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ABSTRACT
Many popular mobile applications rely on the Backend-as-a-Service
(BaaS) cloud computing model to simplify the development and
management of services like data storage, user authentication and
notifications. However, vulnerabilities and other issues may lead
to malicious operations on the mobile application client-side and
malicious requests being sent to the backend, corrupting the state
of the application in the cloud. To deal with these attacks after they
happen and are successful, it is necessary to remove the immedi-
ate effects created by the malicious requests and subsequent effects
derived from later requests. In this paper, we present MIRES, an
intrusion recovery service for mobile applications based on BaaS.
MIRES uses a two-phase recovery process that restores the integrity
of the mobile application and minimizes its unavailability. We im-
plemented MIRES in Android and with the Firebase platform and
made experiments with 4 mobile applications that showed results of
1000 operations reverted in less than 1 minute and with the mobile
application inaccessible only for less than 15 seconds.
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1 INTRODUCTION
Mobile applications are programs that run on mobile devices, typi-
cally smartphones or tablets. Most mobile applications rely on remote
services and resources provided by servers, often designated clouds,
to support their functioning. Recently several frameworks/platforms
have been appeared to support the development and execution of
mobile applications. These frameworks allow integrating code run-
ning on devices with remote services through APIs. These remote
services are executed on the cloud and allow storing the state of the
application, sending notifications and authenticating users. To sim-
plify the development of these features, a new cloud service model,
named Backend-as-a-Service (BaaS) [7, 11, 21], has emerged, allowing
developers to configure the backend of a mobile application without
implementing it from the ground up. In fact, today many popular
mobile applications are based on BaaS, e.g., the Duolingo platform
for learning languagesand the Lyft car sharing platform.

Mobile applications can contain vulnerabilities, e.g., due to im-
proper user input validation, or other errors made by developers in
designing and/or writing code. These weaknesses can be explored by
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malicious users with the intent to corrupt the state of the application
stored in the backend, leading to intrusions. A 2019 study revealed
that 60% of the mobile application vulnerabilities were on the client
side, where two thirds were medium/high risk [31].

This paper is about intrusion recovery, i.e., about reverting the
effects of the intrusion on the state of the application. A simple solu-
tion would be to periodically backup the application state, creating
a snapshot, and, when an intrusion occurs, to replace the state with
the last snapshot. However, this solution would lead to data loss, as
backups are almost always outdated, e.g., hours or days, depending
on their frequency. Database recovery does better by considering not
only snapshots but also the statements since the last snapshot, which
are stored in a log [13]. However, statements are low-level events
that are hard to correlate to higher-level operations and databases
store only the statements since the last snapshot.

This work follows a more recent line of research on intrusion
recovery that aims to revert the effects of intrusions on the application
layer by logging the requests or higher-level operations made [5].
Our approach involves generating compensating transactions [24]
based on log analysis, that will revert the effects of the intrusion
without loss of legitimate data. Intrusion recovery has been studied in
different contexts, such as web applications [1, 8], databases [10, 26],
operating systems [19], email services [5], and cloud computing
[27, 29]. However, to the best of our knowledge, no previous work
focused on recovering mobile applications. Also, no previous work
focused on recovering applications based on the BaaS model.

To fill this gap, in this work we present theMobile Applications
Intrusion Recovery Service (MIRES), an intrusion recovery service
for mobile applications that use BaaS. The MIRES recovery model is
based on a two-phase process that aims to reconstruct the corrupted
data concurrently to users’ interaction with the backend, by restor-
ing the integrity of the systems’ state with a focus on maintaining
the availability of the mobile application system. Besides the main
intrusion recovery mechanism, MIRES also provides an user recov-
ery mechanism that allows the application users to recover from
mistakes.

In terms of security properties [4], the objective is therefore to
regain integrity after an intrusion and to do it with low impact on
availability; on the contrary, the objective is not to achieve confi-
dentiality as MIRES operates after the intrusion happened. Confi-
dentiality protection requires runtime mechanisms that are out of
the scope of this paper [6, 15]. Our work also does not focus on
intrusion detection, that is orthogonal to intrusion recovery; other
mechanisms could be used for this purpose [3, 12, 38].

We implemented MIRES in Android and the Firebase platform and
evaluated it experimentally using 4 applications: a social network, a
messaging app, shopping list app and a contact tracing application.
MIRES was able to recover 1000 malicious operations in less than 1
minute, letting the mobile application inaccessible only for less than
15 seconds.
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The main contributions of this paper are: (1) an intrusion recovery
service for an emerging cloud service model, focused on mobile
applications; (2) a different approach to previous offline recovery
models, that aims to increase the availability of the system; (3) a
recovery mechanism that allows users to recover their own actions.

2 BACKEND-AS-A-SERVICE
Backend-as-a-Service (BaaS) [7, 11, 21], also know asMobile Backend-
as-a-Service (MBaaS), is a cloud service model that provides a set of
ready to use application-logic services that automates and speeds up
the backend development process of web and mobile applications.
In this paper, the focus is only on mobile applications. BaaS aims to
provide scalable and optimized backend infrastructures, where all
responsibilities of running and maintaining the backend infrastruc-
tures are outsourced to the BaaS vendor, leaving only the develop-
ment of the mobile application to the user of the platform. Examples
of BaaS platforms are Firebase∗, Back4App† and Parse.‡

Typically, a BaaS service model provides a set of application-
common services like: data and file storage for storing structured data
and files, push notification to send notifications to the application,
user management to authenticate the users, application analytics to
scrutinize the crashes and performance of the application, and cloud
functions [25] to run simple and single-purpose code on the server-
side, invoked viaHTTP endpoints orwhen specific cloud infrastructure
events occur, like database changes, for example. BaaS services are
integrated by the mobile application via custom software development
kits (SDK) and application programming interfaces (APIs).

Figure 1 represents the architecture of a BaaS platform. Each
mobile application, like A and B, running in a mobile device, is pre-
associated – usually through a configuration file – with a specific
virtual environment called container, assuring the use of the con-
tainers’ services by the mobile application. Containers are virtually
isolated from the others and contain all the resources – code, services
and configurations (e.g., database permissions and settings) – used
by the mobile application system. A mobile application system is
identified in the platform by a global unique identifier that is sent in
the mobile application requests and among the resources inside the
containers.

2.1 Application Implementation with BaaS
Mobile applications that use a BaaS backend have their state dis-
tributed between the mobile device and the cloud. This distribution
of the state is coordinated by executing remote services such as
user management, file or data storage. In this work, we assume that
the state of the application is reflected on a database service, which
is the recovery object of MIRES. BaaS database services can vary
on the database supported, that can be relational or non-relational
[18]. Some services allow the integration of external databases (e.g.,
Back4App allows the integration of MongoDB§), while others pro-
vide their own database (e.g., Firebase provides Cloud Firestore¶).
MIRES does not depend on the database or if it is relational or not.
However, the prototype uses a NoSQL database.

∗https://firebase.google.com/
†https://www.back4app.com/
‡https://parseplatform.org/
§https://www.mongodb.com/
¶https://firebase.google.com/docs/firestore
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Figure 1: Arquitecture of a BaaS service model.

NoSQL databases are of different types: key-value [33], columnar
[35], or document-oriented, as the already mentioned MongoDB
and Firestore. In our prototype, we use a document-oriented model,
where the database structure is based on documents and collections,
so we present MIRES in terms of that model and often refer to doc-
uments. NoSQL databases support CRUD operations: create, read,
update and delete, but we summarize them in just two: writes that
modify the content (create, update, delete) and reads that do not.
These databases support transactions that provide the ACID proper-
ties∥. This allows applications to perform writes – and in some cases
reads – atomically in different documents.

In this work we use the term mobile application to mean the
application running on the mobile device and mobile application
system to mean the entire system, i.e., both the application and the
backend.

2.2 Application and Threat Models
A mobile application [22, 36] is a type of software application built
to run on a mobile device such as a smartphone or a tablet, that
runs a specific operating system, e.g., Android or iOS. The state of
a mobile application is composed of a local state existing on the
mobile device and a backend state existing on the backend database.
The focus of this work is to recover the backend state of the mobile
application, since the recovery of the local state is already supported
in many applications, e.g., the backup recovery process supported
by WhatsApp and the implicit recovery done by many applications
simply by logging out and logging in again. Also, recovering the
backend state is more challenging since it is accessed and modified
by many different users, while the local state is only accessed in the
mobile device. We assume that the mobile applications always use
data based on the backend state that is considered the authoritative
copy of the data.

When an user performs an action on the mobile application, e.g.,
by clicking on a button, a set of operations is made to the backend
reflecting the users’ action. The operations create, read, update or
delete database documents. This set of operations that represent
a single action is what we call a transaction. In this paper we as-
sume that transactions are performed correctly and atomically, as

∥MongoDB transactions https://www.mongodb.com/transactions; Cloud Firestore
transactions https://firebase.google.com/docs/firestore/manage-data/transactions
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our focus is not on recovering inconsistent applications’ state due to
incomplete transactions (we are not concerned with fixing broken
applications, but with recovering from intrusions in correct appli-
cations). However, in some cases MIRES is able to recover these
inconsistent scenarios.

An intrusion occurs when a malicious action performed by an
user explores a vulnerability on the mobile application, originating
a malicious transaction. A malicious transaction consist of a set of,
at least, one malicious operation. However, besides the number of
malicious operations, when recovering a transaction, the atomic
model must be respected, where all the transactions’ operations
must be undone, both malicious and non malicious.

We also assume that malicious transactions are the only way the
state of the system is compromised. We assume that adversaries can-
not corrupt the computational infrastructure of MIRES, the mobile
application or the BaaS platform. This assumption does not mean
that such problems cannot occur in practice, but only that these are
outside of the scope of the solution presented in this paper.

3 MIRES
MIRES is an intrusion recovery service for mobile applications that
use BaaS. MIRES is focused on recovering the integrity of mobile
applications’ state by undoing themalicious intrusions, i.e., to recover
the state of the application such as if the intrusion never took place.
In this work, we use the term system administrator to mean the
person the manages the MIRES service and the term user to mean
the clients of the mobile application system that MIRES protects.

3.1 Types of Recovery
We consider that the state of the mobile application can only be
corrupted by transactions originated by users’ actions. We consider
two possible scenarios that can be recovered by MIRES service:

(1) Administrator recovery: when a transaction is recovered
by the system administrator, typically due to the detection of
an intrusion;

(2) User recovery: when an user makes a mistake and wants to
undo an action moments later.

An interesting case happens when the user loses control of his device
and the application during an interval of time, e.g., because the device
was stolen. That case is handled with Administrator recovery, but
also implies a manual process for convincing the administrator that
the recovery should be done, e.g., showing a police certificate that
the phone was stolen and recovered. We do not present a specific
solution for this manual process as it is outside of the technical scope
of the solution.

3.2 MIRES Architecture
The MIRES recovery service is formed by a set of different com-
ponents that run in the frontend (mobile application) and backend
(BaaS platform). Figure 2 represents the architecture of MIRES. On
the mobile application, the MIRES package provides the framework
needed to configure the mobile application. On the Application con-
tainer, alongside with the Application Database, three resources are
added: MIRES users tokens to retrieve the information that allow
MIRES to communication with the application; the MIRES users re-
covery for undoing mistakes done by users (see Section 6); andMIRES
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Figure 2: MIRES architecture on a mobile application system
(MIRES components in grey).

users flags used for tracing the mobile application normal execution
(see Section 4).

The functioning of the MIRES service is supported by the Admin
Console module, that allows the system administrator to interact
with the MIRES service and recover malicious intrusion, the Users
Recovery module responsible for the functioning of the user recovery
mechanism (see Section 6) and 2modules deployed on the application
container: the Cloud Logger responsible for logging all the requests
made to the database and creating the Transactions Log and the
Snapshot Creator, responsible for creating snapshots of the database
documents, stored on the Documents’ Snapshots.

4 MIRES NORMAL EXECUTION
The communication between the mobile application and the BaaS
services, as the database service, is achieved by an API provided
by the BaaS platform. MIRES provides intrusion recovery without
interposing the communication between mobile applications and
the backend, i.e., it does not place a proxy between the application
and the backend, as many related work systems do [1, 5, 8, 9, 27, 29].
This is important because it allows preserving all the functional and
security properties provided by the BaaS service API.

During normal execution, MIRES captures specific data of each
transaction performed to the BaaS that, later, can be used on the
recovery process. Figure 3 shows the normal function of a mobile
application systemwhen usingMIRES. In this section we will explain
all the steps performed to a transaction during the normal execution
of MIRES.

4.1 Mobile application configuration
When an user interacts with the mobile application, a transaction is
performed by the mobile application reflecting the users’ action (op-
erations R1 and R2 in Figure 3). Each write operation is configured to
carry extra-data: an operation ID representing the operation itself; a
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locked property used in the recovery process (see Sections 5 and 6.2);
and an ignore property, used by MIRES to perform requests above
database documents, without activating the Cloud Loggers function-
ing. On create/update operations, this extra-data is carried by the
operation and stored in each document, while on delete operations
the extra-data is carried by the operation’s flag.

On read operations, the mobile application is configured to forbid
reads on locked or blocked documents.

4.2 Logging Process
MIRES logging process is achieved by using two mechanisms: flags
and Cloud Loggers. Flags carry specific operation information (Sec-
tion 4.2.1). Cloud Loggers are cloud functions [25] that log the re-
quests made by the mobile applications (Section 4.2.2).

For each operation that alters the state of the database (create,
update and delete operations) MIRES gathers the operation’s type, the
timestamp associated, the document changed, the data associated with
the operation, a transaction ID, that associates all requests of the same
transaction (in Figure 3, both R1 and R2 are logged with the same
transaction ID) and part of the additional information generated by
the MIRES package for each write operation (see Section 4.1).

In the rest of this section, we explain how both mechanisms allow
MIRES to log each operation made to the database.

4.2.1 Flags. For each write operation made to the database, the
mobile application sends a second request (arrow a), that we call a
flag (flags F1 and F2 in Figure 3). Each flag is responsible for sending
additional information needed to log the operation (see Section 4.2).
However sometimes the BaaS API provides function calls where
it is not possible to identify the type or the data performed by the
operation on the mobile application, e.g., the set operation can be of
type create or update, depending if the document exists or not, or
backend calls as the Firebase incrementValue() made on the mobile
application, but where the logic is only executed on the backend.

In these cases, the log information is completed by the Cloud
Logger (see Section 4.2.2) . On delete operations, this conflict does
not occur: delete operations are well defined on the type – delete –
and do not generate new data on the database, only delete. Thereby,
delete operation flags are always completed and, consequently, can
be directly logged by Cloud Loggers.

Besides their transport property, flags are also used to know when
the recovery process must be initiated. On rare occasions, Cloud
Loggers can take some time to activate and log the operations. How-
ever, MIRES can only start the recovery process when it contains
the entire log of all operations made to the database. To circumvent
this scenario, since each flag represents an operation made to the
database, the recovery process can only begin when all flags are
processed and the MIRES users flags resource is empty.

Flags follow an ACID model with its associated operation, i.e.,
each flag can only be sent to MIRES users flags if the associate
operation is also performed.

4.2.2 Cloud Loggers. Cloud Loggers are MIRES resources that listen
to two specific events: create/update operations on the Application
Database (arrow b), and delete operation flags on the MIRES users
flags (arrow c).

When a create/update operation is performed, a Cloud Logger is
activated to catch that operation. Then, the Cloud Logger accesses
the MIRES users flags in order to get the flag associated with the
operation. As previously explained, since the information needed to
log the operation cannot always be defined by the mobile application,
Cloud Loggers are used to gather the rest of the information needed
to log the operation, more precisely, the type and data handled by
the operation.

To gather the data written by the operation, the Cloud Logger
compares the document after and before the operation effect. This
presents a limitation: an update that writes data already on the doc-
ument cannot be gathered by the Cloud Logger. For that reason, the
operations’ data structure is sent on the flag, in order for the Cloud
Logger to know each operations’ data. Interestingly, this process
has an advantage: Cloud Loggers can capture the direct and indirect
effects of an operation, i.e., a set operation without the merge op-
tion replaces the entire document by the new data: a direct effect.
Nevertheless, there is data on the document that is discarded: an
indirect effect. Cloud Loggers can capture both effects, which allows
to reconstruct the documents independently from the type of update
made.

On delete operations, the logging process is performed using a
different approach. When a new flag is added to MIRES users flags,
a Cloud Logger is also activated that accesses the flag to see if it is a
delete operation flag and logs directly the operation only in that case.
As previously explained, delete operations do not generate new data
on the database, which means that flags are the only way to provide
information about delete operations. Thereby, delete operation flags
always contain all the information needed.

After analyzing the flag and/or the operation performed, the Cloud
Logger creates the operation log record (arrow d) and deletes the
flag on the MIRES users flags.

When the logging process is finished, the log can be accessed by
the Admin Console, allowing the system administrator to recover
the state of the application. Arrows e, f relate to snapshots and are
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explained in Section 5.3.2; and arrows g, h relate to user recovery
and are explained in Section 6.1.

4.3 Read operations
Mobile applications change their state by performing write opera-
tions on the database. The information sent on each operation may
come directly from the user, e.g., user input, or can be based on data
already existing on the database. In this last case, mobile applications
perform read operations in order to retrieve information from the
database.

Since this operation type does not change the state of the data-
base, there is no need to log all read operations made by mobile
applications. The idea is to log only the read operations that can
originate dependencies between transactions (see Section 5.2). To
achieve this, MIRES package is used to configure the mobile appli-
cation in order to send the information about the read operation.
Thereby, the package offers the possibility to send the information
about the read operation through the operation’s flag: the name of
the document read, the field-values read (a document can contain
both legitimate and illegitimate data, and so it is important to know
the data accessed) and the operation ID present on the document.
MIRES cannot define a timestamp for when the read operation oc-
curred, so the operation ID property allows to know which version
of the document was accessed; different versions of the document
are created by each operation made to that document.

After gathering the data related to the read operation, that infor-
mation is passed to the Cloud Loggers through the operations’ flag
of each operation that is influenced by the read operation, in order
to be logged alongside with the operation affected.

Besides the read operations made to the database, sometimes
dependencies are not strictly defined: for example, function calls that
abstract the necessity to perform a read operation like the Firebase
incrementValue() call, where there is a dependency on the value
incremented. In this cases, the dependency exists, so it is necessary to
configure these special scenarios in order to increase MIRES recovery
efficiency.

5 MIRES ADMINISTRATOR RECOVERY
MIRES follows an approach where intrusions and their effects are di-
rectly removed by compensating transactions. The recovery process is
divided in two phases: a locking phase responsible for identifying the
malicious transactions and the affected documents and a reconstruc-
tion phase responsible for reconstructing the affected documents.
This section explains both phases.

5.1 Locking phase
The recovery starts when an intrusion is detected and the adminis-
trator activates the MIRES recovery mechanism. Intrusions can be
detected manually or using an intrusion detection system or similar
mechanism [3, 12, 38], but, as previously mentioned, this mecha-
nism is orthogonal to recovery and out of scope of the paper. The
system administrator starts by using the Admin Console to select the
transactions to undo, and sends a personalized message to each on-
line mobile application, e.g., to explain to the end-users the reasons
behind the recovery process.

MIRES messages are received by the application and shown to
the user through notifications.

When the recovery is initiated, MIRES locks the entire database,
forbidding writes, allowing only reads. Then, the locking phase
begins, where MIRES analyzes the log since the moment the first
malicious transaction occurred, in order to identify dependencies
between later transactions and, consequently, identify and lock all
the affected documents, i.e., documents where both read and write
are forbidden.

5.2 Dependencies
During the locking phase, MIRES analyses the log in order to identify
dependencies between transactions. This analysis is achieved by sim-
ulating the spread of corrupted data in memory and comparing the
operations made to the database with the corrupted data, in order to
identify posterior infected transactions.

5.2.1 Transitive dependencies. When the data written by a trans-
action is based on data retrieved by a previous read request to the
database, there is a transitive dependency. For this reason, when an
intrusion occurs, read operations can spread the effects of the intru-
sion by reading corrupted data on the database and, consequently,
generating new corrupted data.

Thereby, based on the information gathered about read operations
during normal execution (see Section 4.3), when a write operation
is influenced by a read operation, MIRES compares the field-values
read with the corrupted data in memory, allowing the service to
analyze if the read operation was performed on corrupted data, since
a document can contain both legitimate and illegitimate data. When
a transactions’ operation is influenced by a read operation, that
in turn has gathered corrupted data, then the data written by the
entire transaction is marked as corrupted, which means that the
transaction can be seen as a malicious transaction – as writes of
corrupted data – that must be recovered. Then, data written by the
malicious transaction is added to the corrupted data simulation.

5.2.2 Structural dependencies. Write operations can also create rela-
tions between transactions that we call structural dependencies. This
type of dependency can occur in two possible scenarios: when a
write operation is performed on a document that should not exist or
when a document is created that should already exist.

In the first scenario, if a malicious transaction creates a new doc-
ument, then all following operations to that document must be re-
verted until the document is finally deleted, since all operations are
performed above a malicious structure that should not exist. This
scenario also involve sub-collections: on documents that contains
sub-collections, the deletion of the document during the recovery
process must result on the recovery of transactions that interact with
the sub-collections.

In the second scenario, when a malicious transaction deletes a
document, then a create operation that creates the document again
must be reverted, since the document should already exist. However,
write operations made after the malicious create operation should
be considered as legitimate operations, since they are based on the
existence of the document and not on the malicious create operation.

5.3 Reconstruction phase
When the locking phase is terminated, MIRES knows the malicious
operations and the documents affected that are locked on the data-
base. Then, MIRES unlocks the database, allowing users to interact
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again with the backend. With the locking phase finished, MIRES
starts to reconstruct the affected documents: with the corrupted docu-
ments locked, users can normally interact with unaffected documents
the database while MIRES reconstructs the corrupted documents.

5.3.1 Operations model. The reconstruction model adopted was
based on the Focused Recovery algorithm of NoSQL Undo [26]. The
Reconstruction follows an operation model where documents are
entirely reconstructed through the replay of operations. However,
the NoSQL Undo reconstruction model has a drawback: the time to
reconstruct the document increases with the number of versions of
a document. In MIRES this phase is performed concurrently with
user interactions with the backend, so the availability of the system
is not fully affected; only the infected documents are temporarily
unavailable.

5.3.2 Snapshots model. This recoverymodel is improved using snap-
shots [23], i.e., sets of versions of the documents at certain instants
in the past. Snapshots are used by MIRES to mitigate the time to
reconstruct the entire document by starting the reconstruction of the
document using a document snapshot not corrupted by the intrusion.
The creation of snapshots is done during the normal phase based on
the operations made per document. This process is supported by the
MIRES package, used to configure each write operation – similar to
Section 4.1 – by adding a snapshot property, that stores the number of
operations performed upon the document; and a timestamp property,
that stores the operation’s timestamp. On the backend, the Snapshot
Creator module listens for database changes (arrow e of previous
Figure 3) and stores a document snapshot after N operations made to
the document (arrow f of previous Figure 3), e.g., store a version of a
document after each 1000 or 10000 operations made. This procedure
assures a non-blocking model, i.e., the mobile application system is
not stopped during this procedure.

6 MIRES USER RECOVERY
Mobile applications are intensive-use applications focused on ensur-
ing a good user experience. However, this intensive-use increases
the likelihood of errors and mistakes by the users, e.g., send a wrong
message or accidentally delete a post. To help users recover from
mistakes, MIRES provides a mechanism that allows users to recover
the last action they performed. This mechanism is inspired by the
Google Mail undo mechanism that allows users to “unsend” the last
mail sent∗∗.

6.1 Normal Execution
DuringMIRES normal execution, to activate the users recoverymech-
anism, each operation suffers an additional configuration, supported
by the MIRES package, similar to what is done on Sections 4.1 and
5.3.2. Each write operation is configured to carry extra-data: a blocked
property, used to generate blocked documents; blocked documents
are invisible to all the users, i.e., reads are forbidden except for the
user that performed the last write on the document; and an user ID,
representing the user that performed the transaction.

This process works by, when there is a transaction that can be
recovered, its operations are saved by the MIRES package. Moreover,
write operations block the affected document, i.e., by putting the
blocked property to true.

∗∗https://support.google.com/mail/answer/2819488
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After the transaction is performed, a notification with a button
and a defined message appears, allowing users to undo their last
action. This notification disappears after a time interval 𝑇𝑢 (that
we set to 𝑇𝑢 = 15 seconds in the experiments), or when the mobile
application performs another transaction.

On the backend, the Users Recovery module is listening for oper-
ation flags (arrow g of previous Figure 3). When a flag of a blocked
document arrives, the Users Recovery module will unblock the doc-
ument after a time interval 𝑇𝑢 (we set 𝑇𝑢 = 30 seconds in the experi-
ments), i.e., changing the blocked property to false (arrow h of Figure
3).

6.2 Recovery Execution
Figure 4 demonstrates how the user recovery process works. When
the user clicks on the undo button, the MIRES package locks the doc-
uments directly (arrow a) as explained in Section 5.1. After locking
the documents, the mobile application sends a recovery request to
MIRES users recovery carrying the transaction ID to be recovered
and the documents locked (arrow b). Then, the User Recovery mod-
ule gets the recovery request from the user (arrow c) and reconstruct
the documents affected similar to the reconstruction phase of Section
5.3 (arrow d). Both locking the documents and sending the recovery
request are made as an atomic model, where the recovery request is
only sent if all the documents are locked.

By making the documents invisible for other users, MIRES can
recover the transaction without the need to analyse possible depen-
dencies, allowing the possibility to recover multiple transactions
from different users at the same time, without requiring the mobile
application system to stop. However, this mechanism must only
be used in transactions where the affected document can only be
changed by a single user, since the objective is to recover users’
actions without affecting the application experience of other users,
e.g., on a social network application, posts are only modified by the
same user.
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Table 1: MIRES lines of code (LoCs).

MIRES package LoCs MIRES modules LoCs
Tokens 47 Cloud Logger (flags) 26
Notifications 52 Cloud Logger (collection) 63
Transaction configuration 174 Snapshot Creator 122
Undo Recovery Mechanism 198 Users Recovery module 558

Admin Console module 913

7 IMPLEMENTATION
MIRES offers a client-side package (Table 1) that allows to configure:
the mobile application by managing MIRES notifications, the locking
phase of the user recovery mechanism and the configuration needed
for each operation by creating a transaction state, on the beginning
of each transaction, that is used by the mobile application code to
configure the different operations of a transaction. The package was
implemented in Java, which is the most frequent option for Android
applications.

MIRES was implemented as a two layer service: a first layer com-
posed by the Admin Console module, that supports the recovery
mechanism to the system administrator; a second layer composed
by the Users Recovery module that supports the user recovery mech-
anism. With this, MIRES offers flexible and adaptable configuration:
modules are deployed depending on the functionality that we want
to use. However, in both layers, the Cloud Loggers are needed to
build the log of transactions. Both modules were implemented using
Node.js and JavaScript and can be deployed to isolated containers,
which provides an important security aspect. The MIRES implemen-
tation is small with a limited number of lines of code, as listed in
Table 1.

Cloud Loggers were implemented as JavaScript scripts deployed
on the mobile application container using the Cloud Functions ser-
vice. Cloud Loggers listen for specific pre-defined collections, which
assures configuration flexibility over the database that we want to
protect, e.g., it is only required to deploy a Cloud Logger that listens
for the collection containing the data that we want to protect and
configures the transactions that interact with the same collection.
For storing the snapshots, we used the Firestore database service, as
used on the Transactions Log.

The Snapshot Creator followed an implementation process similar
to Cloud Loggers: it was developed as a JavaScript script, deployed on
the mobile application container using the Cloud Functions service.
For storing the snapshots, we used the Firestore database service, as
used on the Transactions Log.

The BaaS platform used was Firebase. We used the Firestore data-
base service to store the log of transactions. With this service, and
the Cloud Loggers, we can assure automatic scaling on the creation
of the log. Also, since Firestore is a NoSQL database, it offers a flexi-
ble storing process with a set of personalized read queries for the
recovery process.

The MIRES user flags, user tokens and user recovery were im-
plemented using database collections. By implementing these three
collections on the mobile application container, it is possible to reuse
the security rules and settings that allow only the authenticated
users to interact with the three collections. It is also possible to de-
fine specific security rules that allow to isolate the three collections
from the rest of the application database. By following this imple-
mentation, we used the atomic mechanism provided by the database

service, used to implement the flag and the locking phase of the
users recovery mechanism.

8 EXPERIMENTAL EVALUATION
Our experimental evaluation aims to answer to the following ques-
tions: (1) What is the mobile application performance overhead and
the Cloud Loggers performance when logging the operations? (2)
How much storage space does MIRES require to store the log and
how much space does it take on the database application? (3) How
much time does the Admin Console module take to recover the
mobile application in different scenarios? (4) What is the perfor-
mance of the Users Recovery module on unblocking documents and
recovering transactions?

To evaluate the MIRES service, we used four open-source Android
applications: a social network application, Hify,†† where users can
post, comment and like; a messaging application‡‡ for 1 to 1 con-
versations; a shopping list application, ShoppingListApp,§§ to create
lists, by adding, changing and removing products; and an contact
tracking application, CovSense¶¶, used to track contacts between
their users and manage the COVID-19 spread. Each mobile applica-
tion was executed on a mobile device with 3GB of memory and an
Octa-Core Kirin 710 processor connected to a 47.78 Mb/s download
speed and 9.58 Mb/s upload speed network. Both application and
MIRES containers were deployed on Google Cloud in the same re-
gion to mitigate possible network delays. Each MIRES module was
deployed on Google Compute Engine, on a N1 generation machine,
with 1vCPU, 3.65 GB of memory and running Debian Linux 10 OS.
All results shown next are averages of the results obtained with the
4 applications, except when noticed.

8.1 Logging Evaluation
8.1.1 Mobile Application Performance. MIRES requires the config-
uration of the write and read operations made to the database, re-
sulting on an performance overhead on each operation. To test the
imposed overhead, we simulated the user’s actions by performing a
set of 1K CRUD operations. Each block of operations was repeated 5
times and followed a different workflow distribution on each applica-
tion: 80/20 read/write distribution for the social network application,
where users tend to actively read others users posts, comments
and likes, 50/50 read/write for the messaging application based on
read/reply conversations and a 20/80 read/write for the shopping
list application, since lists tend to be intensively updated, by adding,
changing and removing items and 0/100 read/write for the CovSense
application. since the application does not perform reads in its logic,
only writes.

Figure 5 shows the results of the experiment. MIRES imposes an
overhead of 23% on the Shopping List App, 18% on the Messaging
App, 16% on the CovSense App and 15% on the Social Network
App. This difference happens because operations are configured
differently on the mobile application: write operations are configured
using a Firebase transaction with an extra create operation (flag),
whereas read operations are configured by adding a filter to blocked
and locked documents, which leads to a lower cost on read operations.

††https://github.com/lvamsavarthan/hify
‡‡https://github.com/ResoCoder/firebase-firestore-chat-app
§§https://github.com/alexmamo/Firestore-ShoppingListApp
¶¶https://github.com/saivittalb/covsense version of 27/09/2020
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Figure 5: Time to perform 1000 operations on each applica-
tion, with and without MIRES.

Although the overhead is noteworthy, we consider it acceptable,
given the benefit provided by the service.

8.1.2 Cost of logging operations. Cloud Logger scripts were de-
ployed on the mobile application container to listen for database
changes and flags. It was deployed on the same region of the ap-
plication container, to minimize the activation time and assure all
the necessary triggers. The script was deployed on a Node.js 10
execution environment with 1 GB of memory dedicated. From the
previous workflow made to the database, we observed that each
Cloud Logger took an average of 0.47±(0.06) seconds and 0.09±(0.01)
GB of memory to execute.

8.2 Space Overhead
8.2.1 Database overhead. The additional data is saved on each data-
base document, which imposes a storage overhead. The size of each
document is increased by a minimum of 69 bytes and a maximum of
173 bytes – 69 bytes for the Administrator Recovery, 57 bytes for the
Users Recovery mechanism and 47 bytes for the snapshots creation
flow (each document has a maximum capacity of 1 MB, which means
and occupation between 0.006% and 0.018% of the maximum size
allowed). The data is stored on a minimum of 3 field-values and a
maximum of 7 field-values – 3 for the Administrator Recovery, 2
for the Users Recovery mechanism and 2 for the snapshots creation
flow (each document can only contain 100 fields, which means a
minimum occupation of 3% and a maximum occupation 7%).

MIRES also creates three collections on the application database:
user flags, user recovery and user tokens. Both user flags and user
recovery are implemented as support structures where data is not
persistent over time. Only the user tokens collection saves the users’
tokens needed on the recovery process for communication purposes.
Each user token is saved on a different document occupying 255
bytes each.

Concluding, the maximum additional data size imposed by MIRES
on the application database is given by the expression (in bytes):

𝑆𝑑𝑏 = 173 × 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 + 255 × 𝑢𝑠𝑒𝑟𝑠

where documents is the number of database documents and users the
number of users. For example, an application with 1M users and 1M
documents has 0.41 GB of additional data.

Table 2: Log size.

Mobile Application Log Size (GB)
Social Network App 0.11
Messaging App 0.25
Shopping List App 0.41
CovSense App 0.42

8.2.2 Log records. MIRES stores specific data in each operation
made to the database (see Section 4). Each log record size is given by
the following expression (in bytes):

𝑆𝑙𝑜𝑔 = 215 + 𝑑𝑜𝑐 + (53 + 𝑑𝑎𝑡𝑎)

where doc represents the path to the document affected and data
the data sent on the operation; the 53 bytes are only added if the
operation wrote any data.

8.2.3 Dependencies. When a write operation is influenced by a read
operation, there is an additional information logged related with
the read operation (see Section 4.3). The dependencies size of an
operation is given by the following expression (in bytes and where
D defines the number of documents read and F the number of field-
values read):

𝑆𝑑𝑒𝑝 = 91 +
𝐷∑
𝑑=1

(𝑑𝑜𝑐 + 1 +
𝐹∑
𝑓 =1

(𝑓 𝑖𝑒𝑙𝑑 + 1))

where the doc property represents the path to the document read
and the field property represents each field-value read.

Table 2 shows the log size needed to store 1M operations following
the exact workflow performed on Section 8.1 on each application.

8.3 Admin Recovery Performance
The Time to Recover (TTR) is defined as the total time since the
system administrator starts the recovery process until the moment
that all the effects of the intrusion are removed. In MIRES, the TTR
is the sum of the Locking phase and Reconstruction phase times.

To test the recovery performance, we defined three real scenarios.
In scenario 1 we have created an user in each application and per-
formed a different number of actions resulting in 1 to 1000 operations
to recover. In scenario 2 we used the same user and the applications’
actions to perform 1 to 10K operations upon the same document,
in order to create 1 to 10K different versions of the document. In
scenario 3 we tested a particular case where the effects of malicious
intrusions are not persisted in the database, however malicious in-
formation is sent to users. Each recovery scenario was executed 5
times. In the rest of this section, we analyse the MIRES recovery
performance on both scenarios.

8.3.1 Scenario 1. Figure 6 shows the results of undoing the actions
of the user. Both Locking and Reconstruction phases increase linearly
with the increase of the log size, the dependencies and the docu-
ments to recover (in this test, there was an average of 45 documents
per each 100 operations on each application). Recovering a single
operation takes less than 1 second, while recovering 1K operations
takes 55 seconds maximum. However, in this latter case, the mobile
application system is unavailable for only 15 seconds.

The Locking phase is composed by the load and analysis of the log
to identify the malicious transactions and the corrupted documents.
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Figure 6: Time to undo a different number of operations.
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Figure 7: Time to reconstruct a document with different ver-
sions.

The Reconstruction phase is composed by the reconstruction of
the locked documents. We can see that this phase takes more time
than the Locking phase. This happens because, on the Locking phase,
MIRES loads and analyses the log on a single process, while on the
Reconstruction phase, for each document locked, MIRES needs to
load the operations that affect the document to reconstruct – for
legitimate operations – or update the log – for malicious operations.

8.3.2 Scenario 2. Figure 7 shows the results of reconstructing a doc-
ument with different versions. By following an operation model, the
reconstruction of a document takes longer with the increase of the
number of versions, since MIRES needs to replay all the operations
needed to reconstruct the document. However, by using snapshots of
1K versions, we could reconstruct a document with 10K versions in
less then 0.5 seconds, instead of the almost 3 seconds needed when
using the operations model.

We focused our depth analysis only on the last workflow tested,
i.e., the 10k versions. We observed that each Snapshot Creator took
an average of 0.10±(0.01) seconds and 0.08±(0.01) GB to execute. All
tested applications – Social Network, Shopping Lists and CovSense
applications – stored 10 snapshots of the document – each with

1000 versions – imposing an additional storage of 0.01 MB on all
applications.

The Locking phase remained practically the same, since it was
always the same unique transaction to analyse.

8.3.3 Scenario 3. Scenario 3 was focused on a different type of re-
covery, where the effects are not persisted in the database, however,
some type of malicious information is generated and shared with the
users. To test this particular scenario, we used only the CovSense
application to simulate a malicious health status change that gener-
ated a malicious flow of notifications sent to some users. MIRES was
constructed to allow to send recovery notifications to each user. We
tested the notifications mechanism by sending 1, 10 and 100 notifica-
tions. We performed each test 5 times, concluding that sending a 1
notification costs 0.06±(0.03) seconds, sending 10 notifications costs
0.81±(0.04) seconds and 100 notifications costs 5.80±(0.58) seconds.

8.4 User Recovery Performance
8.4.1 Normal Execution. During normal execution, each time that
an invisible document appears, the Users Recovery Module unblocks
the document after 30 seconds. To test the unblocking time, we
executed three different flows: we have performed 1, 10 and 100
operations concurrently, each generated a blocked document. This
test flow was conducted in each application, except the CovSense
application. Each flow was repeated 5 times. With this experiment,
we concluded that, after the 30 seconds, and with the increase of
documents to unblock, the average time to unblock each document
is 0.08±(0.04) seconds.

8.4.2 Recovery Execution. The user recovery process is initiated
with the direct lock of the documents by the mobile application. We
have tested the locking phase by locking 1 and 10 documents. This
test flow was conducted in each application, except the CovSense
application. Each test was repeated 5 times. We observed that lock-
ing a single document costs 0.27±(0.01) seconds, while locking 10
documents costs 1.02±(0.01) seconds. However, since this phase is
performed by the mobile application, the time to lock the documents
can be volatile, depending on the network speed and on the mobile
device.

The Users Reconstruction phase follows the same model as the
Administrator Reconstruction phase (see Section 8.3).

9 RELATEDWORK
Intrusion recovery has been much investigated considering differ-
ent systems: databases [2, 10, 26], virtual machines [20, 30, 37], file
systems [14, 16, 17, 19, 32, 34, 39], web applications [1, 8, 9] and
cloud-computing service models [27–29].

Undo for Operators [5] is both the first presentation of the broad
intrusion recovery approach we follow and a tool that allows opera-
tors to recover from their ownmistakes, from unanticipated software
problems and from intentional or accidental data corruption. The
model for Operator Undo is based on three concepts referred as the
three R’s: Rewind, where all the state of the system is physically rolled
back in time to a point before any damage occurred; Repair, where
the operator alters the rolled-back system to prevent the problem
from reoccurring; and Replay, where the repaired system is rolled for-
ward to the present by replaying portions of the previously-rewound
legitimate requests.
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There are some works on web and Platform-as-a-Service (PaaS)
applications but we refer only three for brevity. Warp [8] assists
users and administrators of web applications to recover from intru-
sions while preserving legitimate user changes. The Warp recovery
approach is based on rolling back a part of the database to a point in
time prior to the intrusion and then apply compensating operations
to correct the state of the database. Shuttle [29] is a similar intrusion
recovery service for PaaS applications, that aims to help administra-
tors to recover their applications from software flaws and malicious
or accidentally corrupted user requests.Rectify [27] is a black-box
intrusion recovery service for Platform-as-a-Service (PaaS) appli-
cations. Rectify considers that the application is a black box, so it
observes HTTP requests and DB statements and finds the relations
between them without looking into the application code or requiring
modifications to that code. Relations between HTTP requests and
DB statements are derived using supervised machine learning.MIRES
is based on some of the ideas of these works. However it is the first
that considers mobile applications and BaaS. Moreover, it introduces
the idea of dividing the process in two phases, which improves the
availability of the system. MIRES also provides a new short-term
recovery mechanism to mobile applications that allow users to re-
cover their last action that is an enhancement welcome in most
applications where end-users can commit mistakes.

10 CONCLUSION
This paper presents MIRES, an intrusion recovery service for mobile
application systems that use BaaS. MIRES performs a two phase
recovery process, that aims to recover the state of the mobile applica-
tion system and minimize the unavailability of the system during the
procedure. Besides the intrusion recovery functionality, MIRES also
presents an user recovery mechanism allowing application users to
undo their last action.
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