
MIRES: Recovering Mobile Applications based on
Backend-as-a-Service from Cyber Attacks

Diogo Lopes Vaz

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Science Engineering

Supervisor(s): Prof. Miguel Filipe Leitão Pardal
Prof. Miguel Nuno Dias Alves Pupo Correia

Examination Committee

Chairperson: Prof. Francisco António Chaves Saraiva de Melo
Supervisor: Prof. Miguel Filipe Leitão Pardal

Member of the Committee: Prof. João Tiago Medeiros Paulo

November 2020

ii

Acknowledgments

First, I would like to thank my supervisors Prof. Miguel Pardal and Prof. Miguel Correia for the

opportunity of doing this dissertation. Thank you for the ideas and suggestions, the knowledge

and experience shared during this journey that helped me incredibly during to realize this work.

I also want to thank Dr. David Matos as well for directly sharing his research work on the field

with me. This literature is the final result of a long path, full of difficulties, persistence and

hard work. A path of constant learning and improve, motivated by the feeling of increasing the

stock of knowledge in the field of computer science. I would like to thank my family, father,

mother and brother for the amazing support, motivation and patience throughout this journey.

They were a vital part in this process. I would also like to thank to all my friends for the

support during this phase of study, failures, successes, and learning. I share with you all my

success. Finally, I would like to specially thank my girlfriend for being my pillar, my support and

inspiration on every single day of this journey, through the good and bad moments. Without

all of you, this would certainly not be possible. Thank you all.

iii

iv

Resumo

Muitas aplicações móveis populares baseiam-se no modelo de computação na nuvem chamado

Backend-as-a-Service (BaaS) – Backend-como-um-serviço – para simplificarem o desenvolvi-

mento e gestão de serviços como o armazenamento de dados, a autenticação de utilizadores

e notificações. Porém, vulnerabilidades e outros problemas podem originar operações mali-

ciosas na aplicação móvel que consequentemente geram pedidos maliciosos feitos aos servidores,

corrompendo o estado da aplicação na nuvem. Para lidar com estes ataques depois de acon-

tecerem e terem successo, é necessário remover os efeitos imediatos criados pelos pedidos ma-

liciosos e efeitos subsequentes derivados de pedidos posteriores. Neste trabalho, apresentamos

o MIRES, um serviço de recuperação de intrusões para aplicações móveis baseadas no modelo

BaaS. O MIRES usa um processo de recuperação em duas fases que restaura a integridade da

aplicação móvel e minimiza a sua indisponibilidade. Para além da funcionalidade principal de

recuperação de intrusões, o MIRES também oferece um mecanismo no lado cliente que permite

aos utilizadores das aplicações móveis reverterem as suas ações. O MIRES foi implementado em

Android e com a plataforma Firebase. Foram feitas experiências com 4 aplicações móveis que

mostraram resultados de 1000 operações revertidas em menos de 1 minuto e com as aplicações

móveis indispońıveis por menos de 15 segundos.

Palavras-chave: Recuperação de intrusões, Computação móvel, Backend-como-um-

serviço, Computação na Nuvem

v

vi

Abstract

Many popular mobile applications rely on the Backend-as-a-Service (BaaS) cloud computing

model to simplify the development and management of services like data storage, user au-

thentication and notifications. However, vulnerabilities and other issues may lead to malicious

operations on the mobile application client-side that consequently generate malicious requests

being sent to the backend, corrupting the state of the application in the cloud. To deal with

these attacks after they happen and are successful, it is necessary to remove the immediate

effects created by the malicious requests and subsequent effects derived from later requests. In

this work, we present MIRES, an intrusion recovery service for mobile applications based on

BaaS. MIRES uses a two-phase recovery process that restores the integrity of the mobile ap-

plication and minimizes its unavailability. Besides the main intrusion recovery feature, MIRES

also provides a client-side mechanism that allows the mobile application users to revert their

own actions. We implemented MIRES in Android and with the Firebase platform and made

experiments with 4 mobile applications that showed results of 1000 operations reverted in less

than 1 minute and with the mobile application inaccessible only for less than 15 seconds.

Keywords: Intrusion Recovery, Mobile Computing, Backend-as-a-Service, Cloud Com-

puting

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

Nomenclature . 1

Glossary . 1

1 Introduction 1

1.1 Topic Overview . 2

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Thesis Outline . 3

2 Background & Related Work 5

2.1 Intrusion Recovery . 5

2.2 Mobile Applications . 12

2.2.1 Android Operating System . 13

2.2.2 Android Application . 14

2.3 Cloud Computing . 16

2.3.1 Cloud Computing Services . 16

2.3.2 Backend-as-a-Service . 18

2.3.3 Firebase . 20

2.4 Mobile Application System Model . 22

2.4.1 Threat Model . 23

2.5 Summary . 24

ix

3 MIRES 25

3.1 Architecture . 25

3.2 Normal Execution . 27

3.2.1 Mobile application configuration . 28

3.2.2 Logging Process . 28

3.2.3 Read operations . 30

3.3 Administrator Recovery . 31

3.3.1 Locking phase . 31

3.3.2 Dependencies . 31

3.3.3 Reconstruction phase . 33

3.4 User Recovery . 34

3.4.1 Normal Execution . 34

3.4.2 Recovery Execution . 34

3.5 Implementation . 36

3.6 Summary . 37

4 Evaluation 39

4.1 Experimental Evaluation . 39

4.1.1 Mobile Applications . 40

4.1.2 Logging Evaluation . 41

4.1.3 Space Overhead . 43

4.1.4 Admin Recovery Performance . 45

4.1.5 Users Recovery Performance . 48

4.2 Discussion . 49

4.3 Summary . 49

5 Conclusions 51

5.1 Achievements . 51

5.2 Future Work . 51

Bibliography 55

x

List of Tables

2.1 Comparison between the selected intrusion recovery works. 12

2.2 Separation of responsibilities on each cloud computing service model 17

2.3 Comparison between the features/services provided by three chosen BaaS services:

Firebase, Back4App and Parse. 19

3.1 MIRES package lines of code . 36

3.2 MIRES modules lines of code . 36

4.1 Log size on each application. 44

4.2 Time to send different number of notifications. 48

xi

xii

List of Figures

2.1 Android OS architecture. 14

2.2 Example of an Android application architecture interaction 15

2.3 Arquitecture of a BaaS service model. 19

3.1 MIRES architecture on a mobile application system 26

3.2 Normal execution flow of MIRES. 27

3.3 User Recovery mechanism. 35

4.1 Time to perform 1000 operations on each application, with and without MIRES. 42

4.2 Time to undo a different number of operations. 46

4.3 Time to reconstruct a document with different versions. 47

xiii

xiv

Chapter 1

Introduction

Mobile applications are software programs that run on mobile devices, typically smartphones or

tablets and play an important role in our lives, as they provide daily-use services like message

chats, social networks or online banking, just to name a few. Most mobile applications rely

on remote services and resources provided by servers, often designated clouds, to support their

functioning. Recently several frameworks/platforms have appeared to support the development

and execution of mobile applications. These frameworks allow to integrate code running on

devices with remote services through APIs. These remote services are executed on the cloud

and allow storing the state of the application, sending notifications and authenticating users.

To simplify the development of these features, a new cloud service model, named Backend-

as-a-Service (BaaS) [Car16, FdS14, Lan15], has emerged, allowing developers to configure the

backend of a mobile application without implementing it from the ground up. In fact, today

many popular mobile applications are based on BaaS, e.g., the Duolingo platform for learning

languages1 and the Lyft car sharing platform2 are both based on the Firebase BaaS platform3.

Mobile applications often contain vulnerabilities, e.g., due to improper user input validation,

or other errors made by developers in designing and/or writing code, leading to an increase of the

attack surface. These weaknesses can be explored by threat actors, such as malicious users, with

the intent to corrupt the state of the application stored in the backend, leading to intrusions.

For example, a 2019 study revealed that 60% of the mobile applications vulnerabilities were on

the client side, where two thirds were medium/high risk [Pos19].

Nowadays, mobile applications are critical assets to companies due to their inherent benefits

like portability, usability, and connectivity, that are convincing companies to use mobile appli-

cations as client interfaces for their services [LSS04]. Therefore, it is crucial to create intrusion

1https://en.duolingo.com/
2https://www.lyft.com/
3https://firebase.google.com/

1

https://en.duolingo.com/
https://www.lyft.com/
https://firebase.google.com/

tolerant mobile applications systems, in order to protect and preserve the integrity of the system

and, consequently, its correct functioning. Nevertheless, it is important to assure intrusion tol-

erance without affecting the system performance and availability and therefore conserve a good

user experience.

1.1 Topic Overview

This work is about intrusion recovery, i.e., about reverting the effects of the intrusion on the

state of the application, and to do it with low impact on availability. A simple solution on

the intrusion recovery field would be to periodically backup the application state, creating a

snapshot, and, when an intrusion occurs, to replace the state with the last snapshot. However,

this solution would lead to data loss, as backups are almost always outdated, e.g., hours or

days, depending on their frequency. Database recovery does better by considering not only

snapshots but also the statements since the last snapshot, which are stored in a log [GMUW08].

However, statements are low-level events that are hard to correlate to higher-level operations

and databases store only the statements since the last snapshot.

This work follows a more recent line of research on intrusion recovery that aims to revert the

effects of intrusions on the application layer by logging the requests or higher-level operations

made [BP03]. Our approach involves generating compensating transactions [LAJ00] based on

log analysis, that will revert the effects of the intrusion without loss of legitimate data. Intru-

sion recovery has been studied in different contexts, such as web applications [AG10, CKS+11],

databases [CP05, MC16], operating systems [KWZ+10], email services [BP03], and cloud com-

puting [MPC17, NC15]. However, to the best of our knowledge, no previous work focused on

recovering mobile applications. Also, no previous work focused on recovering applications based

on the BaaS model.

When exploring mobile applications using a cloud-backend as the Backend-as-a-Service, new

challenges arise as the use of APIs on the communication between the mobile application and

the backend, making impossible to interpose the communication using a proxy as some previous

works on intrusion recovery do [BP03, AG10, CKS+11, CKZ13, NC15, MPC17]; the need to

maintain the availability of the system, a critical point to provide a good user experience; and

provide some kind of an user’s recovery mechanism allowing users to revert their actions, since

mobile applications are intensive-use application where users’ errors are more likely to happen.

2

1.2 Objectives

The main objectives of this literature are:

1. Develop an intrusion recovery service for an emerging cloud service model, focused on

mobile applications;

2. Provide an offline recovery model, that aims to restore the integrity of the systems’ state

with a focus on maintaining the availability of the mobile application system;

3. A recovery mechanism that allows users to undo their own actions;

1.3 Contributions

In this work we present the Mobile Applications Intrusion Recovery Service (MIRES), an in-

trusion recovery service for mobile applications that use BaaS. The MIRES recovery model is

based on a two-phase process that aims to reconstruct the corrupted data concurrently to users’

interaction with the backend, by restoring the integrity of the systems’ state with a focus on

maintaining the availability of the mobile application system. Besides the main intrusion recov-

ery mechanism, MIRES also provides an user recovery mechanism that allows the application

users to recover from mistakes.

In terms of security properties [ALRL04], the objective is therefore to regain integrity after

an intrusion and to do it with low impact on availability ; on the contrary, the objective is

not to achieve confidentiality as MIRES operates after the intrusion happened. Confidentiality

protection requires runtime mechanisms that are out of the scope of this paper [HHJ+11, BHS13].

Our work also does not focus on intrusion detection, that is orthogonal to intrusion recovery;

other mechanisms could be used for this purpose [ARF+14, GQTZ16, YMHC17].

We implemented MIRES in Android and the Firebase platform and evaluated it experi-

mentally using 4 applications: a social network, a messaging app, a shopping list app and a

contact trancing application. MIRES was able to recover 1000 malicious operations in less than

1 minute, letting the mobile application inoperable only for less than 15 seconds.

1.4 Thesis Outline

This dissertation is organized in the following way: Chapter 2 introduces the intrusion recovery

field, the mobile applications with Android and the cloud computing paradigm, introducing

the main cloud computing models and the Backend-as-a-Service cloud computing model with

3

more detail; Chapter 3 explains the MIRES approach, by presenting its architecture and then

describing the execution of MIRES during the normal phase and both administrator and user

recovery phases supported by MIRES; Chapter 4 demonstrates the results of the experiments

performed on the MIRES service using four different applications; finally Chapter 5 concludes

this literature and describes possible improvement points for future work.

4

Chapter 2

Background & Related Work

In this chapter we present background on the intrusion recovery field, including a set of previous

intrusion recovery works, selected based on its importance to this work; the mobile applica-

tions, with an in-depth analysis on the Android Operating System, the Android application and

their main components; and finally the cloud computing paradigm, introducing the main cloud

computing models and the Backend-as-a-Service cloud computing model with more detail.

2.1 Intrusion Recovery

The term intrusion is normally used to designate unauthorized activities that affect the integrity,

confidentiality and/or availability of a system [ALRL04]. However, in this work we use the term

in a broader sense to include also authorized but erroneous activities from which someone later

wants to undo. The objective is therefore to regain integrity after an intrusion and to do it

with low impact on availability, on the contrary, the objective is not to achieve confidentiality

as MIRES operates after the intrusion happened. Confidentiality protection requires runtime

mechanisms that are out of the scope of this literature [HHJ+11, BHS13].

The process of dealing with an intrusion is divided into three main phases: intrusion detec-

tion, vulnerability fix and, finally, intrusion recovery.

The first phase, intrusion detection, consists of monitoring the events in a system or network

and analyze them for signs of suspicious activities, being an important procedure to deal with

unpredictable attacks. Previous works resorts to Intrusion Detection Systems (IDS) [ARF+14,

GQTZ16, YMHC17, GTDVMFV09] to help analyzing and detecting suspicious events. However,

some of these systems need human configuration to deal with precision issues, like false positives,

in order to initiate the recovery process.

The second phase is responsible for fixing the vulnerability. This phase consists on classifying

5

and mitigating the vulnerability that originated the intrusion, by configuration adjustments or

applying security patches – uploading code developed to resolve the specific vulnerability in the

software [ZWW+10, TW]. The goal is to prevent similar intrusions from happening again.

The last phase – and the scope of this work – is the intrusion recovery phase. This process

aims to remove the effects related to the intrusion and return the application to a state where

those effects are mitigated, restoring the integrity of the system. To handle intrusion recovery,

there are two common approaches that can be used: rollback or compensation.

Rollback is based on rolling back the state of a system – all activity, desirable and undesirable

– to a state believed to be free of damage (e.g., Row Versioning and Snapshots [GMUW08]).

Then, the system re-executes all the requests not related to an intrusion, a process called roll-

foward, in order to bring the system to the present state, annulling the effects of the intrusion.

Compensation is based on undoing malicious intrusions and their direct and indirect effects

without necessarily restoring the data state, to appear as if the malicious intrusions had never

been executed (e.g., Compensation transactions [KLS90]). Then, if needed, the system re-

executes the legitimate requests reverted on the compensation.

Next we will present a set of previous intrusion recovery literatures, selected based on their

importance for this work, more precisely, by analysing characteristics as the recovery approach

followed, the target system to recover, the type of recovery applied, the existence of an users’

recovery mechanism and the use of a proxy in the architecture.

Intrusion recovery has been much investigated considering different systems: databases

[CP05, MC16, AJL02], virtual machines [KC03, OCW+08, XJL09], file systems [GPF+05,

SFH+99, SGS+00, ZC03, HCR+06, JSDG08, KWZ+10], web applications [AG10, CKS+11,

CKZ13] and cloud-computing service models [MPC17, NC15, MPC18].

Undo for Operators [BP03] is a tool that allows operators to recover from their own mis-

takes, from unanticipated software problems and from intentional or accidental data corruption.

As an example, the paper extends an email server with recovery mechanisms. The model for

Operator Undo is based on three concepts referred as the three R’s: Rewind, where all the state

of the system is physically rolled back in time to a point before any damage occurred; Repair,

where the operator alters the rolled-back system to prevent the problem from reoccurring; and

Replay, where the repaired system is rolled forward to the present by replaying portions of the

previously-rewound legitimate requests. We follow this broad approach in this work.

During the normal execution, a proxy is responsible for intercepting requests coming from

users and packaging them into verbs —- a verb is an encapsulation of an user interaction with

the system, i.e., a record of an event that causes state in the service to be changed or externalized

6

—- creating a record of user intent. Then, verbs are sent to the undo manager for processing.

The undo manager uses the verb interfaces to generate a causally consistent ordering of the verbs

it receives, sends the verbs back to the proxy for execution on the service system, and records

the sequence of executed verbs in an on disk log. This verb log forms the recorded timeline of

the system.

During an undo cycle, all system hard state is physically rewound through the load of

system-wide snapshot in order to remove any corrupted data — rewind — and the operator

patch the software flaws of the application — repair. Finally, all legitimate requests started

after the intrusion are re-sent to the proxy to rebuild the application state — replay. During

this process, the system only authorizes synchronous read-only requests to be executed, since

the objective is to retain the ability for users to at least inspect their mailbox state even if

the state is temporarily inconsistent and immutable. All asynchronous requests are delayed —-

being asynchronous, they can tolerate the delay —- and synchronous requests that cannot be

executed read-only are forbidden. Also, as a consequence of the recovery, external inconsistencies

can occur e.g, mails or folders can change, appear or disappear without warning. To compensate

this, Undo Operator, for the most part, insert explanatory messages into the mailbox of the user,

apologizing for the inconsistencies, explaining what they are and why they were necessary.

Undo for Operators is the first presentation of the broad intrusion recovery approach that we

follow. MIRES collects three ideas from this literature: the logic of logging requests and higher-

level operations during the normal execution, the read-only permission during the recovery phase

and the explanatory messages to the users when a recovery process is executed.

Warp [CKS+11] is a system that assists users and administrators of web applications to

recover from intrusions while preserving legitimate user changes. Warp based his recovery ap-

proach on Retro [KWZK10], a tool that helps to repair from intrusions on operating systems.

The recovery process of WARP is initiated when the administrator learns that a vulnerability

was discovered by the developers. The first step is to determine which runs of the application

code may have been affected by a bug. Then, WARP applies the security patch and considers re-

executing all potentially affected runs of the application. In order to re-execute the application,

WARP records sufficient information of all the inputs, during the normal execution of the

application (e.g., HTTP requests). When WARP re-executes the application code with the

request of the intrusion, the newly patched application will behave differently and then issue an

SQL query to store the results in the database. Since the new SQL query must logically replace

the original query, WARP rolls back the database to its state before the attack took place. After

the database has been rolled back, and the new query has executed, WARP determines what

7

other parts of the system were affected by this changed query. To do this, during the original

execution WARP records all SQL queries, along with their results. During the repair, WARP

re-executes any queries it determines may have been affected by the changed query, as also if a

re-executed query produces results different from the original execution, WARP re-executes the

corresponding application run as well.

WARP provides a browser extension that records all events for each open page in the browser

(such as HTTP requests and user input) and uploads this information to the server. If WARP

determines that the browser may have been affected by an attack, it starts a clone of the browser

on the server, and re-executes the original input on the repaired page, without involving the

user. If any conflict arises, WARP signals the conflict and asks the user (or administrator) to

resolve it.

WARP implements online recovery, introducing the notion of repair generations, i.e., when

repair is initiated, it is created a fork of the current database contents, named next generation.

All database operations during repair are applied to the next generation. If during repair, users

make changes to parts of the current generation that are being repaired, WARP will re-apply

the changes of the users to the next generation through re-execution. Changes to parts of the

database not under repair are copied verbatim into the next generation. Once repair is near

completion, any final requests are re-applied to the next generation and the current generation

is set to the next generation.

MIRES presents two similarities with WARP: both require a client-side extension and offer

an user recovery mechanism. Also, the objective of the MIRES two-phase recovery process is

based on the WARP online recovery idea of improving the availability of the system.

Shuttle [NC15] is a similar intrusion recovery service for Platform-as-a-Service (PaaS) sys-

tems, that aims to help administrators to recover their applications from software flaws and

malicious or accidentally corrupted user requests. It can be provided by Cloud Service providers

(CSPs) as a service integrated in a PaaS system and also works with NoSQL databases. Shuttle

assumes a client-server model in which clients communicate with the servers on cloud using

HTTP/HTTPS.

Applications supported by Shuttle can operate in one of two phases: normal execution and

recovery execution. During normal execution, Shuttle records the data required to recover the

state of the application: it does periodic database snapshots and logs user requests and database

accesses.

When an intrusion is identified, the recovery phase is initiated. During this phase, Shuttle

removes intrusion effects creating a new branch of the system in which it loads a snapshot,

8

which contains the application state before the intrusion occurs. It builds a consistent state

by re-executing, in the new branch, the legitimate requests logged during normal execution,

while new incoming requests are executed in the previous branch. Re-execution can perform

either selective or full replay. Full replay consists of replaying every request done after the

snapshot, which can take considerable time, being this approach adequate for intrusions detected

reasonably early after they happen, e.g., a few days. Selective replay re-executes only part of

the requests, being faster than full-replay and require that tenants provide a set of malicious

requests, used to deduce the set of tainted requests. A request is said to be tainted if it is one

of the attacker’s requests or if it reads objects written by tainted request. After the tainted

requests are deduced, selective replay gets the requests needed to obtain the values read by

them. Next, Shuttle recovery process determines the replay order sorted in start-end order and

finally replays the requests. Shuttle provides an API for the application programmer to define

how inconsistencies seen by users are dealt with:

• preRecover() - invoked before the beginning of the recovery process, allowing to per-

form a set of actions before the beginning of the recovery process, such as notifying the

operations team or taking a new snapshot;

• handleInconstency (request, previous response, new response, previous keys, new keys,

action) - invoked when there is an inconsistency, taking as input the request that caused

the inconsistency as well as the response and keys accessed during the normal execution

and during the recovery process. It also takes as argument the action to take, considering

three possible actions: ignore the inconsistency, notify the user of the inconsistency and

execute another request;

• posRecover() - invoked after the end of the recovery process, allowing the tenant to

access not only to the statistics of the recovery process but also to an interface to compare

the database values before and after the recovery process and the application responses,

before exposing the data to the users.

MIRES and Shuttle present a similarity: both save read accesses to the database, in order

to identify dependencies between transactions. However, MIRES follows a different recovery

approach, by implementing a two-phase recovery algorithm to improve the system availability,

instead of interposing the communication between the applications and the backend, i.e., it does

not place a proxy between the application and the backend. This is important because it allows

to preserve all the functional and security properties provided by the BaaS service API, since a

proxy is a single point of failure.

9

NoSQL Undo [MC16] is a recovery approach and tool that allows administrators to auto-

matically remove the effect of intrusions, as faulty operations on NoSQL databases. This article

follows a more recent line of work inspired in systems as Shuttle [NC15] and Phoenix [CP05].

NoSQL Undo is a client-side tool in the sense that it does not need to be installed in the

database server, but runs similarly to other clients. The tool only accesses the NoSQL database

instance when the database administrator wants to remove the effect of some operations from

the database, as malicious intrusions.

NoSQL Undo presents two different methods to recover a database: Full Recovery, that

works by loading the most recent snapshot of the database and then updating the state to the

present by executing the remaining operations, which were previously recorded in a log - a global

log that is constructed by the NoSQL database mechanism. The algorithm takes as input a list

of incorrect operations that it is supposed to ignore when it is executing the log operations. The

other method is the Focused Recovery, that instead of rolling back the entire database just to

erase the effects of a small set of incorrect operations, the algorithm only executes compensation

operations, i.e., operations that corrects the effects of a faulty operations . The algorithm works

in the following way: for each faulty operation, the affected record is reconstructed in memory

by NoSQL Undo. When the record is updated, NoSQL Undo removes the incorrect record and

inserts the correct one in the database.

As far as we know, NoSQL Undo is the only literarure that focuses on recovering NoSQL

databases. The MIRES document’s reconstruction algorithm is based on the Focused Recovery

algorithm provided by NoSQL Undo.

Rectify [MPC17] is a black-box intrusion recovery service for Platform-as-a-Service (PaaS)

applications. Rectify considers that the application is a black box, so it observes HTTP requests

and DB statements and finds the relations between them without looking into the application

code or requiring modifications to that code. Relations between HTTP requests and DB state-

ments are derived using supervised machine learning.

In the learning phase, samples are provided to the system, allowing Rectify to learn that a

specific HTTP request will generate a certain kind of database statement. All the information

gathered during the learning phase is captured and stored in a knowledge base, where each

example is identified by an application route — an URL pattern that is mapped to a resource of

the web application. In order to identify the database statements issued by a malicious HTTP

request, Rectify needs to solve two classification problems:

• Signature Matching - consists of identifying the signature record of the malicious HTTP

request. In this step, the malicious HTTP request is parsed in order to extract its relevant

10

parts (e.g., method, URL or parameters). Using those parsed parts, the classification

algorithm is executed to find the corresponding signature record.

• DB statements matching - consists in finding in the DB log the actual statements that

were created by the malicious HTTP request. Using the signature record from the signa-

ture matching, it is possible to find the corresponding database statements issued by the

malicious request. First, the algorithm gets all the database statements of the signature

record. Then Rectify calculates generic statements taking as an example the DB state-

ments of the signature record and the parameter values from the malicious HTTP request.

This generic statements should be as close as possible to the malicious DB statements,

allowing a machine learning algorithm to identify them from the DB log.

Finally, Rectify removes the effects of an incorrect statement from the database by calculating

a set of database statements — compensation transactions. In a simplistic scenario, in order to

undo an insert it is necessary to execute a delete; to undo an update it is necessary to update

the record back to its previous value. However, this problem becomes more difficult to solve in

relational databases. In this kind of database, it is not recommended to remove a record that

is related to other records because of the referential integrity constraints. In order to deal with

this problem, an algorithm — two pass repair algorithm [LAJ00] — was used to calculate a

graph of dependencies and undo the identified malicious actions.

MIRES architecture is based on Rectify architecture: both are deployed on a different con-

tainer from the application container. However, Rectify does not need modifications on the

applications, while MIRES requires the configuration of the application through a client-side

package. Also, MIRES provides intrusion recovery without interposing the communication be-

tween mobile applications and the backend, i.e., it does not place a proxy between the application

and the backend, as Rectify.

Table 2.1 summarizes the main characteristics between the selected works, with the intro-

duction of MIRES service. MIRES collects some of the ideas presented in the previous works.

However it is the first that considers mobile applications and BaaS. Moreover, it introduces the

idea of dividing the process in two phases, which improves the availability of the system on

offline recovery models. MIRES also provides a new short-term recovery mechanism to mobile

applications, supported by technique of parallel recovery processes that allows multiple users to

recover their last action at the same time, which is an enhancement welcome in most applications

where end-users can commit mistakes.

In the next sections, we will introduce mobile applications, with a special focus on the

Android Operating System and applications.

11

Article Recovery
Approach

Target
System

Recovery
Type

User
Recov.

Proxy
Impl.

Undor for Oper-
ators
[Brown, 2003]

Rollback Email Sys-
tem

Offline 7 3

WARP
[Chandra, 2011]

Rollback Web App. Online 3 3

Shuttle
[Nascimento,
2015]

Rollback Web App. Online 7 3

NoSQL Undo
[Matos, 2016]

Rollback and
Compens.
Trans.

NoSQL
database

Online 7 7

Rectify
[Matos, 2017]

Compens.
Trans.

Web App. Online 7 3

MIRES
[Vaz,2020]

Compens.
Trans.

Mobile Ap-
plication

Offline+ 3 7

Table 2.1: Comparison between the selected intrusion recovery works.

2.2 Mobile Applications

A mobile application [LSS04, XX13] is a type of software application built to run on a mobile

device such as a smartphone or a tablet, that runs a specific operating system, e.g., Android or

iOS. Mobile applications are usually shared with the consumers through app stores, e.g., Google

Play1 or Apple App Store2, a digital distribution service of mobile applications.

Mobile applications can be divided into three types:

• Native Application - mobile applications targeted toward a particular mobile operating

system. Generally, the main purpose of this type of application is to take advantage of

the features of the target operating system, with good performance and more control over

hardware (e.g., the Pokemon GO game);

• Web Application - web applications that deliver web pages on web browsers running on

mobile devices. They do not need installation and cannot access all resource of the device,

such as the camera or geolocation (e.g., Facebook accessed by the browser);

• Hybrid Application - a mix of native and web applications, as they need to be installed

and also rely on web pages being rendered in a browser. This type of application is

generally used when we do not have high-performance requirements but need full access

to the resources of the mobile device (e.g., Instagram).

1https://play.google.com/store
2https://www.apple.com/pt/ios/app-store/

12

https://play.google.com/store
https://www.apple.com/pt/ios/app-store/

In the section below, we will focus our work on the Android OS and its architecture due to

higher number of devices and users, reflected on a higher value on the market share [MOS].

2.2.1 Android Operating System

The Android Operating System [Mei12, GG17] is a Linux-based operating system maintained

by the Open Handset Alliance, led by Google. It is a Java-based object-oriented application

framework with a good memory and performance efficiency, highly tuned to hardware limitations

of mobile devices. The Android OS assigns each deployed application with an unique user

and group ID to preserve each application file privacy and implements the principle of least

privilege, as applications must declare the permissions they need. When running, applications

are sandboxed in separate Android Runtime (ART) Virtual Machines – the successor of the

Dalvik Virtual Machine – which, in turn, runs within its own kernel managed process.

Figure 2.1 shows the overall architecture of the Android operating system. Android OS is

organized in 4 layers, composed of 5 components: the Kernel that contains the hardware abstrac-

tion layer and components for low-level functionalities as memory management and inter-process

communication. It also provides drivers for the display, touch input, networking, power man-

agement and storage; the Android Runtime, a process-based VM optimized for low memory and

performance efficiency containing the Android Runtime VM, ensuring that multiple instances of

the Android Runtime VM – each running an application – can run at the same time. The An-

droid Runtime layer also contains Java-based libraries that are specific to Android development

as Android.text, used to render and manipulate text on a device display, or Android.database,

used to access data published by content providers; the Systems Libraries that stand between

the kernel and the application framework layers, containing Android system libraries as libc,

SQLite and OpenGL, all exposed through a Java API; the Application Framework that pro-

vides higher-level services used on mobile applications such as buttons and text boxes, common

content providers so that apps may share data between them, a notification manager allowing

device owners to be alerted of events and an activity manager for managing the lifecycle of

application; and finally, the Applications component, the closest layer to the user, where the

mobile applications live.

In the next section, we will introduce the Android application, its fundamentals and archi-

tecture.

13

Android Applications
Browser, Phone, Contacts, ...

Application Framework
Activity Manager, Power Management, ...

System Libraries
OpenGl, SQLite,...

Android Runtime
Core Libraries

Kernel
Hardware Driver, Power and Memory Management

Figure 2.1: Android OS architecture (adapted from [GG17])

2.2.2 Android Application

An Android application [Mei12, GG17, MDMN12] is a software application written in a variant

of the standard Java language with some differences, especially, in the user interface libraries.

Android applications are installed as a single Android Package file (extension: .apk) containing

the compiled code along with data and resource files.

Android applications are mainly built out of 4 types of components: Activity that represents

a screen with a visual user interface and handles the user interaction with the mobile device.

A typical Android application consists of, at least, one activity; Service used for background

tasks, as time intensive tasks or inter-application functionalities, which do not require direct

user interaction; Content Provider that manages store and access to the data of the application,

as also provide a way to share data with other mobile applications; and Broadcast Receiver that

handles and manages intents – an abstract description of an operation to perform – from the

Android OS or the mobile application.

Besides the components above, an Android application can also contain other components as

Fragments, that represent a portion of user interface in an Activity, Views, UI elements that are

drawn on-screen like buttons or lists forms, Layouts, representing view hierarchies that control

the screen format and appearance of the views, Intents, messages wiring components together,

Resources, containing external elements, constants and drawable pictures and a Manifest file,

the configuration file of the application, containing elements as the API level, the name of the

application or the user permissions.

Figure 2.2 represents a possible example of a music player Android application sample and

its architecture. A possible flow of this application could be as follows:

1. Activity A1 represents the first activity of the application – Main Activity – that contains

two buttons: login button (View V1) and a register button (View V2). If the user clicks on

14

the login button, an intent is generated (Intent I1) with a login message and, consequently,

a new activity is initiated (Activity A2);

2. Activity A2 represents the music page of the user, containing a list (View V3) with all

the musics bought by the user and a play button (View V4). If the user clicks on the play

button, a new intent is generated (Intent I2) in order to initiate the service (Service S1)

that will play the album in the background.

Activity A1 Activity A2

View V1 View V2 View V3 View V4

Intent I1

Service S1 Intent I2

1 2

Legend:

Application
Flow

Figure 2.2: Representation of an interaction example between different components on an ex-
ample Android music application.

Mobile application systems are software architecture composed by two major components:

the frontend, that is the interface of the application, responsible for interacting directly with the

user (e.g., activities and views), and the backend, responsible for maintaining the real functioning

of the application, with which the user, typically, never interacts (e.g., data storage mechanism).

Considering these two components, some mobile applications, generally the most basic ones, are

local applications, having both frontend and backend on the application itself (e.g., a calculator

application or notes application).

However, today’s most mobile applications rely on remote services and resources provided

by servers, often designated clouds, to support their functioning. Due to this, recently several

frameworks/platforms have been appeared to support the development and execution of mobile

applications (e.g., a bank or message application). These frameworks allow integrating code

running on devices with remote services through APIs and where remote services are executed

on the cloud and provide services and features like data and file storage, user authentication and

notifications management. To simplify the development of these features, a new cloud service

model emerged, named Backend-as-a-Service. .

In the next section we will start by introducing the cloud computing paradigm and then

focus on the cloud computing model studied, the Backend-as-a-Service model.

15

2.3 Cloud Computing

Cloud computing [Mar17, MG+11, VRMCL08] is a computing model that aims to provide on-

demand network access to a shared pool of elastic and scallable computing resources (e.g.,

networks, servers, storage, applications or services), motivated by the idea that storage and data

processing can be done more efficiently on large computing farms accessible via the Internet.

This new computing paradigm is assured by Cloud Service Providers (CSP) (e.g., Google3,

Microsoft4 or Amazon5), vendors who lease their cloud computing resources based on the dy-

namic use of their customers.

The Cloud Computing model is composed of five main characteristics: On demand self-

service - computing resources and capabilities are provisioned automatically to the consumers

without requiring human interaction; Broad network access - resource are available over the net-

work and can be accessed through any platform, e.g., table, mobile phone or computer; Resource

Pooling - physical and virtual computing resources location independent, i.e. the customer gen-

erally has no control or knowledge over their location and pooled into the cloud; Rapid elasticity

- computing resources can be rapidly and elastically provisioned and released based on the de-

mand of the consumer. To the consumer, the resources available for provisioning often appear to

be unlimited and can be appropriated in any quantity at any time; Measured Service - Resource

usage can be monitored, controlled, reported and optimized by the CSPs through a pay-per-use

business model (e.g., Business model similar to electricity or water services).

Since the necessities of each user can differ, the cloud computing environment offers different

cloud computing models, each optimized for specific needs and demands.

In the next section we will present the main types of cloud computing service models.

2.3.1 Cloud Computing Services

The cloud computing environment is composed of different computing models, optimized for

specific demands, where each cloud computing service model is characterized by a set of features

and services whose management may be the responsibility of the user or the cloud computing

provider. There are three main cloud computing service models:

• Infrastructure-as-a-Service where consumers does not manage or control the underly-

ing cloud infrastructure but have control over operating systems, network, storage, and

deployed applications;

3https://cloud.google.com/
4https://azure.microsoft.com/en-us/
5https://aws.amazon.com/

16

https://cloud.google.com/
https://azure.microsoft.com/en-us/
https://aws.amazon.com/

• Platform-as-a-Service where consumers have control only over the deployed applica-

tions or possibly configuration settings for the application-hosting environment and CSP

vendors manage and control the underlying cloud infrastructure including network, servers,

operating systems, or storage;

• Software-as-a-Service where all the responsibilities are transferred to the CSP vendor,

from the underlying cloud infrastructure including network, servers, operating systems,

storage, to individual application capabilities, with the possible exception of limited user

specific application configuration settings.

On premises
Infrastructure-
as-a-Service

(IaaS)

Platform-as-
a-Service
(PaaS)

Backend-as-a-
Service
(BaaS)

Software-as-a-
Service
(SaaS)

Application (UI
and Logic)

User User User CSP

Data, Users and
Auth

User User CSP CSP

Runtime User CSP CSP CSP

Middleware User CSP CSP CSP

Operating Sys-
tems

User CSP CSP CSP

Virtualization CSP CSP CSP CSP

Server Manage-
ment

CSP CSP CSP CSP

Storage CSP CSP CSP CSP

Networking CSP CSP CSP CSP

Table 2.2: Separation of responsibilities on each cloud computing service model (white/User
cells represent the components managed by the user, while the grey/CSP cells represent the
components managed by the cloud computing provider).

Table 2.2 summarizes the management responsibilities on the three original cloud computing

models previously presented, where we have also introduced the Backend-as-a-Service. As we

can observe, the Backend-as-a-Service cloud computing model stands between the PaaS and the

SaaS: BaaS vendors manage the data storage, users and their authentication when compared

with the Paas; on the other case, on SaaS, the application, user interface and logic are fully

managed by the vendor, when compared with the BaaS.

In the section below, we will explore, with more detail, the Backend-as-a-Service model and

analyze some examples of this new cloud service model.

17

2.3.2 Backend-as-a-Service

Backend-as-a-Service (BaaS) [Car16, FdS14, Lan15], also know as Mobile Backend-as-a-Service

(MBaaS), is a cloud service model that provides a set of ready to use application-logic services

that automates and speeds up the backend development process of web and mobile applications.

However, in this literature, the focus is only on mobile applications. BaaS aims to provide scalable

and optimized backend infrastructures, where all responsibilities of running and maintaining the

backend infrastructures are outsourced to the BaaS vendor, leaving only the development of the

mobile application to the user of the platform. Examples of BaaS platforms are Firebase6,

Back4App7 and Parse.8

Typically, a BaaS service model provides a set of common application services including: data

and file storage for storing structured data and files, push notification to send notifications to

the application, user management to authenticate the users, application analytics to scrutinize

the crashes and performance of the application, and cloud functions [MGZ+17] to run simple

and single-purpose code on the server-side, invoked via HTTP endpoints or when specific cloud

infrastructure events occur, like database changes, for example. BaaS services are integrated by

the mobile application via custom software development kits (SDK) and application programming

interfaces (APIs).

Figure 2.3 represents the architecture of a BaaS platform. Each mobile application, like A

and B, running in a mobile device, is pre-associated – usually through a configuration file – with

a specific virtual environment called container, assuring the use of the containers’ services by

the mobile application. Containers are virtually isolated from the others and contain all the

resources – code, services and configurations (e.g.,, database permissions and settings) – used

by the mobile application system. A mobile application system is identified in the platform by a

global unique identifier that is sent in the mobile application requests and among the resources

inside the containers.

Despite being a recent cloud computing service model, there are already a great number of

BaaS platforms, as the already mentioned Firebase, Parse or Back4app. Table 2.3 gives us an

overview of some main features/services of these three BaaS. We choosed to focus our analysis

on the client-side, analyzing the features/services provided by the three BaaS to the client, as

we think that, when choosing the BaaS to use, it will be the most complete and groundbreaking

BaaS, capable of supporting a more robust and differentiated mobile application system.

By analysing each BaaS example, we can conclude, from Table 2.3, that all the selected

6https://firebase.google.com/
7https://www.back4app.com/
8https://parseplatform.org/

18

https://firebase.google.com/
https://www.back4app.com/
https://parseplatform.org/

Container 1 Container 2

Backend-as-a-Service cloud service

File
Storage

Data
Storage

User
Auth.

File
Storage

User
 Auth.

Data
Storage

API API API

Associated Associated

BaaS BaaS

Mobile
Application A

Mobile device A

Mobile
Application B

Mobile device B

Figure 2.3: Arquitecture of a BaaS service model.

BaaS API Datab.
and File
Storage

Push
Notific.

User
Auth.

Cloud
Func.

Hosting
In-
frastr.

Machine
Lear.
Kit

Firebase 3 3 3 3 3 3 3

Back4App 3 3 3 3 3 3

Parse 3 3 3 3 3

Table 2.3: Comparison between the features/services provided by three chosen BaaS services:
Firebase, Back4App and Parse.

BaaS provide the same main features: API, Database and File Storage, Push Notifications, User

Authentication and Cloud Functions. Analyzing now the hosting infrastructure aspect, we can

observe that Parse is the only BaaS that does not offer this characteristic. The reason is that

Parse is only an open-source framework that does not integrate the infrastructural-side, while

Back4App and Firebase are platforms that deal with machine management and all the related

problems, as security settings, auto-scaling or database optimization. An example of the Parse

framework with the infrastructural-side is the Back4App platform, as Back4App is built on top

of Parse framework. We also conclude that, in addition to the main services provided, Firebase

also provides a Machine Learning Kit, which is a set of machine learning features for mobile use

cases, as recognizing text, detecting faces or scanning barcodes.

After analyzing Table 2.3, we decided, to study and explore the Firebase platform, because,

from the examples analyzed, Firebase is the most robust and complete platform that provides

more than the default main features. In the next section, we analyze and explore the Firebase

platform with more detail.

19

2.3.3 Firebase

Firebase [MMA17] is a backend development platform, led by Google, that provides a set of

features and services that enable developers to create mobile and web applications. The platform

is accessed throught the Firebase Console – a web page – and is built on three pillars: Develop,

Grow and Earn.

The Develop pillar is focused on the application development experience and provides a set

of features/services as: Authentication - provides different processes of authentication; Realtime

database – a cloud-hosted NoSQL-based database [HHLD11] that provides syncing across all

connected devices and support four types of requests: create, read, update and delete; Cloud

storage – responsable for storing files as photos or videos; Cloud functions – allows to write code

that runs in response to Firebase events, like database changes or HTTP events; Cloud firestore

– an improvement of the Realtime Database, focusing on global apps; Hosting – service to host

global web applications; Machine learning kit – a beta service that provides machine leaning

features to improve the application (e.g., text recognition); Test lab – service that provides a set

of mobile devices emulators, hosted by Google on a Test Center, for test porposes; Crashlytics –

service that provides a stack trace of all applications crashes; Performance monitoring - presents

a customized and automatic performance tracing of a mobile application, from the point of view

of the user; and App distribution – a beta service that provides a simple way to send pre-realeased

versions of the application to trusted testers;

The Grow pillar is related to helping developers to systematically improve and expand their

apps, providing features/services as: Firebase cloud messaging - service that provides the ca-

pability to deliver messages to connected devices, at no cost; Firebase remote config - cloud

service that provides server-side variables that allow to change the behavior and/or appearance

of the application, without changing the application itself (e.g., an e-commerce app that, peri-

odically, wants to provide discounts. This can be achieved by having a variable that contains

the value of the discount); In-App messaging - a beta service that allows to send targeted and

contextual messages to users that are actively using the application; Predictions - service that

applies machine learning procedures to analytics data to create user segments based on predicted

behavior; A/B testing - a beta service that simplifies the processes of running, analyzing and

scaling product and marketing experiments; App indexing - provides the capability to open the

application using Google Search; and App invites and Dynamic links - service that provides an

intelligent and simple way to share the application with other users;

Finally, the Earn pillar provides a way to monetize mobile applications with in-app ad-

20

vertising that can be targeted to the user. This earning process is achieved by AdMob9, a

mobile advertising platform that helps to generate revenue from the mobile application. Fire-

base also provides a free-to-use analytics service, Google Analytics, that provides a number of

common analytics (e.g., first open analytics: counts the number of first opens after installing

or re-installing the application), as the ability to define custom analytics, that will be gathered

without the necessity to write any code.

All the communication between the applications and the backend is achieved by the Firebase

API, provided by an SDK for each supported language.

Cloud Firestore

BaaS database services can vary on the database supported, that can be relational or non-

relational [JPA+12]. Some services allow the integration of external databases (e.g., Back4App

allows the integration of MongoDB10), while others provide their own database, such as the

Cloud Firestore11 provided by the Firebase platform.

The Firestore database is a NoSQL cloud database to store and sync data for client and

server-side development. It is a flexible and scalable database for mobile, web, and server

development that keeps your data in sync across client apps through realtime listeners and

offers offline support for mobile and web so you can build responsive apps that work regardless

of network latency or Internet connectivity. Cloud Firestore also offers seamless integration with

other Firebase and Google Cloud Platform products, including Cloud Functions.

NoSQL databases are of different types: key-value [Siv12], columnar [Vor11], or document-

oriented, as the already mentioned MongoDB. In this case, the Firestore is a document-oriented

model, where the database structure is based on documents and collections. MIRES does not

depend on the specific database or if it is relational or not. However, the prototype uses the

Firestore NoSQL database.

Firestore and others NoSQL databases support CRUD operations: create, read, update and

delete, but we summarize them in just two: writes that modify the content (create, update,

delete) and reads that do not. These databases also support transactions that provide the

ACID properties (e.g., the Mongo Transactions12). This allows applications to perform writes

– and in some cases reads – atomically in different documents. Firebase also supports Firestore

transactions13, that are divided in transactions and batched writes.

9https://admob.google.com
10https://www.mongodb.com/
11https://firebase.google.com/docs/firestore
12https://www.mongodb.com/transactions
13https://firebase.google.com/docs/firestore/manage-data/transactions

21

https://admob.google.com
https://www.mongodb.com/
https://firebase.google.com/docs/firestore
https://www.mongodb.com/transactions
https://firebase.google.com/docs/firestore/manage-data/transactions

A Firestore transaction is a set of writes and reads performed atomically to one or more

different documents, to a maximum of 500 documents. The transaction mechanism, performed

by mobile applications, is executed in four phases in the following order:

1. Read: First, all the reads are performed on the target documents by the application;

2. Logic: Then, based on the data retrieved on the Read phase, some logic can be executed;

3. Apply: Finally, the mobile application apply the changes — update, delete or create —

to the database documents;

4. Double Check: In the last phase, Firebase checks if, during the previous three phases,

the documents read on the Read phase have changed. If it is false, then the transaction

is executed. If it is true, then the transaction is re-executed (back to the first phase),

but only a finite number of times (default number is 25, pre-defined by Firebase), then

it aborts. Firebase transactions are built on top of the optimistic concurrency control,

based on the idea that most of the time, transactions will probably execute. This idea is

also based on that NoSQL databases are pre-configured for read-write distributions where

reads will happen more frequently than writes, as it is the more typical access pattern

in web applications, and so, the probability of another write request to change the same

document read by the transaction is lower, increasing the probability of a transaction to

be executed.

A Firestore batched write is a set of only write operations performed atomically to one or

more different documents, to a maximum of 500 documents. This mechanism is used when we

want to perform several writes on different documents without caring about the old values.

In the next section we debate the implementation model followed by the mobile application

system using the Backend-as-a-Service, as also the threat models considered in this work.

2.4 Mobile Application System Model

This literature uses the term mobile application to mean the application running on the mobile

device and mobile application system to mean the entire system, i.e., both the application and

the backend.

Mobile applications that use a BaaS backend have their state distributed between the mobile

device and the cloud. In this work, we assume that the state of the application is reflected on

a database service, which is the recovery object of MIRES. However, when using the BaaS,

applications can interact with other services that, in turn, can also contain part of the system’s

22

state. For a complete recovery, MIRES could be extend to interact and recover the other

services. The distribution of the state is coordinated by executing remote services such as user

management, file or data storage. We assume that the mobile applications always use data

based on the backend state that is considered the authoritative copy of the data.

The state of a mobile application is composed of a local state existing on the mobile device

and a backend state existing on the backend database. The focus of this work is to recover the

backend state of the mobile application, since the recovery of the local state is already supported

in many applications, e.g., the backup recovery process supported by WhatsApp and the implicit

recovery done by many applications simply by logging out and logging in again. Also, recovering

the backend state is more challenging since it is accessed and modified by many different users,

while the local state is only accessed in the mobile device.

2.4.1 Threat Model

When an user performs an action on the mobile application, e.g., by clicking on a button, a set

of operations is made to the backend reflecting the users’ action. The operations create, read,

update or delete database documents. This set of operations that represent a single action is

what we call a transaction. In this work we assume that transactions are performed correctly and

atomically, as our focus is not on recovering inconsistent applications’ state due to incomplete

transactions (we are not concerned with fixing broken applications, but with recovering from

intrusions in correct applications). However, in some cases MIRES is able to recover these

inconsistent scenarios.

An intrusion occurs when a malicious action performed by an user explores a vulnerability on

the mobile application, originating a malicious transaction. A malicious transaction consist of a

set of, at least, one malicious operation. However, besides the number of malicious operations,

when recovering a transaction, the atomic model must be respected, where all the transactions’

operations must be undone, both malicious and non malicious.

We also assume that malicious transactions are the only way the state of the system is

compromised. We assume that adversaries cannot corrupt the computational infrastructure of

MIRES, the mobile application or the BaaS platform. This assumption does not mean that such

problems cannot occur in practice, but only that these are outside of the scope of the solution

presented in this document.

23

2.5 Summary

This chapter presented the main ideas behind this work. The chapter introduced the intrusion

recovery field, some definitions and previous works focused on the area; than described mobile

applications and the different types, with a depth analysis on the Android Operating System,

Android applications and the their main components; and finalized with cloud computing and

the main cloud computing models, with a focus on the Backend-as-a-Service cloud computing

model.

24

Chapter 3

MIRES

MIRES (M obile Applications I ntrusion Recovery Service) is an intrusion recovery service for

mobile applications based on the BaaS model. MIRES is focused on recovering the integrity

of mobile applications’ state by undoing the malicious intrusions, i.e., to recover the state of

the application such as if the intrusion never took place. In this work, we use the term system

administrator to mean the person the manages the MIRES service and the term user to mean

the clients of the mobile application system that MIRES protects.

We consider that the state of the mobile application can only be corrupted by transactions

originated by users’ actions. We consider two possible scenarios that can be recovered by MIRES

service:

1. Administrator recovery: when a transaction is recovered by the system administrator,

typically due to the detection of an intrusion;

2. User recovery: when an user makes a mistake and wants to undo the action moments

later.

An interesting case happens when the user loses control of his device and the application during

an interval of time, e.g., because the device was stolen. That case is handled with Administrator

recovery, but also implies a manual process for convincing the administrator that the recovery

should be done, e.g., showing a police certificate that the phone was stolen and recovered. We

do not present a specific solution for this manual process as it is outside of the technical scope

of the solution.

3.1 Architecture

The MIRES recovery service is formed by a set of different components that run in the frontend

(mobile application) and backend (BaaS platform). Figure 3.1 represents the architecture of

25

Admin Console
module

Database Service

Legend:

Application
Database

MIRES users
flags

MIRES users
tokens

MIRES users
recovery

Users Recovery
module

MIRES container Cloud Functions Service

Application container

Transactions
Log

 Mobile
 application

MIRES
package

Permitted
access

Snapshot
Creator

Documents'
Snapshots

Cloud
Logger

Figure 3.1: MIRES architecture on a mobile application system (MIRES components are shown
in grey).

MIRES. On the mobile application, the MIRES package provides the framework needed to

configure the mobile application. On the Application container, alongside with the Application

Database, three resources are added: MIRES users tokens to retrieve the information that allow

MIRES to communicate with the application; the MIRES users recovery for undoing mistakes

done by users (see Section 3.4); and MIRES users flags used for tracing the mobile application

normal execution (see Section 3.2).

The functioning of the MIRES service is supported by the Admin Console module, that allows

the system administrator to interact with the MIRES service and recover malicious intrusion,

the Users Recovery module responsible for the functioning of the user recovery mechanism (see

Section 3.4) and 2 modules deployed on the application container: the Cloud Logger responsible

for logging all the requests made to the database and creating the Transactions Log and the

Snapshot Creator, responsible for creating snapshots of the database documents, stored on the

Documents’ Snapshots.

In the next section we explain the normal execution of the MIRES service.

26

Admin Console
module

Database Service

Trigger

Legend:

Application
Database

MIRES users
flags

MIRES users
tokens

MIRES users
recovery

Users Recovery
module

MIRES container
Cloud Functions Service

Application container

Transactions
Log

R2 R1

F2 F1

(b)(c)
(d)

(g)

(h)

Action
Performed

(a)

 Mobile
 application

MIRES
package

Cloud
Logger Snapshot

Creator
Documents'
Snapshots

(e)

(f)

Figure 3.2: Normal execution flow of MIRES.

3.2 Normal Execution

The communication between the mobile application and the BaaS services, as the database

service, is achieved by an API provided by the BaaS platform. MIRES provides intrusion

recovery without interposing the communication between mobile applications and the backend,

i.e., it does not place a proxy between the application and the backend, as many related work

systems do [BP03, AG10, CKS+11, CKZ13, NC15, MPC17]. This is important because it allows

preserving all the functional and security properties provided by the BaaS service API, since a

proxy is a single point of failure that can compromise the normal functioning of the application.

During normal execution, MIRES captures specific data of each transaction performed to the

BaaS that, later, can be used on the recovery process. Figure 3.2 shows the normal operation

of a mobile application system when using MIRES. In the next sections we will explain all the

steps performed to a transaction during the normal execution of MIRES.

27

3.2.1 Mobile application configuration

MIRES Service uses a client-side package that can be introduced on the mobile application and

enables the MIRES functioning.

When an user interacts with the mobile application, a transaction is performed by the

mobile application reflecting the users’ action (operations R1 and R2 in Figure 3.2). Each

write operation is configured to carry extra-data: an operation ID representing the operation

itself; a locked property used in the recovery process (see Sections 3.3 and 3.4.2); and an ignore

property, used by MIRES to perform requests above database documents, without activating

the Cloud Loggers functioning. On create/update operations, this extra-data is carried by the

operation and stored in each document, while on delete operations the extra-data is carried by

the operation’s flag.

On read operations, the mobile application is configured to forbid reads on locked or blocked

documents, i.e., read operations cannot retrieved data from locked and blocked documents.

3.2.2 Logging Process

MIRES logging process is achieved by using two mechanisms: Flags and Cloud Loggers. Flags

carry specific operation information (Section 3.2.2). Cloud Loggers are cloud functions [MGZ+17]

that log the requests made by the mobile applications (Section 3.2.2).

For each operation that alters the state of the database – create, update and delete operations

– MIRES gathers the type of the operation, the timestamp associated, the document changed,

data associated with the operation, a transaction ID, that associates all requests of the same

transaction (in the figure, both R1 and R2 carry the same transaction ID) and part of the

additional information generated by the MIRES package for each operation (see Section 3.2.1).

In the rest of this section, we explain how both mechanisms allow MIRES to log each

operation made to the database.

Flags

Flags are MIRES resources that carry information about the associated operation. For each

write operation made to the database, the mobile application sends a second request (arrow

a), that we call a flag (flags F1 and F2 in Figure 3.2). Each flag is responsible for sending

additional information needed to log the operation. However sometimes the BaaS API provides

function calls where it is not possible to identify the type or the data performed by the operation

on the mobile application, e.g., the set operation can be of type create or update, depending if

the document exists or not, or backend calls as the Firebase incrementValue(), are made on the

28

mobile application but the logic is only executed on the backend.

In these cases, the log information is completed by the Cloud Logger (see Section 3.2.2). On

delete operations, this conflict does not occur: delete operations are well defined on the type –

delete – and do not generate new data on the database, only delete. Thereby, delete operation

flags are always completed and, consequently, can be directly logged by Cloud Loggers.

Besides their transport property, flags are also used to know when the recovery process must

be initiated. On rare occasions, Cloud Loggers can take some time to activate and log the

operations. However, MIRES can only start the recovery process when it contains the entire log

of all operations made to the database. To circumvent this scenario, since each flag represents an

operation made to the database, the recovery process can only begin when all flags are processed

and the MIRES users flags are empty.

Flags follow an ACID model with its associated operation, i.e., each flag can only be sent to

MIRES users flags if the associate operation is also performed.

Cloud Loggers

Cloud Loggers are MIRES resources that listen to two specific events: create/update operations

on the Application Database (arrow b), and delete operation flags on the MIRES users flags

(arrow c).

When a create/update operation is performed, a Cloud Logger is activated to catch that

operation. Then, the Cloud Logger accesses the MIRES users flags in order to get the flag

associated with the operation. As previously explained, since the information needed to log

the operation cannot always be defined by the mobile application, Cloud Loggers are used to

gather the rest of the information needed to log the operation, more precisely, the type and data

handled by the operation.

To gather the data written by the operation, the Cloud Logger compares the document after

and before the operation effect. This presents a limitation: an update that writes data already

on the document cannot be gathered by the Cloud Logger. For that reason, the operations’

data structure is sent on the flag, in order for the Cloud Logger to know each operations’

data. Interestingly, this process has an advantage: Cloud Loggers can capture the direct and

indirect effects of an operation, i.e., a set operation without the merge option replaces the entire

document by the new data: a direct effect. Nevertheless, there is data on the document that is

discarded: an indirect effect. Cloud Loggers can capture both effects, which allows to reconstruct

the documents independently from the type of update made.

On delete operations, the logging process is performed using a different approach. When a

29

new flag is added to MIRES users flags, a Cloud Logger is also activated that accesses the flag to

see if it is a delete operation flag and logs directly the operation only in that case. As previously

explained, delete operations do not generate new data on the database, which means that flags

are the only way to provide information about delete operations. Thereby, delete operation flags

always contain all the information needed.

After analyzing the flag and/or the operation performed, the Cloud Logger creates the

operation log record (arrow d) and deletes the flag on the MIRES users flags.

When the logging process is finished, the log can be accessed by the Admin Console, allowing

the system administrator to recover the state of the application. Arrows e, f relate to snapshots

and are explained in Section 3.3.3; and arrows g, h relate to user recovery and are explained in

Section 3.4.1.

3.2.3 Read operations

Mobile applications change their state by performing write operations on the database. The

information sent on each operation may come directly from the user, e.g., user input, or can be

based on data already existing on the database. In this last case, mobile applications perform

read operations in order to retrieve information from the database.

Since this operation type does not change the state of the database, there is no need to log

all read operations made by mobile applications. The idea is to log only the read operations that

can originate dependencies between transactions (see Section 3.3.2). To achieve this, MIRES

package is used to configure the mobile application in order to send the information about the

read operation. Thereby, the package offers the possibility to send the information about the

read operation through the operation’s flag: the name of the document read, the field-values

read (a document can contain both legitimate and illegitimate data, and so it is important to

know the data accessed) and the operation ID present on the document. MIRES cannot define

a timestamp for when the read operation occurred, so the operation ID property allows to know

which version of the document was accessed; different versions of the document are created by

each operation made to that document.

After gathering the data related to the read operation, that information is passed to the

Cloud Loggers through the operations’ flag of each operation that is influenced by the read

operation, in order to be logged alongside with the operation affected.

Besides the read operations made to the database, sometimes dependencies are not strictly

defined: for example, function calls that abstract the necessity to perform a read operation

like the Firebase incrementValue() call, where there is a dependency on the value incremented.

30

In this cases, the dependency exists, so it is necessary to configure these special scenarios, in

order to increase MIRES recovery efficiency. To achieve this, MIRES uses the Cloud Loggers to

complete the dependency information.

In the next section we explain the administrator recovery mechanism supported by the

MIRES service.

3.3 Administrator Recovery

MIRES follows an approach where intrusions and their effects are directly removed by compen-

sating transactions. The recovery process is divided in two phases: a locking phase responsible

for identifying the malicious transactions and the affected documents and a reconstruction phase

responsible for reconstructing the affected documents. In the rest of this section we will explain

both phases.

3.3.1 Locking phase

The recovery starts when an intrusion is detected and the administrator activates the MIRES

recovery mechanism. Intrusions can be detected manually or using an intrusion detection sys-

tem or similar mechanism [ARF+14, GQTZ16, YMHC17], but, as previously mentioned, this

mechanism is orthogonal to recovery and out of scope of this work. The system administrator

starts by using the Admin Console to select the transactions to undo, and sends a personalized

message to each online mobile application, e.g., to explain to the end-users the reasons behind

the recovery process. MIRES messages are received by the application and shown to the user

through notifications.

When the recovery is initiated, MIRES locks the entire database, forbidding any write op-

erations, allowing only reads. Then, the locking phase begins, where MIRES analyzes the log

since the moment the first malicious transaction occurred, in order to identify dependencies

between later transactions and, consequently, identify and lock all the affected documents, i.e.,

documents where both read and write are forbidden.

3.3.2 Dependencies

During the locking phase, MIRES analyses the log in order to identify dependencies between

transactions. This analysis is achieved by simulating the spread of corrupted data in memory

and comparing the operations made to the database with the corrupted data, in order to identify

posterior infected transactions.

31

Transitive dependencies

When the data written by a transaction is based on data retrieved by a previous read request to

the database, there is a transitive dependency. For this reason, when an intrusion occurs, read

operations can spread the effects of the intrusion by reading corrupted data on the database

and, consequently, generating new corrupted data.

Thereby, based on the information gathered about read operations during normal execution

(see Section 3.2.3), when a write operation is influenced by a read operation, MIRES compares

the field-values read with the corrupted data in memory, allowing the service to analyze if the

read operation was performed on corrupted data, since a document can contain both legitimate

and illegitimate data. When a transactions’ operation is influenced by a read operation, that in

turn has gathered corrupted data, then the data written by the entire transaction is marked as

corrupted, which means that the transaction can be seen as a malicious transaction – as writes

of corrupted data – that must be recovered. Then, data written by the malicious transaction is

added to the corrupted data simulation.

Structural dependencies

Write operations can also create relations between transactions that we call structural depen-

dencies. This type of dependency can occur in two possible scenarios: when a write operation

is performed on a document that should not exist or when a document is created that should

already exist.

In the first scenario, if a malicious transaction creates a new document, then all following

operations to that document must be reverted until the document is finally deleted, since all

operations are performed above a malicious structure that should not exist. This scenario also

involve sub-collections: on documents that contains sub-collections, the deletion of the document

during the recovery process must result on the recovery of transactions that interact with the

sub-collections.

In the second scenario, when a malicious transaction deletes a document, then a create

operation that creates the document again must be reverted, since the document should already

exist. However, write operations made after the malicious create operation should be considered

as legitimate operations, since they are based on the existence of the document and not on the

malicious create operation.

32

3.3.3 Reconstruction phase

When the locking phase is terminated, MIRES knows the malicious operations and the docu-

ments affected that are locked on the database. Then, MIRES unlocks the database, allowing

users to interact again with the backend. With the locking phase finished, MIRES starts to

reconstruct the affected documents: with the corrupted documents locked, users can normally

interact with the unaffected database documents while MIRES reconstructs the corrupted doc-

uments.

Operations model

The reconstruction model adopted was based on the Focused Recovery algorithm of NoSQL

Undo [MC16]. The Reconstruction follows an operation model where documents are entirely

reconstructed through the replay of operations. However, the NoSQL Undo reconstruction model

has a drawback: the time to reconstruct the document increases with the number of versions

of a document. In MIRES this phase is performed concurrently with user interactions with the

backend, so the availability of the system is not fully affected; only the infected documents are

temporarily unavailable.

Snapshots model

This recovery model is improved using snapshots [LD97], i.e., sets of versions of the documents

at certain instants in the past. Snapshots are used by MIRES to mitigate the time to reconstruct

the entire document, by starting the reconstruction of the document using a document snapshot

not corrupted by the intrusion. The creation of snapshots is done during the normal phase based

on the operations made per document. This process is supported by the MIRES package, used

to configure each write operation – similar to Section 3.2.1 – by adding a snapshot property,

that stores the number of operations performed upon the document; and a timestamp property,

that stores the operation’s timestamp. On the backend, the Snapshot Creator module listens

for database changes (arrow e of previous Figure 3.2) and stores a document snapshot after

N operations made to the document (arrow f of previous Figure 3.2), e.g., store a version of

a document after each 1000 or 10000 operations made. This procedure assures a non-blocking

model, i.e., the mobile application system is not stopped during this procedure.

In the next section we explain the user recovery mechanism supported by the MIRES service.

33

3.4 User Recovery

Mobile applications are intensive-use applications focused on ensuring a good user experience.

However, this intensive-use increases the likelihood of errors and mistakes by the users, e.g.,

send a wrong message or accidentally delete a post. To help users recover from mistakes,

MIRES provides a mechanism that allows users to recover the last action they performed. This

mechanism is inspired by the Google Mail undo mechanism that allows users to “unsend” the

last mail sent1.

3.4.1 Normal Execution

During MIRES normal execution, to activate the users recovery mechanism, each operation

suffers an additional configuration, supported by the MIRES package, similar to what is done

on Sections 3.2.1 and 3.3.3. Each write operation is configured to carry extra-data: a blocked

property, used to generate blocked documents; blocked documents are invisible to all the users,

i.e., reads are forbidden except for the user that performed the last write on the document; and

an user ID, representing the user that performed the transaction.

This process works by, when there is a transaction that can be recovered, its operations are

saved by the MIRES package. Moreover, write operations block the affected document, i.e., by

putting the blocked property to true.

After the transaction is performed, a notification with a button and a defined message

appears, allowing users to undo their last action. This notification disappears after a time

interval Tu (that we set to Tu = 15 seconds in the experiments), or when the mobile application

performs another transaction.

On the backend, the Users Recovery module is listening for operation flags (arrow g of

previous Figure 3.2). When a flag of a blocked document arrives, the Users Recovery module

will unblock the document after a time interval Tu (we set Tu = 30 seconds in the experiments),

i.e., changing the blocked property to false (arrow h of Figure 3.2).

3.4.2 Recovery Execution

Figure 3.3 demonstrates how the user recovery process works. When the user clicks on the undo

button, the MIRES package locks the documents directly (arrow a) as explained in Section 3.3.1.

After locking the documents, the mobile application sends a recovery request to MIRES users

recovery carrying the transaction ID to be recovered, the documents locked and a timestamp

associated with the recovery request (arrow b). Then, the User Recovery module gets the

1https://support.google.com/mail/answer/2819488

34

https://support.google.com/mail/answer/2819488

Admin Console
module

Database Service

Trigger

Legend:

Application
Database

MIRES users
flags

MIRES users
tokens

MIRES users
recovery

Users Recovery
module

MIRES container

Cloud Functions Service

Application container

Transactions
Log

(c)

(d)

Action
Performed

(a)(b)

 Mobile
 application

MIRES
package

Documents'
Snapshots

Snapshot
Creator

Cloud
Logger

Figure 3.3: User Recovery mechanism.

recovery request from the user (arrow c) and reconstruct the documents affected similar to

the reconstruction phase of Section 3.3.3 (arrow d). Both locking the documents and sending

the recovery request are made as an atomic model, where the recovery request is only sent

if all the documents are locked. By making the documents invisible for other users, MIRES

can recover the transaction without the need to analyse possible dependencies. This allows

the recovery of multiple transactions from different users at the same time, without requiring

the mobile application system to stop. MIRES only needs to certified that contains in the

log all operations performed to the documents affected by the transaction that the user wants

to recover. However, this mechanism must only be used in transactions where the affected

document can only be changed by a single user, since the objective is to recover users’ actions

without affecting the application experience of other users, e.g., on a social network application,

posts are only modified by the same user.

In the next section we explain how we have implemented the MIRES prototype.

35

Table 3.1: MIRES package lines of code (LoCs).

MIRES package LoCs

Tokens 47
Notifications 52
Transaction configuration 174
Undo Recovery Mechanism 198

Table 3.2: MIRES modules lines of code (LoCs).

MIRES modules LoCs

Cloud Logger (flags) 26
Cloud Logger (collection) 63
Snapshot Creator 122
Users Recovery module 558
Admin Console module 913

3.5 Implementation

MIRES offers a client-side package (Table 3.1) that allows to configure: each operation by

creating a transaction state, on the beginning of each transaction, that is used by the mobile

application code to configure the different operations of a transaction, the notifications created by

MIRES service on the mobile application and the locking phase of the user recovery mechanism.

The package was implemented in Java, which is the most frequent option for Android appli-

cations.

MIRES was implemented as a three layer service (Table 3.2): a first layer composed by

the Admin Console module, that supports the recovery mechanism to the system administra-

tor; a second layer composed by the Users Recovery module that supports the user recovery

mechanism; and a third layer composed by the Snapshot Creator that supports the creation of

snapshots. With this, MIRES offers flexible and adaptable configuration: modules are deployed

depending on the functionality that we want to use. However the Cloud Loggers are needed

to build the log of transactions in order to use any type of recovery. Both Admin Console

module and Users Recovery module were implemented using Node.js and JavaScript and can be

deployed to isolated containers, which provides an important security aspect.

Cloud Loggers were implemented as JavaScript scripts deployed on the mobile application

container using the Cloud Functions service. Cloud Loggers listen for specific pre-defined col-

lections, which assures configuration flexibility over the database that we want to protect, e.g.,

on a social network application, the system administrator could want to protect only the posts

performed by the users. In this case it is only required to deploy a Cloud Logger that listens for

the collection that stores the posts and configures the transactions that interact with the same

36

collection.

The Snapshot Creator followed an implementation process similar to Cloud Loggers: it was

developed as a JavaScript script, deployed on the mobile application container using the Cloud

Functions service. For storing the snapshots, we used the Firestore database service, as used on

the Transactions Log.

The BaaS platform used was Firebase. We used the Firestore database service to store the

log of transactions. With this service, and the Cloud Loggers, we can assure automatic scaling

on the creation of the log. Also, since Firestore is a NoSQL database, it offers a flexible storing

process with a set of personalized read queries for the recovery process.

The MIRES user flags, user tokens and user recovery were implemented using database

collections. By implementing these three collections on the mobile application container, it

is possible to reuse the security rules and settings that allow only the authenticated users to

interact with the three collections. It is also possible to define specific security rules that allow

to isolate the three collections from the rest of the application database. By following this

implementation, we applied an atomic model – using Firebase transactions – on the operations

and their flags, as also on the locking phase of the users recovery mechanism, allowing to mitigate

possible synchronization problems.

3.6 Summary

This chapter presented the MIRES approach. The chapter started with the description of the

architecture that supports the service. Then focused on all execution phases supported by the

service: the normal execution and both administrator and user recovery executions, as also the

mechanisms and the ideas behind. The chapter finalized with the description of how the MIRES

prototype was implemented.

37

38

Chapter 4

Evaluation

Our evaluation aims to answer to the following questions:

1. What is the mobile application performance overhead and the Cloud Loggers performance

when logging the operations?

2. How much storage space does MIRES require to store the log and how much space does

it take on the database application?

3. How much time does the Admin Console module take to recover the mobile application in

different scenarios?

4. What is the performance of the Users Recovery module on unblocking documents and

recovering transactions?

In the next sections, we present the results that respond to the questions defined.

4.1 Experimental Evaluation

To evaluate the MIRES service, we used four open-source Android applications: a social net-

work application, Hify,1 where users can post images or text, comment and like other posts; a

messaging application2 for 1 to 1 conversations; a shopping list application, ShoppingListApp,3

to create shopping lists, by adding, changing and removing products; and a contact tracking

application, CovSense4, used to track contacts between their users and manage the COVID-19

spread. The social network and messaging applications were chosen based on the intensive users’

1Google Play: https://play.google.com/store/apps/details?id=com.amsavarthan.social.hify; Source
code: https://github.com/lvamsavarthan/hify version of 06/07/2020

2https://github.com/ResoCoder/firebase-firestore-chat-app version of 19/08/2020
3https://github.com/alexmamo/Firestore-ShoppingListApp version of 07/07/2020
4https://github.com/saivittalb/covsense version of 27/09/2020

39

https://play.google.com/store/apps/details?id=com.amsavarthan.social.hify
https://github.com/lvamsavarthan/hify
https://github.com/ResoCoder/firebase-firestore-chat-app
https://github.com/alexmamo/Firestore-ShoppingListApp
https://github.com/saivittalb/covsense

dependencies created on the backend, and because they represent the logic of 4 out of 5 of the

most downloaded apps of 2019 [Sen20]. The shopping list was choosen due to its different logic,

since it is a more individual application. The CovSense application was choosen due to the

actual pandemic context that humankind is facing.

In the next section we provide additional information about the four Android applications

used in the experiments.

4.1.1 Mobile Applications

We used four Android open-source applications to test the MIRES service. In this section we

provide supplementary information about each application.

Hify is an open-source social network application where users can share updates and photos,

engage with friends and other users worldwide and stay connect to the world. The application

presents features such as: sharing photos (up to 7 in a single post) and updates; get notifications

when friends like and comment on your posts; ask questions in the Hify Forum as also help others

with their questions; and connect with friends and family and meet new people. In terms of

recovery, the data in the database that MIRES will recover is related with the users accounts

and their main actions on the application, more specifically, posts, comments and likes.

The Chat application is a very simple messaging application where users can start 1 to 1

conversations with another user. After creating an account, users can search for a specific user

– by introducing his username – and start a conversation, with the possibility to send images

or text messages. We have focused our experiments in recovering data related with the users

accounts, chats and the messages.

The Shopping Lists application is a basic Android application for shopping lists management.

Lists and products are created through the definition of a name to each one. Each user can create,

update or delete a shopping lists and then add, update or delete products in each list. Besides

each list is created by a single user, list can be shared with other users. MIRES will focus its

recovery on the data about users accounts, the lists managed by the user and the products in

each list.

The CovSense application is a tracking application for the COVID-19 virus. The application

uses a combination of Wi-Fi, Bluetooth, BluetoothLE and ultrasonic modem to communicate

an unique-in-time pairing code between devices, allowing to store the contacs between users.

Application actions are: create account, update health status – between “Healthy” and “Diag-

nosed with COVID-19 ” – and the store contacts with other users, that is done automatically

by the application. After an user changes his health status to “Diagnosed with COVID-19”,

40

all users that contacted with him are notified about a possible infection. In this application,

MIRES will apply its recovery approach on the users accounts and the contacts stored between

different users.

All applications use Firebase as BaaS and the Firestore database. Each mobile application

was executed on a mobile device with 3GB of memory and an Octa-Core Kirin 710 processor

connected to a 47.78 Mb/s download speed and 9.58 Mb/s upload speed network. Both applica-

tion and MIRES containers were deployed on Google Cloud in the same region (europe-west2)

to mitigate possible network delays. Each MIRES module was deployed on Google Compute

Engine, on a N1 generation machine, with 1vCPU, 3.65 GB of memory and running Debian

Linux 10 OS. All results shown in the next sections are averages of the results obtained with

the 4 applications, except when noticed.

4.1.2 Logging Evaluation

MIRES Performance Overhead

MIRES requires the configuration of the write and read operations made to the database, result-

ing on an performance overhead on each operation. To test the imposed overhead, we simulated

the user’s interaction by performing a set of actions on each application – by reading, creating,

updating and delete posts, comments and likes on the social network application; reading, cre-

ating, updating and delete chats and messages on the messaging application; reading, creating,

updating and delete lists and products on the shopping list application; storing contacts with

other users and changing the health status on the CovSense application – that resulted on 1K

CRUD operations executed per application. Each block of operations was repeated 5 times and

followed a different workflow distribution on each application: 80/20 read/write distribution for

the social network application, where users tend to actively read others users posts, comments

and likes, 50/50 read/write for the messaging application based on read/reply conversations, a

20/80 read/write for the shopping list application, since lists tend to be intensively updated, by

adding, changing and removing items and 0/100 read/write for the CovSense application since

most of the application main logic is based on writes.

Figure 4.1 shows the results of the experiment. MIRES imposes an overhead of 23% on

the Shopping List App, 18% on the Messaging App, 16% on the CovSense App and 15% on

the Social Network App. This difference happens because operations are configured differently

on the mobile application: write operations are configured using a Firebase transaction with

an extra create operation (flag), whereas read operations are configured by adding a filter to

blocked and locked documents, which leads to a lower cost on read operations. When compared

41

Shop. Messag. Soc. CovS.

20

40

60

80

100

120

T
im

e(
s)

With MIRES Without MIRES

Figure 4.1: Time to perform 1000 operations on each application, with and without MIRES.

with the other applications, the CovSense application presents a lower test overhead. This is

justified by the fact that most of the operations done – storing contacts with other users –

were made concurrently in order to simulate the real life context where users can make contact

with multiple persons at the same time. Although the overhead is noteworthy, we consider it

acceptable, given the benefit provided by the service. MIRES adds a create operation for each

write operation made on the database (flag process), which contributed to increasing the cost

of running the service, since Firebase is charged per cluster of operations (each cluster of 100K

operations costs 0.18$ at the time of the evaluation).

Cost of logging operations

Cloud Logger scripts were deployed on the mobile application container to listen for database

changes and flags. It was deployed on the same region of the application container, to minimize

the activation time and assure all the necessary triggers. The script was deployed on a Node.js

10 execution environment with 1 GB of memory dedicated. From the previous workflow made

to the database, we observed that each Cloud Logger took an average of 0.39±(0.18) seconds

and 0.09±(0.01) GB of memory to execute. Firebase offers a free quota of 2M invocations per

month. After that, each 1M of invocations costs 0.40$ (however the Cloud Functions service is

also priced in GB/second, the CPU/second and the Internet traffic5).

5https://firebase.google.com/pricing

42

https://firebase.google.com/pricing

4.1.3 Space Overhead

Database overhead

MIRES configures each operation to send additional data (see Sections 3.2.1, 3.3.3 and 3.4.1).

The additional data is saved on each database document, which imposes a storage overhead.

Firebase provides full information about the storage structure of the database6. The size of

each document is increased by a minimum of 69 bytes and a maximum of 173 bytes – 69 bytes

for the Administrator Recovery, 57 bytes for the Users Recovery mechanism and 47 bytes for

the snapshots creation flow (each document has a maximum capacity of 1 MB, which means an

occupation between 0.006% and 0.018% of the maximum size allowed). The data is stored on a

minimum of 3 field-values and a maximum of 7 field-values – 3 for the Administrator Recovery,

2 for the Users Recovery mechanism and 2 for the snapshots creation flow (each document can

only contain 100 fields, which means a minimum occupation of 3% and a maximum occupation

7%).

MIRES also creates three collections on the application database: user flags, user recovery

and user tokens. Both user flags and user recovery are implemented as support structures

where data is not persistent over time. Only the user tokens collection saves the users’ tokens

needed on the recovery process for communication purposes. Each user token is saved on a

different document occupying 255 bytes each. However, the mobile application system can be

already storing the users’ tokens which allows to mitigate the MIRES users tokens by reusing

the information already stored.

Concluding, the maximum additional data size imposed by MIRES on the application

database is given by the expression (in bytes):

Sdb = 173 × documents + 255 × users

where documents is the number of database documents and users the number of users. For

example, an application with 1M users and 1M documents has 0.41 GB of additional data.

Log records

MIRES stores specific data in each operation made to the database (see Section 3.2). Each log

record size is given by the following expression (in bytes):

Slog = 215 + doc + (53 + data)

6https://firebase.google.com/docs/firestore/storage-size

43

https://firebase.google.com/docs/firestore/storage-size

Table 4.1: Log size on each application.

Mobile Application Log Size (GB)

Social Network App 0.11
Messaging App 0.25
Shopping List App 0.41
CovSense App 0.42

where doc represents the path to the document affected and data the data sent on the operation;

the 53 bytes are only added if the operation wrote any data. For example, an operation that

creates a 20-character name document on a collection named Posts will lead to 26 bytes of doc

property (Posts/ + 20-character string). If the operation writes 344 bytes, then the log record

of the operation will have 215+26+(53+344) = 638 bytes.

Dependencies

When a write operation is influenced by a read operation, there is an additional information

logged related with the read operation (see Section 3.2.3). The dependencies size of an operation

is given by the following expression (in bytes and where D defines the number of documents

read and F the number of field-values read):

Sdep = 91 +

D∑
d=1

(doc + 1 +

F∑
f=1

(field + 1))

where the doc property represents the path to the document read and the field property repre-

sents each field-value read. For instance, a read operation on the id, username, name and image

fields of the users’ information document will lead to 19 bytes of field-values read. Supposing

that the read operation is performed upon the document Users/ + user ID, a 28-character iden-

tifier, this will result on a doc property of 34 bytes. Thereby, the read operation would increase

the log record size by 91+(34+1+(19+4)) = 149 bytes.

Table 4.1 shows the log size needed to store 1M operations following the exact workflow

performed on Section 4.1.2 on each application. Firestore offers a free quota of 1GB. After that,

each 1 GB costs 0.18$.

Snapshots

The size of each snapshot made by the Snapshot Creator is defined by the following expression

(in bytes):

Ssnap = 397 + doc + data

44

where the doc property represents the path of the document and the data property represents

the data of the snapshot to store. For instance, making a snapshot of a document with the path

Posts/ +20-character string (total of 26 bytes) and 344 bytes of data will lead to 397+26+344

= 767 bytes to store.

4.1.4 Admin Recovery Performance

The Time to Recover (TTR) is defined as the total time since the system administrator starts

the recovery process until the moment that all the effects of the intrusion are removed. In

MIRES, the TTR is the sum of the Locking phase and Reconstruction phase times.

To test the recovery performance, we defined three different scenarios. In scenario 1 we

have created an user in each application and performed a different number of actions – creating,

updating and deleting posts, comments and likes on the social network application; creating,

updating and deleting chats and messages on the messaging application; creating, updating and

deleting lists and products on the shopping list application; and storing contacts between other

users and changing the health status – resulting on different recovery scenarios, from 1 to 1000

operations. In scenario 2 we used the same user and the application actions to perform 1 to 10K

operations upon the same document – changing the same post on the social network application;

changing the same message on the messaging application; changing the same list product from

a list on the shopping lists application; and changing the health status – in order to create

1 to 10 000 different versions of the document. In scenario 3 we exemplified the case where

the effects of a malicious intrusion are not persisted in the database: in this case, we used the

CovSense application, where the user changed his health status to “Diagnosed with COVID”

and a notification was sent to all users that had been in contact with the infected user. In this

case, the posterior effects of the intrusion are not persisted in the database, however a malicious

information is sent to some users. Each recovery scenario was executed 5 times. In the rest of

this section, we analyse the MIRES recovery performance on all scenarios.

Scenario 1

Scenario 1 was focused on recovering a different number of actions. Figure 4.2 shows the results

of undoing the actions of the user. Both phases increase linearly with the increase of the log

size, the dependencies and the documents to recover (in this test, there was an average of 45

documents per each 100 operations on each application). Recovering a single operation takes

less than 1 second, while recovering 1K operations takes 55 seconds maximum. However, in this

latter case, the mobile application system is unavailable for only 15 seconds.

45

0 200 400 600 800 1,000

0

10

20

30

40

Operations

T
im

e(
s)

Locking Phase
Reconstruction Phase

Figure 4.2: Time to undo a different number of operations.

The Locking phase is composed by the load and analysis of the log to identify the mali-

cious transactions and the corrupted documents. This phase presents a drawback: MIRES can

lock documents where the state before and after the recovery process is the same, so the doc-

uments could be ignored increasing the locking accuracy. However, we have not implemented

this optimization, since we believe that these scenarios will be rare.

The Reconstruction phase is composed by the reconstruction of the locked documents. We

can see that this phase takes more time than the Locking phase. This happens because, on the

Locking phase, MIRES loads and analyses the log on a single process, where the service iden-

tifies posterior effects and, consequently, the infected documents, while on the Reconstruction

phase, for each document infected and locked, MIRES needs to load the operations that affect

the document to reconstruct – for legitimate operations – or update the log – for malicious

operations.

Scenario 2

Scenario 2 is focused on testing the time to recover a document with different versions. Figure

4.3 shows the results of the experiment. We can observe that, when using the operations model,

MIRES needs less than 0.5 seconds to reconstruct a document with 1 version and between 2

and 3 seconds to reconstruct a document with 10K versions. By following the operations model,

the reconstruction of a document takes longer with the increase of the number of versions, since

MIRES needs to replay all the operations needed to reconstruct the document.

Besides the operation model, we also have tested the reconstruction of the document using

the snapshots model – however, due to code conflicts between the libraries used on the mes-

46

100 101 102 103 104

0

1

2

3

Versions

T
im

e(
s)

Lock. Phase

Rec. Phase (Oper. model)

Rec. Phase (Snap. model)

Figure 4.3: Time to reconstruct a document with different versions.

saging application and a newer version of the Firebase Android SDK, the reconstruction using

the snapshots model was tested only on the Social network application, the Shopping Lists ap-

plication and the CovSense application. From the Figure, we can observe that, as previously

discussed (see Section 3.3.3), the reconstruction time using the snapshots model is consistent

over the time – an average of 0.2 seconds.

We focused our depth analysis only on the last workflow tested, i.e., the 10k versions. We

observed that each Snapshot Creator took an average of 0.10±(0.01) seconds and 0.08±(0.01) GB

to execute. All tested applications – Social Network, Shopping Lists and CovSense applications –

stored 10 snapshots of the document – each with 1000 versions – imposing an additional storage

of 0.01 MB on all applications applications.

The Locking phase remained practically the same, since it was always the same unique

transaction to analyse.

Scenario 3

Scenario 3 was focused on a different type of recovery, where the effects are not persisted in the

database, however, some type of malicious information is generated and shared with the users.

To test this particular scenario, we used only the CovSense application. With CovSense we

simulated a malicious health status change – from “Healthy” to “Diagnosed with COVID-19” –

that, in turn, generated a flow of malicious notifications sent to all users that had been in contact

with the malicious infected user. In this case, MIRES allows to send recovery messages, through

application notifications, to each user. We tested the notifications mechanism by sending 1, 10

and 100 notifications. We performed each test 5 times.

47

Table 4.2: Time to send different number of notifications.
Notifications Time (s)

1 0.06±(0.03)
10 0.81±(0.04)
100 5.80±(0.58)

Table 4.2 represents the time to send a different number of notifications to the mobile appli-

cations.

4.1.5 Users Recovery Performance

Similar to the administrator recovery mechanism, the user recovery mechanism is supported by

two phases: a locking phase, where the mobile application itself locks the documents affected

by the transaction, and a reconstruction phase performed by MIRES Users Recovery module,

where the locked documents are reconstructed by the MIRES service.

Normal Execution

During normal execution, each time that an invisible document appears, the Users Recovery

Module unblocks the document after 30 seconds. To test the unblocking time, we executed

three different flows: we have performed 1, 10 and 100 operations concurrently – creating posts

on the social network application, sending messages on the messaging application and adding

products to lists on the shopping list application – each generated a blocked document. This

test flow was conducted in each application, except the CovSense application. Each flow was

repeated 5 times. With this experiment, we concluded that, after the 30 seconds, and with the

increase of documents to unblock, the average time to unblock each document is 0.08±(0.04)

seconds.

Recovery Execution

The user recovery process is initiated with the direct lock of the documents by the mobile

application. We have tested the locking phase by locking 1 and 10 documents on each mobile

application, more precisely, locking posts on the social network application, messages on the

messaging chat application and products on the shopping lists application. This test flow was

conducted in each application, except the CovSense application. Each test was repeated 5

times. We observed that locking a single document costs 0.27±(0.01) seconds, while locking

10 documents costs 1.02±(0.01) seconds. However, since this phase is performed by the mobile

application, the time to lock the documents can be volatile, depending on the network speed

48

and on the mobile device. The Users Reconstruction phase follows the same model as the

Administrator Reconstruction phase (see Section 4.1.4).

4.2 Discussion

With the four applications, we have performed a wide range of different experiments, from

performance, to storage and recovery. From the experiments conducted, we could conclude

that:

• MIRES imposes an overhead that varies with the type of operation performed: write

operations imposes a greater overhead than read operations, e.g., the overhead imposed

on the Shopping Lists application with a 20/80 read/write flow is 23%, while on the Social

Network application with a 80/20 read write flow is only 15%.

• The use of the Cloud Functions service allow to provide automatic scaling logic with great

performance, e.g., the cloud loggers and the snapshot creator scripts deployed on the Cloud

Functions service took less than 0.5 seconds and less than 0.1 GB to execute;

• MIRES service requires low storage capacity, e.g, from the tests performed, it requires a

maximum of 0.42 GB to store 1 million of requests of the CovSense application;

• As theoretically predicted, the MIRES recovery approach allows to recover the state of

the application with a real focus on optimizing the availability of the system during the

process. For example, when recovering 1000 operations, MIRES takes around 55 seconds

maximum but the mobile application system is unavailable for only 15 seconds maximum;

• Both document reconstruction models work as expected: the operation model time to

reconstruct the document increases with the increase of the number of document’s versions

– less than 0.2 seconds with 1 version and between 2 and 3 seconds with 10 000 versions

– while the snapshots model maintains its performance with the variation of the number

of document’s versions – average of 0.2 seconds.

4.3 Summary

This chapter presented the results of the experiments made with the MIRES service on four

different mobile applications systems: a social network application, a messaging chat application,

49

a shopping lists application and a contact tracing application. The experiments were performed

to test the performance of the service, the storage imposed by the service and the time needed

to recover the application in different scenarios.

50

Chapter 5

Conclusions

In this chapter we present our achievements and point to future work directions.

5.1 Achievements

With the intensive development of mobile applications, the use of Backend-as-a-Service became

a viable way to develop software systems based on mobile or web applications. However, errors

during analysis or development can lead to the existence of possible vulnerabilities on mobile

applications that, in turn, can be explored to attack the Backend-as-a-Service, affecting the

integrity of the system.

In this document we have presented various recovery systems. However none of them can

recover the state of mobile applications using Backend-as-a-Service, as none of them are prepared

to deal with the specific problems and challenges of a Backend-as-a-Service. To fill this gap,

this work presents MIRES, an intrusion recovery service for mobile application systems that

use BaaS. MIRES performs a two phase recovery process, that aims to recover the state of the

mobile application system and minimize the unavailability of the system during the procedure.

Besides the intrusion recovery functionality, MIRES also presents an user recovery mechanism

allowing application users to undo their last action.

We applied MIRES to recover mobile applications systems based on BaaS. However, it is

possible to use the MIRES approach to recover other applications and services, e.g., web appli-

cations.

5.2 Future Work

Besides the already present features as the hybrid recovery process and the user recovery mech-

anism, MIRES could be improved in various points in order to apply a more robust and complex

51

recovery. Therefore, there are many possible improvements: evolve MIRES to a full online recov-

ery process, provide users a recovery mechanism capable of recovering data written by different

users, extend MIRES to recover other services such as the authentication service or the file stor-

age service, mitigate part of the client-side package by using a machine learning technique to

log the operations and extend the recovery approach to log and recover Cloud Functions work.

MIRES provides a hybrid recovery approach that, nevertheless, needs to stop the system

during the recovery. The idea of providing a full online recovery process is to mitigate this

stopping time during the process. There are some works on the field that already implement a

full recovery process, however based on the existence of a proxy that allows to introduce delays

on the new transactions made during the recovery process. In our case, since we do not use any

kind of proxy, the idea would be to introduce delays following another approach, e.g., introduce

the delay directly on the affected document, that in turn would affect only the users that want

to access it.

The user recovery mechanism provides the capacity to users recover from their actions.

However, it is only capable to recover data only written by the same user, e.g., a post. MIRES

could be improved to allow recover any also data written by different users, e.g., a shared counter.

A possible solution could be to verify if, when the user tries to block the documents and send

the recovery request, check if the last transaction performed on the documents is the transaction

that the user wants to revert and continue with the process only in that case.

The scope of this work was to recover the database service of the BaaS, since this service

contains the majority of the system’s state. However, other services such as the authentication

and file storage services can also contain part of the system’s state that could be recovered. To

deal with this cases and provide a more complete recovery, MIRES could be extended to interact

and recover different services that can be infected, following previous works as [CKZ13].

Rectify uses a novel logging approach by using a supervised machine learning technique,

allowing to recover web application using PaaS without needed to change or configure the ap-

plication itself. MIRES, on the other case, imposes application code modifications through the

MIRES Package. Following Rectify approach, MIRES could be improved in order to decrease the

amount of modification required, or even mitigate all necessary modifications to the application,

using machine learning techniques.

The last improvement point is not directly related with mobile applications, but with another

service: the Cloud Functions service. When interacting with the mobile application systems,

users’ actions can trigger or interact with cloud functions scripts that will change the state of

the mobile application and so, it would be interesting to recover. A possible simple solution

52

could be to develop a Cloud Functions package – similar to MIRES Android application – that

would allow to log the operations following the same model already implemented. A second

solution, more complex and interesting, could be running the cloud functions again: since cloud

functions scripts are deployed on the cloud and run with changes on the database, MIRES

could reconstruct the documents directly in the database, allowing to trigger and run the cloud

functions again with the new recovered data.

53

54

Bibliography

[AG10] İstemi Ekin Akkuş and Ashvin Goel. Data recovery for web applications. In

2010 IEEE/IFIP International Conference on Dependable Systems & Networks,

pages 81–90, 2010.

[AJL02] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious transactions.

IEEE Transactions on Knowledge and Data Engineering, 14(5):1167–1185,

2002.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.

Basic concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 1(1):11–33, Jan-Mar 2004.

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for Android apps. In Proceedings of the 35th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, pages 259–269,

2014.

[BHS13] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and fine-

grained mandatory access control on Android for diverse security and privacy

policies. In Proceedings of the 22nd USENIX Security Symposium, pages 131–

146, 2013.

[BP03] Aaron B Brown and David A Patterson. Undo for operators: Building an

undoable e-mail store. In USENIX Annual Technical Conference, pages 1–14,

2003.

[Car16] Brian Carter. Grow your own backend-as-a-service (baas) platform. In

GOCICT 2015 Conference College of Information & Computer Technology,

November 2016.

55

[CKS+11] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zel-

dovich. Intrusion recovery for database-backed web applications. In Proceedings

of the 23rd ACM Symposium on Operating Systems Principles, pages 101–114,

2011.

[CKZ13] R. Chandra, T. Kim, and N. Zeldovich. Asynchronous intrusion recovery for

interconnected web services. In Proceedings of the 24th ACM Symposium on

Operating Systems Principles, pages 213–227, 2013.

[CP05] Tzi-Cker Chiueh and Dhruv Pilania. Design, implementation, and evaluation

of a repairable database management system. In 21st International Conference

on Data Engineering (ICDE’05), pages 1024–1035, 2005.

[FdS14] Joao André Lopes Ferreira and Alberto Rodrigues da Silva. Mobile cloud com-

puting. Open Journal of Mobile Computing and Cloud Computing, 1(2):59–77,

2014.

[GG17] Dawn Griffiths and David Griffiths. Head first Android development: A brain-

friendly guide. O’Reilly Media, Inc., 2017.

[GMUW08] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys-

tems: The Complete Book. Prentice Hall Press, USA, 2 edition, 2008.

[GPF+05] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal De Lara. The

taser intrusion recovery system. In Proceedings of the 20th ACM Symposium

on Operating Systems Principles, pages 163–176, 2005.

[GQTZ16] Keke Gai, Meikang Qiu, Lixin Tao, and Yongxin Zhu. Intrusion detection tech-

niques for mobile cloud computing in heterogeneous 5G. Security and Commu-

nication Networks, 9(16):3049–3058, 2016.

[GTDVMFV09] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and En-

rique Vázquez. Anomaly-based network intrusion detection: Techniques, sys-

tems and challenges. computers & security, 28(1-2):18–28, 2009.

[HCR+06] Francis Hsu, Hao Chen, Thomas Ristenpart, Jason Li, and Zhendong Su. Back

to the future: A framework for automatic malware removal and system repair.

In 2006 22nd Annual Computer Security Applications Conference (ACSAC’06),

pages 257–268. IEEE, 2006.

56

[HHJ+11] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David

Wetherall. These aren’t the droids you’re looking for: retrofitting Android

to protect data from imperious applications. In Proceedings of the 18th ACM

Conference on Computer and Communications Security, pages 639–652, 2011.

[HHLD11] Jing Han, Ee Haihong, Guan Le, and Jian Du. Survey on nosql database.

In 2011 6th international conference on pervasive computing and applications,

pages 363–366. IEEE, 2011.

[JPA+12] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain.

A survey and comparison of relational and non-relational database. Interna-

tional Journal of Engineering Research & Technology, 1(6):1–5, 2012.

[JSDG08] Shvetank Jain, Fareha Shafique, Vladan Djeric, and Ashvin Goel. Application-

level isolation and recovery with solitude. In Proceedings of the 3rd ACM

SIGOPS/EuroSys European Conference on Computer Systems, pages 95–107,

2008.

[KC03] Samuel T King and Peter M Chen. Backtracking intrusions. In Proceedings of

the nineteenth ACM symposium on Operating systems principles, pages 223–

236, 2003.

[KLS90] Henry F Korth, Eliezer Levy, and Abraham Silberschatz. A Formal Approach

to Recovery by Compensating Transactions. University of Texas at Austin,

Department of Computer Sciences, 1990.

[KWZ+10] Taesoo Kim, Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, et al. Intru-

sion recovery using selective re-execution. In Proceedings of the 9th USENIX

Symposium on Operating Systems Design and Implementation, pages 89–104,

2010.

[KWZK10] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M Frans Kaashoek. Intrusion

recovery using selective re-execution. In Proceedings of the 9th USENIX Con-

ference on Operating Systems Design and Implementation, pages 89–104, 2010.

[LAJ00] Peng Liu, Paul Ammann, and Sushil Jajodia. Rewriting histories: Recovering

from malicious transactions. In Security of Data and Transaction Processing,

pages 7–40. Springer, 2000.

57

[Lan15] Kin Lane. Overview of the backend-as-a-service (BaaS) space. API Evangelist,

2015.

[LD97] Jun-Lin Lin and Margaret H Dunham. A survey of distributed database check-

pointing. Distributed and Parallel Databases, 5(3):289–319, 1997.

[LSS04] Valentino Lee, Heather Schneider, and Robbie Schell. Mobile Applications:

Architecture, Design, and Development. Prentice Hall PTR, USA, 2004.

[Mar17] Dan C Marinescu. Cloud computing: theory and practice. Morgan Kaufmann,

2017.

[MC16] D. Matos and M. Correia. NoSQL undo: Recovering NoSQL databases by

undoing operations. In IEEE 15th International Symposium on Network Com-

puting and Applications, pages 191–198, 2016.

[MDMN12] Zigurd R Mednieks, Laird Dornin, G Blake Meike, and Masumi Nakamura.

Programming Android. O’Reilly Media, Inc., 2012.

[Mei12] Reto Meier. Professional Android 4 application development. John Wiley &

Sons, 2012.

[MG+11] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing. 2011.

[MGZ+17] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela.

Serverless execution of scientific workflows: Experiments with hyperflow, aws

lambda and google cloud functions. Future Generation Computer Systems,

2017.

[MMA17] Laurence Moroney, Moroney, and Anglin. Definitive Guide to Firebase.

Springer, 2017.

[MOS] Mobile operating system market share worldwide. https://gs.statcounter.

com/os-market-share/mobile/worldwide, last accessed on 25/09/2020.

[MPC17] David R. Matos, Miguel L. Pardal, and Miguel Correia. Rectify: Black-box in-

trusion recovery in paas clouds. In Proceedings of the 18th ACM/IFIP/USENIX

Middleware Conference, page 209–221, 2017.

[MPC18] D. R. Matos, M. L. Pardal, and M. Correia. RockFS: Cloud-backed file sys-

tem resilience to client-side. In Proceedings of the 2018 ACM/IFIP/USENIX

International Middleware Conference, 2018.

58

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

[NC15] Dário Nascimento and Miguel Correia. Shuttle: Intrusion recovery for paas. In

2015 IEEE 35th International Conference on Distributed Computing Systems,

pages 653–663, 2015.

[OCW+08] D. Oliveira, J. R. Crandall, G. Wassermann, S. Ye, S. F. Wu, Z. Su, and F. T.

Chong. Bezoar: Automated virtual machine-based full-system recovery from

control-flow hijacking attacks. In Proceedings of the IEEE Network Operations

and Management Symposium, pages 121–128, 2008.

[Pos19] Positive Technologies. Vulnerabilities and threats in mobile applications, 2019.

6 2019.

[Sen20] Sensor Tower. Q4 2019 store intelligence data digest. 2020.

[SFH+99] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and

J. Ofir. Deciding when to forget in the Elephant file system. In Proceedings

of ACM SIGOPS Symposium on Operating Systems Principles, pages 110–123,

1999.

[SGS+00] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and G. R.

Ganger. Self-securing storage: protecting data in compromised system. In

Proceedings of the 4th USENIX Symposium on Operating System Design &

Implementation. USENIX Association, 2000.

[Siv12] Swaminathan Sivasubramanian. Amazon dynamodb: a seamlessly scalable

non-relational database service. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, pages 729–730, 2012.

[TW] Stephen Thomas and Laurie Williams. Using automated fix generation to secure

sql statements. In 3rd International Workshop on Software Engineering for

Secure Systems (ICSE Workshops 2007).

[Vor11] Mehul Nalin Vora. Hadoop-hbase for large-scale data. In Proceedings of 2011

International Conference on Computer Science and Network Technology, pages

601–605, 2011.

[VRMCL08] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the

clouds: towards a cloud definition. ACM SIGCOMM Computer Communica-

tion Review, pages 50–55, 2008.

59

[XJL09] X. Xiong, X. Jia, and P. Liu. Shelf: Preserving business continuity and avail-

ability in an intrusion recovery system. In Proceedings of the Annual Computer

Security Applications Conference, pages 484–493, 2009.

[XX13] Spyros Xanthopoulos and Stelios Xinogalos. A comparative analysis of cross-

platform development approaches for mobile applications. In Proceedings of the

6th Balkan Conference in Informatics, pages 213–220, 2013.

[YMHC17] Sileshi D. Yalew, Gerald Q. Maguire Jr., Seif Haridi, and Miguel Correia. Droid-

Posture: A trusted posture assessment service for mobile devices. In Proceedings

of the 13th IEEE International Conference on Wireless and Mobile Computing,

Networking and Communications, October 2017.

[ZC03] N. Zhu and T-c. Chiueh. Design, implementation, and evaluation of repairable

file service. In Proceedings of the International Conference on Dependable Sys-

tems and Networks, page 217, 2003.

[ZWW+10] Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. Intpatch:

Automatically fix integer-overflow-to-buffer-overflow vulnerability at compile-

time. In European Symposium on Research in Computer Security, pages 71–86.

Springer, 2010.

60

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Topic Overview
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Background & Related Work
	2.1 Intrusion Recovery
	2.2 Mobile Applications
	2.2.1 Android Operating System
	2.2.2 Android Application

	2.3 Cloud Computing
	2.3.1 Cloud Computing Services
	2.3.2 Backend-as-a-Service
	2.3.3 Firebase

	2.4 Mobile Application System Model
	2.4.1 Threat Model

	2.5 Summary

	3 MIRES
	3.1 Architecture
	3.2 Normal Execution
	3.2.1 Mobile application configuration
	3.2.2 Logging Process
	3.2.3 Read operations

	3.3 Administrator Recovery
	3.3.1 Locking phase
	3.3.2 Dependencies
	3.3.3 Reconstruction phase

	3.4 User Recovery
	3.4.1 Normal Execution
	3.4.2 Recovery Execution

	3.5 Implementation
	3.6 Summary

	4 Evaluation
	4.1 Experimental Evaluation
	4.1.1 Mobile Applications
	4.1.2 Logging Evaluation
	4.1.3 Space Overhead
	4.1.4 Admin Recovery Performance
	4.1.5 Users Recovery Performance

	4.2 Discussion
	4.3 Summary

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography

