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“From now on you’re going to have to think.

There’s a reason why we’re born with brains in our heads, not rocks.”

— Christopher Paolini, Eragon

iii



iv



Acknowledgments

I would like to start by thanking my advisors, Professor Vasco Manquinho and Miguel Neves, for guiding

me throughout this thesis and introducing me to the world of academic research. I would also like to

thank Ruben Martins and Miguel Ventura for their invaluable insights and perspectives.

To my parents, I must be eternally grateful for encouraging me to always pursue my goals and be the

best person I can be.

To Sampata, I would like to say thank you guys. This surely would not have been possible without

you.

I would also like to thank Cristina, Clara, Óscar, and Pedro. Without them, my first years in Lisbon

would not have been the same.

Finally, I would like to extend my thanks to all my friends and family who contributed to this work

directly or indirectly.

Thank you.

Ricardo

This work was supported by OutSystems and by national funds through FCT, under projects

UIDB/50021/2020, DSAIPA/AI/0044/2018, and project ANI 045917 funded by FEDER and FCT.

v



vi



Resumo

À medida que a transformação digital global ganha velocidade, mais e mais pessoas vêem o seu tra-

balho dependente de tarefas relacionadas com a manipulação de dados. Um caso particular em que

isso acontece são as Plataformas de Desenvolvimento Baixo-Código (PDBC), que permitem que uti-

lizadores sem experiência em programação desenvolvam soluções digitais de forma rápida e eficaz.

No entanto, quando é necessário implementar lógica complexa durante o desenvolvimento de uma apli-

cação, por exemplo ao lidar com consultas a bases de dados, essas plataformas podem ainda assim

ser demasiado complexas para que um utilizador iniciante tenha sucesso. A solução para este prob-

lema é a Síntese de Programas: a tarefa de derivar automaticamente um programa com base numa

especificação. Nos últimos anos, muitos avanços foram feitos nesta área. Ainda assim, devido à na-

tureza indecidível do problema, a Síntese de Programas ainda se limita fundamentalmente a programas

pequenos e simples. Para além disso, as ferramentas atuais não tiram proveito dos aumentos recentes

no número de núcleos por processador.

Nesta tese de dissertação, apresentamos CUBES, um sintetizador paralelo de programas para o

domínio de consultas SQL usando exemplos de entrada-saída. Usamos SQUARES como ponto de

partida, e modificamo-lo, estendendo a sua Linguagem Específica de Domínio, mudando a forma como

os programas são enumerados e introduzindo novas formas de poda. De seguida, usamos este novo

sintetizador, CUBES-SEQ, como um bloco de construção para o desenvolvimento de um sintetizador

paralelo de SQL. Exploramos técnicas usadas em solvers paralelos de Satisfatibilidade Proposicional e

adaptamo-las ao campo de Síntese de Programas. Em particular, exploramos abordagens de portfólio e

dividir-para-conquistar, que implementamos em CUBES-PORT e CUBES-DC, respectivamente. Por fim,

realizamos uma extensa análise da ferramenta CUBES, comparando-a com o estado da arte anterior,

em instâncias novas e pré-existentes.

Palavras-chave: Síntese de Programas, Síntese Paralelo de Programas, Engenharia Re-

versa de Consultas, Linguagem de Consulta Estruturada (LCE), Portefólio, Dividir-para-conquistar
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Abstract

As the global digital transformation gains traction, more and more people see their work dependent

on data manipulation tasks. One particular case where this is happening are Low-Code Development

Platforms (LCDPs) which allow users with no background in programming to quickly develop digital

solutions. Nevertheless, when complex logic is required during the development of an application, such

as when dealing with queries to databases, these platforms can still be too complex for a novice user

to succeed. The solution for this problem is Program Synthesis: the task of automatically deriving a

program from a specification. In recent years, many advances have been made in program synthesizers.

However, due to the undecidable nature of the problem, Program Synthesis is still mostly limited to small

and simple programs. Furthermore, current tools do not take advantage of recent increases in the

number of cores per processor.

In this dissertation thesis, we introduce CUBES, a parallel program synthesizer for the domain of SQL

queries using input-output examples. We use SQUARES as a starting point, and modify it by extending

its Domain Specific Language, changing how programs are enumerated and introducing new forms of

pruning. We then use this new synthesizer, CUBES-SEQ, as a building block for the development of a

parallel SQL synthesizer. We explore techniques used in Parallel Propositional Satisfiability solvers and

adapt them to the field of Program Synthesis. In particular, we explore portfolio and divide-and-conquer

approaches, which we implement in CUBES-PORT and CUBES-DC, respectively. Finally, we perform an

extensive analysis of CUBES, comparing it with previous state of the art, on both pre-existing and new

benchmarks.

Keywords: Program Synthesis, Parallel Program Synthesis, Query Reverse Engineering,

Structured Query Language (SQL), Portfolio, Divide-and-conquer
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Chapter 1

Introduction

In the age of digital transformation, more and more people are being re-assigned to tasks that require

familiarity with programming or database usage. However, many users have limited knowledge in these

areas [45]. A crucial tool for accelerating this digital transformation are Low-Code Development Plat-

forms (LCDPs), such as OutSystems1, which according to Gartner, will account for more than 65% of

application development activity by 2024 [12]. These platforms allow users with very little programming

knowledge to quickly and easily develop digital solutions. However, one area that is still lacking is the

implementation of custom domain logic. In the particular case of database manipulations, it is common

that new data analysts using these tools are domain experts, but lack the technical skills to build queries

in a language such as Structured Query Language (SQL). As a result, several new systems have been

proposed in order to automatically handle table manipulations in R or generate SQL queries for relational

databases [9, 10, 28, 42].

The goal of Query Synthesis is to automatically generate an SQL query that corresponds to the

user’s intent. In many cases, the user specifies their intent through one or more examples, where each

example contains a database and an output table that results from querying the database.

Figure 1.1 illustrates an input-output example with two input tables (Courses and Grades) and an

output table. The output table corresponds to counting the number of grades in each course. In this

example, the goal is to synthesize the following SQL query:

SELECT CourseName, count(*) AS 'GradeCount'

FROM Grades

NATURAL JOIN Courses

GROUP BY CourseName

Observe that, for a person with limited database training, in many situations it is easier to define

one or more examples than to learn how to write the desired SQL query. Even for people that work with

LCDPs, with some SQL knowledge, query synthesizers can decrease the time to write database queries.

In this scenario, reducing the time spent in query synthesis becomes crucial. A possible technique that

1https://www.outsystems.com/

1

https://www.outsystems.com/


CourseID CourseName

10 Programming
11 Algorithms
12 Databases

(a) The Courses table.

CourseID StudentID Grade

10 36933 A
11 36933 B
12 36933 A
10 37362 A
12 37362 C
11 37453 A
10 37510 B
12 37510 A
10 37955 A

(b) The Grades table.

CourseName GradeCount

Programming 4
Algorithms 2
Databases 3

(c) The output table.

Figure 1.1: Two input tables: Courses and Grades. Output table: number of grades per course.

remains as of yet unexplored in the field of table manipulation synthesis is to use parallelism to reduce

synthesis time while also increasing the number of problems that can be solved.

1.1 Contributions

In this thesis, we introduce CUBES, a novel parallel synthesizer for SQL queries. We start by extending

an existing synthesizer, SQUARES, in order to improve its performance and expand the range of queries it

supports. Next, we use that new synthesizer as a building block for the development of parallel synthesis

algorithms. To summarize, this thesis makes the following contributions:

• We support additional table manipulation operations when compared to current state-of-the-art

synthesizers, thus increasing the range of supported programs;

• We improve the enumeration of possible programs in the synthesis procedure by using a more suit-

able constraint solver configuration, and integrate additional pruning techniques based on proper-

ties of the input;

• We introduce a parallel SQL synthesizer using portfolio approaches, which consist in using dif-

ferent strategies to explore the full search space in parallel, and divide-and-conquer approaches,

which consist in splitting the search space in smaller partitions and searching those partitions in

parallel;

• We perform an extensive experimental analysis on a very large set of benchmarks in order to

evaluate each of the proposed techniques.

Overall, we implement three modes of operation in CUBES:

• CUBES-SEQ: a sequential SQL synthesizer;

• CUBES-PORT: a parallel SQL synthesizer using portfolio solving;

• CUBES-DC: a parallel SQL synthesizer using divide and conquer.

2



1.2 Document Structure

This document is organized as follows. In chapter 2 we start by introducing preliminary concepts needed

to understand the rest of this document. Next, in chapter 3 we introduce Program Synthesis and Parallel

Propositional Satisfiability solving and discuss state of the art techniques for these fields. Afterwards,

chapter 4 discusses sequential state of the art tools for the synthesis of SQL queries that are relevant to

our work.

Following that, in chapter 5, we present our new sequential synthesizer, CUBES-SEQ, that improves

upon and extends the SQUARES synthesizer. In chapter 6, we propose CUBES-PORT and CUBES-DC,

two new parallel synthesizers that integrate known techniques from Parallel Constraint Reasoning

solvers and adapt them to Parallel Program Synthesis. Next, in chapter 7 we evaluate the different

configurations of our solver and compare them to previous state of the art in SQL synthesis. Finally, we

conclude with some final remarks in chapter 8.

3
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Chapter 2

Preliminaries

In this chapter we introduce background concepts that are required to understand the rest of the docu-

ment. In particular, we start by introducing Propositional Satisfiability and Satisfiability Modulo Theories.

Next, we introduce tables and queries, since this work focuses on the synthesis of table manipulations.

Finally, we define languages, programs, and the Program Synthesis problem.

2.1 Propositional Satisfiability

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. A literal is a variable x ∈ X or its negation

¬x. A clause is a disjunction of literals: c = (l1 ∨ l2 ∨ · · · ∨ lk). Finally, a formula in Conjunctive Normal

Form (CNF) is a conjunction of clauses: φ = (c1 ∧ c2 ∧ · · · ∧ cm).

An assignment to the formula’s variables is a mapping from X to {true, false}. We say that a clause

is satisfied by some assignment α if any of its literals are true under α. Moreover, a formula is satisfied

by an assignment α if all its clauses are satisfied.

The Propositional Satisfiability (SAT) problem consists in, given a CNF formula φ, finding an assign-

ment such that φ is satisfied or prove that no such assignment exists.

Example 2.1.1 Let φ = (x1 ∨x2)∧ (x3 ∨¬x2). This formula is satisfiable (SAT) and a possible satisfying

assignment is {x1 7→ true, x2 7→ false, x3 7→ true}.

Now consider the formula φ′ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2) ∧ ¬x1 ∧ ¬x3. The formula is unsatisfiable

(UNSAT) because no assignment exists that satisfies φ′.

2.2 Satisfiability Modulo Theories

SMT is a generalization of SAT where the domain of variables is extended with regard to some back-

ground theory, T [3]. A theory is defined by a set of axioms in the underlying logic.

Given a theory T , a T -atom is a ground atomic formula in T . A T -literal is either a T -atom, t, or

its negation ¬t. Finally, a T -formula is like a propositional formula but composed of T -literals instead

5



of propositional literals. The SMT problem consists of finding an assignment to the variables in a given

formula φ such that φ is satisfied, or prove that no such assignment exists.

Some examples of theories include the theory of Equality with Uninterpreted Functions (EUF), the

theory of Linear Integer Arithmetic (LIA) and the theory of data types [2]. It is also possible to combine

different theories [3].

Example 2.2.1 Consider the formula φ := x > z+1∧x < 0, in the theory of LIA. A satisfying assignment

to the formula is, for example, {x = −1, z = −5}.

Consider now the formula φ′ := x ≥ 0 ∧ y > 42 ∧ x + y = 7. It is easy to see that there can be no

satisfying assignment to φ′. Therefore, we say that φ′ is unsatisfiable.

2.3 Tables and Queries

Definition 2.3.1 (Table) A table is a tuple (H,B), where H is a named tuple of domains and B is a set

of named tuples such that for all name-value pairs, (n, v), of all elements of B, v ∈ H.n should hold.

That is, the elements of B should respect the domains defined in H.

Example 2.3.1 In Figure 2.1, we present a few examples of tables. In the rest of this document, we omit

the domains when they can be easily inferred or are not relevant. The first row of each table represents

the header, H, and the following rows represent the body, B.

recipe_id [Nat] recipe_name [Str]

1 Cake
2 Scrambled Eggs

(a) The recipe table.

ing_id [Nat] ing_name [Str]

1 Eggs
2 Flour
3 Sugar

(b) The ingredient table.

recipe_id [Nat] ing_id [Nat] amount [Str]

1 1 2
1 2 1 cup
1 3 2/3 cup
2 1 3

(c) The amount table.

Figure 2.1: Example tables. These tables are used throughout the document.

Definition 2.3.2 (Query) A query is a function Q : Dn 7→ D, where D is the domain of tables.

Example 2.3.2 Consider a function join that takes as argument two tables, and returns a new table

that corresponds to the natural join between the two tables.

A possible query using this function would be join(join(recipe, amount), ingredient) where

recipe, amount and ingredient are the input tables. This would be equivalent to the SQL query:
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SELECT * FROM recipe

NATURAL JOIN amount

NATURAL JOIN ingredient;

Applying this query to the tables from Example 2.3.1 results in the following new table:

ing_id recipe_id recipe_name amount ing_name

1 1 Cake 2 Eggs

1 2 Scrambled Eggs 3 Eggs

2 1 Cake 1 cup Flour

3 1 Cake 2/3 cup Sugar

2.4 Languages and Programs

A formal language L over an alphabet Σ is a subset of Σ∗, where Σ∗ is the set of finite sequences

composed of elements of Σ. For the purpose of this document, we restrict languages to those that can

be defined using a context-free grammar.

Definition 2.4.1 (Context-free Grammar) A Context-free Grammar (CFG) is represented as a tuple

G = (V,Σ, P, s) [37] where:

1. V is a finite set of symbols, called non-terminal symbols;

2. Σ is a finite set of symbols, called terminal symbols;

3. P ∈ V → (V ∪ Σ)∗ is a finite set of production rules;

4. s ∈ V is the starting symbol.

In this document terminal symbols are typeset in monospace while non-terminal symbols are high-

lighted in italic.

Example 2.4.1 Consider the following context-free grammar for a small set of operations with ta-

bles:

table → recipe | ingredient | amount

| select(table, cols, distinct) | join(table, table)

cols → col | col, cols

col → recipe_id | recipe_name | ing_id | ing_name | amount

distinct→ true | false

Some examples of valid elements of the language this grammar represents are: recipe;

join(recipe, amount) and select(recipe, recipe_name, false).
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Definition 2.4.2 (Domain Specific Language) A DSL is a language that can be represented by a

context-free grammar, augmented with a semantics that specifies the meaning of the productions of

the language.

Unlike full programming languages like C or Python, DSLs are only suitable for a specific purpose,

such as table manipulation tasks.

Definition 2.4.3 (DSL Component) The components of a DSL are the productions of the underlying

CFG that represent an operation of the language. Components typically have arguments which are the

non-terminal symbols of the right-hand side of the production.

Example 2.4.2 The components of the DSL with the CFG presented in Example 2.4.1 are select and

join.

Definition 2.4.4 (DSL Semantics) The semantics of a DSL is a mapping, Ψ, from each construct of the

grammar to an SMT formula that relates the inputs of that construct with the output. The semantics may

be under-specified, or not, depending on the usage.

Example 2.4.3 Consider a DSL that contains a construct add(n,n). A possible semantics for this

construct could be y = x1 + x2, where y represents the return value and x1 and x2 represent the inputs.

Definition 2.4.5 (Program Space) Program space refers to the set of possible productions of the gram-

mar in a given DSL.

Definition 2.4.6 (Complete Program) A complete program on some DSL is a production of the gram-

mar of that DSL, containing only terminal symbols.

Definition 2.4.7 (Partial Program) Partial programs on some DSL are productions of the grammar of

that DSL, containing non-terminal symbols and as such represent many possible complete programs.

Furthermore, a sketch is a partial program where all missing constructs are either inputs or constants.

Example 2.4.4 Some complete programs produced by the grammar in Example 2.4.1 are: recipe or

join(recipe, amount). By contrast, some examples of incomplete programs are: join(recipe,table)

or select(table,distinct).

Programs can be represented in textual form or using an AST. In Figure 2.2 we present a program

and the corresponding AST, using the grammar in Example 2.4.1.

2.5 Synthesis Problem

According to Gulwani et al. [14], Program Synthesis is a second-order search problem where the goal is

to find a program that satisfies a given specification.
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join(join(recipe, amount),
ingredient)

join

join

recipe amount

ingredient

Figure 2.2: Example of a program produced by the grammar from Example 2.4.1, and the corresponding
AST.

Definition 2.5.1 (Problem Formulation) The synthesis problem consists in solving the second-order

formula

∃f ∀x. P [f,x]

where f is the second-order variable representing the program and P is a relation between programs

and arguments, such that P [f,x] is true if and only if program f satisfies the specification for input x.

Under this formulation, finding a solution to the synthesis problem is equivalent to finding a valid

assignment to f . However, being a second-order problem means that the problem is undecidable in

general and that a complete and sound algorithm does not exist.

The specification for a Program Synthesis problem can be of many types, such as: type-based [29],

natural language [4, 5, 44], formal specifications [30], code snippets [5] or input-output examples [4, 7,

9, 10, 33, 36, 42]. In our case, we focus on problems specified using input-output examples.

A specification consisting of input-output examples is a set, E , containing pairs (xi, yi). Each pair is

called an example where xi are the inputs and yi is the expected output.

Example 2.5.1 The tuple ((Courses, Grades),Output), using the tables from Figure 1.1, constitutes an

input-output example for the following query:

SELECT CourseName, count(*) AS 'n'

FROM (SELECT *

FROM Grades NATURAL JOIN Courses)

GROUP BY CourseID

Finally, the problem of Program Synthesis based on input-output examples can be stated as:

Definition 2.5.2 (Programming by Example) Given a set, E , of input-output examples (xi, yi) the Pro-

gramming by Example problem can be defined as follows:

∃f.
∧

(xi,yi)∈E

f(xi) = yi

9



10



Chapter 3

Background

This chapter describes the theoretical background required for the development of a parallel program

synthesizer, and is divided in two sections. In the first section, we describe the Program Synthesis

problem and the different techniques that can be used for synthesis. In the second section, we explain

different methods for solving constraint problems using multiprocessing.

3.1 Program Synthesis

In this section, we make a brief overview of previous work on the field of Program Synthesis. We begin

with some of the first approaches and work through their shortcomings and evolution. Finally, we discuss

how these techniques can be applied to synthesize queries from examples.

3.1.1 Deductive Synthesis

Deductive approaches to Program Synthesis require a complete formal specification of the intended

behavior for the program. Some of the first automated systems [13] for Program Synthesis worked by

using a system of axioms and deductive rules. These rules were then used to construct a proof of the

specification [31]. Finally, it was possible to derive a correct program from the proof.

The deductive approach to Program Synthesis has become less popular over time as writing the

required formal specifications can sometimes be as hard as writing the program itself [14].

3.1.2 Inductive Synthesis

A different approach is to work with incomplete specifications that only partially specify the expected

behavior. One particularly interesting instance of inductive synthesis is Programming by Example

(PBE) [31], as formalized in Definition 2.5.2. Unlike deductive synthesis approaches, PBE tools [7,

9, 10, 31, 33, 36, 42] are much easier to use as they require only a set of input-output examples as

specification. Therefore, using PBE does not require knowledge of formal logic.

11



Figure 3.1: Example of Flash Fill in action, running on Excel version 1910.

The main drawback of this approach is that, by definition, there may be different programs, with differ-

ent behaviors, that satisfy the given partial specification. This means that one may need to disambiguate

between several candidate programs.

Distinguishing Inputs One technique for choosing between different possible programs is called dis-

tinguishing inputs [19]. When using this approach, the synthesizer returns a set of new input-output pairs

such that the candidate programs behave differently from each other. The user needs only to choose

the correct pair and the synthesizer adds it to the specification and tries to synthesize a new program.

This is done until only one candidate program is left.

Flash Fill A particularly prominent real-world application of PBE is Flash Fill [15], available in Excel

since 2013. This tool can be used to auto-complete columns after manually filling in the first few exam-

ples. In Figure 3.1 we show an example of Flash Fill in execution. The user has already filled the first

column of the sheet with the names of the ACM Turing award recipients and is now filling the second

column. Flash Fill uses the first few lines of the table as examples and induces a program that imple-

ments the users’ intent. In this particular case, it induces that the user wants the column to contain the

last names, offering to fill the rest of the entries.

3.1.3 Syntax-Guided Synthesis

A popular method to improve inductive synthesis procedures is to restrict the space of possible programs

using syntactic constraints. By using a DSL instead of a full programming language, the search space

is reduced, leading to improvements to the tractability of the problem [1].

This approach has been formalized under the name Syntax-Guided Synthesis (SyGuS). The work

by Alur et al. [1] describes the input to the SyGuS problem as consisting of a background theory (like the

ones described in section 2.2), a semantic correctness specification (as an SMT formula) and a syntactic
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description of candidate implementations (as a DSL). This approach results in a general framework that

is not restricted to a single programming language or paradigm.

However, SyGuS also has the disadvantage that it requires both the DSL and the specification to be

defined in terms of the theories supported by SMT solvers. This makes some problems very difficult to

specify, as is the case of table manipulation operations.

DSL Design

According to Gulwani et al. [14] there are four main factors to take into account when designing a DSL

for Program Synthesis:

• Balanced Expressivity – the DSL should be expressive enough to enable all relevant tasks to

be articulated, but restrictive enough so that the search space does not become so large that the

synthesizer is unable to provide a solution in a reasonable amount of time;

• Operator Choice – the operators in the DSL should be such that the synthesizer can reason about

the semantics of the programs;

• Naturalness – the programs allowed by the DSL should be easy to understand by the users;

• Efficiency – the operators should have fast implementations, such that the resulting programs are

not prohibitively slow (there have been developments on this front by Knoth et al. [21]).

3.1.4 Counter-Example Guided Inductive Synthesis

As described in section 2.5, Program Synthesis is a second-order problem:

∃f ∀x. P [f,x] (3.1)

However, verifying if a given program f satisfies a specification is a first-order problem:

∀x. P [f,x] (3.2)

Furthermore, instead of trying to prove that P holds for all possible inputs, we can try to prove that

there is no input such that P does not hold. To that end, we can equivalently try to refute the following

formula:

∃x. ¬P [f,x] (3.3)

Therefore, a common technique for Program Synthesis is to perform a search over the space of pro-

grams and then verify each candidate solution, by trying to falsify the formula above. In Equation 3.3, x is

called a counter-example – an input such that the program behaves incorrectly, i.e., does not satisfy the

specification. This approach is called CEGIS and is used in several synthesizers, such as SKETCH [38]

and BRAHMA [19].
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DSL

Program

Fail

Figure 3.2: Diagram of a CEGIS loop.

In Figure 3.2 we present a diagram of the typical CEGIS loop. The synthesizer receives the specifi-

cation and the DSL. In each iteration, the program enumerator generates a new program based on the

DSL, such that it satisfies the specification for all current counter-examples.

For each such program, f , the verifier checks, by solving Equation 3.3, if there exists an input such

that the program specification is violated. If such an input does not exist, then f is deemed correct

and the synthesis ends. Otherwise, that input becomes a new counter-example which is then used to

refine the search for new candidate programs. If the enumerator runs out of programs without finding a

solution, the synthesis fails.

3.1.5 Program Enumeration

CEGIS relies in continuously enumerating the programs supported by a given DSL. This subsection

describes two techniques for enumerating programs using an SMT solver, along with a 2-step approach.

Tree-based Enumeration

When using tree-based enumeration, the goal is to encode programs as a tree of operations, simi-

larly to an AST. A k-tree is a tree that allows all programs of a given grammar and a given size to

be represented. In a k-tree all nodes except the leaves have exactly k children. The k should be the

maximum number of arguments of any given component of the grammar. In the case of the grammar

presented in Example 2.4.1, k would be 3, as the component that has the largest number of argu-

ments is select(table, cols, distinct). In Figure 3.3 we present the k-tree for this grammar, with

maximum depth 2, together with an assignment to the nodes of the tree corresponding to the program

join(join(recipe, amount), ingredient).

By encoding this k-tree representation in an SMT formula, we can generate candidate programs

using an SMT solver. However, the k-tree representation has the big downside of growing exponentially

as the maximum depth increases [27]. This means that generating larger programs using a k-tree quickly

becomes intractable.
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N0 join

N1 join

N4

recipe

N5

amount

N6

N2 ingredient

N7 N8 N9

N3

N10 N11 N12

Figure 3.3: k-tree of depth 2 for the grammar in Example 2.4.1, together with the node assignments
for the program join(join(recipe, amount), ingredient). Grayed-out nodes are not used for rep-
resenting this program.

comp1 join

arg1,1

recipe

arg1,2

amount

arg1,3

comp2 join

arg2,1

r1

arg2,2

ingredient

arg2,3

Figure 3.4: Representation of the line-based encoding for the grammar in Example 2.4.1 considering
two lines. Also shown are the node assignments for the program in Example 3.1.1. Grayed-out nodes
are not used for representing this program.

Line-based Enumeration

An alternative to the k-tree representation is to encode the program space using a line-based represen-

tation instead of as a tree [27], which is particularly useful for enumerating imperative-style programs.

Example 3.1.1 Consider once again the program join(join(recipe, amount), ingredient). A pos-

sible line-based representation of this program would be:

r1 = join(recipe, amount)

r2 = join(r1, ingredient)

In Figure 3.4, we show a line-based representation for 2-line programs of the grammar from Exam-

ple 2.4.1. For each line, i a fresh variable, ri, is created. This variable holds the result of that line and

allows it to be used in following lines. In particular, for a given line p, it is possible to access the results of

previous lines using the variables rm, 1 ≤ m < p. In this representation adding new lines would require

just k + 1 extra nodes per line, whereas the original k-tree requires an exponentially increasing number

of nodes as we increase the depth.
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N0 join

N1 join
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N2
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Figure 3.5: k-tree of depth 2 for the grammar in Example 3.1.2, together with the node assignments for
the sketch join(join(table,table),table). Grayed-out nodes are not used for representing this sketch.

2-step Enumeration

A different way to improve CEGIS-based Program Synthesis is to use 2-step enumeration: (i) sketch

generation – generating sketches based on the grammar, and (ii) sketch completion – filling in the

missing parts of those sketches.

Several synthesizers use this technique [10, 11, 33, 42, 44] and they differ in how each of the phases

is performed. One possible method is to use SMT-based enumeration for the first step, and graph-based

enumeration for the second [33].

In order to do sketch generation using SMT, the original grammar needs to be transformed so that

it no longer contains any inputs or constants. In Example 3.1.2 we show an example of such a trans-

formation. After obtaining a sketch, the algorithm relies on a simple graph search, like a Depth-first

Search (DFS), to fill-out the missing nodes.

Example 3.1.2 Applying the transformation to the grammar in Example 2.4.1, so that no inputs or con-

stants are present, results in the following new grammar:

table→ select(table) | join(table, table)

To generate the sketches we can, once again, use either the tree-based or the line-based encodings.

Suppose we choose to use a k-tree. Since this transformation typically reduces the maximum number

of arguments in the grammar, the k for the new grammar will be smaller. In Figure 3.5 we present the

new k-tree for the sketch join(join(table,table),table).

The advantages of this method are two-fold:

1. It reduces the cost of using an SMT solver by only using it to compute the semantic-rich parts of

the program: the functions and operations. Meanwhile, constants and inputs can be filled in later,

using a simpler, less expensive, method;

2. It naturally lends itself to parallelization by splitting the original problem into many smaller sub-

problems.
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Figure 3.6: Diagram of the architecture of the NEO synthesizer [9].

3.1.6 Conflict-driven Learning

A different approach to program synthesis is to start with an empty program, and continuously try to

extend it until we reach a point where the specification is satisfied [9]. This approach is called Conflict-

driven Learning. Figure 3.6 presents the architecture of NEO [9], a synthesizer that implements this

technique. We now briefly describe the components of this synthesizer.

Decide

The algorithm starts with an empty partial program containing just the starting symbol. At each iteration,

the decide component chooses a non-terminal symbol in the partial program and a production rule to

expand it. For example, if the partial program at step t is table, the program at step t + 1 might be

select(table, cols, distinct), by using the production rule table→ select(table, cols, distinct).

Deduce

For each partial program generated, NEO checks if it may be expanded into a program that satisfies

the specification. To do this, it combines the semantics of the DSL with the specification and generates

an SMT formula that represents the feasibility of the partial program. This procedure may have one of

the following outcomes: (i) nothing new is learned and the control is returned to the decide component,

(ii) some non-terminal symbols are deduced to only have one feasible completion, in which case a

new partial program containing those changes is returned to the decision procedure, or (iii) the partial

program is deemed unfeasible, in which case the control is passed to the analyze conflict component.

Analyze Conflict

If a conflict is found (i.e., the partial program cannot satisfy the specification), the root cause for that

conflict is analyzed, which may result in a set of other partial programs also being deemed unfeasible.

This information is passed to the decide component, which will use it in order to prune the program
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space. It is also possible that this component determines that there is no solution, based on previous

lemmas and the current conflict. In that case, the synthesis procedure terminates.

Example 3.1.3 Consider the following set of examples: E = {([1, 2, 3], [1, 2])}, and that the synthesizer

generated the candidate program map(input, . . . ), where map is an example of a higher-order function.

By analyzing this conflict, we can deduce that any program that always maintains or increases the

number of elements of the input will be rejected, since it will never satisfy the example.

3.1.7 Query Reverse Engineering

A particularly useful type of PBE problems are those pertaining to the manipulation of tabular data. Such

tasks include consolidating multiple data sources or reshaping tables [10].

Query Reverse Engineering (QRE) is a special case of PBE where the domain being considered is

that of tables. Given a set, E , of input-output table examples (di, qi), where di is a set of input tables and

qi is an output table, the QRE problem can be stated as follows:

∃Q.
∧

(di,qi)∈E

Q(di) = qi (3.4)

where Q is a query.

Applications in the area of cloud computing or machine learning require their users to manipulate

large amounts of data, which may not always be easy if the user is not an expert in data science. It is

also possible for users to be domain experts but have no knowledge of programming. QRE allows the

intended transformations to be specified using a few small examples. The generated query can then be

applied to larger data sets.

One common technique for tackling QRE problems is to use CEGIS and SyGuS, restricting the

search space to a DSL that is a subset of some query language, such as SQL or Python/R libraries [7,

9, 10, 33, 42].

3.2 Parallel Constraint Solving

When designing parallel algorithms for constraint solving there are two main approaches: divide and

conquer and portfolio solving [26]. According to Hamadi and Sais [16] there are two main issues we

need to deal with when developing such a system: (i) minimizing the idle time for each processing core,

and (ii) minimizing duplicate work and communication overhead between the processing cores.

In this section we introduce both approaches, their advantages and drawbacks. We also discuss how

the two issues can be addressed. We focus on research done in parallel SAT solvers as, to the best of

our knowledge, there is no work on the topic of Parallel Program Synthesis. However, the techniques

presented here should be adaptable to the Program Synthesis domain, since both SAT and Program

Synthesis are constraint problems.
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3.2.1 Divide and conquer

A divide-and-conquer algorithm is one where the problem we want to solve is divided into smaller sub-

problems. After solving the sub-problems, called the conquer phase, the solution to the original problem

can be derived from the different sub-problem results [6].

One of the ways of designing a parallel system for solving constraint problems is to find a way to

divide the search space, such that the simpler problems are independent and can be solved in parallel.

In this section, we discuss how to do that for the SAT problem.

Guiding Paths

Many of the techniques for Parallel SAT solving using divide and conquer make use of something called

guiding paths. A guiding path is a conjunction of literals and represents a partition of the search space.

Example 3.2.1 Consider a formula φ containing variable x. You can divide this problem into the two

sub-problems φ ∧ x and φ ∧ ¬x. The original formula is satisfiable if at least one of the sub-problems is

satisfiable. In this context, (x) and (¬x) can be seen as two guiding paths.

Load Balancing

Even though guiding paths can be used to split search spaces, there is no guarantee that the sub-

problems are of similar difficulty. Therefore, blindly splitting the search space may lead to load balancing

issues. In order to solve that problem, load balancing techniques need to be introduced.

Several parallel SAT solvers based on search space splitting use a master-slave architecture [26].

At any given point all slaves should be solving a sub-problem, defined by a guiding path. The master

process is responsible for balancing the load between these different processes, using dynamic work

stealing [26]. When one of the slaves becomes idle, it requests the master for some work. The master

is then responsible for choosing one of the other slaves and requesting it to split its search space. This

generates a new guiding path that is given as a starting point to the previously idle process. This is done

until a satisfying assignment is found, or until the search space has been fully explored.

Cube and Conquer

There are two main types of state-of-the-art sequential SAT solvers: Conflict-driven Clause Learning

(CDCL) solvers [24] and look-ahead solvers [17]. CDCL solvers use easy-to-compute heuristics and

are very good at solving industry-type problems. Look-ahead solvers, on the other hand, use very

expensive heuristics and are typically better at solving small but very hard problems. The cube and

conquer approach tries to combine these two methods for solving SAT.

The cube phase uses look-ahead solvers to try to identify which partial assignments to the variables

of a formula, φ, are most likely to produce small sub-formulas. Each of these sections is then represented

by a conjunction of literals, also called a cube. As such, cubes are analogous to guiding paths. In

Figure 3.7, we present a possible result of executing the cube phase of the algorithm.
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Figure 3.7: Possible partition of a formula φ. The two guiding paths/cubes GP1 and GP2 are represented,
respectively, by (¬x3 ∧ x2) and (x3).

Through this process, the search space is split into many smaller sub-formulas [18]. Finally, for

each cube c the sub-problem φ ∧ c is given to a CDCL solver. Since these sub-formulas are smaller,

CDCL solvers are expected to solve them very fast. The original formula φ is satisfiable if any of the

sub-formulas is satisfiable, and unsatisfiable otherwise.

For some problem instances, cube and conquer represents a major improvement in the performance

of SAT solvers [16]. But this approach also lends itself to parallelization on the second phase: the

different sections of the search space, represented by the cubes, are independent, and as such can be

solved in parallel.

3.2.2 Portfolio Solving

A different approach to designing a parallel solver is to take several complementary sequential solvers

and run them in parallel. As soon as one of them returns an answer, that answer is the solution and the

other processes can be stopped.

Virtual Best Solver

In SAT competitions, it is usual to present the results for the Virtual Best Solver (VBS), along with

the results for the competing solvers. The VBS solver consists in choosing, for each benchmark, the

best time among all the solvers. This results in a virtual solver that is as good as the best for each

benchmark. Using parallelization, and given enough resources, we can create a portfolio solver, based

on all the sequential solvers, that implements the VBS.

Diversification

It is important to note that the different sequential solvers in a portfolio must explore different parts of the

search space in order to have a good speed-up. This is called diversification and can be accomplished

by using different solvers or by using different initialization or configuration parameters for the same

solver.
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3.2.3 Clause Sharing

One of the main aspects of CDCL solvers is that they deduce new clauses as they explore the search

space. Furthermore, when CDCL solvers are used in parallel, it is possible to share these learned

clauses between them. This behavior is generally very helpful as it allows one to prune the search

space in all processes when one of them makes a new deduction. However, sharing all learned clauses

between all processes has proven to cause an exponential blow-up in the number of clauses, which

would slow the solver to a crawl [26]. Furthermore, it also incurs in communication overhead penalties.

Therefore, an estimate of the usefulness a given clause is needed, in order to share only clauses

that are likely to be helpful. Some examples of how to do this are to favor smaller clauses, or to consider

how many literals of the clause appear on the guiding path [16].
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Chapter 4

SQL Synthesis Tools

In recent years, many SQL synthesis tools have been proposed. These tools vary greatly in the types

of specification they require, with some using natural language [22, 35, 43, 44], some using input-output

examples [7, 9, 10, 23, 28, 39, 40, 42, 45], and others using multi-modal specifications [5]. In this

chapter we focus on two tools, SCYTHE [42] and SQUARES [7, 28], which use input-output examples as

their specification. We choose these tools because: (i) examples are often readily available to users

and are easy to understand even with limited technical knowledge, (ii) they have expressive DSLs which

cover many common queries, (iii) they are very efficient when compared with other SQL synthesis tools,

(iv) SQUARES’ DSL, in particular, is very easily extended, because SQUARES is built on top of the TRINITY

framework [25], and (v) their source code is available online and can be integrated in our tool.

4.1 SCYTHE

SCYTHE is a Programming by Example (PBE) synthesizer for SQL queries. As such, the desired program

is specified by stating what the output should be for some set of known inputs. An input-output example

consists of a set of tables as input, I, and an output table, Tout, that results from executing the desired

program over the input tables. Since tables are very rich structures, it is considered that one input-output

example is sufficient. The user may also specify a set of constants, c, that must be used somewhere in

the produced query.

SCYTHE follows an approach similar to the 2-step enumeration described in section 3.1.5. In the

first phase SCYTHE enumerates abstract queries, that is, queries where all filter conditions are replaced

with “holes”. Abstract queries can be evaluated by replacing holes with True, and therefore never filter

out any rows. The evaluation procedure follows the over-approximation rule: for any concrete query q

instantiated from an abstract query q̃ (by filling the holes with filter predicates) the output of q is contained

in the output of q̃. As such, by looking at the evaluation of a given abstract query it is possible to

determine if there is any instantiation of q̃ that can possibly lead to a solution. This allows SCYTHE to

discard unfeasible abstract queries before the second phase of the synthesis procedure.

In the second phase, after the possibly correct abstract queries have been enumerated, SCYTHE
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tries to instantiate them until a correct concrete query is found. Two optimizations are proposed that

make the second phase more efficient:

1. Equivalence classes are used to group programs so that the number of filter conditions that must

be evaluated is reduced;

2. Using the over-approximation rule, we know that all rows in the output table of a query q that

results from the instantiation of an abstract query q̃, must also be present in the output table of

that abstract query. As such, scythe represents intermediate tables as a tuple (T̃ , b) where T̃ is

the output of the corresponding over-approximation of the abstract query and b is a bitvector with

as many bits as there are rows in T̃ , and where bit i represents if row i of T̃ is present in the

intermediate table. This allows SCYTHE to reduce memory requirements and execution time [42].

Even so, SCYTHE’s memory usage depends heavily on the size of the input and output tables.

SCYTHE generates several possible solutions (that are all consistent with the user’s specification).

An heuristic is then used to rank the generated solutions, favoring those that are simpler and that use all

of the constants provided as input. Finally, the top-ranked queries are returned to the user.

4.2 SQUARES

SQUARES, like SCYTHE, is a PBE synthesizer for SQL queries, and receives one input-output example

as specification. Besides that input-output example, SQUARES uses some extra information about which

elements should appear in the query. The full list of specification elements is:

• a list of input tables (in Comma-Separated Values (CSV) format);

• an output table (in CSV format);

• an optional list of aggregation functions (ex. sum, avg, etc...);

• an optional list of constants that must appear in the query;

• an optional list of table columns that can appear in the query.

SQUARES uses a Domain Specific Language (DSL) to specify the space of possible programs. This

DSL is inspired by the operations available in the popular R data-manipulation library, dplyr, from

tidyverse1. In Figure 4.1 we present SQUARES’ DSL. Productions rules such as those corresponding

to cols or filterCondition depend on the program being synthesized, and as such are not presented.

As explained in section 2.4 a DSL used for enumeration must be translated into some programming lan-

guage in order to evaluate candidate programs and return the final answer to the user. In SQUARES, the

DSL in Figure 4.1 is translated into R for evaluation. However, SQUARES is also a SQL synthesizer and

as such an automated translation layer is used to convert the generated R program into a SQL query

when presenting the final answer to the user.

1https://www.tidyverse.org/
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table → input | inner_join(table, table) | inner_join3(table, table, table)
| inner_join4(table, table, table, table)
| filter(table, filterCondition)
| filters(table, filterCondition, filterCondition, op)
| summariseGrouped(table, summariseCondition, cols)
| anti_join(table, table) | left_join(table, table)
| bind_rows(table, table) | intersect(table, table)

tableSelect→ select(table, selectCols, distinct)
op → or | and
distinct → true | false

Figure 4.1: DSL used by the SQUARES synthesizer [7].

Program Enumerator

Program Verifier

Candidate
Program

Fail
Reason

Specification

R Program

Fail

Translation Layer

SQL Query

Figure 4.2: Diagram of SQUARES architecture.

Figure 4.2 shows that the synthesizer itself is composed of the Program Enumerator and the Program

Verifier. It receives a specification from the user and, if the synthesis is successful, returns an R program

that satisfies the specification. This R program is then automatically translated into an equivalent SQL

query.

4.2.1 Program Enumeration

At the core of SQUARES is a Program Enumerator. The purpose of the Program Enumerator is to

continuously generate new candidate programs based on the specification. Programs are enumerated

with the help of an SMT solver, using the line-based representation introduced by Orvalho et al. [27] and

described in section 3.1.5. Programs are enumerated in increasing number of lines of code. Here, we

explain how to encode this representation in an SMT formula and use it to enumerate valid programs.

Variables

Let us consider an encoding for a program with n lines and where the maximum number of arguments

for any given component is k. There are three main sets of variables to consider:

• C = {compi : 1 ≤ i ≤ n}, where each integer variable compi denotes the component used in line

i;
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comp1

type1

arg1,1 arg1,2 arg1,3

comp2

type2

arg2,1 arg2,2 arg2,3

Figure 4.3: Line-based representation for the grammar in Example 2.4.1 considering two lines. Each
tree represents a different line of the program.

• T = {typei : 1 ≤ i ≤ n}, where each integer variable typei denotes the return type of line i;

• A = {argij : 1 ≤ i ≤ n, 1 ≤ j ≤ k}, where each integer variable argij denotes the symbol

corresponding to argument j of line i.

Figure 4.3 shows an illustration of how the aforementioned variables relate to the line based repre-

sentation for the grammar from Example 2.4.1 (k = 3).

Consider also the following definitions:

• A set, I, containing all the productions that correspond to program inputs;

• A set, C, containing all components of the current DSL;

• A set, A, containing all productions that are valid arguments for some DSL component;

• A set, R = {reti : 1 ≤ i ≤ n}, containing pseudo-productions that represent the return of each line

in the program;

• A function, id : P 7→ N0, that maps DSL productions to unique integer identifiers;

• A function, type : P 7→ V , that maps DSL productions to their corresponding left-hand side;

• A function, type : C × N 7→ V , that given a DSL component and a number, j, returns the type of

the j-th argument of that component. If there is no argument with position j, then a special type,

ε, is returned;

• A function, arity : C 7→ N0, that maps DSL components to the number of arguments they receive;

• A function, tid : V 7→ N0, that maps DSL non-terminal symbols (in particular, those returned by

type) to unique integer identifiers;

• Let typeoutput be the expected return type of the complete program, i.e., the starting symbol of the

DSL.

Constraints

• Each line should be assigned a valid DSL component:

n∧
i=1

∨
c∈C

compi = id(c) (4.1)
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• The component used in a given line determines the return type of that line:

n∧
i=1

∧
c∈C

(compi = id(c)) =⇒ (typei = tid(type(c))) (4.2)

• For each line, the arguments should be either valid program symbols, or the return of a previous

line:

n∧
i=1

k∧
j=1

∨
s∈A∪{retr:1≤r<i}

argij = id(s) (4.3)

• For each line, the types of the arguments should match with the expected types for the selected

component:

n∧
i=1

∧
c∈C

arity(c)∧
j=1

∧
s∈{a∈A : type(a) 6= type(c,j)}

(compi = id(c)) =⇒
(
argij 6= id(s)

)
(4.4)

• When a return symbol is used as an argument, its type must match the expected argument type:

n∧
i=1

∧
c∈C

arity(c)∧
j=1

i−1∧
r=1

(
compi = id(c) ∧ argij = id(retr)

)
=⇒ (typer = tid(type(c, j))) (4.5)

• Unused arguments must be assigned the special symbol ε:

n∧
i=1

∧
c∈C

k∧
j=arity(c)+1

(compi = id(c)) =⇒
(
argij = id(ε)

)
(4.6)

• The type of the last line must be the same as the expected return type of the program:

∨
s∈{c∈C : type(c) = typeoutput}

compn = id(s) (4.7)

• Regarding the inputs, it is required that all of them appear at least once in the program:

∧
input ∈I

n∨
i=1

k∨
j=1

argij = id(input) (4.8)

Predicates

In addition to these constraints there are 4 predicates that can be used to further restrict the generated

programs.

The predicate is_not_parent(c1, c2) means that the result of a line with component c2 can not be

used as argument to a line with component c1. This predicate is encoded by the following constraint:
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n∧
i=1

k∧
j=1

i−1∧
r=1

(
compi = id(c1) ∧ argaj = id(retr)

)
=⇒ (compr 6= id(c2)) (4.9)

The predicate happens_before(a1, a2) means that the symbol a1 can only appear in a given line if

symbol a2 appears in a previous line. This predicate is encoded by the following constraint:

n∧
i=1

k∧
j=1

((
argij = id(a1)

)
=⇒

(
i−1∨
r=1

k∨
m=1

argrm = id(a2)
))

(4.10)

The predicate constant_occurs(c1, . . . ,cx) can be called with any number of symbols and makes

it so that at least one of them has to appear in the program. This predicate is encoded by the following

constraint:

x∨
l=1

n∨
i=1

k∨
j=1

argij = id(cl) (4.11)

The predicate distinct_inputs(c) states that for each line assigned component c, the arguments

of that line should be distinct from one another. This predicate is encoded by the following constraint:

n∧
i=1

k∧
j=1

∧
1≤l≤k∧ l 6=j

argij 6= argil (4.12)

4.2.2 Program Verification and Translation

In order to evaluate the candidate programs and check if they satisfy the user’s specification, SQUARES

translates them into R. Consider the following program produced using SQUARES’ DSL:

r1 = filters(input0, age == 46, age == 50, or)

out = select(r1, country, false)

This program is translated into the following R program for evaluation:

df1 <- input0 %>% ungroup() %>% filter(age == 46 | age == 50)

out <- df1 %>% ungroup() %>% select(country)

Next, the program is executed using the input example that the user provided. The output of the

program is then compared with the expected output. The comparison treats tables as a multi-set of

rows, meaning that row order is ignored. If the tables match, a solution to the problem has been found.

Finally, before presenting the program to the user, it must be converted into SQL. To do this the

dbplyr library is used. This library allows one to use regular databases as a back-end for dplyr opera-

tions and extract the corresponding SQL queries. The previous R program would be translated into the

following SQL query:

SELECT `country`

FROM `input0`

WHERE (`age` = 46.0 OR `age` = 50.0)

28



Chapter 5

CUBES: Sequential Synthesis

This work uses SQUARES as a starting point for creating a parallel SQL synthesizer. SQUARES was

chosen for this task because it allows for easy extension of the DSL and modification of the enumeration

and decision procedures.

In this chapter we describe the changes made to SQUARES that are not directly related to multi-

processing. In particular, how the range of supported programs was extended and how new forms of

pruning were introduced in order to improve synthesis performance. From now on, we will refer to the

improved version of SQUARES as CUBES-SEQ.

5.1 Extending the Domain Specific Language

In order to support a wider range of programs, SQUARES’ DSL was modified to be more expressive. In

this section, we will describe those changes. The new DSL is presented in Figure 5.1. Table 5.1 shows

the mapping from CUBES’ DSL to the corresponding R functions used for evaluation.

5.1.1 Changes to DSL Components

Select The select component was removed from the DSL and introduced as a post-processing step.

This allows for two important changes:

• The column names of the output table no longer have to match the input table names, nor contain

knowledge about the the desired program. For instance, in SQUARES a column in the output table

that was the result of computing the max of column colA would have to be called maxcolA or the

synthesizer would not be able to synthesize the program.

• During this post-processing step it is also checked if any columns should be sorted, according

to the expected output. If that is the case, then an arrange / ORDER BY instruction (in R/SQL,

respectively) is also added to the synthesized program.
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table→ input | natural_join(table, table) | natural_join3(table, table, table)
| natural_join4(table, table, table, table) | left_join(table, table)
| inner_join(table, table, joinCondition)
| cross_join(table, table, crossJoinCondition)
| filter(table, filterCondition)
| summarise(table, summariseCondition, cols)
| mutate(table, summariseCondition)
| union(table, table) | intersect(table, table, col)
| anti_join(table, table, cols) | semi_join(table, table)

Figure 5.1: DSL used by the CUBES synthesizer. New components are highlighted in bold.

Natural join The three inner join components have been renamed to natural_join, as they did not

allow to join columns with different names. Furthermore, these components were changed so that the

natural join between two tables with no columns in common returns the Cartesian product between

those tables (the previous behavior was to produce an evaluation error, which effectively disallowed

such joins). This change means that for a given set of arguments, all permutations of those arguments

now result in the same table. As such, for a given set of arguments, we only allow one specific order for

those arguments, removing equivalent programs from the search space.

Inner join A true inner_join component was added that allows to join tables using pairs of columns

with different names (consider the following very common use case: joining two tables, student and

class, by the respective columns id and student_id).

Cross join A cross_join component was also added that allows to join two tables with non equality

conditions. This component is implemented by computing the full Cartesian product of the two tables

and then selecting a subset of the rows, according to the specified condition. It is equivalent to the JOIN

ON operation in SQL.

Filter The filters component, which was used to combine several filter conditions, was

removed. As a replacement, filterCondition now contains compound conditions such as

name == ’John’ & age > 22. This change allows CUBES-SEQ to exclude many redundant combina-

tions that previously had to be individually evaluated. Consider the following examples:

• a > 2 & a < 2 is an unsatisfiable condition, and thus does not need to be considered;

• a > 2 | a < 2 is equivalent to a != 2, which makes it redundant.

Mutate The mutate component was added to the DSL. This component is similar to the summarise

component, in that it applies a function to some column, but differs in that it does not group rows, and

also does not reduce the number of columns nor rows in its output. Common situations where a mutate
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Table 5.1: Mapping from CUBES’ DSL to the corresponding implementation in R.

DSL Representation R code

natural_join(t1,t2) if (length(intersect(colnames(t1),
colnames(t2))) > 0) {

inner_join(t1, t2)
} else {

full_join(t1, t2, by=character())
}

natural_join3(t1,t2,t3) Implemented as
natural_join(natural_join(t1,t2),t3)

natural_join4(t1,t2,t3,t4) Implemented as
natural_join(natural_join3(t1,t2,t3),t4)

left_join(t1,t2) left_join(t1, t2)

inner_join(t1,t2,joinCondition) inner_join(t1, t2, by=c(joinCondition),
suffix = c(”, ’.other’))

cross_join(t1,t2,crossJoinCondition) full_join(t1, t2, by=character(),
suffix = c("", ".other")) %>%
filter(crossJoinCondition)

filter(t,filterCondition) filter(t, filterCondition)

summarise(t,summariseCondition,cols) t %>% group_by(cols) %>%
summarise(summariseCondition) %>% ungroup()

mutate(t,summariseCondition) mutate(t, summariseCondition)

union(t1,t2) bind_rows(t1, t2)

intersect(t1,t2,col) intersect(select(t1, col), select(t2, col))

anti_join(t1,t2,cols) anti_join(t1, t2, by=c(cols)))

semi_join(t1,t2) semi_join(t1, t2)

is required are cumulative sums, and the lead/lag functions which offset the values of a column by one

row.

Union The bind_rows component has been renamed to the more descriptive name union.

Intersect The intersect component now takes a column as an argument and returns only the inter-

section of that column, as in practice that is more useful than intersecting full tables.

Anti join The anti_join component also takes a (possibly empty) list of columns as an argument for

the same reason as intersect; if the list is empty, the original behavior is conserved.

Semi join The sibling component to anti_join, semi_join, has been added to the DSL.
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5.1.2 New Aggregation Functions

Several new aggregation functions are now supported: n_distinct, str_count, cumsum, pmin, pmax,

mode, lead, lag, median, rank and row_number. Some aliases are also supported, in order to facilitate

usage by users familiar with SQL: count is an alias for both n and n_distinct (activates both options),

and avg is an alias for mean.

5.1.3 Type Inference

The type inference mechanism has been overhauled, resulting in dates and times now being supported.

By default dates are parsed using the ISO 8601 format, but this can be overridden by specifying the

desired date format.

5.2 Quantifier-Free Finite Domain Theory

When using constraint solvers, a lower-level encoding is usually more efficient. Since all the variables

used in CUBES-SEQ’s encoding are either bounded integers or Boolean variables, a possible way to im-

prove performance is to use bit-blasting. Bit-blasting means converting all variables in the SMT formula

to Boolean variables and all constraints to CNF. To do this, the integer variables are first converted to bit

vectors, and then the bit-vectors are converted to sets of Boolean variables. The constraints are updated

to reflect these changes and then transformed into CNF. The result is a propositional logic formula in

CNF that can be solved using an off-the-shelf SAT solver.

The SMT solver used by CUBES-SEQ, Z3 [8], implements a theory that performs all these steps

automatically, including using an internal SAT solver to solve the resulting formula. This theory is called

Quantifier-Free Finite Domain (QF_FD).

5.3 Deducing Invalid Programs

One way to improve a program synthesizer is to reduce the number of incorrect programs that must be

tested before finding a solution. In the case of SQUARES, a common example are programs where at

some point a column that does not exist in the current context is referenced. Consider the following

program, which uses the tables from Example 2.3.1 and the DSL from Figure 5.1:

df1 = filter(recipe, ing_name == 'Eggs')

In this program, we are taking the recipe table and trying to filter its rows by selecting only the ones

where column ing_name is equal to ‘Eggs’. After a closer look to the recipe table it is clear that this

program makes no sense, as there is no ing_name column in this table. SQUARES enumerates such

programs because it uses a DSL that is defined at initialization time, containing all possible conditions,

which is then given to the SMT solver for it to generate candidate programs. Without some extra guid-

ance, there is no way for the SMT solver to only generate valid candidates.
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We introduce a new form of pruning that eliminates these invalid programs. All component arguments

are annotated with a pair of sets of columns. These annotations are then used to further constrain the

set of programs that can be return by the program enumerator. In Example 5.3.1 we show how these

annotations can be used to force all filter lines to always be valid. Note that the second annotation is

only needed for some argument types, in order to record extra information. One such case is presented

in Example 5.3.2.

Example 5.3.1 Consider again the previous program, which contains only one line: filter(recipe,

ing_name == ‘Eggs’). That line takes two arguments: recipe and ing_name == ‘Eggs’.

We annotate all arguments of type table with the columns they contain, so in this case recipe would

be annotated with {recipe_id, recipe_name}. Furthermore, we annotate filter condition arguments with

the columns they require to be present in order do produce a valid program. In this case ing_name

== ’Eggs’ would be annotated with {ing_name}. Finally, we encode that all filter operations must be

such that all the columns in the annotation of the second argument appear in the annotation of the first

argument in order to be valid.

The presented program violates these rules, and thus is surely incorrect.

In order to propagate the column information along the several lines of the program, each line is also

annotated with the set of columns available in the output table of that line. This information can then

be used like that of any other argument of type table. By implementing these kind of rules for all the

components we can greatly reduce the number of enumerated programs that are invalid due to column

name problems. As a result, the overall performance of CUBES-SEQ is improved.

In Figure 5.2 we show the inference rules for all the components of our DSL. Using these rules,

we can infer from the arguments of a given operation what columns would be present in the output

table if the line were executed. By extension, we can also determine invalid lines because no rule will be

applicable to them. The contents of each annotation are described in Figure 5.3. Finally, the introduction

of this new type of pruning makes the happens_before predicate described in section 4.2.1 redundant.

Hence, this predicate was removed.

Example 5.3.2 Consider the following summariseCondition: meanAge = mean(Age). The first annota-

tion of a summariseCondition corresponds to the columns that are “used”, that is, the columns that must

be present in order for the condition to be applicable. In this case the first annotation would be {Age}.

The second annotation corresponds to the columns that are generated by the summariseCondition, in

this case: {meanAge}.

When this condition is used in a mutate operation, rule MUTATE from Figure 5.2 states that if all of

the required columns (first annotation) are present in the table argument, then we can conclude that the

output table will be comprised of all columns that were already present in the input table, along with the

generated columns (second annotation).

The rules in Figure 5.2 are implemented directly as SMT constraints, which means the corresponding

invalid programs are never generated. To do this, the Bitvector Theory (BV) is used. The first step in
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output′ = table′1 ∪ table′2
NATURALJOIN

filterCondition′ ⊆ table′

output′ = table′
FILTER

output′ = table′1 ∪ table′2 ∪ table′3
NATURALJOIN3

output′ = table′1 ∪ table′2 ∪ table′3 ∪ table′4
NATURALJOIN4

joinCondition′ ⊆ table′1 joinCondition′′ ⊆ table′2
output′ = table′1 ∪ table′2

INNERJOIN

cols′ ⊆ table′1 cols′ ⊆ table′2 (cols′ 6= ∅ ∨ table′1 ∩ table′2 6= ∅)
output′ = table′1

ANTIJOIN

table′1 ∩ table′2 6= ∅
output′ = table′1 ∪ table′2

LEFTJOIN
output′ = table′1 ∪ table′2

UNION

col′ ⊆ table′1 col′ ⊆ table′2
output′ = col′

INTERSECT
table′1 ∩ table′2 6= ∅
output′ = table′1

SEMIJOIN

crossJoinCondition′ ⊆ table′1 crossJoinCondition′′ ⊆ (table′1 ∩ table′2)
output′ = table′1 ∪ table′2

CROSSJOIN

summariseCondition′ ⊆ table′ cols′ ⊆ table′ (cols′ ∩ summariseCondition′′) = ∅
output′ = summariseCondition′′ ∪ cols′ SUMMARISE

summariseCondition′ ⊆ table′
output′ = table′ ∪ summariseCondition′′ MUTATE

Figure 5.2: Inference rules used to determine valid programs. A′ denotes the first annotation of element
A, while A′′ denotes the second annotation. Where not mentioned, it is assumed that the second
annotation is = ∅.

this process is to determine the list of all possible column names in the program. This list is composed

of all columns that appear in input tables, along with all columns generated by a summarise or mutate

operations. Each set of columns in the encoding is then represented by a bitvector with length equal to

the size of the full list of tables. For a given set and corresponding bitvector, bit i of the bitvector is set to

1 if and only if the i-th element of the list of all columns is present in the set.

Along with the variables already defined in section 4.2.1 we introduce a new set, BV, comprised of

the following variables:

• For each argument variable, argij , two new bitvector variables are introduced: argijbv1 and

argijbv2, corresponding to the first and second annotations. The meaning of these annotations

depends on the specific argument and is shown in Figure 5.3;

• Each component variable, compi, gets a bitvector variable, compibv, that corresponds to the

columns present in the table that results from that line.

Figure 5.4 shows a representation of all variables used in CUBES’ SMT encoding.
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table′ : columns present in the table
col′ : column required in the table
cols′ : columns required in the table

filterCondition′ : columns used in the filter condition
joinCondition′ : columns required in the first table
joinCondition′′ : columns required in the second table

crossJoinCondition′ : columns required in the first table
crossJoinCondition′′ : columns required in both tables
summariseCondition′ : columns used in the summarise condition
summariseCondition′′ : columns generated by the summarise condition

Figure 5.3: Description of the semantics of each annotation. A′ denotes the first annotation of element
A, while A′′ denotes the second annotation.

comp1bv = comp1

type1

( arg11

arg11bv1

arg11bv2

, arg12

arg12bv1

arg12bv2

, arg13

arg13bv1

arg13bv2

, arg14

arg14bv1

arg14bv2

)

...

=compnbv compn

typen

( argn1

argn1bv1

argn1bv2

, argn2

argn2bv1

argn2bv2

, argn3

argn3bv1

argn3bv2

, argn4

argn4bv1

argn4bv2

)

Figure 5.4: Representation of the variables used in the SMT encoding.

Basic constraints

Consider the following definitions:

• A function, ann1 : A\R 7→ {0, 1}c, that maps component arguments to their respective first anno-

tation. The number c corresponds to the total number of unique columns;

• A function, ann2 : A\R 7→ {0, 1}c, that maps component arguments to their respective second

annotation, if it exists. If it does not exist, it maps to the bitvector which is all zeros, 0. The number

c corresponds to the total number of unique columns.

Example 5.3.3 Consider again the summariseCondition meanAge = mean(Age). Consider also

that for this given program the full list of columns is [Name, Age, City, meanAge]. Then

ann1(meanAge = mean(Age)) = 0100 and ann2(meanAge = mean(Age)) = 0001.

The following constraints encode the basic structure of the annotations and their propagation along

the program, and build upon SQUARES’ SMT encoding:

• For all arguments, the values in the two bitvector variables, argijbv1 and argijbv2, will correspond

to the respective annotations:
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n∧
i=1

∧
c∈C

arity(c)∧
j=1

∧
a∈A\R

compi = id(c) ∧ argij = id(a) =⇒(
argijbv1 = ann1(a) ∧ argijbv2 = ann2(a)

) (5.1)

• If an argument is not used for a given component, then the bitvector variables for that argument

must be assigned the 0 bitvector:

n∧
i=1

∧
c∈C

k∧
j=arity(c)+1

compi = id(c) =⇒
(
argijbv1 = 0 ∧ argijbv2 = 0

)
(5.2)

• Finally, when argument j of line i is the return value of a previous line r, then the first bitvector,

argijbv1, is assigned to the columns of the table retr which are contained in variable comprbv. The

second bitvector variable is assigned 0:

n∧
i=1

∧
c∈C

arity(c)∧
j=1

i−1∧
r=1

argij = id(retr) =⇒
(
argijbv1 = comprbv ∧ argijbv2 = 0

)
(5.3)

Column set computation

To propagate the available columns throughout the program, the inference rules showed in Figure 5.2

are used. Let us consider the FILTER rule as an example.

Since we only want to generate programs that are valid (i.e., never violate the inference rules) and

since there is only one possible rule per component, we assert that when a filter operation occurs

both the premises and the conclusion must be true. The following constraint encodes the FILTER rule

for all lines (note that & represents a bit-wise and). The dotted box encodes the premises, while the

dashed box represents the conclusion.

n∧
i=1

compi = id(filter) =⇒
(

(argi1bv1 & argi2bv1) = argi2bv1(argi1bv1 & argi2bv1) = argi2bv1

∧ compibv = argi1bv1compibv = argi1bv1

) (5.4)

5.4 Learning from Incorrect Programs

A different way to prune the number of tested programs, is to try and extract some information from failed

attempts, and then use that information in order to prune the search space. One of the ways this can be

accomplished is by looking at the number of rows of the final table. Consider the following program:

r1 = natural_join(input1, input2)

r2 = filter(r1, colA != 20)
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Figure 5.5: Bottom-up representation of a program (from the output to the inputs).

Suppose that the expected output table (provided by the user) has k rows. Moreover, consider also

that this program produces an output table with p rows, such that p < k. Therefore, we can infer that if

we replace the filter condition in the last line with one that is even more restrictive, then the new program

will also be incorrect (as it will have at most the same number of rows, p). For instance, if we replace

the filter condition col != 20 with colA > 20 or colA < 20 the resulting table would still have at most

p rows. Likewise, if the number of rows of the resulting table is larger than the number of rows of the

expected output table, all conditions that are less restrictive can be blocked (as they will produce output

tables that have at least as many rows).

The intuition that the conditions in the last operation can be used to determine if the correct program

needs stricter or looser restrictions naturally breaks down when a condition is used in the middle of the

program, like in the following case:

r1 = filter(input1, colA != 20)

r2 = natural_join(r1, input2)

However, some components (notably natural_join, natural_join3, natural_join4, mutate,

filter, summarise, inner_join, left_join and union) are monotonic regarding the number of rows in

their output. That is, if we remove/add some rows from/to one of their inputs, then their output will have

at most/least the same number of rows as before, respectively. For example, in the previous program

the filter line can still be pruned because its result is only used by monotonic components. Figure 5.5

shows a representation of the example program, starting at the output and walking up to the inputs.

Using this representation, any operation node than can be reached passing through only monotonic

components, as is the case with filter, can still be used for pruning.
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Chapter 6

CUBES: Parallel Synthesis

In this chapter we discuss how techniques used in parallel constraint solvers can be adapted in order

to create a Parallel Program Synthesizer. In the first section, we introduce CUBES-PORT, the portfolio

mode of CUBES, which takes advantage of a portfolio of synthesizers in order to produce faster results.

Next, in section 6.2, we introduce CUBES-DC, the divide-and-conquer mode of CUBES, that divides the

synthesis problem into several sub-problems and then solves those sub-problems in parallel.

6.1 Portfolio

In the last decade, new parallel algorithms for combinatorial problems have been devised [18] that

try to explore the current multi-core processor architectures. In particular, the portfolio approach has

been successfully applied to several decision problems [18]. In this technique, as soon as one of the

processes finds a solution, the search ends and there is no need to completely explore the rest of the

search space. Therefore, the main goal of a portfolio is to diversify the exploration of the search space

by making each thread explore the same search space in different ways.

The Query Synthesis problem can be seen as a decision problem where one wants to find a program

that satisfies the user’s specification. Therefore, it is possible to devise a portfolio that diversifies the

search using different tactics such as: (i) use the same synthesizer with different configurations, or (ii)

selecting a set of synthesizers that use different search techniques.

Internally, CUBES uses an SMT formula to enumerate candidate programs. Hence, one can devise

a portfolio by providing the same SMT formula to each process, but using different configurations of

the Z3 SMT solver [8] in order to diversify the search. A complementary option is to change the active

techniques from CUBES in each process, thus changing the learned constraints in the SMT formula and

the subsequent search. Another complementary alternative is to use different synthesizers in parallel.

Each synthesizer such as SQUARES or SCYTHE uses different techniques, thus increasing the diversity

in the exploration of the search space.

Figure 6.1 shows the portfolio presets available in CUBES-PORT. These presets are created by

combining different options available in CUBES-SEQ. One of the biggest disadvantages of portfolio
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Process Z3 Phase Selec. Prog. Deduction

1 Caching True
2 Caching False
3 Random True
4 Random False

(a) Preset for 4 processes (CUBES-PORT4).

Process QF_FD Z3 Phase Selec. Prog. Deduction

1 True Caching True
2 True Caching False
3 True Random True
4 True Random False
5 False Caching (cons.) True
6 False Caching (cons.) False
7 False Random True
8 False Random False

(b) Preset for 8 processes (CUBES-PORT8).

Process Learning from Prog. QF_FD Z3 Phase Selec. Prog. Deduction

1 False True Caching True
2 False True Caching False
3 False True Random True
4 False True Random False
5 False False Caching (cons.) True
6 False False Caching (cons.) False
7 False False Random True
8 False False Random False
9 True True Caching True
10 True True Caching False
11 True True Random True
12 True True Random False
13 True False Caching (cons.) True
14 True False Caching (cons.) False
15 True False Random True
16 True False Random False

(c) Preset for 16 processes (CUBES-PORT16).

Figure 6.1: The three presets available in CUBES-PORT.

solving is that in order to increase the number of processes used, one needs to find new, distinct, ways

to search the program space. Besides modifying options from CUBES-SEQ, it would also be possible to

combine CUBES-PORT with other SQL synthesizers. SCYTHE, in particular, is a good choice because it

uses a very similar form of specification, and thus, it is possible to convert a problem given to CUBES to

a problem for SCYTHE automatically.

6.2 Divide and conquer

When using divide and conquer to solve a search problem in parallel, the strategy is to split the problem

into smaller sub-problems that can be solved by each of the processes. Instead of diversifying the search

(as in the portfolio approach), each process in divide and conquer focuses the search in a particular area

of the search space.

Inspired by previous work in solving Propositional Satisfiability formulas [41], we present a strategy

to split the Program Synthesis search space in many sub-problems that should be easy to solve. The

overall architecture is illustrated in Figure 6.2. In our context, each sub-problem is represented by a

cube: a sequence of operations from the DSL, such that the arguments for the operations are still to be

determined. Consider the following cube as an example: [filter, natural_join], which represents
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Figure 6.2: Diagram of CUBES’ architecture when using divide and conquer.

the partition of the search space composed by programs with two lines, where the first operation is a

filter and the second operation is a natural_join. Each process receives a specific cube to be filled

in and determines if a solution can be reached for that particular cube. If the cube cannot be completed

such that it satisfies the input-output examples, then the cube is deemed unsatisfiable and the process

requests a new cube to explore. Observe that each cube corresponds to a particular sequence of

operations, and as such, there is no intersection in the search space of each process.

This approach is very similar to using guiding paths in Parallel SAT, as described in section 3.2. A

guiding path is an assignment to a subset of the variables of the formula that defines a partition of the

search space. The task is then to generate several (disjoint) guiding-paths that can be solved in parallel.

It is also similar to the 2-step enumeration approach described in section 3.1.5. In this case, the first

step would consist in generating the cubes using a graph-based algorithm, and the second step would

consist in filling in each cube using SMT-based enumeration.

Note that the effectiveness of the search depends heavily on the strategy for cube generation. Next,

we describe different strategies explored in CUBES.

6.2.1 Static Cube Generation

In static cube generation, cubes are constructed using a static heuristic. However, the sequence of

operations to be tried first is not purely a predetermined order to be followed. Instead, the heuristic,

presented in Figure 6.3, selects the operation to be executed next in a given sequence depending on

the already selected operations. For instance, if the first operation in a given cube is a natural_join,

it is unlikely that applying a natural_join next will lead to a solution. Therefore, a cube that uses a

natural_join followed by an inner_join is generated before a cube that applies two natural_join in

sequence.

6.2.2 Dynamic Cube Generation

Considering that the static generation heuristic was empirically designed based on available benchmark

instances, its behavior might not be adequate for new instances. Therefore, CUBES also includes a cube
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1. natural_join
2. natural_join3
3. natural_join4
4. mutate
5. summarise
6. filter
7. anti_join
8. left_join
9. union

10. intersect
11. semi_join
12. inner_join
13. cross_join

(a) Order used if the previous line is not a
natural_join* operation.

1. mutate
2. summarise
3. filter
4. anti_join
5. left_join
6. union
7. intersect
8. semi_join
9. inner_join

10. cross_join
11. natural_join
12. natural_join3
13. natural_join4

(b) Order used if the previous line is a natural_join*
operation.

Figure 6.3: Order in which operations are chosen when using Static Cube Generation.

generator inspired on Natural Language Processing (NLP) techniques. Since cubes are constructed as

a sequence of operations, a bigram prediction model can be used to decide the operation to be placed

next in a given sequence. Therefore, when choosing the operation for a given position in the sequence,

the operation immediately preceding it is used to compute the likelihood that each of the possible choices

will lead to the desired program. That is, for each pair of operations (a, b) there is a score, Sa,b, that

represents the likelihood that using a b operation after an a operation will lead to the desired program.

Scores are updated as programs are evaluated in the following way:

Program scoring

For a given program, p, let output denote the result of running that program in a given example spec-

ified by the user. Moreover, let expected denote the desired result in the input-output example. First,

we compute the set of all values that occur in the output and expected tables: unique(output) and

unique(expected). Next, we compute the score of program p as the percentage of elements of the

expected output that appear in the result obtained by executing program p as:

score(p) = |unique(output) ∩ unique(expected)|
|unique(expected)| (6.1)

A score of 1 indicates that all the expected values occur in the output, and as such, a filtering or re-

structuring might lead to a correct program. On the other hand, a value of 0 means that the candidate

program is probably very far from a correct solution. Note that any program p where score(p) 6= 1 is

certainly incorrect. This can be used as an optimization in order to avoid expensive table comparisons.

Score updates

For each evaluated program, p, the score, score(p), is used to update the bigram scores. Consider that

program p uses the following components: filter, natural_join, summarise (in that order). Then, the
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scores for the bigrams that appear in the program will be updated as follows:

S∅,filter += score(p) (6.2)

Sfilter,natural_join += score(p) (6.3)

Snatural_join,summarise += score(p) (6.4)

Furthermore, we update the score of the operations occurring in the first position of the sequence,

although with decreasing weights. In particular, the operation selected for position i (zero-based) of the

sequence contributes with 1
(i+1)2 · score(p). Hence, considering again the program p with components

filter, natural_join, and summarise, the updates are as follows:

S∅,filter += 1/1 · score(p) (6.5)

S∅,natural_join += 1/4 · score(p) (6.6)

S∅,summarise += 1/9 · score(p) (6.7)

These extra score updates are done so that there is a small chance of reordering operations, and has

empirically shown to be useful.

Cube selection

Cubes are constructed by adding operations to a sequence. Suppose that the last selected operation

is op (in case of the first operation, op is the empty symbol ∅). In order to decide which operation

should follow, the scores for that prefix, Sop, are retrieved, normalized and smoothed, using Laplace

smoothing [20]. These steps result in a list of probabilities that correspond to the likelihood of each

operation. The operation for the current line is then chosen from a distribution using those probabilities.

This is done until we have a program of the desired length. A compact tree structure is used to keep

track of already generated cubes, as to avoid repetition.

Avoiding biases

The usage of the dynamic cube generation technique may introduce biases since the bigram scores

are continuously increasing. In particular, operations that are selected first become more likely to be

selected again when generating new cubes. Two methods are used to handle this issue:

• Each time a new program is generated, all scores are multiplied by a number smaller than one,

δ, by default 0.99999. This is done so that past information can be gradually forgotten, in order

to increase diversification in exploring the search space. These updates are done in batches, in

order to not overwhelm inter-process communication.

• A fixed number of processes, by default 2, always solve randomly generated cubes (as long as not

previously generated), in order to diversify the search process.
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DSL Splitting

Two of the components introduced in the DSL, inner_join and cross_join, are much more complex

than any of the other operations. That is, there are many more ways to complete a cross_join line than,

for example, a summarise line. In fact, the difference in complexity is large enough to make encoding

the program space into and SMT formula take a significant amount of time when those operations are

enabled. As a compromise we split the available processes into two sets: set F is forced to only attempt

programs that contain at least one of these two operations; and set B is configured as if these operations

did not exist.

If the desired program does require one of the two complex joins, then the encoding overhead is

unavoidable and the fact that some processes are only considering programs with those operations can

more directly lead to a solution. On the other hand, if the desired program does not require a complex

join, then the overhead is completely avoided. The goal is then to balance the number of processes

allocated to each set in order to maximize the number of programs that can be solved. The ratio between

sets F and B is configurable and defaults to 1:2.

6.2.3 Optimal and Non-Optimal Solving

As explained in subsection 4.2.1, SQUARES, and by extension CUBES, enumerates programs in increas-

ing size. The same is true for cube generation. However, when splitting the search space, it is common

for some processes to finish searching the final cubes for the current program size, while others are still

trying candidate programs. CUBES allows these processes to start searching cubes of the next size, so

that they do not stall. However, this means that a solution of size n can be found before all programs of

size n− 1 have been explored (and therefore a shorter solution might exist). CUBES allows for the user

to choose between:

• Optimal synthesis: if a solution of size n is found while cubes of size n − 1 are still being solved,

all other processes of size n are stopped and the synthesizer waits to check if any of the cubes of

size n − 1 produce a solution. The shortest program is returned to the user. Furthermore, if the

user terminates the program while it is searching for a better solution, the shortest program found

so far is returned;

• Non-optimal synthesis: the first solution found is immediately returned to the user, even if a shorter

solution might exist.

6.2.4 Learning from Unfeasible Cubes

Cubes are implemented by adding supplemental constraints to the SMT solver. A cube stating that

the first line should be a filter and the second line should be a summarise would be implemented as

comp1 = id(filter)∧ comp2 = id(summarise). We can take advantage of UNSAT cores, a capability of

SMT solvers, to further prune the search space.
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An UNSAT core (unsatisfiable core) is a subset of constraints that by themselves make a formula

unsatisfiable. In Z3, the SMT solver used by CUBES, UNSAT cores can be obtained by labeling relevant

constraints and then asking Z3 which of those labels are part of the UNSAT core. Suppose that for the

cube represented by the constraint comp1 = id(filter) ∧ comp2 = id(summarise), Z3 determines that

there is an UNSAT core composed by just the first part, comp1 = id(filter). That means that even if

we tried to use a different component for the second line, it would always fail, as just the first constraint

is enough to make the formula unsatisfiable. This information can then be used to prune those other

cubes, as they will surely not produce a solution for the problem.

In general, every time a cube fails without producing any candidate program, we use the UNSAT core

created by the SMT solver to prune all other cubes that would also fail, according to that UNSAT core.
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Chapter 7

Evaluation

In order to test and compare our tool with other state of the art SQL synthesizers we took the set

of benchmarks used in SQUARES and expanded it. Table 7.1 summarizes the benchmarks used for

evaluation. All results were obtained on a dual socket Intel® Xeon® Silver 4110 @ 2.10GHz, for a total

of 16 cores/32 threads, with 64GB of RAM. Furthermore, using runsolver [34], a limit of 10 minutes

(wall-clock time) and 56GB of RAM was imposed on all solvers.

The set of benchmarks used is:

• texbook: 37 instances extracted from exercises from the popular database textbook, Database

Management Systems [32];

• 55-tests: 55 instances derived from the textbook benchmark;

• scythe/recent-posts, scythe/top-rated-posts: 55+51 instances collected from recent and

top-rated posts, respectively, on the StackOverflow1 website;

• spider: 3765 instances generated from a very large and diverse benchmark of NLP instances for

SQL synthesizers. For each original instance, the SQL solution query was used, along with the

1https://stackoverflow.com/

Table 7.1: Summary of the benchmarks used for evaluation and comparison.

Benchmark Source # Instances

textbook Database Management Systems [32] 37

55-tests SQUARES [7] 55

scythe/recent-posts SCYTHE [42] 51

scythe/top-rated-posts SCYTHE [42] 57

spider Spidera 3765

Total 3965
a https://yale-lily.github.io/spider
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Figure 7.1: Percentage of instances solved by each synthesizer at each point in time. A mark is placed
every 150 solved instances.

sample database contents, to create an input-output example that could be used in PBE synthe-

sizers. Instances were transformed without intervention.

In this chapter, we will start by presenting the results for our sequential synthesizer, CUBES-SEQ,

along with other state-of-the-art SQL synthesizers. Next, we show the results for both types of parallel

synthesis implemented: portfolio and divide and conquer.

7.1 Sequential Results

In this section we evaluate the performance of CUBES-SEQ, the sequential version of CUBES. As a com-

parison point, we also present the results for SQUARES and SCYTHE. Figure 7.1 shows the percentage

of instances solved by each of these tools at each point in time. Note that the time axis is in log-scale.

Overall, SQUARES was able to solve 26.3% of the instances in 10 minutes, while SCTYHE solved 39.7%.

CUBES-SEQ was able to solve 80.6%. CUBES-SEQ solved three times more instances than SQUARES,

and two times more instances than SCYTHE.

In some use cases, however, 10 minutes might be too long to wait for a solution. For example, the

user might be reasonably familiar with SQL (but not proficient) and, as such, it might take less than 10

minutes to write the desired query manually. Therefore, we will also analyze the results using a virtual

limit of 10 seconds, which would allow for these scenarios. Under the 10 second limit, CUBES-SEQ was

able to solve 54.6% instances, while SQUARES solved 20.7%, and SCYTHE solved 19.5%.

7.1.1 SQUARES and SCYTHE

Figure 7.2a compares the time taken to solve each instance when using SQUARES and SCYTHE. Each

mark in the plot represents a single instance; marks above the diagonal line mean that SQUARES solved

that instance faster, while marks below the line mean the opposite. Finally, marks positioned on the

dashed lines represent a timeout for the corresponding synthesizer. Only instances solved by at least

48



0.5

2

10

60

600

0.5 2 10 60 600
SQUARES

SC
YT
HE

(a) Time-time scatter plot comparing SQUARES and
SCYTHE.

100 MB

1 GB

10 GB

100 MB 1 GB 10 GB
SQUARES

SC
YT
HE

(b) RAM-RAM scatter plot comparing SQUARES and
SCYTHE.

0.5

2

10

60

600

0.5 2 10 60 600
SCYTHE

C
UB

ES
S
EQ

(c) Time-time scatter plot comparing SCYTHE and CUBES-SEQ.

Figure 7.2: Scatter plots comparing the performance of SQUARES, SCYTHE and CUBES-SEQ.

one of the synthesizers are shown. Figure 7.2b shows a similar plot, but comparing RAM usage; in this

plot only instances solved by both synthesizers are shown. Figure 7.2a is similar to Figure 7.2a, except

that it compares SCYTHE and CUBES-SEQ.

Looking at Figure 7.2a we can see that there is a great disparity between the set of instances solved

by SQUARES and the set solved by SCYTHE (that is, most instances lie on one of the timeout lines). This

can be explained by the fact that these synthesizers operate in very different ways.

Furthermore, the great majority (78.7%) of instances solved by SQUARES are solved in the first 10

seconds, while the same is not true for SCYTHE (only 49.1%). This can also be seen in Figure 7.1 where

although SCYTHE is generally faster, SQUARES actually comes ahead in the 3 to 10 seconds time-frame.

Finally, Figure 7.2b shows that SQUARES always uses around 200MB of RAM, while SCYTHE’s RAM

usage varies much more, reaching 10GB for some instances. This is likely because SCYTHE encodes

the table’s data into constraints, and as such, instances with bigger input tables use more memory.

SQUARES, however, focuses mostly on the columns which makes its memory usage more consistent.

This means SQUARES is more suited for parallelization as you can run more threads/processes in parallel

without running out of RAM.
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Figure 7.3: Number of instances solved by each synthesizer for each instance. Instances labeled Fail
mean that the synthesizer crashed, while instances labeled Just R mean that the synthesizer was able
to produce a correct R program but not an SQL query.

7.1.2 CUBES-SEQ

Figure 7.3 details CUBES-SEQ’s performance for each benchmark. We can see that the number of

solved instances improved on all benchmarks when comparing with SQUARES, while when comparing

with SCYTHE the number of solved instances improved on the benchmarks from SQUARES and Spider,

and decreased on both benchmarks from SCYTHE. The difference in solved instances between SCYTHE

and CUBES-SEQ can be seen in Figure 7.2c.

By default, CUBES-SEQ is configured with: (i) Learning from Incorrect Programs disabled, (ii) the

QF_FD SMT Theory enabled, (iii) the new DSL components introduced in section 5.1 enabled, and

(iv) the Invalid Program Deduction enabled.

Accuracy Even though these tools can find queries consistent with the input-output examples, the

solutions may not correspond to the user intent. In particular, SCYTHE has less input parameters and

is thus more likely to find solutions that do not satisfy the user intent. We analyzed the percentage

of solved queries that actually satisfy the user intent for SQUARES, SCYTHE and CUBES-SEQ. To that

end, we selected 15% of the instances solved by all three tools, resulting in 66 instances, and manually

analyzed if the solutions found are equivalent to the ground truth SQL query. Of these 66 instances,

SQUARES finds a solution that satisfies the user intent in 27 of them and SCYTHE returns such a solution

in 33 instances. However, by default, SCYTHE returns the top 5 queries; if we only consider the queries

ranked in first place, SCYTHE returns only 29 solutions that satisfy the user intent. Finally, CUBES-SEQ

returns a solution that satisfies the user intent in 46 out of the 66 randomly chosen instances.
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Figure 7.4: Plot showing the percentage of instances solved ate each point in time, when enabling/dis-
abling different features from CUBES-SEQ.

In the rest of this subsection we will analyze the performance impact of CUBES’ configuration options.

Figure 7.4 summarizes those findings. In this figure, the line labeled “CUBES-SEQ” corresponds to the

default configuration, while other lines correspond to the respective option switches.

DSL Extensions Looking at the “Simple DSL” line in Figure 7.4, we can see that when disabling the

inner_join, complex_join, semi_join and mutate components some instances become easier (more

instances are solved in under 20 seconds). That is because those instances did not use the new

components and as such benefit from a more restricted program space. However, we can also see that

the overall number of solved instances is lower (74% vs 80.6% on CUBES-SEQ), because of all other

instances that do require the new DSL components.

Quantifier-Free Finite Domain Theory As shown by the “No QF-FD Theory” line in Figure 7.4, the

performance when not using the QF_FD Theory is generally worse than with the the Theory enabled.

This is expected, as all variables in CUBES’ encoding are either Boolean, bit-vectors, or integers with very

small bounds. Enabling this option allows CUBES-SEQ to solve 80.6% of the instances vs. 74.3% with

the option disabled. The difference is even larger if we only consider the first 10 seconds: CUBES-SEQ

is able to solve 54.6%, while disabling the QF_FD Theory only solves 45.2%.

Invalid Program Deduction As illustrated by the “No Inv. Prog. Deduction” line in Figure 7.4, disabling

the invalid program pruning based on column annotations has the single largest impact in CUBES-SEQ

performance. Note that when disabling this option, we re-enable the happens_before predicate since

it becomes helpful again. This difference in performance shows that the new form of pruning is indeed

stronger than the happens_before predicate. Furthermore, this option is almost always better, with only

18 instances out of 3965 being solved with the option disabled but not with the option enabled.
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verification when enabling/disabling the Learning from Programs option. Darker regions of the figure
occur when the histograms overlap.

Learning from Incorrect Programs By looking at the “Learning from Inc. Prog.” line in Figure 7.4, we

can see that with learning from incorrect programs enabled, the number of solved instances is always

lower than with the option disabled. This is because, in the current implementation, the number of

pruned programs is quite small, due to the select post-processing step described in section 5.1.

Furthermore, there is a negative impact in evaluation time because some optimizations must be dis-

abled. One such optimization is using the program scores in order to skip costly table comparisons (any

program, p, where (score)(p) 6= 1 can be immediately rejected). When this form of learning is enabled,

however, the select post-processing step must still be executed in order to generate all possible ta-

bles and evaluate if they have more or less rows than expected. Figure 7.5 shows that around 1100

instances spend more than 75% doing program evaluation and verification when enabling the Learning

from Incorrect Programs option. With the option disabled, this only happens for about 300 instances.

Although CUBES-SEQ is sometimes slower than SQUARES, this occurs only on a very small number

of instances. Moreover, the number of newly solved instances within a 600 seconds timeout is very con-

siderable, and the memory footprint, although slightly increased, is generally under 1GB. As a result, the

new solver offers an improved starting point to develop a parallel solver for Query Reverse Engineering.

7.2 Parallel Results

Using CUBES-SEQ as a baseline, we now evaluate the performance of CUBES-PORT and CUBES-DC.

7.2.1 Portfolio

We evaluate the performance of CUBES-PORT for the three presets shown in Figure 6.1. Looking at

Figure 7.6a, which shows the percentage of solved instances for each of these presets, we can see
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Figure 7.6: Performance comparison of different portfolio configurations, resulting from a single execu-
tion. Non-determinism effects are negligible due to the large number of total instances.

that CUBES-PORT4 constitutes a modest improvement over CUBES-SEQ, solving 84.4% vs 80.6% of

the instances. However, as referenced in section 6.1, increasing the number of portfolio processes in

a way that diversifies the search is no straightforward task. With that in mind, it comes at no surprise

that the improvements going from CUBES-PORT4 to CUBES-PORT8 and CUBES-PORT16 processes

are not as significant, with CUBES-PORT8 solving 84.9% of the instances and CUBES-PORT16 solving

84.6% of the instances. In particular, the diversity gained from the extra configurations considered in

CUBES-PORT16 is not enough the overcome the performance penalty of using 16 cores in the system

architecture used for testing.

Figure 7.7 shows the percentage of instances that were solved by each of the configurations in

the portfolios (as defined in Figure 6.1). We can once again see that there are diminishing returns

as we increase the number of processes from 4 to 8 and 16, with some of the extra processes in

CUBES-PORT16 solving almost no instances.

Complementary, we can consider adding SCYTHE to the portfolio. In Figure 7.6b we show the per-

centage of solved instances for several Virtual Best Solvers (VBSs) which serve as a good approxima-

tion for the performance of an equivalent portfolio configuration. We can see that running CUBES-SEQ

and SCYTHE in parallel has a performance similar to that of CUBES-PORT4. Furthermore, running

CUBES-PORT4 and SCYTHE in parallel, which amounts to just 5 processes, has a much more significant

impact than using CUBES-PORT8 or CUBES-PORT16.
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Figure 7.7: Percentage of instances solved by each of the configurations in the portfolio, for each of the
presets in Figure 6.1.

7.2.2 Divide and Conquer

In Figure 7.8, we present the results for the divide-and-conquer approach for 4 processes (CUBES-DC4),

8 processes (CUBES-DC8) and 16 processes (CUBES-DC16). In the plot we can see that going from

CUBES-SEQ to CUBES-DC4, CUBES-DC8 and CUBES-DC16, provides small improvements to the num-

ber of instances solved: 80.6%, 85.3%, 86.3% and 87.8%, respectively. If limited to 10 seconds, the

difference becomes slightly larger with CUBES-SEQ solving 54.6% of the instances, CUBES-DC4 solv-

ing 69.9%, CUBES-DC8 solving 72.6% and CUBES-DC16 solving 74.4%. In Table 7.2, we can see

that CUBES-DC16 is best overall configuration for both 10 minutes and 10 seconds. Furthermore, it is

also the best configuration for all benchmarks except scythe/recent-posts under 10 seconds, and all

benchmarks except scythe/recent-posts and textbook for 10 minutes.

Next, we analyze the effectiveness of the work splitting technique in CUBES-DC. For each instance,

we compute the equivalent number of processes, which is defined as CPU Time / Wall Clock Time and

is a measure of how much time each of the processes was stalled. A value of 1 means that if the work

were uniformly distributed among processes, a single one would be enough to perform the same task

in the same amount of time. On the other hand, a number equal to the real number of processes used

means that every process was used all of the time.
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negligible due to the large number of total instances.

0

200

400

1 4 8 12 16
Equivalent Number of Processes

#
In
st
an

ce
s

Figure 7.9: Histogram of the number of equivalent processes used by each instance. This number is
computed as (CPU time)/(wall clock time) and represents the effectiveness of the work splitting algo-
rithm. Instances that took less than 20 seconds are excluded, as they are skewed by the initialization
time which is inherently single-threaded.

Figure 7.9 shows an histogram for this metric, as computed for CUBES-DC16. In this plot we hide

instances that took less than 20 seconds to be solved, as the inherently sequential initialization proce-

dure distorts the metric for these instances. We can see that 75.5% of the instances plotted have an

equivalent process number ≥ 15, that is, it would require at least 16 processors to do the same work in

the same amount of time, even if it were perfectly distributed.

CUBES-DC is non-deterministic, which means that, if run several times, it does not always produce

the same solutions nor solve the same instances. We chose a subset of the instances and executed

CUBES-DC16 for each of them 10 times, in order to count the number of different outcomes. These tests

were executed using 8 processes, with a 5 minute time limit. We randomly selected 1% of instances,

which amounts to 38 instances. Of these, CUBES-DC solved 33 of them on all 10 executions, while 2

instances were solved only once, 1 instance was solved in 3/10 executions and 2 instances were not
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Figure 7.10: Performance impact of different features implemented in CUBES-DC. CUBES-SEQ is also
shown as a comparison point. Results based on a single execution. Non-determinism effects are
negligible due to the large number of total instances.

solved in any execution. Furthermore, the median number of different solutions was 2, while the average

was 2.05, the mode was 1, and the maximum was 6.

By default, CUBES-DC is configured with the dynamic cube generator, non-optimal solving, learning

from unfeasible cubes enabled and DSL splitting enabled. In order to evaluate each of these features, we

present an ablation study in Figure 7.10. In the rest of this subsection we will analyze the performance

impact of each feature.

Static vs. Dynamic Cube Generator In Figure 7.10, we can see that even though the percentage

of solved instances is quite similar for 10 minutes (87.8% for the dynamic generator vs. 86.9% for the

static), the difference is very large when looking just at the first 10 seconds (74.4% for dynamic vs. 63.4%

for static). This implies that the dynamic cube generator can more quickly start exploring promising parts

of the program space, as would be expected. Furthermore, looking at the results in Table 7.2, we can

see that the performance difference for 10 seconds is much smaller for the 55-tests and textbook

benchmarks. This is also expected, as these benchmarks were used to develop the heuristic at the core

of the static cube generator.

Optimality Looking again at Figure 7.10, we can see that configuring CUBES-DC to produce optimal

solutions causes a general loss in performance, as would be expected. Furthermore, we can see a

slight uptick in the percentage of solved instances right on the time limit line. These correspond to

instances for which a (possibly) non-optimal solution had already been found and that were waiting for

cubes with less lines to finish processing. Overall, enabling this option allows CUBES-PORT16 to solve

87.3% vs. 87.8% with the option disabled. Finally, out of all solved instances, only 29 (0.8% of solutions)

correspond to possibly non optimal programs.
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Learning from Unfeasible Cubes In Figure 7.10, we can see that the impact from the learning from

unfeasible cubes option is almost non-existent, even though, on average, each generated cube allows

1.39 others to be pruned. There are are two possible explanations for this: (i) identifying unfeasible

cubes is very fast, and thus has a negligible impact, and/or (ii) the Z3 SMT is able to infer clauses

from unfeasible cubes that allow it to immediately identify future cubes that fail for the same reasons.

Regarding the second possible explanation, it is important to take into account that since cubes are

generated and pruned in the main thread, unfeasible cube learning has an effect on all processes, while

clauses inferred by Z3 are process-local.

DSL Splitting As previously referenced in section 6.2.2, the main advantage of forcing programs con-

taining inner_join or complex_join operations to be searched for in separate processes is that (i) if

the instances does require one of those operations, then the enumerator can more quickly direct the

search towards a correct program, and (ii) if the instance does not require one of those operations, then

the initialization time resulting from the complex joins can be avoided. Therefore, it is no surprise that

the percentage of solved instances in 10 minutes does not vary much whether this option enabled or

disabled (87.8% with vs. 87.3% without), but that there is a much larger impact on the number of solved

instances in under 10 seconds (74.4% with the option enabled vs. 64.1% without).
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Table 7.2: Overall results for 10 seconds and 10 minutes, for all configurations tested, grouped by bench-
mark. The best configuration for each time-limit/benchmark pair is highlighted in bold. Results based
on a single execution. Benchmarks with a small number of instances are affected by non-determinism
when using parallel configurations. This explains, for example, why CUBES-DC16 is not the best run for
the textbook benchmark for 10 minutes.
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SQUARES 32.7% 4.0% 3.5% 20.9% 30.6% 20.7%
SCYTHE 38.2% 45.1% 61.4% 18.2% 27.8% 19.5%
CUBES-SEQ 50.9% 19.6% 47.4% 55.4% 35.1% 54.6%

Learning from Programs 47.3% 11.8% 35.1% 47.4% 35.1% 46.7%
No QF-FD Theory 50.9% 17.6% 40.4% 45.7% 35.1% 45.2%
Simple DSL 58.2% 15.7% 42.1% 59.2% 40.5% 58.2%
No Inc. Prog. Deduction 49.1% 9.8% 35.1% 48.2% 35.1% 47.4%

CUBES-PORT4 70.9% 21.6% 56.1% 60.8% 40.5% 60.2%
CUBES-PORT8 74.5% 21.6% 56.1% 60.9% 45.9% 60.4%
CUBES-PORT16 69.1% 21.6% 56.1% 59.1% 43.2% 58.5%
CUBES-DC4 72.7% 21.6% 61.4% 70.8% 51.4% 69.9%
CUBES-DC8 80.0% 25.5% 63.2% 73.4% 54.1% 72.6%
CUBES-DC16 83.6% 29.4% 66.7% 75.2% 54.1% 74.4%

Optimal 80.0% 29.4% 66.7% 73.8% 54.1% 73.1%
Static Cube Gen. 78.2% 21.6% 56.1% 63.9% 54.1% 63.4%
No Learning from Cubes 83.6% 27.5% 64.9% 75.0% 54.1% 74.1%
No DSL Split 80.0% 23.5% 59.6% 64.6% 48.6% 64.1%

10
m

in

SQUARES 70.9% 6.0% 26.3% 25.7% 41.7% 26.3%
SCYTHE 70.9% 62.7% 71.9% 38.3% 52.8% 39.7%
CUBES-SEQ 80.0% 35.3% 63.2% 81.8% 51.4% 80.6%

Learning from Programs 80.0% 29.4% 63.2% 76.8% 56.8% 75.9%
No QF-FD Theory 80.0% 29.4% 71.9% 75.1% 48.6% 74.3%
Simple DSL 89.1% 25.5% 70.2% 74.6% 67.6% 74.0%
No Inc. Prog. Deduction 70.9% 33.3% 61.4% 69.3% 43.2% 68.5%

CUBES-PORT4 90.9% 41.2% 70.2% 85.3% 59.5% 84.4%
CUBES-PORT8 92.7% 43.1% 73.7% 85.8% 64.9% 84.9%
CUBES-PORT16 92.7% 43.1% 73.7% 85.5% 62.2% 84.6%
CUBES-DC4 90.9% 39.2% 75.4% 86.1% 73.0% 85.3%
CUBES-DC8 92.7% 45.1% 75.4% 87.1% 70.3% 86.3%
CUBES-DC16 94.5% 47.1% 75.4% 88.6% 70.3% 87.8%

Optimal 94.5% 47.1% 75.4% 88.1% 73.0% 87.3%
Static Cube Gen. 94.5% 41.2% 75.4% 87.7% 70.3% 86.9%
No Learning from Cubes 92.7% 47.1% 75.4% 88.4% 73.0% 87.6%
No DSL Split 94.5% 47.1% 75.4% 88.0% 73.0% 87.3%
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Chapter 8

Conclusions and Future Work

In this thesis, we explored the topic of Parallel Program Synthesis. We introduced the topics of Pro-

gram Synthesis and Parallel Constraint Solving, and discussed state-of-the-art techniques used in these

fields. We proposed a new sequential program synthesizer, CUBES-SEQ, which is based on SQUARES

and constitutes an improvement to the state of the art in sequential SQL synthesis. We also propose

CUBES-PORT and CUBES-DC, two parallel synthesizers for SQL, using techniques inspired by parallel

constraint solvers.

We performed an extensive evaluation the of the implemented tools, comparing them with SQUARES

and SCYTHE. To perform this comparison, we used 200 benchmarks from previous work in PBE SQL

synthesis, along with 3765 benchmarks which we adapted from NLP SQL synthesizers. We show

that CUBES-SEQ is able to solve 80.6% of the considered instances, while SQUARES and SCYTHE can

only solve 26.3% and 39.7%, respectively. We also show, that using parallelism provides a significant

performance improvement with CUBES-DC solving 87.8% of the instances and CUBES-PORT solving

84.9%. Finally, we show that CUBES-DC scales better with the number of available processors than

CUBES-PORT.

We propose a number of ways in which CUBES can be improved in the future. Firstly, since the

number of processing cores available in a CPU is limited by physical and manufacturing constraints, even

very high-end processors have at most 72 cores, which limits the scalability of CUBES-DC. A possible

solution for this problem is to use a distributed approach, instead of multi-core. This improvement is

expected to not have a large impact in the structure of CUBES-DC, since inter-process communication

is already done using message passing techniques, and no shared memory is used.

Regarding the cube generation order, more elaborate machine learning techniques could be used

such as using pre-trained bigram scores, or using neural networks to predict the most likely cubes. We

could also explore other techniques used in Propositional Satisfiability solvers, such as restarting the

search after n programs/cubes have been attempted.

It would also be interesting to add an option for CUBES-DC to be more deterministic (at the cost of

performance). Proposed changes include: (i) updating the bigram scores in batches and in a determinis-

tic way, (ii) solve cubes in batches so that processes stay synchronized — this would require that cubes
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be of approximately the same difficulty in order to reduce stalls, and (iii) either find a deterministic way to

assign generated cubes to the available processes or disable some optimizations with are process-local

and depend on the order the received cubes.

Finally, CUBES-PORT can be improved by combining it with new state-of-the-art program synthesiz-

ers.
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