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Instituto Superior Técnico, University of Lisbon

Email: john.mendonca@tecnico.ulisboa.pt

Abstract—Speech corpora collected via crowdsourcing typically require

costly validation to verify certain characteristics of speakers, or submis-

sion correctness. Moreover, this validation should also exclude recordings

corresponding to multiple speakers sharing the same account or multiple

accounts for the same speaker. This thesis focus on the use of speech

pattern recognition techniques to perform this automatic validation.

This is accomplished by training an x-vector based system in a large

open-source corpus, and enrolling the first utterance from each speaker

in a crowdsourcing corpora collection job which is then compared to

subsequent task completions. The resulting speaker embeddings are also

used for gender verification. As a proof-of-concept, we used this approach

to validate different datasets in 3 languages, adopting score normalisation

techniques. Results show an EER below the 4% mark on all experiments,

indicating the possibility to adopt the same threshold in different datasets

without substantial loss of performance. This enables the validation of

crowdsourced task completions immediately after submission.
This thesis also involved the participation in an international Com-

putational Paralinguistics Challenge, where we studied the automatic

prediction from conversational speech of breath signals obtained from

respiratory belts. We analysed both original and predicted signals and

identified the subsets of most irregular belt signals which yield the

worst performance, showing how they affect results. We proposed several

variants of an end-to-end baseline system, such as BiLSTM, and AM/FM

decomposition as input. We showed that these models can predict

breathing patterns and clinically relevant parameters, such as breathing

rate, in simulated video-conferencing sessions.

Index Terms: Crowdsourcing; Paralinguistics; Speaker Verification;

Gender Recognition; Breath Detection.

I. INTRODUCTION

Speech technology has significantly influenced the lives of ev-

eryday users, impacting the way people find, consume, and act on

information. Starting with the widespread adoption of mobile devices

such as smartphones, more recent technological advancements have

led to a larger use of voice search and Intelligent Virtual Assistants.

Recent studies indicate that over 50% of web searches will be

conducted through voice by 2020, and that 55% of U.S. households

will possess an intelligent virtual assistant [1]. Fuelling this sharp

increase is the growing consumer demand for online self-service, self-

reliance, and rapid query resolution, while at the same time helping

companies enhance operational efficiency and reduce costs [2]. With

speech technologies trending towards a more predominant use, the

need for efficient and effective interactions with users has become

increasingly important. The large amount of data collected resulting

from the interaction with speech-based systems allows Artificial

Intelligence (AI) to adapt and improve over time. AI enables the

continuous improvement of speech systems by including collected

speech data in the training of Machine Learning models that tackle

common speech applications such as ASR or Speech Synthesis.

However, more and more use cases and industry applications that

use speech to obtain interpretable speaker information have surged.

The human voice conveys substantial amounts of information

related to the speaker. For instance, information including physical

traits (age [3], gender[4]), language (nationality, nativeness) [5] [6],

health (speech affecting diseases) [7] and mood [8] can be obtained

from voice. Such profile information can be extracted directly from

speech (using the raw-time waveform or spectrum), or from speech

derived features (intensity, voice quality features, speech rate, breath-

ing rate) [9]. The automatic detection of profile features enables

the development of smarter user interfaces and an enhanced user

experience, especially when using devices or applications where this

information is required. Additionally, it can assist in more sensitive

applications such as identity verification, where speaker verification

or facial reconstructions from voice [10] may be of value.

In this work, we will investigate how the automatic detection

of profile features and other metadata extracted from voice can be

used. More specifically, we intend to apply this extracted information

in crowdsourced speech data collections and on breathing pattern

estimation.

This paper is organized as follows: In Chapter 2, the use of voice

pattern recognition techniques is explored in the context of fraud de-

tection in a crowdsourced speech data collection environment, namely

speaker and gender verification. Chapter 3 provides an analysis of

breathing pattern recognition from voice, where we propose a system

that automatic predicts these patterns and related metrics. Chapter 4

is the final chapter, where conclusions pertaining this work are drawn,

together with some topics for future work.

II. VOICE PROFILING FOR CROWDSOURCING

The advent of complex models such as Deep Neural Networks

raises the need for large amounts of labelled data [11]. Instead of

using experts to label a dataset, crowdsourcing platforms enable a

more scalable labelling process by breaking down large datasets into

small tasks. These well-defined micro-tasks are performed by the

crowd with similar quality results [12]. This technique is often used

by companies and universities by providing the required data to create

accurate models at a lower cost.

The required user base for a given dataset is obtained by rewarding

users for each completed task. On the one hand, this invites a larger

pool of willing workers to complete these tasks. On the other hand,

users are also encouraged to produce low quality work as it often

blends in with the crowd [13]. As a result, several methods to detect

low quality work have been developed, namely agreement between

users or with a gold standard, or more complex behavioural capturing

techniques to predict outcome measures such as work quality, errors,

and the likelihood of cheating [13].

Validating speech corpora collected via crowdsourcing raises par-

ticular challenges, as it is not possible to establish a gold-standard.

In this case, validation tasks are typically set up to validate certain

characteristics of speakers (nativeness, gender) or submission cor-

rectness (prompt matching the audio, for example). However, this

validation process adds to the costs of the dataset, and does not

solve demographic problems such as incorrect profile labels (due to

mistakes made when users fill out their profile), multiple accounts

for the same speaker, or multiple speakers sharing the same account.

The detection of incorrect profile labels can be partly automatised

by using gender/age classifiers [14] [15] or nativeness classifiers

[6], for instance. The detection of multiple accounts for the same

speaker, on the other hand, may be addressed by speaker verification
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Fig. 1. Proposed Speaker Verification pipeline.

techniques [16] [17]. This work focuses on the detection of gender

and multiple speakers sharing the same account, describing the use of

pattern recognition techniques to flag profile errors or personification

attempts as early as possible, during the data collection process.

Speaker embeddings extracted from deep neural networks (DNNs)

such as x-vectors [16] have become the state-of-the-art in text-

independent speaker recognition tasks, surpassing older systems,

namely i-vectors [18]. These embeddings are then paired with

a probabilistic linear discriminant analysis (PLDA) [19] classifier

which is used to compare embeddings, allowing same-or-different

speaker decisions. In [20], the authors explored the extracted i-vectors

and x-vectors from a speaker-verification trained system to probe

additional information. This information included gender, speaking

rate and session related information such as word and phoneme

recognition. Our solution is based on training an x-vector system

using a large open-source corpus, and enrolling the first utterance

from each speaker which is then compared to his/hers subsequent

task completions. We also take advantage of the extracted embedding

to predict gender.

A. Datasets

In this experiment, three data sources were used. The out-of-

domain corpus used to train our speaker verification system was

Voxceleb (VC) [21] [22], which is a large, multi-lingual collection

of YouTube videos from celebrities. Details of all datasets are shown

in Table I.

1) DC: Crowdsourced data collections: The speech datasets ob-

tained in a real crowdsourcing environment (DC) are a collection of

multilingual prompt reading tasks, recorded in a mobile application

environment. For this work, we selected 3 datasets of American

English, Hebrew and Mexican Spanish. Several validation steps

have been previously applied to these recordings, however none

included a biometric evaluation step, meaning speaker labels were

not validated. Considering users are paid for each completed task,

there is motivation to enrol additional speakers on the same account

in order to expedite completed tasks.

2) CV: Common Voice : The Common Voice (CV) project [23]

is an open-source crowdsourced speech data collection. It includes

almost seven thousand hours of validated recorded speech from 56

languages and dialects. The collection is conducted by untrained

volunteers who read sentences from original contributions and public

domain texts. Each user has a unique ID, but additional profile

information such as gender and age is not required. For this work,

we used English and German multi-accent datasets and filtered users

without profile information. Given that the data collection process is

similar to for-profit crowdsourcing, CV datasets were used to evaluate

the performance of our validation systems, with the assumption that

each speaker corresponds to a single account, since the collection

was done on a volunteer basis.

TABLE I
DATASET SIZE AND DETECTED FRAUD.

Size Fraud

Dataset # Utt # Spk #Utt # Spk

VC1 4,878 40 - -

VC2 1,092,009 5,994 - -

CV EN 5,848 2,467 0 0

CV DE 6,680 1,191 0 0

DC EN 2,745 277 0 0

DC HE 2,144 147 13 5

DC ES 8,333 65 8 3

B. Proposed speaker verification architecture

Figure 1 represents an overview of the speaker verification pipeline

used in the experiments. Its front end consists of an embedding ex-

traction network, which condenses information related to the speaker

to a fixed sized feature vector from a variable length audio signal.

The back-end system consists of a scoring procedure, followed by

a decision step. A score is attributed to a pair of embeddings using

PLDA scoring [19]. An utterance is considered verified if its score

is higher than a given threshold, when evaluated against the enrolled

utterance.

Decision thresholds are a by-product of minimising speaker recog-

nition performance metrics. When using the Equal Error Rate (EER)

as a metric, the threshold is chosen as to equate the False Rejection

Rate (FRR) with the False Acceptance Rate (FAR). In the context of

crowdsourcing, False Acceptances occur when the system validates

fraudulent task completions from speakers other than the enrolled

one. On the other hand, False Rejections occur when the system

erroneously flags tasks that were completed by the enrolled speaker.

In a live production environment, utterances are submitted ’on-

the-fly’, meaning a decision threshold must be decided beforehand.

If the new trials belong to unseen, out-of-domain data (different

language or channel conditions), the previously computed threshold

must be adapted in order to achieve the same performance [24]. Score

space normalisation techniques can be used to tackle this problem, by

reducing variability in the scores. The Adapted Symmetric Scoring

normalisation [25] normalises scores according to the mean and

standard deviation of impostor (different speaker) distributions. This

normalisation is calculated from the Nt closest files from a subset of



enrolment/test called cohort list. Typical cohort lists have sizes (Nc)

of thousands, making them able to experiment with Nt. For instance,

in [26], the authors reported a minDCF minimum by using a Nt set

to between 200 and 500, in a cohort list with Nc over 2,000 files.

Other authors have also suggested a random selection of utterances

[25]. In an online setting where there is no prior enrolment, the use

of score normalisation techniques requires a waiting period to allow

for a number of utterances to be submitted and be used in the cohort

list. In our experiments, we opted, for each dataset, to select a smaller

cohort list containing random utterances, and using the full list for

normalisation calculation (i.e., Nt = Nc).

1) Experimental Set-up: Our embedding extraction and decision-

making followed the Kaldi Speech Recognition Toolkit [27] recipe

for VoxCeleb. We experimented with i-vectors, but due to space

limitations, and considering the overall superior x-vector performance

[16], we only present results for the latter. Training was conducted on

the dev set of VoxCeleb2, augmented with reverberation and music,

babble and noise from the MUSAN corpus [28].

The features were 30 dimensional MFCCs obtained every 10ms

with a frame-length of 25ms, mean-normalised over a sliding window

of up to 3 seconds. An energy-based VAD module filtered out non-

speech frames. The x-vector was extracted from the last layers of the

pre-trained DNN model (before the softmax layer), outputting 512-

dimensional embeddings which were centred, dimensionality reduced

to 200 using LDA, and length normalised.

In our experiments, we assume users have no previous submitted

work: the system’s performance is evaluated on a dataset level

only, meaning there is no enrolment information available. As such,

our trial setting differs from typical speaker verification evaluations

because the enrolment set used in our experiments consists of only

the first completed task. This decision-making process follows a

production setting that compares the initially completed tasks to all

subsequent tasks from a given user. This allows for the assessment

of identity as early as possible. Impostor rejection is evaluated by

having all utterances belonging to other speakers compared to any

given enrolled speaker, generating impostors trials.

To assess and remove the occurrence of fraudulent behaviour,

the DC datasets were manually validated by a single annotator.

Considering the size of the datasets, only a subset of trials were

selected according to the following steps: 1) A speaker verification

task using x-vectors on the full dataset is used to obtain PLDA

scores; 2) For each user, all flagged utterances (that failed automatic

verification) were manually validated, together with the automatically

verified utterance with the lowest PLDA score. If the lowest verified

utterance was a false acceptance, we proceeded to the next verified

utterance, up until the first true acceptance. We assumed all utterances

with a higher score than the first true acceptance of each user were

also valid; 3) Inter-speaker comparisons were used to check whether

speakers were using multiple accounts. Only the utterances with the

lowest PLDA score were validated, as we assumed utterances with

higher scoring were correctly verified.

A smaller validation was also conducted on the CV datasets to

confirm the absence of fraud. In this validation, we only validated

the 50 worst performing utterances of the full dataset.

2) Results and Discussion: The results of the manual validation

are reported in the rightmost columns of Table I, for each dataset.

Table II summarises verification results obtained on the differ-

ent crowdsourced datasets. Performance was measured on reduced

datasets that resulted from the removal of all fraud: all flagged

utterances belonging to the same user were individually removed,

while all utterances belonging to users found to participate in other

accounts were removed, together with the flagged user. We also

present results for the ”baseline” VoxCeleb1 dataset (VC1). It is

possible to observe that overall EER(%) results on the crowdsourced

datasets with the trial setting indicated in Section 4 are similar to the

results on VC1 (less than 1% absolute increase in DC ES). This is a

promising result, considering the enrolment data is a single utterance

per speaker. Furthermore, we note that the Decision Thresholds (DT)

that yielded the reported EER values are variable (mean absolute

difference of 2.62). This confirms the need for a normalisation step

in order to use the same threshold.

TABLE II
RESULTS OBTAINED ON DIFFERENT DATASETS.

None AS-Norm

Dataset EER(%) DT EER(%) DT

VC1 3.128 -3.26 - -

CV EN 2.319 7.08 2.432 1.94

CV DE 2.915 7.67 2.860 0.83

DC EN 2.083 8.09 2.492 1.47

DC HE 0.599 14.74 1.549 1.93

DC ES 4.082 11.40 3.676 -0.30

We experimented with several values for the size of the cohort

list Nc. Considering the size of the datasets, we present results on

each one as the average of five random samples using Nc = 50. The

latter value was obtained through experimentation, being the lowest

size of the cohort list with no significant performance loss in terms

of EER. We did not observe a large variation of EER, except for the

DC HE dataset, where an absolute increase of 1% was noted. The

Decision threshold shifts resulted in a mean absolute difference of

0.71. This means a single decision threshold can be applied to these

datasets with a performance loss of less than 1%. The resulting score

distributions can be visualised in Figure 2, for DC EN.
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Fig. 2. Score distributions (DC EN) for same and different speakers with
and without score normalisation.

The Detection Error Trade-off (DET) curves in Figure 3 show

relevant differences between the AS-norm adapted and non-adapted

curves, namely the progression of False Acceptance probabilities

when decreasing False Rejection probability. However, False Rejec-

tion probabilities are lower on the adapted scores when minimising

False Acceptance probabilities for the DC HE and DC EN datasets.

This can be explained by a normalisation that agglomerates scores to

the opposite decision region, instead of making them more separable.

We hypothesise this is a consequence of the size of the cohort list.

Unlike the DET curves for DC HE and DC EN, the curves for the

DC ES dataset do not show substantial differences, with AS-norm



achieving better performance near the EER point. We hypothesise

this is due to the having 65 speakers in this dataset (contrasting with

147 and 277 speakers in DC HE and DC EN, respectively), which

leads to a normalisation that reflects the original score distributions.
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Finally, fraud detection results for our system on the original

datasets are presented in Table III. We note that while the number of

False Acceptances (accepts fraud) is very low, it also presents a high

number of False Rejections (rejects good submissions). A higher DT

would alleviate this, at the cost of a higher FAR.

TABLE III
FRAUD DETECTION RESULT.

Dataset FA(#) FR (#)

DC EN - 52

DC HE 8 8

DC ES 0 356

C. Gender Verification

The gender extraction model from the speaker trained embedding

followed the architecture proposed in [20]. The model is an MLP with

a single hidden layer and a ReLU activation for the first layer and

a sigmoid activation for the output layer. The hidden layer size was

fixed at 500. Binary cross entropy loss was used together with Adam

[29] as the optimizer, with a learning rate of 0.001. Two separate

models were trained using extracted i-vectors and x-vectors using

VoxCeleb2 dev as the training dataset and Voxceleb2 test as the

development set.

1) Experimental Setup: To compare the performance of the model

that predicts the gender from the speaker-trained embedding we

used a dedicated gender recognition model as baseline. The network

was based on the M5 network architecture [30]. Both models were

implemented and trained in Python, using the PyTorch deep learning

framework. The Voxceleb2 dev subset was used for training, and the

Voxceleb2 test for development.

The baseline network consisted of four convolutional layers, each

followed by a batch normalization layer and a maxpooling layer.

The first layer receptive field receives a time-domain 16000-length

vector that represents a waveform of 2 seconds, at a sampling rate

of 8 kHz. This layer possesses a receptive field size of 80, with 256

filters with stride 4. This offers a receptive field that covers 10ms

of speech, which is comparable to window lengths of other feature

extractors. The following convolutional layers have a fixed receptive

field of size 3, with increasing filter length of 128-258-512. The

number of feature maps doubles as temporal resolution decreases

by a factor of 4 in the max pooling layers. Batch Normalization

is used on the output of each convolutional layer, before applying

ReLU non-linearity. This alleviates the problem of exploding and

vanishing gradients. The classification step is conducted using an

average pooling layer, paired with a fully connected layer of length

512, and a sigmoid layer for the output.

2) Results and Discussion: We reports gender verification results

obtained on DefinedCrowd and Common Voice speech data collec-

tions and includes Precision, F1-score and Recall for the i-vector,

x-vector and End-to-End models. The best results for each metric

and dataset is marked in bold.

The obtained results show significant performance variations in

between datasets and genders. In [14], the authors reported a Recall

of 98.04 and 95.05 for ’Male’ and ’Female’, respectively, which is

similar to the performance detected on the DefinedCrowd datasets.

Typically, ’Male’ recall outperforms ’Female’ recall, due to the fact

that many speech corpora are unbalanced in terms of gender. This is

also the case of V oxceleb, to a smaller extent, but obtained results

do not show a consistent out-performance for ’Male’ labels on the

DefinedCrowd datasets. We note, however, that for the Common

Voice dataset, performance metrics for ’Female’ are much lower

than for ’Male’ (20% absolute difference in precison on CV EN),

which is beyond what is expected due to gender unbalance during

training. Unlike the DefinedCrowd datasets, which were manually

validated, we presented results on Common Voice datasets under the

assumption that gender labels were correct. Considering these results,

a manual validation step was conducted by one annotator, obtaining

the true gender label of the worst performing utterances. These are

characterized by having network outputs close to 0 or 1, indicating

strong predictions. In CV EN, out of the 5,847 utterances under test,

508 were miss classified, with 56 of these have strong predictions.

Meanwhile in CV DE, out of the 6,680 utterances under test, 376

were miss classified with 46 of these having strong predictions.

As a result of this manual validation, we detected that a majority

of these instances (over 80%) had in fact the wrong gender label.

Furthermore, all of the erroneous labels were female and were at-

tributed to male speakers. While we have no concrete explanation for

the reason why a substantial amount of male speakers had ’Female’

labels, we believe this is due to error during profile registration, as

there is no incentive to provide ’Female’ labels other than the fact

the datasets themselves lack female representation.

It can be observed that the performance obtained using the speaker

embeddings as input is comparable to the End-to-End model, with

the added benefit that the model is much simpler, an MLP. In

fact, the end-to-end model failed to outperform the embedding-based

models on the majority of metrics, something we believe is due to

the nature of the embedding extraction, which is able to convey

information related to the full embedding, unlike the end-to-end

model, which is restricted to exactly 2 seconds of the embedding.

This means utterances with duration lower than 2 seconds are padded

with zeros before being fed to the network, and utterances longer



TABLE IV
RESULTS OBTAINED ON CROWDSOURCED DATASETS.

Male Female

Dataset Architecure Precision Recall F1 Score Precision Recall F1 Score

CV EN

i-vector 0.98 0.91 0.95 0.66 0.89 0.76

x-vector 0.98 0.94 0.96 0.72 0.90 0.80

End2End 0.97 0.94 0.95 0.71 0.83 0.76

CV DE

i-vector 0.98 0.96 0.97 0.80 0.90 0.85

x-vector 0.98 0.94 0.96 0.72 0.90 0.80

End2End 0.98 0.96 0.97 0.80 0.86 0.83

DC EN

i-vector 0.93 0.96 0.94 0.97 0.94 0.95

x-vector 0.94 0.97 0.95 0.97 0.95 0.96

End2End 0.90 0.97 0.93 0.97 0.92 0.95

DC HE

i-vector 0.99 0.98 0.99 0.97 0.99 0.98

x-vector 0.99 0.98 0.98 0.98 0.99 0.98

End2End 0.99 0.97 0.98 0.97 0.99 0.98

than 2 seconds are cropped, possibly discarding relevant information

pertaining gender.

III. AUTOMATIC PREDICTION OF BREATHING PATTERNS

The production of speech is highly dependent on organs that are

shared with the respiratory system: the lungs and the diaphragm are

responsible for the pressure production required for speech; the upper

vocal tract (which includes the nose, mouth, pharynx and larynx) is

responsible for producing speech [31]. As such, human respiratory

and speech parameters provide important cues to physicians and first-

responders in determining a wide range of cardiac and respiratory

diseases [32] [33] or to evaluate cognitive and neurological health

[34][35]. Furthermore, information extracted from breathing patterns

during speech can be used to assist speech therapists in identifying

speech impediments resulting from unfavourable respiratory planning

[36]. Breathing monitoring in this context is often conducted using

wearable sensors, namely, face masks and/or respiratory belts [37].

The installation of these sensors requires the presence of trained

medical assistants and is frequently time-consuming, negating their

usefulness in emergency situations, or when the patient cannot be

physically reached. A typical example of the latter scenario occurs

during medical virtual online consultations, with the patient at home,

where breathing information could be of use for diagnosis or monitor-

ing. As such, automated methods based on recorded speech alone that

are able to predict breathing events and parameters such as breathing

rate and tidal volume may be of substantial value.

Previous studies on this topic have focused mainly on automatic

recognition of breathing patterns and events directly from a processed

signal (e.g. [38], [39]). In [40], the authors studied the automatic de-

tection of the breathing signal using Deep Neural Networks (DNNs).

They reported a correlation coefficient between the predicted signal

and the original one of .47, with error rates pertaining breathing rate

of 4.3%.

The dataset for the current work is part of the INTERSPEECH

2020 Computational Paralinguistics Challenge [41], entitled Breath-

ing Sub Challenge. This dataset includes recordings of spontaneous

speech and associated breathing patterns.

Besides describing the submitted systems aiming at the automatic

prediction of breath signals from conversational speech, we also

analyse both original and predicted signals in an attempt to overcome

the main pitfalls of the proposed systems.

As part of this analysis, and motivated by previous work on the

carrier nature of the speech signal [42], we investigate the use of

the Amplitude Modulated (AM) and Frequency Modulated (FM)

components of the speech signal for predicting breathing signals. The

AM component only contains information related to the message,

while the FM component contains information related to the speaker.

As such, by using only the message component of the speech signal,

we investigate if the separation of information improves overall

prediction.

Given the potential interest of breathing pattern prediction in

telehealth applications, we conduct additional experiments transform-

ing the challenge dataset to emulate Voice over Internet (VoIP)

conditions.

A. Datasets

The experiments for the Breathing Sub-challenge [41] are con-

ducted using a subset of the UCL Speech Breath Monitoring (UCL-

SBM) database. The dataset includes speech recorded from a head-

mounted condenser microphone and normalized linear voltage read-

ings from two piezoelectric respiratory belts that respond to changes

to the thoracic circumference. All speech recordings were sponta-

neous, as reading tasks may introduce some bias, forcing stops that

do not necessarily coincide with the breathing rhythm. The recordings

were produced by native English speakers of ages ranging from 18

to 55 years old. To the best of our knowledge, all speakers were

healthy. The data set contains 49 sessions, each 4 minutes in length.

The corpus is split into training, development and test sets (17, 16,

and 16 sessions, respectively).

An analysis of the belt signals in these datasets shows considerable

variability, as illustrated in Figure 4: while most of the signals in the

training set have quite regular breath patterns, this was not observed

in almost half of the signals in the development set. This was

the motivation for also experimenting with a reduced development

set, dev2, from which 7 sessions were excluded, since the training

material did not include sufficient examples of such irregular patterns

(only 2 out of 17 sessions). The objective exclusion criteria was based

in experimental results, as explained in the next Section.

In order to emulate the video-call consultation with a physician,

the provided challenge dataset was augmented. The augmentation

consists in passing the original, down-sampled (8 kHz) speech signal

by an ITU-T G.723.1 dual rate speech coder and decoder [43]. The

G.723.1 audio codec, part of the ITU-T recommendation H.324,

is a Code-Excited Linear Prediction Coder widely used in VoIP

applications. It compresses voice audio in 30 ms frames and operates

with a sampling frequency of 8 kHz/16-bit. In this implementation in
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particular, MPC-MLQ (Multi-pulse Coding) mode is used, operating

at 6.3 kb/s. After the decoding, the signal is up-sampled back to 16

kHz and is used in training alongside with the challenge data. This

augmentation results in the doubling of the training and development

data (devaug).

B. Prediction of Breathing Patterns

1) Model Architectures: The official provided end-to-end baseline

architecture was used as a base for all experiments. This architecture

follows typical sequence labelling models by combining a CNN for

character-level representation with an RNN (in this case an LSTM)

for obtaining context. The output of these layers is then fed to a

dense layer for final prediction. The training loss used is the Pearson

correlation coefficient r, calculated between the true and predicted

belt signals.

In an effort to model respiratory planning, we replaced the original

LSTM with a Bidirectional LSTM. Each RNN layer is composed of

256 hidden units with the depth-concatenated forward and backward

outputs being fed to the dense layer for prediction.

2) Results on the Challenge dataset: A summary of the results

obtained for the model with the best development performance of

the 100 epochs of training is presented in Table VI. Results on dev

did not indicate any improvement of the BiLSTM approach when

compared to the baseline.

Considering the fact that overall, our development set results were

much lower when compared to those obtained for the training set and

those that were reported in the official baseline for the test set led us

to inspect the individual results of the Pearson correlation coefficient

r for each session of the development set (Table V, top line).

The sessions showing less regular patterns corresponded to much

lower values of r, and were therefore excluded from the reduced

development set, dev2 (marked in bold). As expected, average results

are considerably higher for this dataset (absolute improvement of .2).

Additional models were also trained, combining train with dev and

dev2. Our best models were submitted to test. An example of the

performance of the systems is illustrated in the top plot of Figure 5,

showing original and predicted breath signals.

C. Results on the Augmented dataset

The results on the augmented dataset, also presented in Table VI,

do not show consistent differences in performance when compared to

the challenge dataset. The results on the VoIP-modified sessions are
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Fig. 5. Segments of breath signals from session devel 04. Reference breath
signal in blue, predicted signal in orange; above with the original signal,
bottom under VoIP conditions.

presented in Table V (bottom row), showing no significant differences

either, which indicates that there is no information loss regarding

breathing events when passing speech signals through the G.723.1

audio codec.

The bottom part of Figure 5 illustrates the system’s ability to

correctly predict breathing patterns in VoIP conditions. The true

breathing signal is compared with the one predicted from a signal

obtained by passing a session of the UCL dataset through a real

VoIP scenario. The audio recording is transmitted over-the-air using

a mobile phone and recorded using Skype platform, which uses the

SILK [46] audio compression and codec.

1) AM-FM decomposition: The rationale behind the AM-FM

decomposition is that speech is generated by a source (FM component

containing speaker information), which is modulated by the vocal

tract (AM component containing the message) [42]. Previous work

[47] conducting AM-FM decomposition have shown only a small

loss in performance (4.8% WER absolute increase) when using the

AM component in an HMM-GMM ASR system. This contrasted with

the WER obtained using only the FM component (43.8% absolute

increase).

The spectrograms of Figure 6 illustrate the contents of the two

components in the presence of a breathing event. The FM carrier

signal clearly shows a breath signal between two words whose

voicing patterns are visible. The AM signal containing the linguistic

information exhibits longer pauses between the corresponding words.

This was the motivation for a set of experiments on predicting breath

signals from the raw time wave representation of the envelope, the

carrier, or combinations of these with and without the original signal.

The AM-FM decomposition is conducted using a frequency do-

main linear prediction (FDLP) approach. FDLP proposes to model

the speech in critical bands as a modulated signal with the AM

component obtained using Hilbert envelope estimate and the FM

component obtained from the Hilbert carrier. In the implementation

followed [48], the input speech was decomposed into 32 conventional

quadrature mirror filter (QMF) bands with an analysis window of 1

second. FDLP was then applied on each band to model the sub-band

temporal envelopes (AM components). The LP residual represents

the FM in the sub-band signal. The reconstruction of the signal

from the QMF bands was done by reversing the above-mentioned

steps. The resulting envelope signal contains the re-synthesized



TABLE V
PEARSON CORRELATION COEFFICIENT USING OUR BEST REPORTED SYSTEM ON THE CHALLENGE DEVELOPMENT SET.

Session 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

r .000 .610 .566 .768 .833 .668 .837 .781 .262 .753 .760 .820 .889 .291 .784 .321

raug .005 .613 .569 .777 .834 .655 .845 .770 .262 .788 .734 .822 .887 .263 .794 .327

TABLE VI
EXPERIMENTAL RESULTS FOR ALL SYSTEMS

r

dev dev2 test

Baseline Approaches - Challenge dataset

openSMILE [44] .244 - .442

openXBOW [45] .226 - .366

End2End .507 .769 .731

Proposed Approaches - Challenge Dataset

End2End FM .442 .657 -

End2End AM .490 .722 -

BiLSTM Original .507 .787 .720

BiLSTM FM .441 .696 -

BiLSTM AM .500 .742 -

End2End Org+AM+FM .476 .749 -

Proposed Approaches - Augmented Dataset

devaug dev2aug test

End2End Original .509 .784 -

End2End FM .424 .621 -

End2End AM .482 .740 -

BiLSTM Original .514 .767 .728

BiLSTM FM .432 .657 -

BiLSTM AM .515 .755 -

End2End Org+AM+FM .500 .742 -

BiLSTM Org+AM+FM .506 .765 -

BiLSTM AM+FM .488 .744 -

signal with the intact message, but with whispered speech. With the

carrier information alone, the synthesized signal sounds message-less,

but with identifiable speaker cues, namely pitch and voice quality

features, such as creakiness.

2) Results with AM and FM components: Compared with the

results of the original signal, as seen in Table VI, no improvements

were detected when using only the carrier or the envelope signal (the

performance gain of the BiLSTM AM model when compared to the

BiLSTM Original is residual). Furthermore, all experiments indicate

the performance using only the AM signal yield the best results

when compared to the FM signal. This can be explained by the fact

that the AM component retains most of the information relevant for

detecting breathing patterns, which is the message. The performance

degradation on the AM component, when compared to the original

signal, can be explained by the fact that relevant information is carried

by the Hilbert FM carrier instead, such as voiced breathing events,

that appear on the envelope as silence.

The combination of the AM and FM components, or even when

including the original speech signal, failed to outperform the BiLSTM

system with the original audio, and the challenge’s baseline. This

indicates that the availability of the various representations during

training does not improve results.

D. Estimation of Breathing Rate

Breathing events are characterized in the breathing signal as a peak

value (local maxima), as shown in Figure 7. Previous attempts to
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Fig. 6. Spectrograms of speech signal showing a breathing event in between
two words.

detect these events typically include the detection of zero-crossings

and thresholding of the signal (using its first and second derivatives)

[38] [49]. In this work, we used a slightly different approach:

Considering breath is a quasi-periodic signal (the typical respiratory

rate for a healthy adult at rest is 12–18 breaths per minute [50]), the

resulting cyclic characteristics of the auto-correlation will be equal

to the original signal. As such, the peaks of the auto-correlation are

found and the average time differences between them report the short

period of the signal, which roughly corresponds to the periodicity of

breath. This period will then be used as the stride of a window that

will detect the local maxima of the original signal.

The findpeaks detection algorithm of MATLAB ver. R2019a was

used to detect both the peaks in the auto-correlation and the breath

signal. The obtained short period of the auto-correlation was then

used for minimum peak separation in the breath signal. A peak

detection threshold of 0.1 mV was added to filter out noise. The

corresponding breathing rate is then calculated by dividing the

number of detected breath events by the duration of the signal in

seconds. An example of this detection is illustrated in Figure 7.

The behaviour of the breathing patterns of the AM and FM

components was compared to a breathing event detection algorithm

based on an ASR system. This system was trained on the English

HUB-4 dataset using Kaldi [27]. The acoustic model is a TDNN and

the language model was trained on a mix of broadcast transcriptions

and web news corpora [51]. An example of the output is shown

in Figure 8. This segment was chosen in particular as it shows

the limitations of the use of the speaker noise event detection for
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Fig. 7. Sample of a breathing signal. The automatically identified peaks
indicate maximum intake of air during inspiration.

breathing detection. We note that by using the generic labels the

system is unable to differentiate between voiced exhalation and

voiced inhalation and that it does not detect unvoiced inhalation.

Furthermore, the system trained with the FM component is unable to

detect these voiced exhalations.
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Fig. 8. Segments of true and predicted breath signals with breathing detection
algorithm using ASR (in black).

E. Results

The breathing rate estimation results are shown in Figure 9.

Considering no actual breathing rates were provided for each session,

the results obtained from the predicted signals are compared against

the breathing rate estimations of the true signals. The breathing rates

for the test set are also provided.

We note that the range of values of breathing rate for the labels is

much higher than the ones estimated using the predicted breath signal.

Additionally, the presence of outliers in the true signals is much more

spread apart when compared to the predicted signals, which indicates

some of the sessions have noisy or otherwise disrupted breath signals.

While this had already been shown for the development set, the data

presented here shows that some sessions of the training data also

share the same problem.

Rates of under 0.2 were reported in [40] [49], for conversational

speech, which is in agreement with the results obtained from the

predicted signals. A Mean Absolute Error of 0.0664 and 0.1232 was

obtained on training and dev sets, respectively.
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Fig. 9. Average breathing rates (breaths per second) for the different datasets.
The reported distributions of the predictions were obtained using our best
model in dev2aug .

IV. CONCLUSIONS

In this work we discussed the employment of voice profile

metadata for speech corpora and how an automatic system that

is able to detect such metadata can assist in the development of

machine learning models. This paper demonstrates that the use of

extracted speaker embeddings can provide the needed crowdsourcing

submission control by providing a single-dimensional vector capable

of verifying speakers and their gender. Additionally, it also shows that

voice pattern recognition techniques can be used to predict breathing

patterns and breathing-related parameters.

We first presented a speaker verification task in the context of

quality control for crowdsourced speech data collections . Noting the

various combinations of different languages and conditions that occur

during data collection, our proposed speaker verification system is

pre-trained on an out-of-domain dataset and adapted to each dataset

automatically. Evaluation results on crowdsourced datasets indicate

an EER with or without score normalisation within the values of other

speaker verification benchmarks. The possibility of using a single DT

enables the deployment of an online fraud detection system.

We then analyzed and automatically predicted breathing patterns

from speech, using signals extracted from respiratory belts as ground

truth. Moreover, we studied the applicability of the AM-FM decom-

position of speech to this same task. We found that while the decom-

posed components did not surpass the performance of the original

signal, our experiments support the hypothesis that the breathing rate

is dependent on the message, since, individually, the results obtained

with the AM component were able to outperform those obtained with

just the FM component. In order to simulate the conditions of medical

consultations over the internet, the challenge dataset was augmented

by passing it through a VoIP coder-decoder. Overall, our experiments

also indicate that future information modelled by the Bidirectional

LSTM improves results.

For future work, we plan on expanding experiments to include

more datasets with different languages, channel conditions and task

domains (e.g. free speech). A larger explicit enrolment, or one that

uses previous, validated, tasks from other datasets could also improve

current results. The use of unsupervised agglomerate clustering,

besides also solving the problem of detecting multiple speakers using

a single account, may also help detecting speakers using multiple

accounts.



A short term future goal in breathing pattern predition is to explore

additional parameters that can be extracted from breathing patterns

such as volumetric information (e.g. tidal volume). Additionally,

given how breathing provides important markers to several medical

conditions, such as cardiac, respiratory and neurological diseases, we

plan to explore speech derived breathing patterns for assisting in the

automatic detection of these conditions.
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