, having tasked the
model with predicting 10 future observations from a radar echo
dataset, given the previous 10 observations. Results showed that
while other baselines provided more accurate results for the near
future, they quickly deteriorated afterwards. The PredRNN was
able to maintain a consistent level of performance, achieving better
results overall when compared to other approaches.

Zhao et al. [35] described two baseline architectures for spatio-
temporal forecasting of air pollutants conditioned on metereologi-
cal variables, reporting on experiments with a dataset containing a
variety of air pollutant and metereological data from China. The
first architecture, called ReducedLSTM, is a relatively simple appli-
cation of LSTM units, disregarding spatial information. Let 𝑓 , 𝑖 , 𝑐
and ℎ denote the forget gate, the input gate, the cell state and the
hidden state, respectively. Consider also that 𝑥 denotes the input
metereological variables (e.g., temperature, humidity, etc...) for a
given cell, and let mean𝑡 denote the moving average value of the
air pollutant concentration for that same cell. The ReducedLSTM
architecture can be formally defined as follows.

𝑓𝑡 = 𝜎

(
𝑊ℎ𝑓 · ℎ𝑡−1 +𝑊𝑥 𝑓 · 𝑥𝑡 + 𝑏 𝑓

)
𝑖𝑡 =𝑊ℎ𝑖 · ℎ𝑡−1 +𝑊𝑥𝑖 · 𝑥𝑡 + 𝑏𝑖
𝑐𝑡 = 𝑓𝑡 ⊙ ReLU (𝑐𝑡−1 + 𝑖𝑡 )
ℎ𝑡 = 𝑐𝑡 − mean𝑡

(3)

The second architecture proposed by Zhao et al., called WipeNet,
exploits spatial information by incorporating the convolution op-
eration with the ReducedLSTM, similarly to the aforementioned
ConvLSTM. The authors simulate pollutant transportation in the
atmosphere through the use of location-specific redistribution fil-
ters, denoted as 𝑅𝐾 in the equation shown next, calculated using
the meteorological variables associated to wind, such as wind speed

and wind direction. These redistribution filters are afterwards com-
bined with the predicted pollutant concentration, denoted as 𝐶𝑡 , to
yield location sensitive pollutant values. The WipeNet architecture
is formally defined as follows.

𝐹𝑡 = 𝜎

(
𝑊ℎ𝑓 · 𝐻𝑡−1 +𝑊𝑥 𝑓 · 𝑋𝑡 + 𝑏 𝑓

)
𝐼𝑡 =𝑊ℎ𝑖 · 𝐻𝑡−1 +𝑊𝑥𝑖 · 𝑋𝑡 + 𝑏𝑖
𝐶𝑡 = 𝐹𝑡 ⊙ ReLU (𝐶𝑡−1 + 𝐼𝑡 )

𝑅𝐾𝑡 = reshape
(
softmax

(
𝑊𝑟𝑘 ∗ 𝑋𝑊𝑖𝑛𝑑

𝑡

))
𝐶𝑡 = 𝑅𝐾𝑡 ∗𝐶𝑡
𝐻𝑡 = 𝐶𝑡 − mean𝑡

(4)

Experiments showed that both proposals achieved superior re-
sults compared to simpler baselines. In particular, WipeNet out-
performed all the other models, which the authors attribute to the
correct formulation of the redistribution filters, enabling the model
to better leverage spatial dependencies in the data.

Das et al. [3] proposed an architecture inspired by the Deep Stack-
ing Network (DSN) from Deng and Yu [6], adapting the original
idea for spatio-temporal forecasting. The proposed model, called
Deep-STEP, is comprised of 𝑇 stacked modules, where 𝑇 corre-
sponds to the number of time-steps in the data. The input data for
each module is first prepared, so that each instance represents a cell
in terms of its spatio-temporal features (i.e., in terms of the values
for spatio-temporally neighbouring cells, from previous time-steps
and nearby locations). The first module receives as input the raw
cell representations, whereas the subsequent modules process a
concatenation of the cell representations plus the results from the
previous module. Each module is a Multi-Layer Perceptron (MLP)
with a single hidden layer and two weight matrices,𝑊 and 𝑈 , rep-
resenting a lower-layer weight matrix connecting the input and
the hidden layer, and an upper-layer weight matrix connecting the
hidden layer and the output, respectively. The output 𝑌 of each
module is thus defined as follows.

𝑌 = 𝜎

(
𝜎

(
𝑋 ·𝑊𝑇

)
·𝑈𝑇

)
(5)

The sigmoid functions ensure the output values are contained
within the range [0, 1]. At each module, to ensure consistency
between the outputs and the raw cell representations, the resulting
merged input tensor 𝑋 is normalized prior to being processed by
the module. The normalization is defined as follows.

norm_𝑥𝑖 𝑗 =
(
𝑥𝑖 𝑗 − min(𝑋 )

)
(max(𝑋 ) − min(𝑋 )) (6)

The final module outputs each cell’s prediction for the desired
time-step, as a value within the range [0, 1] which is then mapped
to the original scale, resulting in the final predictions.

TheDeep-STEP architecturewas evaluated in comparison against
a traditional MLP, the original DSN [6], and the NARNET model
(i.e., the nonlinear autoregressive neural network model that is
provided by MATLAB), on a task related to predicting the Normal-
ized Difference Vegetation Index (NVDI) in the year 2011, given
past annual observed NVDI measurements for 2004 − 2010. During
training, the images from 2004 − 2009 were used to prepare the
feature set supporting a prediction for the year of 2010. In turn,
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during testing, the images from 2004 − 2010 were used to prepare
the feature set supporting predictions for the year of 2011. The
obtained results showed that Deep-STEP produced lower errors at
competitive values for the execution time, clearly outperforming
the original DSN architecture [6].

In subsequent work, Das et al. [5] proposed a self-adaptive ar-
chitecture capable of dynamically adjusting the network structure
based on the input data. The architecture features three modules,
capturing temporal and spatial features in parallel. The first module
computes a representation for each cell based on its neighbouring
values, and the results are then arranged as inputs to the subsequent
modules. The second module, corresponding to a self-adaptive RNN
variant named SARDINE that relies on teacher forcing and on the
ReLU activation function in the hidden layers, captures temporal
dependencies in the results from the first module, processing the
cell representations for each timestamp. In turn, the third module
captures spatial dependencies in neighbouring cells.

Contrarily to a standard RNN, SARDINE can dynamically change
the number of hidden layers and units, by assessing the module’s
ability to generalize with a Network Significance (NS) method [4],
defined as the sum between the variance and squared bias of the
predictions at each time-step. A high NS value indicates over-fitting,
and themodule reacts by pruning the least significant hidden unit of
the top-most hidden layer. In turn, a low NS value indicates under-
fitting, to which the module reacts by growing new hidden units at
the top-most hidden layer. Besides pruning/growing hidden units,
SARDINE is also capable of growing new layers, allowing for more
complex functions to be learned. Whenever a drift in spatial context
is detected, through an adapted version of Hoeffding’s error bound
technique [9], a new layer is added on top of the current top-most
hidden layer, with the same number of hidden units, enhancing the
network’s ability to react to sudden spatial changes. The weight
matrix between the new layer and the output layer is initialized
with the same values as the weights between the previous layer
and the output layer. In turn, the weights between the new layer
and previous layer are initialized with an identity matrix.

The third module captures spatial dependencies (i.e., how neigh-
bouring locations affect each cell). It receives the spatial informa-
tion from a given neighbourhood for each target cell at a specific
time-step, and outputs the predicted value for the cell. The module
corresponds to a standard MLP, with the hidden layer containing
half the units of the input layer, and the output layer containing a
single unit that outputs the final predicted value for each cell.

The model was evaluated on three randomly selected areas from
two datasets of annual NVDI time series imagery, one pertaining
to the state of West Bengal, in India, for 2004 − 2011, and the other
pertaining to the Northern part of Brazil, for 2012 − 2019. The
model was compared to baselines such as a traditional MLP, a
mixed CNN-RNN architecture, the aforementioned standard DSN,
and Deep-STEP, among others. Results showed that the proposed
model outperformed the baselines in almost all scenarios, being
considerably faster than CNN/LSTM baselines, while slower than
models based on MLPs (e.g., DSN or Deep-STEP).

Zhang et al. [32] proposed a deep learning model based on resid-
ual connections to predict the traffic flow of crowds. The model
takes as input sequences of 2-channel matrices, with each cell being

associated to a geo-spatial region, and the two channels correspond-
ing, respectively, to crowd inflow and outflow (i.e., traffic entering
or leaving the region, respectively). The input is sliced into three
chronologically ordered subsets of data, denoting distant history,
near history, and recent time. The proposed neural architecture,
named ST-ResNet and leveraging 2D convolutions, is comprised
of four components, respectively modeling temporally close infor-
mation, information from a longer period, trends, and influence
from external factors, with the former three components sharing a
network structure. The three subsets of data are fed into a respec-
tive component, with the trends component receiving the distant
history, the period component receiving the near history, and the
closeness component receiving the remaining subset. These three
components are comprised of two convolutional blocks, with a
sequence of residual units between them. The first convolutional
block processes a tensor corresponding to the concatenation of
the input patches for the different time-steps. Each residual unit
combines multiple convolution operations together with ReLU acti-
vation functions and batch normalization operations, featuring also
a skip connection that adds the input of the unit to the result of the
last convolution. The residual units allow for the construction of
a deeper network, better modeling spatially distant dependencies
(i.e., each cell in the final feature map depends on all cells of the
input grid). The final convolutional block produces an output patch
for the component, with a number of channels corresponding to
the prediction objective.

The outputs from the closeness, period, and trend components
are combined through learnable weight matrices that assign dif-
ferent degrees of influence to each aspect. The external influence
component models potentially useful information from external
datasets (e.g., meteorological conditions, patterns associated to hol-
idays or specific days of the week, etc.), with basis on a two-layer
MLP. The output of this component is added to the aforementioned
combined output, resulting in the predictions for the respective
time-step (i.e., the model can be applied sequentially, in order to
produce predictions for multiple time-steps from past observations).

ST-ResNet was evaluated on two datasets, each containing in-
formation regarding trajectories and external conditions (i.e., me-
teorological data and holidays). The first dataset contained taxi
trajectories in Beijing, considering four different time intervals
from 2013 − 2016. In turn, the second dataset contained bike trajec-
tories in New York City from April to September 2014. Comparisons
were made against traditional approaches such as ARIMA, SARIMA,
and VAR models, and against neural models corresponding to a
MLP or to a previous state-of-the-art approach for crowd flows pre-
diction, named DeepST [33]. The authors also evaluated different
configurations for ST-ResNet, varying the external information and
the number and/or internal structure of the residual units. Results
showed that the ST-ResNet model outperformed all the baselines,
with the best versions obtaining significant improvements over the
previous best model for each dataset.

Recently, Nascimento et al. [20] proposed an encoder-decoder
model for spatio-temporal forecasting that is comprised exclusively
of convolutional layers, which are suited to capture spatial features
by design. In STConvS2S, illustrated in Figure 1, convolutions are
performed with factorized 3D kernels 𝐾 = 𝑡 × 𝑑 × 𝑑 , where 𝑡 is the
size of the temporal kernel and𝑑 is the size of the spatial kernel. The
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Figure 1: Illustration depicting the STConvS2S architecture, adapted from Nascimento et al. [20]. The yellow elements repre-
sent the factorized 3D kernel, 𝑇 represents the number of time-steps, and 𝐶𝑙 is the number of channels.

encoder processes the input sequence by performing convolutions
using just the spatial kernel (i.e., 1 × 𝑑 × 𝑑 , with 𝑑 = 5 in the best
configuration reported by Nascimento et al.), creating a sequence of
meaningful spatial representations. These spatial representations
are received as input by the decoder, which applies temporal convo-
lutions with the temporal kernel (i.e., 𝑡 × 1× 1) in order to learn the
temporal features, resulting in the predicted future sequence. Both
the encoder and the decoder are comprised of successive convolu-
tional blocks with batch normalization [15] and followed by a ReLU
activation function, with the decoder utilizing causal temporal con-
volutions [21] to maintain temporal coherency during prediction
(i.e., predictions for a time-step 𝑡 make no use of future information
from time-steps 𝑡 + 1 onward). Given that standard temporal con-
volution operations output either a shorter sequence or a sequence
of the same size as the input, the authors introduce a transposed
convolution operation before the final convolutional layer, allow-
ing for predictions that exceed the sequence length of the input.
Experiments were performed on two subsets from the CFSR [24]
air temperature dataset and the CHIRPS [10] precipitation dataset.
The authors considered the tasks of predicting the next 5 and 15
time-steps, given the previous 5, for both datasets. Results showed
that STConvS2S consistently outperformed the aforementioned
ConvLSTM, with the best reported version on the air temperature
dataset obtaining a 20% improvement in terms of the Root Mean
Square Error (RMSE) metric, and training approximately 2.5× faster.

3 PROPOSED EXTENSIONS TO STCONVS2S
This section details the main extensions proposed over the original
STConvS2S architecture, first describing the novel decoding strat-
egy based on combining a LSTM with the idea of feed-backward
decoding, and then presenting new normalization-activation layers.

3.1 Feed-Backward Decoding
When using an encoder-decoder model for tasks involving spatial
structures (e.g., tasks such as semantic segmentation of image in-
puts), it is common to have the encoder comprised of CNNs that
process the input, progressively creating increasingly compact rep-
resentations that capture meaningful features, which are afterwards
sent as input to the decoder. In situations where retaining the spatial

dimensions of the original input is crucial, such as spatio-temporal
forecasting or semantic segmentation, the decoder typically applies
transposed convolutions or some other interpolation technique to
upscale the intermediate representations (e.g., bi-linear up-sampling
followed by a traditional convolution operation).

Wang et al. [28] proposed a novel technique to maintain the
original spatial dimensions, by using an encoder in the opposite
direction to decode (i.e., feed-backward decoding). During decod-
ing, the existing convolutional layers and filters of the encoder
are re-used, allowing learned features to be mapped from smaller
dimensions to larger dimensions, without additional parameters.
To apply this technique, a couple of considerations need to be
taken into account. For instance, any pooling operations used in
the encoder need to be replaced by interpolation operations (e.g.,
bi-linear interpolation) during decoding. Also, if the channel di-
mension of the input has its size altered in a convolutional layer 𝐿,
the weights used during decoding are the weights from 𝐿 with the
input and output channel dimensions permuted. Figure 2 illustrates
the feed-backward decoding procedure, showing on the top part
of the figure a typical convolution between a zero-padded input 𝑋
with 2 channels and spatial dimensions of 4× 4, and a set of 3, 3× 3
filters with 2 channels each (i.e., a filter tensor with 2 input channels
and 3 output channels). The result is a tensor 𝑌 with 3 channels
and the same spatial dimensions as the input. During the decoding
phase, the input-output flow is reversed, and the convolution is
now performed over an input with the same dimensions as the
output of the original convolution (plus zero-padding to guarantee
consistent spatial dimensions). The same set of filters are re-utilized
by swapping the input and output channel dimensions, yielding a
set of 2, 3 × 3 filters with 3 channels each. With this technique, the
network learns to both capture spatial features during encoding
and also reverse its effect back to the original representation during
decoding, with the regrouping of the filters dictating the behaviour.

Leveraging the idea of feed-backward decoding, I propose a
variation of the STConvS2S model, here denoted as ST-RFD, in-
corporating the weight-sharing technique between the encoder
and the decoder, as illustrated in Figure 3. This alternative allows
us to exploit different approaches for capturing temporal features,
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Figure 2: Illustration for how the dimensions of a filter can
be permuted to transform the channel dimension. The cells
with dotted borders correspond to zero-padding, and ∗ de-
notes a standard convolution with stride one. The middle
row illustrates the normal vs. permuted convolution filters.

without incurring in an additional increase of learnable parameters
through separate convolutions in the encoder and decoder parts.

In particular, given that the encoder is now also used for de-
coding, ST-RFD no longer captures temporal features through fac-
torized temporal filters. Instead, we include an additional simple
recurrent layer comprised of an LSTM unit that, at each time-step,
receives a flattened representation of the learned spatial features,
and outputs a representation for the prediction of the next time-
step(s). During decoding, a component that shares its parameters
with the encoder receives the predicted flattened representations
and outputs the final predictions, with the information flowing from
the last layer to the first layer. The recurrent component trivializes
the prediction of sequences with a length differing from that of the
input sequence, and the transposed convolutional layer from the
STConvS2S architecture is not used. Besides the aforementioned
changes, the original encoder structure from STConvS2S, relying
on multiple 5 × 5 convolution operations, can be maintained, with
the addition of a 1 × 1 convolutional layer at the end to reduce
the dimensionality of the representations passed to the LSTM (i.e.,
we considered a final channel dimensionality of one while still
preserving the spatial dimensions).

3.2 Novel Normalization-Activation Layers
In both the encoding and decoding parts of the ST-RFD architecture,
novel normalization-activation layers are located after every con-
volution operation, except for the final convolutional layers along
each direction (i.e., encoding or decoding). Specifically, instead of
the ReLU activation function used in the original STConvS2S archi-
tecture, we can alternatively use the Mish activation function [19],
which can be computed as shown next.

Mish(𝑥) = 𝑥 · tanh
(
ln(1 + 𝑒𝑥 )

)
(7)

Previous experiments have shown that Mish tends to work bet-
ter than other activation functions such as ReLU, in many deep
networks and across several challenging tasks/datasets.

We also considered replacing the activation functions plus the
normalization operations, executed after the 5 × 5 convolutions
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Figure 3: The ST-RFD model leveraging feed-backward de-
coding with 𝐿 + 1 convolutional layers. The boxes labeled
as B03D correspond to the proposed EvoNormB0 extension.
The orange circles indicate weight-sharing, with 𝜋 corre-
sponding to a permutation of dimensions.

(i.e., the batch normalization operation), with the recently pro-
posed Evolved Normalization-Activation (EvoNorm) layers [17].
We specifically use an adapted version of the EvoNorm B0 layer,
which was the best performing batch-based version reported by
Liu et al. [17]. Let 𝑣1, 𝛾 and 𝛽 denote learnable parameter vectors,
and let 𝑠𝑏,ℎ,𝑤 and 𝑠ℎ,𝑤 represent the variance of a mini-batch and
the variance of a single instance, respectively. EvoNorm B0 uses
the following computation over inputs 𝑥 .

B0 =
𝑥

max
(√
𝑠2
𝑏,𝑤,ℎ

(𝑥) + 𝜖, 𝑣1 · 𝑥 +
√
𝑠2
𝑤,ℎ

(𝑥) + 𝜖
) · 𝛾 + 𝛽 (8)

The proposed extension to EvoNorm B0 explicitly models spatio-
temporal scenarios, considering sequences 𝑑 of two-dimensional
inputs when calculating both the batch and instance variance (i.e.,
the values associated to each time-step in the input sequence are
considered separately when computing the variance). This exten-
sion, denoted here as B03D, is defined as follows.

B03D =
𝑥

max
(√
𝑠2
𝑏,𝑑,𝑤,ℎ

(𝑥) + 𝜖, 𝑣1 · 𝑥 +
√
𝑠2
𝑑,𝑤,ℎ

(𝑥) + 𝜖
) ·𝛾+𝛽 (9)

4 EXPERIMENTAL EVALUATION
We evaluated all the proposed extensions against baselines corre-
sponding to the ConvLSTM and the original STConvS2S models, on
the two datasets that were also used in the study by Nascimento et
al. [20], namely the CFSR air temperature dataset and the CHIRPS
precipitation dataset. The different models were evaluated in two
different scenarios, with the first task corresponding to predicting
a future sequence up to a fixed horizon Δ, given the previous se-
quence of 5 time-steps. In our experiments, we considered Δ = 1
and Δ = 5, i.e., predicting image patches corresponding to the next
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CHIRPS CFSR

Δ = 1 Δ = 5 Δ = 1 Δ = 5

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

ConvLSTM 6.4999 2.4065 0.1341 6.3874 2.3694 0.1628 2.4206 1.6836 0.9060 2.2369 1.5171 0.9217
STConvS2S 6.3769 2.3443 0.1701 6.3311 2.3421 0.1800 1.4172 0.9904 0.9684 1.5896 1.0491 0.9603
STConvS2SB03D 6.3319 2.3445 0.1772 6.3424 2.3517 0.1734 1.3846 0.9520 0.9699 1.4603 1.0289 0.9665
ST-RFD 5.9244 2.2275 0.2766 6.1889 2.3351 0.2139 1.0479 0.7335 0.9835 1.4450 1.0192 0.9672
ST-RFDB0 5.9280 2.2269 0.2721 6.1773 2.3227 0.2076 1.0837 0.7809 0.9820 1.4708 1.0259 0.9660
ST-RFDB03D 5.9205 2.2253 0.2706 6.1682 2.3182 0.2149 1.0461 0.7278 0.9824 1.4582 1.0279 0.9666

Table 1: Results for the different models under consideration, on the two datasets and for the tasks related to predictign future
time-steps. The subscripts B0 and B03D respectively correspond to the EvoNormB0 and EvoNormB03D extensions. The bold
values indicate the best performing model for each dataset, prediction horizon, and evaluation metric.

time-step and next 5 time-steps, respectively. The second task cor-
responds to reconstructing a sequence with missing information.
Specifically, we randomly remove an entire time-step from an input
sequence of 10 time-steps, and the models are required to output
the entire sequence without incomplete information.

The CHIRPS [10] dataset describes 13, 960 sequences of 10 in-
stances for precipitation measurements on a 50 × 50 grid, each
corresponding to a subset of the South American region (latitudes
between 10°N and 39°S and longitudes between 84°W and 35°W).
Data was collected from 1981 to 2019, measuring daily precipitation
at a spatial resolution of 0.05°, and the original data was interpo-
lated to a resolution of 1° per cell. In turn, the CFSR dataset [24]
describes 54, 047 sequences for air temperature measurements in a
32 × 32 grid, pertaining to a similar region as the previous dataset
(latitudes between 8°N and 54°S and longitudes between 80°W and
25°W). Data was collected from 1979 to 2015, measuring tempera-
ture every 6 hours at a spatial resolution of 0.5°. For both datasets,
and similarly to Nascimento et al. [20], we adopted a splitting strat-
egy involving 60% - 20% - 20% of the data respectively for training,
validation and testing, in chronological order.

In the tests with the STConvS2S baseline architecture, we used
the best performing version reported by Nascimento et al. [20],
consisting of 3 convolutional layers on both the encoder and de-
coder (plus the final 1 × 1 convolution), each containing 32 filters
of dimensionality 5 × 5. Similarly, the ConvLSTM baseline consists
of 3 layers with 32 hidden states and filters of dimensionality 5 × 5.

In terms of hyper-parameter choices, we tried to keep most of
the values from the study by Nascimento et al. [20], without exten-
sive fine-tuning. Specifically, in all experiments over the CHIRPS
dataset, we apply dropout with a probability value of 0.8 for the
ConvLSTMmodel, and 0.2 for the remainingmodels. With the CFSR
dataset, dropout was not applied. Both baseline models (i.e., ConvL-
STM and STConvS2S) use traditional batch normalization, the ReLU
activation function, and the RMSProp optimizer for training, as re-
ported by Nascimento et al., while the proposed extensions use the
AdaMod [8] optimizer. The extensions also use either the traditional
batch normalization operation together with the Mish activation
function (ST-RFD), or the evolved normalization-activation layer

explained in Section 3.2, either in the ST-RFDB0 or ST-RFDB03D con-
figuration. In all scenarios, we set the learning rate to 0.01 and the
batch size to 25, using the mean squared error as the loss function.
We apply an early stopping procedure to all models, terminating
the training when the validation loss function stops decreasing
with a patience threshold of 5. Model training for the recurrent
feed-backward decoding extension, in all the tests with Δ = 5 (i.e.,
when predicting the next 5 time-steps), used the outputs from the
last time-step 𝑡 − 1 as input for the recurrent unit at the current
time-step 𝑡 (i.e., training did not rely on a teacher-forcing strategy).

Results were measured in terms of the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE) between estimated
and observed values, and also in terms of the coefficient of determi-
nation 𝑅2. The corresponding formulas are as follows.

RMSE =

√∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

𝑛
(10)

MAE =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

𝑛
(11)

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2 (12)

In Equations 10, 11 and 12, 𝑦𝑖 corresponds to a predicted value,
𝑦𝑖 corresponds to a true observed value, 𝑦 is the mean of the ob-
served values, and 𝑛 is the number of predictions (i.e., we sum
across all cells in the raster representations for the regions under
analysis). While the MAE gives the same weight to all errors, the
RMSE penalizes models with a higher variance, as it gives errors
with larger absolute values more weight than errors with smaller
absolute values. The coefficient of determination R2 measures the
proportion of total variation in the observations that is explained
by the model, assigning a value of one to a model whose predictions
exactly match the observed values, a value of zero to a model that
always predicts the average value, and a negative value to a model
worse than the baseline corresponding to the average.

4.1 Forecasting Future Time-Steps
The RMSE, MAE and R2 results for each model over the test sets,
for both prediction horizons and datasets, are shown in Table 1. The
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Figure 4: Analysis of fitted versus residual values for the STConvS2S (top) and ST-RFDB03D (bottom) models, for one time-step
ahead forecasts on the CFSR (left) and CHIRPS (right) datasets.

results show that the proposed extensions consistently outperform
the baselines. Notably, the recurrent feed-backward decoding exten-
sion (ST-RFD) outperforms the ConvLSTM and STConvS2S models
in every setting, with the most significant performance gains oc-
curring when considering a prediction horizon of 1. This further
attests to the recurrent component’s ability to capture temporal fea-
tures in the short-term, while simultaneously showcasing increased
difficulty in maintaining temporal features in longer sequences.

Note that although our experiments only used a simple LSTM
layer, the recurrent component can be any sequence-to-sequence
recurrent architecture. In particular, for future work, we plan to
experiment with other recurrent architectures optimized for main-
taining information across long sequences [18, 27, 31]. Although
the ST-RFD model has many more parameters in comparison to
the highly efficient STConvS2S architecture (i.e., mostly due to the
dimensionality of the representations passed to the LSTM layer),
training can still be made easily with standard GPU hardware and
with reasonably-sized mini-batches of instances. Tests with the
STConvS2S and ST-RFD models took similar amounts of time for
training and inference, and significantly less than the tests with
our implementation for the ConvLSTM architecture.

Besides feed-backward decoding, the novel normalization func-
tions also contribute to even larger performance improvements
over the baselines. Changing the normalization operations to either
EvoNorm B0 or EvoNorm B03D results in considerable performance
gains in the CHIRPS dataset, while still being a competitive option

in the CFSR dataset. In almost all scenarios, EvoNorm B03D out-
performs the original EvoNorm B0.

Figure 4 presents scatter plots with residuals on the 𝑦 axis and
fitted values (i.e., predictions) on the 𝑥 axis, for two distinct models
(i.e., STConvS2S, ST-RFD) and on the scenario of one time-step
ahead forecasts over both datasets. On the CFSR dataset, the resid-
uals roughly form a horizontal band around the value of zero in
the 𝑦 axis, although some outliers are visible and the spread of the
residuals is slighly increasing as the fitted values change (i.e., we
see some heteroskedasticity problems, slighly worse on the case
of the STConvS2S model). On the CHIRPS dataset, the residuals
are close to zero when the fitted value is small, and increasingly
more negative when the fitted value is large, with some outliers
also clearly visible. The spread of the residuals is approximately
constant, but the conditional mean is not, showing that the models
tend to predict higher values when compared to the true observa-
tions. The patterns on the fitted versus residual plots show that
there is still significant room for model improvement.

Figure 5 provides an illustration for the results from the best
reported model on average (ST-RFDB03D), over both the CHIRPS
(top) and CFSR (bottom) datasets. A consistent colour scale was
used in all the images from each dataset. The six images shown in
each row correspond to the last 3 time-steps used to inform the
prediction of the next time-step, together with (a) the ground-truth
patches for the next time-step, (b) the predicted patches, and (c) the
absolute error between the ground-truth and the predictions (shown
in shades of red). The images further attest to the proposed model’s
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Figure 5: Example results obtained with the ST-RFDB03D model over the two datasets, considering a prediction horizon of one.

ability of making accurate predictions, although also exhibiting
some over-smoothing issues.

It is interesting to notice that result quality when predicting
the next 5 time-steps is generally worse than when predicting
the immediate next time-step, although not by much – see again
Table 1. Particularly on the CHIRPS dataset, and more evidently
with the STConvS2S model, the errors concentrate on the cells
that are originally associated to more extreme values (and thus the
impact of the errors on the averaged metrics is less severe when
we consider a larger number of time-steps).

4.2 Missing Data Completion
For this scenario, we created input sequences of 10 time-steps by
concatenating the 5 input time-steps and the 5 ground-truth time-
steps from the forecasting task detailed in the previous section,
followed by the removal of a random time-step from the sequence.
The architectures integrating a recurrent component are extended
to consider a bi-directional LSTM, allowing for the representations
at each time-step to use both future and past information. All the
ST-RFD variations, as well as the ConvLSTM baseline, involve bi-
directional LSTM units, with the resulting representation at each
step being defined as the mean between the forward and backward
states. The 1D convolutions in the decoder from the STConvS2S
architecture are also allowed to use both future and past information
(i.e., causal convolutions were not used in this scenario).

We tested two different loss function configurations, varying
how the model is penalized. In a first configuration, denoted as
Loss1, the model is penalized exclusively based on the missing time-
step. In the second configuration, denoted as Loss2, the model is
penalized based on the entire output sequence of 10 time-steps, with
the loss value associated with the missing time-step being weighed
by 0.9 (i.e., the missing time-step loss corresponds to 90% of the
total sequence loss), and the remaining 9 time-step predictions
being weighed by 0.1

9 each. This second configuration explores
the intuition that reconstructing the entire sequence of co-related

time-steps, based on the input representations, can be beneficial
for more accurate missing data completion.

The RMSE, MAE and R2 results for each model over the test
sets, for both loss configurations and datasets, are shown in Table
2. Regardless of the loss configuration being used, the reported
values are calculated entirely with respect to the missing time-
step. As opposed to the forecasting scenario, the ST-RFD model
and extensions do not provide significant improvements over the
baselines. Instead, the ST-RFD models achieve worse results on
average than both baselines in both datasets.

Changing the normalization and activation operations in ST-RFD,
to EvoNormB0, further deteriorates the results in every setting,
while the proposed EvoNormB03D improves over the base model in
the CHIRPS dataset. Interestingly, replacing the ReLU activations
and standard batch normalization operations in the STConvS2S ar-
chitecture, with EvoNormB03D, leads to significant improvements
(i.e., this is the best performing model on the CFSR dataset).

The bi-directional ConvLSTM baseline performs exceptionally
well in experiments over the CHIRPS dataset, outperforming almost
every other model, with results deteriorating when considering
experiments on the CFSR dataset. In every setting, the models con-
taining a recurrent component (i.e., ConvLSTM and all ST-RFD
variations) improve results when considering the second loss con-
figuration, while the results with the STConvS2S baseline worsen.

We hypothesize that the worse results with ST-RFD are due to
the fact that the output at each step, in a bi-directional recurrent
component, is calculated based on the entire sequence, whereas in
a convolutional component each step is only affected by its closest
neighbours, depending on the filter size (i.e., with a filter size of
5, each step is affected by the two closest past and future steps).
This property is especially well-suited to this scenario, since the
missing values are typically much more co-related with the closest
future/past observations, and the co-relations become progressively
less relevant the farther an observation is. We believe that the two
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CHIRPS CFSR

Loss1 Loss2 Loss1 Loss2

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

ConvLSTM 5.6809 2.4968 0.3144 5.6558 2.4678 0.3206 1.0465 0.7716 0.9822 0.9240 0.6814 0.9861
STConvS2S 5.7150 2.4975 0.3044 5.8041 2.5865 0.2779 0.8578 0.6054 0.9879 0.8757 0.6202 0.9874
STConvS2SB03D 5.6767 2.4466 0.3172 5.6955 2.4573 0.3119 0.7865 0.5354 0.9899 0.7903 0.5410 0.9898
ST-RFD 5.8451 2.6150 0.2679 5.8285 2.6018 0.2658 0.9589 0.6893 0.9852 0.9540 0.6822 0.9853
ST-RFDB0 5.9236 2.6611 0.2500 5.8916 2.6195 0.2572 1.0071 0.7321 0.9837 0.9877 0.7164 0.9842
ST-RFDB03D 5.8235 2.5798 0.2662 5.7758 2.5728 0.2844 0.9826 0.7079 0.9844 0.9648 0.6966 0.9850

Table 2: Results for the prediction of a missing time-step. The subscripts B0 and B03D respectively correspond to the
EvoNormB0 and EvoNormB03D extensions. The bold values indicate the best performing model for each dataset and model.

tasks (i.e., predicting future time-steps, and predicting missing time-
steps) differ in the way short-term and long-term context should
be used, motivating additional research into how models can be
made to better aggregate both types of information.

Finally, Figure 6 provides illustrations for a time-step recon-
struction for the ConvLSTM (left), STConvS2S (middle) and ST-
RFDB03D (right) models, on both the CHIRPS (top) and CFSR (bot-
tom) datasets. A consistent colour scale was used in all the images
from each dataset and model. For each dataset, the eight images
shown in each row correspond to the ground-truth missing time-
step, followed by the respective model prediction and absolute
error between the two (shown in shades of red), for each model.
Analyzing the images, we can verify that all models are capable of
generating accurate reconstructions, although once again exhibit-
ing some over-smoothing. For both datasets, and particularly on
the CHIRPS dataset, the errors on all predictions are concentrated
on regions associated with extreme values.

5 CONCLUSIONS AND FUTUREWORK
This article explored the use of encoder-decoder deep learning ar-
chitectures for spatio-temporal prediction from gridded remote
sensing data. We detailed and evaluated several extensions to the
previously proposed STConvS2S architecture [20], based on recent
techniques in the literature and considering both convolutional and
recurrent structures, in an attempt to improve the simultaneous cap-
ture of spatial and temporal dependencies in the data. Experiments
using datasets from previous studies, consisting of observations
of air temperature and rainfall, showed that the proposed exten-
sions significantly outperform a ConvLSTM model and the original
STConvS2S architecture, in forecasting scenarios involving the pre-
diction of future time-steps, while still being a competitive option
in a missing data completion scenario.

Despite the interesting results, there are also many ideas for
future work. For instance, we are interested in exploring the use of
deeper convolution blocks, e.g. using recently proposed enhanced
pooling methods [7, 14, 30] or using squeeze-and-excitation opti-
mizations [23] to extract more discriminative spatial features. We
also plan to experiment with different missing data completion
tasks, such as the prediction of missing values associated with
partial regions due to cloud coverage [11, 26, 34].

It is interesting to notice that convolution operations are equi-
variant to translations by design (i.e., translating an input 𝑥 and
convolving with a filter 𝑘 yields the same result as translating the
feature map resulting from a convolution between 𝑥 and 𝑘), but
are not equivariant to other transformations. Previous studies have
proposed group convolutions as extensions to traditional convolu-
tion operations [2, 22], designed to achieve equivariance to other
types of affine transformations (e.g., rotation, reflection, or scaling)
and compositions of affine transformations (e.g., roto-translation).
Similar ideias can also be used as extentions to the proposed model,
under the intuition that equivariance to rotations or changes in the
scale of the patterns are particularly interesting when processing
gridded remote sensing data.
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