
Practical Detection of JavaScript Concurrency Bugs using Callback
Graphs

BERNARDO FURET, Instituto Superior Técnico, Universidade de Lisboa

JavaScript is becoming an increasingly popular programming language [12, 21] that works in both client-side, within the
browser, and server-side, through Node.js. One of its most important and widely used features is, despite being single threaded,
the capability to schedule operations, thus emulating an asynchronous behaviour. These operations are non-blocking, meaning
that other code can be ran while the program is waiting for responses, event triggers or just for a timer to run out. This
asynchronous nature gives flexibility to developers, but it can also lead to concurrency bugs, since the order of execution
might be, sometimes, non-deterministic.

The purpose of this thesis is to explore the recently introduced Callback Graph model [22] to automatically detect
concurrency bugs in JavaScript. We focus on two specific cases of concurrency issues, the cases of Broken Promise and
Unexpected Execution Order bugs, and we propose the design of a solution that detects those issues automatically. Our
implementation is built on top of Async-TAJS [24], a static analysis tool for JavaScript code that implements the Callback
Graph model. We evaluate our solution on a benchmark of asynchronous JavaScript code. Our results show that the proposed
solution can effectively detect the two cases of bugs considered. As an additional contribution, we created a new dataset of 74
code examples of asynchronous JavaScript code that developers can use to test their analysis tools.

CCS Concepts: • Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: JavaScript, Asynchronous, Data race, Static analysis, Concurrency

ACM Reference Format:
Bernardo Furet. 2020. Practical Detection of JavaScript Concurrency Bugs using Callback Graphs. 1, 1 (November 2020),
11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
JavaScript is currently one of the most popular programming languages [12, 21], being used for both the front-
end of web applications, especially via frameworks, and for the back-end, through Node.js, allowing complete
JavaScript application servers. At the root of this popularity and flexibility is JavaScript’s support for asynchronous
programs, which are typically written in an event-driven style that heavily relies on callbacks that are invoked
when an asynchronously executed operation has completed.

Given its asynchronous nature and the event-driven paradigm JavaScript offers, the order of execution might
be, sometimes, non-deterministic and unexpected. This allows for responsive applications, but it also introduces
complexity and non-expected behaviour. For instance, if a program makes an asynchronous call that involves
communication with a remote server, while the program waits for the server to respond back, other code can
continue its execution. While this prevents the application from stopping while waiting for external responses, it
also contributes to certain elements to be deferred and not being executed right away, possibly introducing race

Author’s address: Bernardo Furet, bernardo.furet@tecnico.ulisboa.pt, Instituto Superior Técnico, Universidade de Lisboa, Lisboa.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Bernardo Furet

1 client.connect(PORT);
2 client.send(message);

Fig. 1. Example of a subtle data race issue.

conditions, if there are dependencies between data that comes from the said external sources and code that kept
running.

In order to facilitate the construction of asynchronous JavaScript code, the concept of Promise [5] was introduced,
with the ECMAScript 2015 [4, 9]. A Promise provides an encapsulation for the result of an asynchronous operation.
These operations were already part of JavaScript, but Promises made it easier to deal with and handle this kind of
operations, due to the layer of abstraction they provide. It makes the code more readable and organized, reducing
the number of bugs, since it provides a way to write asynchronous code that executes in a top-down manner.
Today, about 75% of JavaScript frameworks use Promises [11].

However asynchronous programming still poses some challenges. For example, as pointed out by Sotiropoulos
and Livshits [22], recent studies showed that concurrency bugs found in JavaScript programs are sometimes
caused by asynchrony. The code in Fig. 1 shows a common example where the user wants to send a message to a
client. First, the user needs to connect with the client and then send the message. The problem is that connecting
to the client (an external entity) is usually an asynchronous operation. So when the call to client.send is made,
the user might not yet be connected to the client. To complicate the matter even more, since sending a message
also requires contacting the remote entity, client.send is, most likely, asynchronous as well. So, the order in
which each operation will actually be executed is not deterministic. When testing this kind of programs, the
tests might not accuse any bug, because the operations conveniently happened in an order that did not raise any
errors.
The main reason why these problems occur is the complex mechanism that supports asynchronous code in

JavaScript, responsible for the reception and handling of events and the scheduling and execution of asynchronous
operations (Promises, timers, etc.): the event loop [2, 6, 19]. As the name says, it consists of a loop, constantly
executing several different types of operations, by phases. Each phase is responsible for handling a specific type
of operations. These are called the macrotasks. Between each macrotask, another kind of operations, the so-called
microtasks, can be executed. This contributes to a complex structure underneath JavaScript that can lead to data
race bugs, or, more broadly, concurrency bugs.

The goal of this work is to explore the recently introduced Callback Graph model [22] to automatically detect
concurrency bugs in JavaScript, through static analysis using Async-TAJS, a JavaScript static analysis tool. We
focus on two specific cases of concurrency issues, the cases of Broken Promise and Unexpected Execution Order
bugs. The contributions of this work are: (a) methods based on the Callback Graph to automatically detect Broken
Promise issues, (b) new model based on the Callback Graph to automatically detect Unexpected Execution Order
issues, (c) extension to the Async-TAJS tool that reports Broken Promise issues to the user and (d) three datasets
to exercise asynchronous JavaScript behaviour.

2 MOTIVATING EXAMPLES
We focus on two specific cases of concurrency issues; the cases of Broken Promise and Unexpected Execution Order
bugs, and we propose the design of a solution that detects those issues automatically, so that they can be reported
to the developer.

Broken Promise bugs. Also known as Broken Promise Chain bugs, occur when Promise reactions are not
registered in the same chain, but are instead accidentally registered to the same root Promise. This creates one
new chain per new registered reaction, rather than keeping the same flow. Promises do not have a particularly

, Vol. 1, No. 1, Article . Publication date: November 2020.

Practical Detection of JavaScript Concurrency Bugs using Callback Graphs • 3

1 const logValue = v => console.log(

'Expecting 2:', v);↩→

2 const increment = v => v + 1;
3 const p = new Promise(resolve => {
4 resolve(1);
5 });
6 p.then(increment);
7 p.then(logValue);

1 const logValue = v => console.log(

'Expecting 2:', v);↩→

2 const increment = v => v + 1;
3 const p1 = new Promise(resolve => {
4 resolve(1);
5 });
6 const p2 = p1.then(increment);
7 const p3 = p2.then(logValue);

Fig. 2. The example on the left shows a data race issue: both reactions are registered on the original promise, forking it.
On the right, the example is corrected: the reactions are registered in order on the resulting Promise, keeping the order of
execution: first the increment, then the check.

different API, so programmers, unaware of these details, can easily register reactions continuously on the same
root Promise, without realizing that each new registered reaction will return a new Promise, instead of changing
the original one.

An example of this bug is illustrated in Fig. 2. On the left, it shows a data race bug. The Promise chain is being
accidentally forked. Two chains are being created on the root Promise. This will produce two new Promises, each
with the value encapsulated by the root Promise. The two new Promises will not be able to modify that value for
the other one to read. One of the new Promises will encapsulate the value 2 (value + 1). The other will simply
log the value, which will be the one used to resolve the initial Promise; instead of the expected 2, it will log the
value 1. On the right side of the figure, the correct code (i.e., as intended) is shown. Notice how the first then
chains to the root Promise, just like the buggy example, creating a new Promise p2. The next chaining is done
on the newly created Promise, providing only one Promise chain in the end, ensuring dependency between the
values (p1; p2; p3).

Unexpected Execution Order bugs. This type of bugs happens when some procedures are executed at an
unintended timing, different from what the programmer was expecting. Specifically, it has to do with misplacing
method calls, in relation to the availability of the data that these calls are intended to manipulate (i.e., there is
data dependent on the order of these calls). This happens due to some functions having asynchronous behaviour,
postponing the operations to a later time, without the user being aware of it, or simply scheduling to a time that
is not exactly the one the developer wanted.
The example presented in Fig. 3 aims to capture a realistic pattern. The intention here is to have an object

of type Manager that stores a string and that receives a string and validates it, by checking if it is stored. If it is
stored, it logs "Success!"; if not, it throws an exception. The storing of the string is an asynchronous operation,
emulating what would happen if the storing of the string was done on a remote website, for instance. On a more
general note, this example emulates manipulating data between remote environments, such as setting up a remote
connection or database and make use of it while manipulating data on/through it. Here, the user is storing str.
Then, it is validating the same str. So, intuitively, it should be a success. However, given the asynchronous nature
of the storeString function and the synchronous nature of the validateString function, the former will be
postponed and validateString will be executed first. This will lead to an exception being thrown, because, at
the time validateString makes the check, storeString has not yet executed and has not yet stored the string.
In order to fix this bug, we must ensure the validation of the string is done only after the string is stored

(i.e., we want to ensure validateString occurs after storeString). To achieve such behaviour, the call to
validateString will have to be moved to a callback passed as the second argument to storeString, to be
called after the former completes. Alternatively, since storeString even returns the Promise, we could register

, Vol. 1, No. 1, Article . Publication date: November 2020.

4 • Bernardo Furet

1 function doThrow(msg) { throw new Error(msg); }
2 function Manager() {}
3 Manager.prototype.storeString = function(str, onCreate) {
4 return Promise.resolve()
5 .then(() => (this.str = str))
6 .then(onCreate)
7 ;
8 };
9 Manager.prototype.validateString = function(str) {
10 return str === this.str
11 ? console.log('Success!')
12 : doThrow('Different!')
13 ;
14 };
15 var manager = new Manager();
16 var str = 'str';
17 manager.storeString(str);
18 manager.validateString(str);

Fig. 3. Example of the Unexpected Execution Order bug. validateString will be called after storeString without ensuring
the latter has completed its task.

a callback on the returned Promise. By applying any of these solutions, it is ensured validateString will only
be called after storeString completes.

3 BACKGROUND & RELATED WORK
There are several models and tools that perform JavaScript code analysis in an attempt to aid the developers
writing better JavaScript code. We use the Callback Graph model, but we also describe the Promise Graph
model [18], used by PromiseKeeper [20], and the Async Graph [23] model, implemented through AsyncG [14].
Finally, we present a comparative study between different analyzers for JavaScript code [8].

3.1 Callback Graph
Introduced by Sotiropoulos and Livshits [22], it is implemented through Async-TAJS [24], a JavaScript static
analysis tool. Our study focuses on automatically detection of concurrency issues using this model.
This scheme is one of the first static analysis tool supporting ES6 Promises and represents the call flow of

asynchronous operations, producing an oriented, acyclic graph. It deals with almost all of the asynchronous
primitives described on the ECMAScript specification, up to the 7th edition. The model can be used in tandem
with a set of parameters, to allow fine tuning, in order to be adapted to more types of programs. To generate the
graph, the analysis makes use of a context-sensitivity strategy.

The Callback Graph represents the asynchronous callbacks as nodes, where each node has associated a context.
A path from one node n1 to another node n2 means that n2 will be called after n1 is called. This property is
transitive. Unconnected nodes mean the execution order of the callbacks they represent is non-deterministic or
unspecified (e.g., setTimeout).
Fig. 4 shows a simple example of the Callback Graph model. With this model, the authors introduce QR-

sensitivity. This concept helps distinguishing callback calls by dividing them by their call context and by the

, Vol. 1, No. 1, Article . Publication date: November 2020.

Practical Detection of JavaScript Concurrency Bugs using Callback Graphs • 5

Fig. 4. Callback Graph model example.

object fulfilled by their return value. This increases precision of the analysis, since it allows to clearly distinguish
the same function, when called multiple times, depending on the queue object they are fulfilling (one callback
call fulfills one Promise, for example).

3.2 Promise Graph & PromiseKeeper
Promise graphs were introduced by Madsen et al. [18]. The object of study is the standardized concept of Promise.
The goal is to analyze code containing Promises and find bugs related to them. The authors defined a _𝑝 calculus,
by extending the _𝐽 𝑆 calculus proposed by Guha et al. [13], to formally explain the semantics of Promises.
The authors also present the PromiseKeeper [20], a tool that performs dynamic analysis to construct an

enhanced Promise Graph. The resulting Promise Graph is styled with particular shapes and colors for each type of
node, facilitating the analysis. It also tries to infer automatically, as much as possible, the common anti-patterns,
presenting tags pointing to such situations.

3.3 Async Graph & AsyncG
Another graph-based model is the Async Graph [23]. It was created to address the Node.js environment, especially
the scheduling of operations using the Node.js event loop. To support this model, the authors built AsyncG [14]:
a tool that generates the Async Graph, by tracking all asynchronous calls. The tool automatically identifies
bugs related to event scheduling and other asynchronous operations, at runtime. Thus, performs a dynamic
analysis of the code. It was the first tool to detect bugs by misuse of several types of asynchronous APIs in Node.js
applications.

3.4 Call graphs
Since the work presented in this thesis makes use of and analyzes code using a particular case of a call graph, in
this subsection we present several static code analyzers that produce a call graph, based on a study made by [8].
Each of these tools has their own unique features that may be useful to explore. Included in this study is the
TAJS [15–17]; the tool serving as the base for Async-TAJS. This study compares the advantages and disadvantages
of each model, as well as of static and dynamic analysis.

4 APPROACH
Each concurrency bug is approached in a different manner.

4.1 Broken Promise
A Broken Promise bug, simply put, happens when a reaction is registered on a Promise that already had reactions
registered. Or, from another perspective, is when the same root Promise is used to generate more than one

, Vol. 1, No. 1, Article . Publication date: November 2020.

6 • Bernardo Furet

Promise chain. An approach, even though apparently naïve, to ensure these issues are caught by the static analysis
is to follow these steps:
(1) Each time a new Promise is created, assign a unique identifier (UID) to that Promise. This UID will be used

to define and identify that Promise and only that Promise. A Promise is always created by the Promise
constructor (new Promise) or by any method from the Promise API, including the ones in the Promise
prototype (then, catch and finally) [5]. This UID also identifies the root of a potential Promise chain.
Let’s call this value R.

(2) If the Promise was created by registering a new reaction onto an already existing Promise, then assign
another value to the newly created Promise: Let’s call it Q. This value will be the same as the R of the
Promise where the reaction was registered to.

(3) Store all Promises in the form of [R,Q]. These two values are enough too identify a specific Promise and
where it comes from. Q identifies where it comes from; R identifies the Promise itself.

(4) After the static analysis is complete, we now have complete information about how the Promises relate to
each other, in terms of chains. So the next step is to find which Promises have the same Q value. If there are
multiple Promises with the same Q, that means all those Promises were created by reactions registered in
the same Promise, whose R value is that Q. This means the Promise with that value R was forked, giving
birth to all those Promises with the same value Q. The only exception is if Promises with the same Q also
have the same R. This happens if different callbacks generate the same Promise.

More technically, Q stands for queue object: the object where the callback is being registered to. In this case, the
Promise where the reaction is being registered to. R stands for dependent queue object: the object being generated
from the registration. In this particular case, the new Promise being created by the reaction.
With this in practice, we can identify forked Promises. Forking a Promise not always becomes an issue. So it

could also be intentional. There is not a simple way to infer if a forked Promise is intentional or just came from
lack of attention. It depends on the intentions of the developer. In either case, some communities might consider
registering multiple reactions on the same Promise a bad practice or an anti-pattern [7, 10]. The result of forking
a Promise can entirely be replaced by creating a new Promise with the desired value and develop a Promise chain
from there (nonetheless, in some edge case scenarios, perhaps it may be useful to fork a Promise). So we decided
to consider all forked Promises to be reported as possible Broken Promises.

4.2 Unexpected Execution Order
The problem that derives from the Unexpected Execution Order bug is data access and manipulation (read and
write) shared by the asynchronous operations whose order will not be the expected one, causing undesirable
results.
Therefore, we are interested in finding cases of different execution timings that use the shared data in an

unintended way, at runtime. For instance, going back to the example shown in Fig. 3, we are interested in
knowing when storeString and validateString will execute, because they write and read manager.str,
respectively, at different execution timings. The call to storeString asynchronously writes manager.str. The
call to validateString synchronously reads manager.str. We have an asynchronous write and a synchronous
read on the same data. The read will happen first and the write will happen last. The value written through
storeString will never be read. And the value that will be read will be something potentially uninitialized and
unexpected.
In this case there is a deterministic result. It will always throw an exception. But if the validation itself was

asynchronous (e.g., validating through a remote server), it could lead to non-deterministic results.
It is necessary to track reads and writes not only when they appear, but also when they may execute in an

interchangeable order. Therefore, an approach capable of detecting this type of problem would be:

, Vol. 1, No. 1, Article . Publication date: November 2020.

Practical Detection of JavaScript Concurrency Bugs using Callback Graphs • 7

(1) Split all the different execution timings into nodes. Each node represents a different execution timing. An
execution timing is either the synchronous code that executes when a program is started (i.e., the code
added to the call stack) or each different execution added to the event loop tasks and queues. This includes
both microtasks and macrotasks.

(2) For each node, record which data is read and written.
(3) Finally, organize the nodes by the execution order, according to the event loop, whenever possible, with the

synchronous code always as the starting point. For nodes whose execution timing cannot be guaranteed
(for instance, operations dependent on external services), assume they can happen at any possible time,
according to the event loop. For example, if the code contains a Promise with one reaction and two
setTimeout with a random delay after it, the Promise reaction will always execute first, because it is a
microtask, but the setTimeout can happen in any order. Our approach will create all the possible paths,
generating two paths: one where one setTimeout happens before the other and vice-versa, but always
after the Promise reaction.

To extract results from this approach and detect Unexpected Execution Order bugs, check if data is written
on a node n2 that comes after (not necessarily immediately) a node n1 that reads the same data. This approach
separates all the execution timings and allows for comparison on how the data is accessed and manipulated
between them.

5 IMPLEMENTATION
As mentioned before, we use the Async-TAJS [24] tool to perform static analysis in the JavaScript code. This tool
extends TAJS [15–17], by implementing the Callback Graph model [22].

5.1 TAJS – Type Analyzer for JavaScript
Performs a flow-sensitive and context-sensitive static analysis. It is capable of detecting some type-related errors,
such as generated implicit type-conversion and call of non-callable variables.

Our intention is to extend this tool even further, making it possible for the tool to detect the concurrency issues
presented in the Section 2 while the code is being developed and alert the user with useful information, so they
can understand there are problems in the code, which specific types of issues the user is facing and where those
issues are located. The Async-TAJS is able to already generate a file displaying the Callback Graph. The next step
is to parse the Callback Graph (its internal structure), to collect information about a possible data race bug.
For our analysis, we performed QR-sensitive analysis, considering this tuning is the only one that allows to

distinguish between different calls of the same asynchronous callback. Therefore, allows for a precise distinction
of the callback calls.

5.2 Broken Promise
We took on the approach detailed in Section 4.1, intending to alert the developer about all cases of a forked
Promise.

Consider the code snippets presented in Fig. 2. The Callback Graph model collects the asynchronous callbacks
registered in the Promises and generates nodes from these methods, with associated Q and R values. Fig. 5 displays
the graphs generated by running Async-TAJS on the example snippets.

The graphs present, inside the nodes, information about the Q and the R for each node. The second node of the
graph on the left, corresponding to the snippet with the Broken Promise bug, has a value for Q different than
the value for R of the first node. So the callback represented by the second node did not register on the Promise
generated by the first callback (the Q of the second node is not the R of the first node). With this information it is
possible to conclude that the data flow will not be propagated from increment to logValue. Furthermore, and

, Vol. 1, No. 1, Article . Publication date: November 2020.

8 • Bernardo Furet

Fig. 5. Callback Graph model applied to the examples provided on Fig. 2, respectively.

now this is the important part to identify the Broken Promise bug, both nodes have the same Q, meaning they
both registered on the same Promise object, and different R, meaning they generate different Promises (i.e., they
are not different callbacks to handle the same Promise, which happens when then receives two arguments).

We have implemented functionality that receives the internal graph structure and looks for the data about the
Q and R values of each node to apply the approach described in Section 4.1. As a result, the tool outputs a file
pointing to each Promise that was forked (to the creation of that forked Promise) and to where it was forked (all
the multiple reactions that register to it), with location by line and column numbers. With this information, the
developer has all the data they need to check what is happening at those locations and fix the issue.

5.3 Unexpected Execution Order
Following the approach described in Section 4.2, the tool will be looking for writes on data that will happen
before reads on the same data, for different execution timing contexts.
For execution timings whose specific timings cannot be known through a static analysis, assume they can

happen in all possible orders. The best is for the developer to make sure the execution order is guaranteed by
their code (e.g., wrapping these operations with Promises). With this implementation we intend to alert the
developer for cases where the order is not guaranteed to be consistent (e.g., a timer and disk write whose callbacks
manipulate the same data, without any specific chaining to guarantee order).
As an automatic solution to track this bug was being developed, it was made clear that the Callback Graph

model was not enough to help track this bug. The model does not cover synchronous code, but we need to keep
track of what happens on the synchronous code, to later compare it with what happens asynchronously, checking
the possibility of writes happening only in an asynchronous environment, while reads happen synchronously.
However, the Callback Graph also does not record all the operations that happen in the code. It just gathers
asynchronous callback calls and stores them in an abstract-like representation that does not keep reads and
writes of data happening in them.

Extending the Callback Graph. We propose an enhanced version of the Callback Graph, that captures each
different context. A combination of a flowgraph and the Callback Graph that provides more useful elements
to the analysis. It follows the approach described in Section 4.2, representing execution timings as nodes. Any
timings that cannot be precisely defined at the static analysis level will generate all possible paths. Besides, each
node will store the variables it reads and writes. With all this information, it is now possible to reason about the
timings of reads and writes and determine if there are reads before writes and/or no reads after writes.
On Fig. 6 we present a prototype of what should be the result of the analysis for the code presented in Fig. 3.

As it can be seen, this model has a node for each distinct execution timing context. Connected from each node
there is a board indicating the variables accessed during that execution context, tagged with a letter: R for read; W
for write and C for call (this is also a read).

, Vol. 1, No. 1, Article . Publication date: November 2020.

Practical Detection of JavaScript Concurrency Bugs using Callback Graphs • 9

Fig. 6. Enhanced model to reason about Unexpected Execution Order issues for the code snippet displayed in Fig. 3.

Analyzing this model, we can see that manager.str is read during an execution timing before it is written
(emphasized in red). After being written, it is never read again. There are other variables that were read before
being written, like Manager.prototype, but these are values created (written) natively by the JavaScript engine.

This model collects all the necessary information to reason about how data is accessed and manipulated during
the different execution timings, allowing it to detect Unexpected Execution Order bugs.

6 EVALUATION

6.1 Datasets of JavaScript Asynchronous Bugs
We assembled a set of 74 small programs composed of almost all asynchronous API supported by the language
to date, considering our work is oriented more for the Node.js environment. Furthermore, we assembled two
other smaller datasets: the first with 13 files to test our implementation that detects Broken Promise issues; the
second with a total of 14 programs to test our implementation that detects Unexpected Execution Order bugs. In
addition, we also used the benchamrks designed by the authors of Async-TAJS and the 6 real world modules the
same authors used to evaluate our solutions.

6.2 Results
We first ran Async-TAJS over our set of general benchamrks and detected several limitations of the tool. Some
asynchronous APIs were not recognized or were modeled incorrectly by the tool. TAJS itself also has issues that
prevented a proper evaluation for some programs.

Broken Promise bugs. Considering the dataset designed to exercise the detection of this type of bugs, the results
were 2 false positives and 0 false negatives. The 2 false positives are impossible to automatically detect as intended
behaviour, since they depend solely on the intention of the programmer. For the Async-TAJS benchmarks, there
was 1 report of a Broken Promise bug, which was a true positive, and there were 0 false negatives.

, Vol. 1, No. 1, Article . Publication date: November 2020.

10 • Bernardo Furet

Unexpected Execution Order bugs. Due to time constraints, this solution is not fully implemented yet. However,
as explained in Section 5.3, the model gathers all the info necessary to reason about execution timings, data and
how they relate, in order to detect Unexpected Execution Order bugs.

7 CONCLUSION
JavaScript provides a feature that allows concurrency in a single-threaded main environment, managed by the
event loop, allowing to schedule operations while they are not ready, keeping other code running. With this
powerful behaviour comes complexity, making JavaScript code prone to concurrency bugs. Therefore, techniques
to reduce the amount of these bugs programmers negligently introduce in their code must be developed.
In this work, we developed a solution capable of detecting asynchrony bugs in JavaScript code. We used the

Callback Graphmodel [22], implemented in Async-TAJS [24], to analyze and reason about asynchronous JavaScript
code. Furthermore, we extended the implementation to detect two specific cases of JavaScript concurrency bugs:
Broken Promise bugs and Unexpected Order bugs. The former are now detected correctly. As for the latter, we
show that the Callback Graph model is not enough to correctly detect these issues. Thus, we present a new model,
capable of gathering all the necessary information to infer if this bug is present in JavaScript code.

A further contribution of our work is a new dataset of JavaScript code containing different types of asynchrony
bugs, along with two smaller, more focused datasets. These datasets can be used by other tool developers to
evaluate their tools.
Despite encountering several problems and limitations during the development of this project, our results

show that our proposed solution is capable of detecting the asynchrony bugs considered in our study.

7.1 System Limitations
Async-TAJS limitations. The tool has issues requiring other JavaScript files needed, which posed some difficulties

on the evaluation of larger, real-world programs containing dependencies from global packages/modules. It
also does not support JavaScript syntax above the ES5 [3] specification. More so, it is unable to process code
containing switch statements with default-case not being at the last position.

Callback Graph issues. If Promise default reactions are replaced with callbacks that would result in the exact
same program flow, the Callback Graph may generate different graphs, even though the happens-before relations
and the flow is the same, causing inaccuracy in the analysis.

7.2 Future Work
Detection of Broken Promise Bugs. Our approach tracks all forked Promises. Considering some forked Promises

might be intentional, we leave a suggestion of a solution that allows the programmer to tag the Promises that
are forked as an intentional fork (for example, in the same way ESLint [1] rules can be disabled), to reduce false
positives.

Tool support. Not all asynchronous APIs are modeled by the Callback Graph or supported by Async-TAJS
(e.g., setImmediate). JavaScript is a language that is in constant evolution, with new APIs being developed, like
Promise.any, so both the model and the tool can be updated as time goes by.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Practical Detection of JavaScript Concurrency Bugs using Callback Graphs • 11

REFERENCES
[1] [n.d.]. ESLint Configuration. https://eslint.org/docs/user-guide/configuring. [Online; accessed 21-September-2020].
[2] [n.d.]. The Node.js Event Loop, Timers, and process.nextTick(). https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/.

[Online; accessed 13-November-2019].
[3] 2011. ECMAScript® Language Specification. https://www.ecma-international.org/ecma-262/5.1/. [Online; accessed 17-October-2020].
[4] 2015. ECMAScript® 2015 Language Specification. https://www.ecma-international.org/ecma-262/6.0/. [Online; accessed 3-October-

2020].
[5] 2015. ECMAScript® 2015 Language Specification | Promise Objects. https://www.ecma-international.org/ecma-262/6.0/#sec-promise-

objects. [Online; accessed 7-November-2019].
[6] 2018. The JavaScript Event Loop. https://flaviocopes.com/javascript-event-loop/. [Online; accessed 13-November-2019].
[7] 2020. Promises chaining. https://javascript.info/promise-chaining. [Online; accessed 6-October-2020].
[8] Gábor Antal, Péter Hegedus, Zoltán Tóth, Rudolf Ferenc, and Tibor Gyimóthy. 2018. Static JavaScript Call Graphs: A Comparative

Study. In 2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 177–186.
[9] Benjamin Diuguid. 2016. Asynchronous Adventures in JavaScript: Promises. https://medium.com/dailyjs/asynchronous-adventures-in-

javascript-promises-1e0da27a3b4. [Online; accessed 3-October-2020].
[10] Bobby Brennan. 2017. ES6 Promises: Patterns and Anti-Patterns | Calling .then() multiple times. https://medium.com/datafire-io/es6-

promises-patterns-and-anti-patterns-bbb21a5d0918#1de1. [Online; accessed 6-October-2020].
[11] Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. 2015. Don’t call us, we’ll call you: Characterizing callbacks in JavaScript. In 2015

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE, 1–10.
[12] GitHub. 2019. GitHub Octoverse | Top languages. https://octoverse.github.com/#top-languages. [Online; accessed 6-November-2019].
[13] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence of JavaScript. In European conference on Object-oriented

programming. Springer, 126–150.
[14] Haiyang-Sun. 2018. AsyncG. https://github.com/Haiyang-Sun/AsyncG. [Online; accessed 5-December-2019].
[15] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the HTML DOM and browser API in static analysis of

JavaScript web applications. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. ACM, 59–69.

[16] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis for JavaScript. In International Static Analysis Symposium.
Springer, 238–255.

[17] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2010. Interprocedural analysis with lazy propagation. In International Static
Analysis Symposium. Springer, 320–339.

[18] Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A model for reasoning about JavaScript promises. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 86.

[19] MDN contributors. 2019. Concurrency model and the event loop. https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop.
[Online; accessed 13-November-2019].

[20] Northeastern University Programming Research Lab. 2018. PromiseKeeper. https://github.com/nuprl/PromiseKeeper. [Online; accessed
28-November-2019].

[21] Piotr Sroczkowski. 2019. 100 most popular languages on GitHub in 2019. https://brainhub.eu/blog/most-popular-languages-on-github/.
[Online; accessed 6-November-2019].

[22] Thodoris Sotiropoulos and Benjamin Livshits. 2019. Static Analysis for Asynchronous JavaScript Programs. arXiv preprint arXiv:1901.03575
(2019).

[23] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder. 2019. Reasoning about the Node.js event loop using async graphs. In
Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization. IEEE Press, 61–72.

[24] theosotr. 2019. Async TAJS. https://github.com/theosotr/async-tajs. [Online; accessed 20-September-2020].

, Vol. 1, No. 1, Article . Publication date: November 2020.

https://eslint.org/docs/user-guide/configuring
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://www.ecma-international.org/ecma-262/5.1/
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
https://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
https://flaviocopes.com/javascript-event-loop/
https://javascript.info/promise-chaining
https://medium.com/dailyjs/asynchronous-adventures-in-javascript-promises-1e0da27a3b4
https://medium.com/dailyjs/asynchronous-adventures-in-javascript-promises-1e0da27a3b4
https://medium.com/datafire-io/es6-promises-patterns-and-anti-patterns-bbb21a5d0918#1de1
https://medium.com/datafire-io/es6-promises-patterns-and-anti-patterns-bbb21a5d0918#1de1
https://octoverse.github.com/#top-languages
https://github.com/Haiyang-Sun/AsyncG
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://github.com/nuprl/PromiseKeeper
https://brainhub.eu/blog/most-popular-languages-on-github/
https://github.com/theosotr/async-tajs

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Background & Related Work
	3.1 Callback Graph
	3.2 Promise Graph & PromiseKeeper
	3.3 Async Graph & AsyncG
	3.4 Call graphs

	4 Approach
	4.1 Broken Promise
	4.2 Unexpected Execution Order

	5 Implementation
	5.1 TAJS – Type Analyzer for JavaScript
	5.2 Broken Promise
	5.3 Unexpected Execution Order

	6 Evaluation
	6.1 Datasets of JavaScript Asynchronous Bugs
	6.2 Results

	7 Conclusion
	7.1 System Limitations
	7.2 Future Work

	References

