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ABSTRACT

In recent years, more and more people are seeing their work depend
on data manipulation tasks. However, many of these users do not
have the background in programming required to write complex
programs, and, in particular, SQL queries. The solution for this
problem is Program Synthesis: the task of automatically deriving
a program from a specification. Even though in the past decade
many advances have been made in program synthesizers, current
tools do not take advantage of the increase in number of cores per
processor.

We propose Cubes, a parallel program synthesizer for the do-
main of SQL queries using input-output examples. We use Sqares
as a starting point, and modify it by extending its Domain Spe-
cific Language, changing how programs are enumerated and intro-
ducing new forms of pruning. We then use this new synthesizer,
Cubes-Seq, as a building block for the development of a parallel
SQL synthesizer. In particular, we explore portfolio and divide-
and-conquer approaches, which we implement in Cubes-Port and
Cubes-DC, respectively.

Finally, we perform an extensive analysis of Cubes, comparing
it with previous state of the art, on on around 4000 queries from
different domains. We show that Cubes-Seq is generally faster than
Sqares and Scythe. We also show, that using parallelism provides
a significant performance improvement and that Cubes-DC scales
better with the number of available processors than Cubes-Port.

1 INTRODUCTION

In the age of digital transformation, more and more people are be-
ing re-assigned to tasks that require familiarity with programming
or database usage. However, many users have limited knowledge
in these areas [30]. A crucial tool for accelerating this digital trans-
formation are Low-Code Development Platforms (LCDPs), which
according to Gartner, will account for more than 65% of application
development activity by 2024 [10]. These platforms allow users
with very little programming knowledge to quickly and easily de-
velop digital solutions. However, one area that is still lacking is
the implementation of custom domain logic. In the particular case
of database manipulation, it is common that new data analysts
using these tools are domain experts, but lack the technical skills
to build queries in a language such as SQL. As a result, several
new systems have been proposed in order to automatically handle
table manipulations in R or generate SQL queries for relational
databases [7, 8, 19, 27].

The goal of Query Synthesis is to automatically generate an SQL
query that corresponds to the user’s intent. In many cases, the user
specifies their intent through one or more examples, where each
example contains a database and an output table that results from
querying the database.

Figure 1 illustrates an input-output example with two input
tables (Courses and Grades) and an output table. The output table

CourseID CourseName

10 Programming
11 Algorithms
12 Databases

(a) The Courses table.

CourseID StudentID Grade

10 36933 A
11 36933 B
12 36933 A
10 37362 A
12 37362 C
11 37453 A
10 37510 B
12 37510 A
10 37955 A

(b) The Grades table.

CourseName GradeCount

Programming 4
Algorithms 2
Databases 3

(c) The output table.

Figure 1: Two input tables: Courses and Grades. Output table:
number of grades per course.

corresponds to counting the number of grades in each course. In
this example, the goal is to synthesize the following SQL query:
SELECT CourseName, count(*) AS 'GradeCount'
FROM Grades

NATURAL JOIN Courses
GROUP BY CourseName

Observe that, for a person with limited database training, in
many situations it is easier to define one or more examples than
to learn how to write the desired SQL query. Even for people that
work with LCDPs, with some SQL knowledge, query synthesizers
can decrease the time to write database queries. In this scenario,
reducing the time spent in query synthesis becomes crucial.

In this work, we introduce Cubes, a novel parallel synthesizer for
Structured Query Language (SQL) queries. We start by extending an
existing synthesizer, Sqares, in order to improve its performance
and expand the range of queries it supports. Next, we use that
new synthesizer as a building block for the development of parallel
synthesis algorithms. We implement three modes of operation in
Cubes:

• Cubes-Seq: a sequential SQL synthesizer;
• Cubes-Port: a parallel SQL synthesizer using portfolio solv-
ing;

• Cubes-DC: a parallel SQL synthesizer using divide and con-
quer.

This document is organized as follows. Section 2 discusses se-
quential state of the art tools for the synthesis of SQL queries that
are relevant to our work. Following that, in section 3, we present our
new sequential synthesizer, Cubes-Seq, that improves and extends
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the Sqares synthesizer. In section 4, we propose Cubes-Port and
Cubes-DC, two new parallel synthesizers that adapt techniques
used in Parallel Constraint Reasoning solvers to the field of Pro-
gram Synthesis. Next, in section 5 we evaluate the different config-
urations of our solver and compare them to previous state of the
art in SQL synthesis. Finally, we conclude with some final remarks
in section 6.

2 RELATEDWORK

In recent years, many SQL synthesis tools have been proposed.
These tools vary greatly in the types of specification they require,
with some using natural language [14, 23, 28, 29], some using input-
output examples [5, 7, 8, 15, 19, 24, 25, 27, 30], and others using
multi-modal specifications [4]. In this chapter we focus on two
tools, Scythe [27] and Sqares [5, 19], which use input-output
examples as their specification. We choose these tools because:
(i) examples are often readily available to users and are easy to
understand even with limited technical knowledge, (ii) they have
expressive Domain Specific Languages (DSLs) which cover many
common queries, (iii) they are very efficient when compared with
other SQL synthesis tools, (iv) Sqares’ DSL, in particular, is very
easily extended, because Sqares is built on top of the Trinity
framework [16], and (v) their source code is available online and
can be integrated in our tool.

2.1 Scythe

Scythe is a Programming by Example (PBE) synthesizer for SQL
queries. As such, the desired program is specified by stating what
the output should be for some set of known inputs. An input-output
example consists of a set of tables as input, 𝐼 , and an output table,
𝑇𝑜𝑢𝑡 , that results from executing the desired program over the input
tables. Since tables are very rich structures, it is considered that
one input-output example is sufficient. The user may also specify a
set of constants, 𝑐 , that must be used somewhere in the produced
query.

Scythe uses 2-step enumeration for enumerating queries. In
the first phase Scythe enumerates abstract queries, that is, queries
where all filter conditions are replacedwith “holes”. Abstract queries
can be evaluated by replacing holes with True, and therefore never
filter out any rows. The evaluation procedure follows the over-
approximation rule: for any concrete query 𝑞 instantiated from
an abstract query 𝑞 (by filling the holes with filter predicates) the
output of 𝑞 is contained in the output of 𝑞. As such, by looking at
the evaluation of a given abstract query it is possible to determine
if there is any instantiation of 𝑞 that can possibly lead to a solution.
This allows Scythe to discard unfeasible abstract queries before
the second phase of the synthesis procedure.

In the second phase, after the possibly correct abstract queries
have been enumerated, Scythe tries to instantiate them until a
correct concrete query is found. Two optimizations are proposed
that make the second phase more efficient:

(1) Equivalence classes are used to group programs so that the
number of filter conditions that must be evaluated is reduced;

(2) Using the over-approximation rule, we know that all rows in
the output table of a query 𝑞 that results from the instantia-
tion of an abstract query𝑞, must also be present in the output

table of that abstract query. As such, scythe represents in-
termediate tables as a tuple (𝑇,𝑏) where 𝑇 is the output of
the corresponding over-approximation of the abstract query
and 𝑏 is a bitvector with as many bits as there are rows in
𝑇 , and where bit 𝑖 represents if row 𝑖 of 𝑇 is present in the
intermediate table. This allows Scythe to reduce memory
requirements and execution time [27]. Even so, Scythe’s
memory usage depends heavily on the size of the input and
output tables.

Scythe generates several possible solutions (that are all consis-
tent with the user’s specification). An heuristic is then used to rank
the generated solutions, favoring those that are simpler and that
use all of the constants provided as input. Finally, the top-ranked
queries are returned to the user.

2.2 Sqares

Sqares, like Scythe, is a PBE synthesizer for SQL queries, and
receives one input-output example as specification. Besides that
input-output example, Sqares uses some extra information about
which elements should appear in the query. The full list of specifi-
cation elements is:

• a list of input tables (in Comma-Separated Values (CSV)
format);

• an output table (in CSV format);
• an optional list of aggregation functions (ex. sum, avg, etc...);
• an optional list of constants that must appear in the query;
• an optional list of table columns that can appear in the query.

Sqares uses a Domain Specific Language (DSL) to specify the
space of possible programs. This DSL is inspired by the operations
available in the popular R data-manipulation library, dplyr, from
tidyverse [2]. When using a DSL for enumeration, programs must
be translated into some programming language in order to be eval-
uated and returned to the user. In Sqares, the DSL is translated
into R for evaluation. However, Sqares is also a SQL synthesizer
and as such an automated translation layer is used to convert the
generated R program into a SQL query when presenting the final
answer.

Figure 2 shows that the synthesizer itself is composed of the
Program Enumerator and the Program Verifier. It receives a specifi-
cation from the user and, if the synthesis is successful, returns an
R program that satisfies the specification. This R program is then
automatically translated into an equivalent SQL query.

2.2.1 Program Enumeration. At the core of Sqares is a Program
Enumerator. The purpose of the Program Enumerator is to continu-
ously generate new candidate programs based on the specification.
Programs are enumerated with the help of an Satisfiability Modulo
Theories (SMT) solver, using the line-based representation intro-
duced by Orvalho et al. [18]. Programs are also enumerated in
increasing number of lines of code.

2.2.2 Program Verification and Translation. In order to evaluate the
candidate programs and check if they satisfy the user’s specification,
Sqares translates them into R. Then, the R program is executed
using the input example that the user provided. The output is then
compared with the expected output according to the example. This
comparison treats tables as a multi-set of rows, meaning that row
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Figure 2: Diagram of Sqares architecture.

𝑡𝑎𝑏𝑙𝑒 → 𝑖𝑛𝑝𝑢𝑡 | natural_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| natural_join3(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| natural_join4(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| left_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| inner_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑗𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
| cross_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒,𝑐𝑟𝑜𝑠𝑠 𝐽 𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
| filter(𝑡𝑎𝑏𝑙𝑒, 𝑓 𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
| summarise(𝑡𝑎𝑏𝑙𝑒, 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,𝑐𝑜𝑙𝑠)

| mutate(𝑡𝑎𝑏𝑙𝑒, 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

| anti_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒,𝑐𝑜𝑙𝑠) | semi_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| union(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒) | intersect(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒,𝑐𝑜𝑙)

Figure 3: DSL used by the Cubes synthesizer. New compo-

nents are highlighted in bold.

order is ignored. If the tables match, a solution to the problem has
been found.

Finally, before presenting the program to the user, it must be
translated into SQL. To do this the dbplyr library is used. This
library allows one to use regular databases as a back-end for dplyr
operations and extract the corresponding SQL queries.

3 SEQUENTIAL SYNTHESIS

This work uses Sqares as a starting point for creating a parallel
SQL synthesizer. In this section we describe the changes made
to Sqares that are not directly related to multiprocessing. In
particular, how the range of supported programs was extended and
how new forms of pruning were introduced in order to improve
synthesis performance. From now on, we refer to the improved
version of Sqares as Cubes-Seq.

3.1 Extending the Domain Specific Language

In order to support a wider range of programs, Sqares’ DSL was
modified to be more expressive. In this section, we will describe
those changes. The new DSL is presented in Figure 3.

Regarding DSL components, the follow components have been
altered:

• the select component was removed from the DSL and in-
troduced as a post-processing step;

• the inner_join* components have been renamed to
natural_join*, while bind_rows was renamed to union;

• two complex join operations have been added: inner_join
and cross_join;

• the filters component has been removed, while the filter
component was changed so that it supports compound filter
conditions, while removing redundant combinations;

• the mutate and semi_join have been added to the DSL;
• the semantics of intersect and anti_join have been mod-
ified.

Several new aggregation functions are also now supported:
n_distinct, str_count, cumsum, pmin, pmax, mode, lead, lag,
median, rank and row_number. Some aliases are also supported,
in order to facilitate usage by users familiar with SQL: count is an
alias for both n and n_distinct (activates both options), and avg
is an alias for mean.

Finally, the type inference mechanism has been overhauled, re-
sulting in dates and times now being supported. By default dates
are parsed using the ISO 8601 format, but this can be overridden
by specifying the desired date format.

3.2 Quantifier-Free Finite Domain Theory

When using constraint solvers, a lower-level encoding is typically
more efficient (provided that the conversion from high-level to low-
level is polynomial). Since all the variables used in Cubes-Seq’s
encoding are either bounded integers or Boolean variables, a possi-
ble way to improve performance is to use bit-blasting. Bit-blasting
means converting all variables in the SMT formula to Boolean vari-
ables and all constraints to Conjunctive Normal Form (CNF). To do
this, the integer variables are first converted to bit vectors, and then
the bit-vectors are converted to sets of Boolean variables. The con-
straints are updated to reflect these changes and then transformed
into CNF. The result is a propositional logic formula in CNF that can
be solved using an off-the-shelf Propositional Satisfiability (SAT)
solver.

The SMT solver used by Cubes-Seq, Z3 [6], implements a theory
that performs all these steps automatically, including using an
internal SAT solver to solve the resulting formula. This theory is
called Quantifier-Free Finite Domain (QF_FD).

3.3 Deducing Invalid Programs

One way to improve a program synthesizer is to reduce the number
of incorrect programs that must be tested before finding a solution.
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In the case of Sqares, a common example are programs where at
some point a column that does not exist in the current context is
referenced. Consider the following program, which uses the tables
from Figure 1 and the DSL from Figure 3:
df1 = filter(Courses, grade == 'A')

In this program, we are taking the Courses table and trying to
filter its rows by selecting only the ones where column grade is
equal to ‘A’. After a closer look to the Courses table it is clear that
this program makes no sense, as there is no grade column in this
table. Sqares produces such candidate programs because it uses
a DSL that is defined at initialization time, containing all possible
conditions, which is then given to the SMT solver for it to generate
candidate programs. Without some extra guidance, there is no way
for the SMT solver to only generate valid candidates.

We introduce a new form of pruning that eliminates these invalid
programs. All component arguments are annotated with a pair
of sets of columns. These annotations are then used to further
constrain the set of programs that can be return by the program
enumerator. In Example 3.1 we show how these annotations can
be used to force all filter lines to always be valid. Note that the
second annotation is only needed for some argument types, in
order to record extra information. One such case is presented in
Example 3.2.

Example 3.1. Consider again the previous program, which con-
tains only one line: filter(Courses, grade == ‘A’). That line
takes two arguments: Courses and grade == ‘A’.

We annotate all arguments of type table with the columns
they contain, so in this case Courses would be annotated with
{CourseID, CourseName}. Furthermore, we annotate filter condi-
tion arguments with the columns they require to be present in order
do produce a valid program. In this case grade == ‘A’ would be
annotated with {grade}. Finally, we encode that all filter operations
must be such that all the columns in the annotation of the second
argument appear in the annotation of the first argument in order
to be valid.

The presented program violates these rules, and thus is surely
incorrect.

In order to propagate the column information along the several
lines of the program, each line is also annotated with the set of
columns available in the output table of that line. This information
can then be used like that of any other argument of type table.
By implementing these kind of rules for all the components we
can greatly reduce the number of enumerated programs that are
invalid due to column names. As a result, the overall performance
of Cubes-Seq is improved.

In Figure 4 we show the inference rules for all the components
of our DSL. Using these rules, we can infer from the arguments of
a given operation what columns would be present in the output
table if the line were executed. By extension, we can also determine
invalid lines because no rule will be applicable to them. The contents
of each annotation are described in Figure 5.

Example 3.2. Consider the following summariseCondition:
maxStudentID = max(StudentID). The first annotation of a sum-
mariseCondition corresponds to the columns that are “used”, that is,
the columns that must be present in order for the condition to be

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1 ∪ 𝑡𝑎𝑏𝑙𝑒′2
NaturalJoin

𝑓 𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ ⊆ 𝑡𝑎𝑏𝑙𝑒′

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′
Filter

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1 ∪ 𝑡𝑎𝑏𝑙𝑒′2 ∪ 𝑡𝑎𝑏𝑙𝑒′3
NaturalJoin3

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1 ∪ 𝑡𝑎𝑏𝑙𝑒′2 ∪ 𝑡𝑎𝑏𝑙𝑒′3 ∪ 𝑡𝑎𝑏𝑙𝑒′4
NaturalJoin4

𝑗𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ ⊆ 𝑡𝑎𝑏𝑙𝑒′1 𝑗𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′ ⊆ 𝑡𝑎𝑏𝑙𝑒′2
𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1 ∪ 𝑡𝑎𝑏𝑙𝑒′2

InnerJoin

𝑐𝑜𝑙𝑠′ ⊆ 𝑡𝑎𝑏𝑙𝑒′1 𝑐𝑜𝑙𝑠′ ⊆ 𝑡𝑎𝑏𝑙𝑒′2 (𝑐𝑜𝑙𝑠′ ≠ ∅ ∨ 𝑡𝑎𝑏𝑙𝑒′1 ∩ 𝑡𝑎𝑏𝑙𝑒′2 ≠ ∅)

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1
AntiJoin

𝑡𝑎𝑏𝑙𝑒′1 ∩ 𝑡𝑎𝑏𝑙𝑒′2 ≠ ∅

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1 ∪ 𝑡𝑎𝑏𝑙𝑒′2
LeftJoin

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1 ∪ 𝑡𝑎𝑏𝑙𝑒′2
Union

𝑐𝑜𝑙′ ⊆ 𝑡𝑎𝑏𝑙𝑒′1 𝑐𝑜𝑙′ ⊆ 𝑡𝑎𝑏𝑙𝑒′2
𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑐𝑜𝑙′

Intersect
𝑡𝑎𝑏𝑙𝑒′1 ∩ 𝑡𝑎𝑏𝑙𝑒′2 ≠ ∅

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1
SemiJoin

𝑐𝑟𝑜𝑠𝑠 𝐽 𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ ⊆ 𝑡𝑎𝑏𝑙𝑒′1 𝑐𝑟𝑜𝑠𝑠 𝐽 𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′ ⊆ (𝑡𝑎𝑏𝑙𝑒′1 ∩ 𝑡𝑎𝑏𝑙𝑒′2)

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′1 ∪ 𝑡𝑎𝑏𝑙𝑒′2
CrossJoin

𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ ⊆ 𝑡𝑎𝑏𝑙𝑒′1 𝑐𝑜𝑙𝑠′ ⊆ 𝑡𝑎𝑏𝑙𝑒′1
(𝑐𝑜𝑙𝑠′ ∩ 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′) = ∅

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′ ∪ 𝑐𝑜𝑙𝑠′
Summarise

𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ ⊆ 𝑡𝑎𝑏𝑙𝑒′

𝑜𝑢𝑡𝑝𝑢𝑡′ = 𝑡𝑎𝑏𝑙𝑒′ ∪ 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′
Mutate

Figure 4: Inference rules used to determine valid programs.

𝐴′
denotes the first annotation of element 𝐴, while 𝐴′′

de-

notes the second annotation. Where not mentioned, it is as-

sumed that the second annotation is = ∅.

𝑡𝑎𝑏𝑙𝑒′ : columns present in the table
𝑐𝑜𝑙 ′ : column required in the table
𝑐𝑜𝑙𝑠′ : columns required in the table

𝑓 𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ : columns used in the filter condition
𝑗𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ : columns required in the first table
𝑗𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′ : columns required in the second table

𝑐𝑟𝑜𝑠𝑠 𝐽 𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ : columns required in the first table
𝑐𝑟𝑜𝑠𝑠 𝐽 𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′ : columns required in both tables
𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′ : columns used in the summarise condition
𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛′′ : columns generated by the summarise condition

Figure 5: Description of the semantics of each annotation.𝐴′

denotes the first annotation of element 𝐴, while 𝐴′′
denotes

the second annotation.

applicable. In this case the first annotation would be {StudentID}.
The second annotation corresponds to the columns that are gener-
ated by the summariseCondition, in this case: {maxStudentID}.

When this condition is used in a mutate operation, ruleMutate
from Figure 4 states that if all of the required columns (first an-
notation) are present in the input, then we can conclude that the
output table will be comprised of all columns that were already
present in the input table, alongwith the generated columns (second
annotation).

The rules in Figure 4 are implemented directly as SMT con-
straints, whichmeans the corresponding invalid programs are never
generated.
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Figure 6: Diagram of Cubes’ architecture when using divide

and conquer.

4 PARALLEL SYNTHESIS

In this section we discuss how techniques used in Parallel Con-
straint Reasoning solvers can be adapted in order to create a Par-
allel Program Synthesizer. In the first subsection, we introduce
Cubes-Port, the portfolio mode of Cubes, which takes advantage
of a portfolio of synthesizers in order to produce faster results. Next,
in subsection 4.2, we introduce Cubes-DC, the divide-and-conquer
mode of Cubes, that divides the synthesis problem into several
sub-problems and then solves those sub-problems in parallel.

4.1 Portfolio

In the last decade, the portfolio approach has been successfully
applied to several decision problems [12]. In this technique, as
soon as one of the processes finds a solution, the search ends and
there is no need to completely explore the rest of the search space.
Therefore, the main goal of a portfolio is to diversify the exploration
of the search space by making each thread explore the same search
space in different ways.

The Query Synthesis problem can be seen as a decision problem
where one wants to find a program that satisfies the user’s specifica-
tion. Therefore, it is possible to devise a portfolio that diversifies the
search using different tactics such as, (i) use the same synthesizer
with different configurations, or (ii) selecting a set of synthesizers
that use different search techniques.

Internally, Cubes uses an SMT formula to enumerate candidate
programs. Hence, one can devise a portfolio by providing the same
SMT formula to each process, but using different configurations of
the Z3 SMT solver [6] in order to diversify the search. A complemen-
tary option is to change the active techniques from Cubes in each
process, thus changing the learned constraints in the SMT formula
and the subsequent search. Another complementary alternative is
to use different synthesizers in parallel. Each synthesizer such as
Sqares or Scythe uses different techniques, thus increasing the
diversity in the exploration of the search space.

4.2 Divide and conquer

When using divide and conquer to solve a search problem in parallel,
the strategy is to split the problem into smaller sub-problems that
can be solved by each of the processes. Instead of diversifying the
search (as in the portfolio approach), each process in divide and
conquer focuses the search in a particular area of the search space.

Inspired by previous work in solving Propositional Satisfiability
formulas [26], we present a strategy to split the Program Synthesis

1. natural_join
2. natural_join3
3. natural_join4
4. mutate
5. summarise
6. filter
7. anti_join
8. left_join
9. union
10. intersect
11. semi_join
12. inner_join
13. cross_join

(a) Order used if the previous

line is not a natural_join* op-

eration.

1. mutate
2. summarise
3. filter
4. anti_join
5. left_join
6. union
7. intersect
8. semi_join
9. inner_join
10. cross_join
11. natural_join
12. natural_join3
13. natural_join4

(b) Order used if the previous

line is a natural_join* opera-

tion.

Figure 7: Order in which operations are chosen when using

Static Cube Generation.

search space inmany sub-problems that should be easy to solve. The
overall architecture is illustrated in Figure 6. In our context, each
sub-problem is represented by a cube: a sequence of operations from
the DSL, such that the arguments for the operations are still to be
determined. Consider the following cube as an example: [filter,
natural_join], which represents the section of the search space
composed by programs with two lines, where the first operation
is a filter and the second operation is a natural_join. Each
process receives a specific cube to be filled in and determines if a
solution can be reached for that particular cube. If the cube cannot
be completed such that it satisfies the input-output examples, then
the cube is deemed unsatisfiable and the process requests a new
cube to explore. Observe that each cube corresponds to a particular
sequence of operations, and as such, there is no intersection in the
search space of each process.

This approach is very similar to using guiding paths in Parallel
SAT [11, 17]. A guiding path is an assignment to a subset of the
variables of the formula that defines a partition of the search space.
The task is then to generate several (disjoint) guiding-paths that can
be solved in parallel. It is also similar to using 2-step enumeration [8,
9, 21, 27, 29]. In this case, the first step would consist in generating
the cubes using a graph-based algorithm, and the second step would
consist in filling in each cube using SMT-based enumeration.

Note that the effectiveness of the search depends heavily on the
strategy for cube generation. Next, we describe different strategies
explored in Cubes.

4.2.1 Static Cube Generation. In static cube generation, cubes are
constructed using a static heuristic. However, the sequence of op-
erations to be tried first is not purely a predetermined order to be
followed. Instead, the heuristic, presented in Figure 7, selects the
operation to be executed next in a given sequence depending on
the already selected operations. For instance, if the first operation
in a given cube is a natural_join, it is unlikely that applying a
natural_join next will lead to a solution. Therefore, a cube that
uses a natural_join followed by an inner_join is generated be-
fore a cube that applies two natural_join in sequence.
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4.2.2 Dynamic Cube Generation. Considering that the static gener-
ation heuristic was empirically designed based on available bench-
mark instances, its behavior might not be adequate for new in-
stances. Therefore, Cubes also includes a cube generator inspired
on Natural Language Processing (NLP) techniques. Since candidate
programs are constructed as a sequence of operations, a bigram
prediction model can be used to decide the operation to be placed
next in a given sequence. Therefore, when choosing the operation
for a given position in the sequence, the operation immediately
preceding it is used to compute the likelihood that each of the
possible choices will lead to the desired program. That is, for each
pair of operations (a, b) there is a score, 𝑆a,b, that represents the
likelihood that using a b operation after an a operation will lead to
the desired program. Scores are updated as programs are evaluated
in the following way:

Program scoring. For a given program, 𝑝 , let output denote the
result of running that program in a given example specified by
the user. Moreover, let expected denote the desired result in the
input-output example. First, we compute the set of all values that
occur in the output and expected tables: unique(output) and
unique(expected). Next, we compute the score of program 𝑝 as
the percentage of elements of the expected output that appear in
the result obtained by executing program 𝑝 as:

𝑠𝑐𝑜𝑟𝑒 (𝑝) = |unique(output) ∩ unique(expected) |
|unique(expected) | (1)

A score of 1 indicates that all the expected values occur in the
output, and as such, a filtering or restructuring might lead to a
correct program. On the other hand, a value of 0 means that the
candidate program is probably very far from a correct solution.
Note that any program 𝑝 where 𝑠𝑐𝑜𝑟𝑒 (𝑝) ≠ 1 is certainly incorrect.
This can be used as an optimization in order to avoid expensive
table comparisons.

Score updates. For each evaluated program, 𝑝 , the score, score(𝑝),
is used to update the bigram scores. Consider that program 𝑝 uses
the following components: filter, natural_join, summarise (in
that order). Then, the scores for the bigrams that appear in the
program will be updated as follows:

𝑆∅,filter += score(𝑝) (2)
𝑆filter,natural_join += score(𝑝) (3)

𝑆natural_join,summarise += score(𝑝) (4)

Furthermore, we update the score of the operations occurring in
the first position of the sequence, although with decreasing weights.
In particular, the operation selected for position 𝑖 (zero-based) of
the sequence contributes with 1

(𝑖+1)2 · score(𝑝). Hence, considering
again the program 𝑝 with components filter, natural_join, and
summarise, the updates are as follows:

𝑆∅,filter += 1/1 · score(𝑝) (5)
𝑆∅,natural_join += 1/4 · score(𝑝) (6)

𝑆∅,summarise += 1/9 · score(𝑝) (7)

These extra score updates are done so that there is a small chance
of reordering operations, and has empirically shown to be useful.

Cube selection. Cubes are constructed by adding operations to a
sequence. Suppose that the last selected operation is op (in case of
the first operation, op is the empty symbol ∅). In order to decide
which operation should follow, the scores for that prefix, 𝑆op, are
retrieved, normalized and smoothed, using Laplace smoothing [13].
These steps result in a list of probabilities that correspond to the
likelihood of each operation. The operation for the current line is
then chosen from a distribution using those probabilities. This is
done until we have a program of the desired length. A compact tree
structure is used to keep track of already generated cubes, as to
avoid repetition.

Avoiding biases. The usage of the dynamic cube generation tech-
niquemay introduce biases since the bigram scores are continuously
increasing. In particular, operations that are selected first become
more likely to be selected again when generating new cubes. Two
methods are used to handle this issue:

• Each time a new program is generated, all scores are mul-
tiplied by a number smaller than one, 𝛿 , by default 0.99999.
This is done so that past information can be gradually for-
gotten, in order to increase diversification in exploring the
search space. These updates are done in batches, in order to
not overwhelm inter-process communication.

• A fixed number of processes, by default 2, always solve ran-
domly generated cubes (as long as not previously generated),
in order to diversify the search process.

DSL Splitting. Two of the components introduced in the DSL,
inner_join and cross_join, are much more complex than any of
the other operations. That is, there are manymore ways to complete
a cross_join line than, for example, a summarise line. In fact, the
difference in complexity is large enough to make encoding the
program space into and SMT formula take a significant amount of
time when those operations are enabled. As a compromise we split
the available processes into two sets: set F is forced to only attempt
programs that contain at least one of these two operations; and set
B is configured as if these operations did not exist.

If the desired program does require one of the two complex joins,
then the encoding overhead is unavoidable and the fact that some
processes are only considering programs with those operations can
more directly lead to a solution. On the other hand, if the desired
program does not require a complex join, then the overhead is
completely avoided. The goal is then to balance the number of
processes allocated to each set in order to maximize the number
of programs that can be solved. The ratio between sets F and B is
configurable and defaults to 1:2.

4.2.3 Optimal and Non-Optimal Solving. As explained in subsub-
section 2.2.1, Sqares, and by extension Cubes, enumerates pro-
grams in increasing size. The same is true for cube generation.
However, when splitting the search space, it is common for some
processes to finish searching the final cubes for the current program
size, while others are still trying candidate programs. Cubes allows
these processes to start searching cubes of the next size, so that
they do not stall. However, this means that a solution of size 𝑛 can
be found before all programs of size 𝑛 − 1 have been explored (and
therefore a shorter solution might exist). Cubes allows for the user
to choose between:
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• Optimal synthesis: if a solution of size 𝑛 is found while cubes
of size 𝑛−1 are still being solved, all other processes of size 𝑛
are stopped and the synthesizer waits to check if any of the
cubes of size 𝑛 − 1 produce a solution. The shortest program
is returned to the user. Furthermore, if the user terminates
the program while it is searching for a better solution, the
shortest program found so far is returned;

• Non-optimal synthesis: the first solution found is immedi-
ately returned to the user, even if a shorter solution might
exist.

4.2.4 Learning from Unfeasible Cubes. Cubes are implemented by
adding supplemental constraints to the SMT solver. A cube stating
that the first line should be a filter and the second line should be
a summarise would be implemented as line1 = filter ∧ line2 =

summarise. We can take advantage of UNSAT cores, a capability
of SMT solvers, to further prune the search space.

An UNSAT core (unsatisfiable core) is a subset of constraints
that by themselves make a formula unsatisfiable. In Z3, the SMT
solver used by Cubes, UNSAT cores can be obtained by labeling
relevant constraints and then asking Z3 which of those labels are
part of the UNSAT core. Suppose that for the cube represented
by the constraint line1 = filter ∧ line2 = summarise, Z3 deter-
mines that there is an UNSAT core composed by just the first part,
line1 = filter. That means that even if we tried to use a different
component for the second line, it would always fail, as just the
first constraint is enough to make the formula unsatisfiable. This
information can then be used to prune those other cubes, as they
will surely not produce a solution for the problem.

In general, every time a cube fails without producing any candi-
date program, we use the UNSAT core created by the SMT solver to
prune all other cubes that would also fail, according to that UNSAT
core.

5 EVALUATION

In order to test and compare our tool with other state of the art
SQL synthesizers we took the set of benchmarks used in Sqares
and expanded it. Table 1 summarizes the benchmarks used for
evaluation. All results were obtained on a dual socket Intel® Xeon®
Silver 4110 @ 2.10GHz, for a total of 16 cores/32 threads, with 64GB
of RAM. Furthermore, using runsolver [22], a limit of 10 minutes
(wall-clock time) and 56GB of RAM was imposed on all solvers.

The set of benchmarks used is:

• texbook: 37 instances extracted from exercises from the pop-
ular database textbook, Database Management Systems [20];

• 55-tests: 55 instances derived from the textbook bench-
mark;

• recent-posts, top-rated-posts: 55+51 instances col-
lected from recent and top-rated posts, respectively, on the
StackOverflow [1] website;

• spider: 3765 instances generated from a very large and di-
verse benchmark of NLP instances for SQL synthesizers. For
each original instance, the SQL solution query was used,
along with the sample database contents, to create an input-
output example that could be used in PBE synthesizers. In-
stances were transformed without intervention.
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Figure 8: Percentage of instances solved by each synthesizer

at each point in time. A mark is placed every 150 solved in-

stances.

In this section, we will start by presenting the results for our
sequential synthesizer, Cubes-Seq, along with other state-of-the-
art SQL synthesizers. Next, we show the results for both types of
parallel synthesis implemented: portfolio and divide and conquer.

5.1 Sequential Results

In this section we evaluate the performance of Cubes-Seq, the
sequential version of Cubes. As a comparison point, we also present
the results for Sqares and Scythe. Figure 8 shows the percentage
of instances solved by each of these tools at each point in time.
Note that the time axis is in log-scale. Overall, Sqares was able
to solve 26.3% of the instances in 10 minutes, while Sctyhe solved
39.7%. Cubes-Seq was able to solve 80.6%. Cubes-Seq solved three
times more instances than Sqares, and two times more instances
than Scythe.

In some use cases, however, 10 minutes might be too long to wait
for a solution. For example, the user might be reasonably familiar
with SQL (but not proficient) and, as such, it might take less than 10
minutes to write the desired query manually. Therefore, we will also
analyze the results using a virtual limit of 10 seconds, which would
allow for these scenarios. Under the 10 second limit, Cubes-Seq
was able to solve 54.6% instances, while Sqares solved 20.7%, and
Scythe solved 19.5%.

5.1.1 Squares and Scythe. Figure 9 compares the time taken to
solve each instance when using Sqares and Scythe. Each mark
in the plot represents a single instance; marks above the diagonal
line mean that Sqares solved that instance faster, while marks
below the line mean the opposite. Finally, marks positioned on the
dashed lines represent a timeout for the corresponding synthesizer.
Only instances solved by at least one of the synthesizers are shown.
Figure 9 is similar to Figure 9, except that it compares Scythe and
Cubes-Seq.

Looking at Figure 9 we can see that there is a great disparity
between the set of instances solved by Sqares and the set solved
by Scythe (that is, most instances lie on one of the timeout lines).
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Table 1: Summary of the benchmarks used for evaluation and comparison.

Benchmark Source # Instances
textbook Database Management Systems [20] 37
55-tests Sqares [5] 55
recent-posts Scythe [27] 51
top-rated-posts Scythe [27] 57
spider Spider [3] 3765
Total 3965
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Figure 9: Scatter plot comparing the performance of

Sqares and Scythe.

This can be explained by the fact that these synthesizers operate in
very different ways.

Furthermore, the great majority (78.7%) of instances solved by
Sqares are solved in the first 10 seconds, while the same is not
true for Scythe (only 49.1%). This can also be seen in Figure 8
where although Scythe is generally faster, Sqares actually comes
ahead in the 3 to 10 seconds time-frame.

Finally, Sqares always uses around 200MB of RAM, while
Scythe’s RAM usage varies much more, reaching 10GB for some
instances. This is likely because Scythe encodes the table’s data into
constraints, and as such, instances with bigger input tables use more
memory. Sqares, however, focuses mostly on the columns which
makes its memory usage more consistent. This means Sqares
is more suited for parallelization as you can run more threads in
parallel without running out of RAM.

5.1.2 Cubes-Seq. Looking at Table 2, we can see that the number
of solved instances improved on all benchmarks when comparing
with Sqares, while when comparing with Scythe the number
of solved instances improved on the benchmarks from Sqares
and Spider, and decreased on both benchmarks from Scythe. The
difference in solved instances between Scythe and Cubes-Seq can
be seen in Figure 10.

By default, Cubes-Seq is configured with: (i) the QF_FD SMT
Theory enabled, (ii) the new DSL components introduced in subsec-
tion 3.1 enabled, and (iii) the Invalid Program Deduction enabled.
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Figure 10: Scatter plot comparing the performance of

Scythe and Cubes-Seq.

Accuracy. Even though these tools can find queries consistent
with the input-output examples, the solutions may not correspond
to the user intent. In particular, has less input parameters and is
thus more likely to find solutions that do not satisfy the user intent.
We analyzed the percentage of solved queries that actually satisfy
the user intent for Sqares, Scythe and Cubes-Seq. To that end,
we selected 15% of the instances solved by all three tools, resulting
in 66 instances, and manually analyzed if the solutions found are
equivalent to the ground truth SQL query. Of these 66 instances,
Sqares finds a solution that satisfies the user intent in 27 of them
and Scythe returns such a solution in 33 instances. However, by
default, Scythe returns the top 5 queries; if we only consider the
queries ranked in first place, Scythe returns only 29 solutions
that satisfy the user intent. Finally, Cubes-Seq returns a solution
that satisfies the user intent in 46 out of the 66 randomly chosen
instances.

Although Cubes-Seq is sometimes slower than Sqares, this
occurs only on a very small number of instances. Moreover, the
number of newly solved instances within a 600 seconds timeout
is very considerable, and the memory footprint, although slightly
increased, is generally under 1GB. As a result, the new solver offers
an improved starting point to develop a parallel solver for Query
Reverse Engineering.

5.1.3 Portfolio. Looking at Figure 11, which shows the percent-
age of solved instances for each of the configurations considered,
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Table 2: Overall results for 10 seconds and 10 minutes, for all configurations tested, grouped by benchmark. The best configu-

ration for each time-limit/benchmark pair is highlighted in bold.
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Sqares 32.7% 4.0% 3.5% 20.9% 30.6% 20.7%
Scythe 38.2% 45.1% 61.4% 18.2% 27.8% 19.5%
Cubes-Seq 50.9% 19.6% 47.4% 55.4% 35.1% 54.6%
Cubes-Port4 70.9% 21.6% 56.1% 60.8% 40.5% 60.2%
Cubes-Port8 74.5% 21.6% 56.1% 60.9% 45.9% 60.4%
Cubes-Port16 69.1% 21.6% 56.1% 59.1% 43.2% 58.5%
Cubes-DC4 72.7% 21.6% 61.4% 70.8% 51.4% 69.9%
Cubes-DC8 80.0% 25.5% 63.2% 73.4% 54.1% 72.6%
Cubes-DC16 83.6% 29.4% 66.7% 75.2% 54.1% 74.4%

10
m
in

Sqares 70.9% 6.0% 26.3% 25.7% 41.7% 26.3%
Scythe 70.9% 62.7% 71.9% 38.3% 52.8% 39.7%
Cubes-Seq 80.0% 35.3% 63.2% 81.8% 51.4% 80.6%
Cubes-Port4 90.9% 41.2% 70.2% 85.3% 59.5% 84.4%
Cubes-Port8 92.7% 43.1% 73.7% 85.8% 64.9% 84.9%
Cubes-Port16 92.7% 43.1% 73.7% 85.5% 62.2% 84.6%
Cubes-DC4 90.9% 39.2% 75.4% 86.1% 73.0% 85.3%
Cubes-DC8 92.7% 45.1% 75.4% 87.1% 70.3% 86.3%
Cubes-DC16 94.5% 47.1% 75.4% 88.6% 70.3% 87.8%

we can see that Cubes-Port4 constitutes a modest improvement
over Cubes-Seq, solving 84.4% vs 80.6% of benchmarks. How-
ever, increasing the number of portfolio processes in a way that
diversifies the search is no straightforward task. With that in
mind, it comes at no surprise that the improvements going from
Cubes-Port4 to Cubes-Port8 and Cubes-Port16 processes are
not as significant, with Cubes-Port8 solving 84.9% of the instances
and Cubes-Port16 solving 84.6% of the instances. In particular,
the diversity gained from the extra configurations considered
in Cubes-Port16 is not enough the overcome the performance
penalty of using 16 cores in the system architecture used for test-
ing.

5.1.4 Divide and Conquer. In Figure 12, we present the results for
the divide-and-conquer approach for 4 processes (Cubes-DC4), 8
processes (Cubes-DC8) and 16 processes (Cubes-DC16). In the plot
we can see that going from Cubes-Seq to Cubes-DC4, Cubes-DC8
and Cubes-DC16, provides small improvements to the number
of instances solved: 80.6%, 85.3%, 86.3% and 87.8%, respectively.
If limited to 10 seconds, the difference becomes slightly larger
with Cubes-Seq solving 54.6% of the instances, Cubes-DC4 solving
69.9%, Cubes-DC8 solving 72.6% and Cubes-DC16 solving 74.4%. In
Table 2, we can see that Cubes-DC16 is best overall configuration
for both 10 minutes and 10 seconds. Furthermore, it is also the best
configuration for all benchmarks except recent-posts under 10
seconds, and all benchmarks except recent-posts and textbook
for 10 minutes.

Next, we analyze the effectiveness of thework splitting technique
inCubes-DC. For each instance, we compute the equivalent number
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Figure 11: Performance comparison of different portfolio

configurations.

of processes, which is defined as CPU Time / Wall Clock Time and
is a measure of how much time each of the processes was stalled. A
value of 1 means that if the work were uniformly distributed among
processes, a single one would be enough to perform the same task
in the same amount of time. On the other hand, a number equal to
the real number of processes used means that every process was
used all of the time.
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Figure 12: Performance impact of using different numbers

of processes in Cubes-DC. Cubes-Seq also shown as a com-

parison point.

We compute this metric forCubes-DC16, ignoring instances that
took less than 20 seconds to be solved, as the inherently sequen-
tial initialization procedure distorts the metric for these instances,
and conclude that 75.5% of the instances have an equivalent pro-
cess ≥ 15, that is, it would require at least 16 processors to do the
same work in the same amount of time even if it were perfectly
distributed.

Cubes-DC is non-deterministic, which means that, if run several
times, it does not always produce the same solutions nor solve
the same benchmarks. We chose a subset of the benchmarks and
executed Cubes-DC16 for each of them 10 times, in order to count
the number of different outcomes. These tests were executed using
8 processes, with a 5 minute time limit. We randomly selected 1% of
instances, which amounts to 38 benchmarks. Of these, Cubes-DC
solved 33 of them on all 10 executions, while 2 benchmarks were
solved only once, 1 benchmark was solved in 3/10 executions and 2
benchmarks were not solved in any execution. Furthermore, the
median number of different solutions was 2, while the average was
2.05, the mode was 1, and the maximum was 6.

6 CONCLUSION AND FUTUREWORK

In this work, we explored the topic of Parallel Program Synthesis.
We propose a new sequential program synthesizer, Cubes-Seq,
which is based on Sqares and constitutes an improvement to the
state of the art in sequential SQL synthesis. We then use Cubes-Seq
as a building block, and propose Cubes-Port and Cubes-DC, two
parallel synthesizers for SQL, using techniques inspired by parallel
constraint solvers.

We performed an extensive evaluation the of the implemented
tools, comparing them with Sqares and Scythe. To perform this
comparison, we used 200 benchmarks from previous work in PBE
SQL synthesis, along with 3765 benchmarks which we adapted
from NLP SQL synthesizers. We show that Cubes-Seq is able to
solve 80.6% of the considered instances, while Sqares and Scythe
can only solve 26.3% and 39.7%, respectively. We also show that
using parallelism provides a significant performance improvement

with Cubes-DC solving 87.8% of the instances and Cubes-Port
solving 84.9%. Finally, we show that Cubes-DC scales better with
the number of available processors than Cubes-Port.

6.1 Future Work

The number of processing cores available in a CPU is limited by
physical and manufacturing constraints. As such, even very high-
end processors have at most 72 cores, which limits the scalabil-
ity of Cubes-DC. A possible solution for this problem is to use a
distributed approach, instead of multi-core. This improvement is
expected to not have a large impact in the structure of Cubes-DC,
since inter-process communication is already done using message
passing techniques, and no shared memory is used.

Regarding the cube generation order, more elaborate machine
learning techniques could be used such as using pre-trained bigram
scores, or using neural networks to predict the most likely cubes.
We could also explore other techniques used in Propositional Satisfi-
ability solvers, such as restarting the search after 𝑛 programs/cubes
have been attempted.

It would also be interesting to add an option for Cubes-DC to be
more deterministic (at the cost of performance). Proposed changes
include: (i) updating the bigram scores in batches and in a deter-
ministic way, (ii) solve cubes in batches so that processes stay
synchronized — this would require that cubes be of approximately
the same difficulty in order to reduce stalls, and (iii) either find a
deterministic way to assign generated cubes to the available pro-
cesses or disable some optimizations with are process-local and
depend on the order the received cubes.

Finally, Cubes-Port can be improved by combining it with new
state-of-the-art program synthesizers.
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