
A Multi-Robot GSPN Software Framework to Execute and
Visualize Plans

Pedro Alegre Caldeira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor(s): Prof. Pedro Manuel Urbano de Almeida Lima

Examination Committee

Chairperson: Luís Manuel Antunes Veiga
Supervisor: Pedro Manuel Urbano de Almeida Lima

Member of the Committee: Hugo Filipe Costelha de Castro

November 2020

ii

Dedicated to my grandpa, António Alegre, who taught me how to dream.

iii

iv

Acknowledgments

Developing this master’s thesis was by far the hardest project I’ve ever been a part of.

Deadline-induced stress, many days without real advancements and other things which I eventually

lost track of, filled my 9 months while developing this work. But somehow, I eventually managed to reach

the end of this chapter in my life and, in my eyes, did a good job, taking into account the uncountable

variables that were at play.

However, I didn’t do this alone.

By my side I always had my parents and my brother, listening to my never ending rants about robots

and their interesting approach to Newton’s first law, about how the algorithms weren’t working as they

should and about my many worries while developing this piece of software. Their ears and sensibility

helped me heavily in achieving my goals and reaching the finish line of my master’s degree.

In a more personal aspect, I had my girlfriend, whose help and enlightenment was crucial to the

development of this ”short” report and associated framework. Everyday, she motivated me and kept me

afloat, always helping me see the positive side of things. She always said that I was going to make it

through, and although I don’t like pointing out that she is right, she truly was this time.

I would also like to thank my supervisor, Pedro Lima for the support and guidance and especially

Carlos Azevedo, who also accompanied me throughout the whole process, always nudging me in the

right direction and helping whenever he could. Although the truth was sometimes hard to hear, it kept

me grounded and focused during these months. I hope both of you are as satisfied with my work as I

am and I hope our paths cross again in the future.

Finally, I would like to thank the inanimate object that housed me for the past 5 years, Instituto

Superior Técnico. Although at times you made me feel more like a hostage than a student, you shaped

me into a thougher human-being and an overall great engineer who is ready to take on the world and

bring more pride to this incredible faculty.

v

vi

Resumo

Atualmente não existe uma ferramenta que, de forma integral, inclua modelação, visualização, análise

lógica e de desempenho e execução. Redes de Petri estocásticas (RPE) são um modelo matemático

que se tem provado como uma ferramenta eficiente para modelar sistemas multi-robô devido à sua

forma compacta, execução assı́ncrona e capacidade para capturar incerteza temporal. Sendo assim,

o nosso trabalho incide sobre a expansão de uma ferramenta de modelação e de análise que utiliza

RPEs.

O objetivo principal desta tese de mestrado é portanto o desenvolvimento de um pacote de soft-

ware que permita executar e visualizar planos em sistemas multi-robô e em sistemas multi-agente.

Para isso criámos dois módulos novos: um módulo de execução e um módulo de visualização. O

módulo de execução é responsável por executar a RPE fornecida como input enquanto que o módulo

de visualização tem como objetivo simular ou visualizar a execução de uma RPE. Apesar de este tra-

balho ter sido feito com o intuito de utilizar ambos os módulos em conjunto, é possı́vel utilizá-los em

separado, consoante a necessidade do utilizador. A integração com robôs é assegurada através do

middleware robot operating system (ROS).

De forma a testar a nossa ferramenta, corremos uma série de testes na parte que foi integrada com

o ROS. No primeiro conjunto de testes, corremos apenas a nossa ferramenta e no segundo, utilizámo-la

em conjunto com o simulador Gazebo.

Os resultados obtidos para o conjunto de testes em que só corremos a nossa ferramenta demon-

stram que, para um sistema com apenas um robô, é possı́vel executar e visualizar redes considerav-

elmente grandes. Por outro lado, quando utilizámos o simulador Gazebo, confirmámos que é possı́vel

correr com sucesso sistemas com um máximo de três robôs simulados, no entanto, a nossa ferramenta

não suporta a carga computacional envolvida na simulação de uma equipa de quatro robôs.

Palavras-chave: Redes de Petri estocásticas, Sistema multi-robot, Execução de planos,

Visualização de planos

vii

viii

Abstract

Currently one lacks a tool that integrates modelling, visualization, logic and performance analysis and

execution. Generalized stochastic Petri nets (GSPNs) are a mathematical model that have proven to

be efficient for modelling homogeneous multi-robot systems due to their compact form, asynchronous

execution and ability to capture temporal uncertainty. And so, our work extended an existing multi-robot

modelling and task analysis tool that uses GSPNs.

The main goal of this master’s thesis is to develop a software package that allows the execution of

GSPN plans in multi-robot systems and in multi-agent systems. In order to do so, we created two new

modules: an execution and a visualization module. The execution module is responsible for executing

the input GSPN while the visualization module’s goal is to simulate or visualize the execution of the

GSPN, depending on the intentions of the user. Although the objective of this work is to use both

modules as a whole, it is possible to use both of them independently. The integration with robots is

assured by the robot operating system middleware (ROS).

In order to test our framework, we ran a series of tests on the part of the framework that was inte-

grated with ROS. On the first set of tests, we only ran our framework and on the second, we used our

framework alongside with the Gazebo simulator.

The obtained results for the tests where we only ran our framework show that, for a system with only

one robot, it is possible to execute and visualize considerably large networks. On the other hand, when

we used the simulator, we verified that it is possible to successfully run multi-robot systems with up to

three virtually simulated robots, however, our tool did not support the computational overhead involved

in the simulation of a team of four robots or more.

Keywords: Generalized stochastic Petri nets, Multi-robot systems, Plan execution, Plan visual-

ization

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 1

1.3 Thesis Outline . 3

2 Background 5

2.1 Generalized Stochastic Petri Nets . 5

2.2 GSPNs and multi-robot systems . 7

2.3 Policies . 8

2.4 Petri net properties . 9

3 Related Work 11

3.1 Finite State Automata Approaches . 11

3.2 Belief-Desire-Intention Approaches . 12

3.3 Petri Net Approaches . 13

3.4 Software tools . 15

4 The Execution Module 17

4.1 Execution Module: standalone implementation . 17

4.1.1 Allowing parallelism in our system . 19

4.1.2 Agent states . 20

4.1.3 Defining the user input . 22

4.2 A summary of the standalone execution module . 23

4.3 Execution Module: ROS integration . 24

4.3.1 General architecture of our system . 25

4.3.2 Inner robot communication: Using ROS actions to execute functions 25

4.3.3 Outer robot communication: Using ROS topics and services to change the GSPN 26

xi

4.3.4 Resource tokens and resource places . 31

4.3.5 Limiting the possible input GSPNs . 32

4.3.6 Defining the user input . 32

4.4 A summary of the ROS execution module . 33

5 The Visualization Module 35

5.1 The visualization module architecture . 35

5.2 Visualizing GSPNs . 36

5.3 Offline visualization . 37

5.4 Online visualization . 37

5.4.1 Online visualization: standalone implementation 37

5.4.2 Online visualization: ROS integration . 38

5.5 A summary of the visualization module . 39

6 Results 41

6.1 Testing the framework . 41

6.1.1 Increasing the number of tokens . 42

6.1.2 Increasing the number of places . 42

6.1.3 Increasing the number of places with only one token 44

6.2 Testing the framework with simulated robots . 44

6.2.1 Problem Description . 44

6.2.2 Creating a GSPN for the plan . 47

6.2.3 Results . 48

6.3 Discussion . 49

6.3.1 Testing the framework with no robots . 49

6.3.2 Testing the framework with robots on Gazebo . 49

7 Conclusions 51

7.1 Achievements . 51

7.2 Future Work . 51

7.2.1 Execution Module . 51

7.2.2 Visualization Module . 52

Bibliography 53

xii

List of Figures

1.1 Framework initial architecture. 2

1.2 Framework final architecture. 3

1.3 Visualization and execution module architecture. 3

2.1 A marked GSPN with an immediate (T1) and a exponential transition (T2). 6

2.2 Evolution of network and corresponding marking graph. 7

2.3 A GSPN with the corresponding multi-robot system. 8

3.1 FSA example . 12

4.1 Execution process for agents/robots. 18

4.2 High level execution. 19

4.3 Standalone execution module inputs and outputs. 19

4.4 Synchronization and inactive cases. 20

4.5 The agents’ possible states. 21

4.6 Fork case. 22

4.7 A GSPN and an example of the corresponding JSON input. 23

4.8 ROS execution module inputs and outputs. 24

4.9 ROS action client and servers and corresponding GSPN. 26

4.10 Moments where robots need to communicate. 28

4.11 Execution module outer communication. 29

4.12 Service Process. 31

4.13 Resources example. 32

4.14 Algorithm to limit possible input GSPNs. 33

5.1 Visualization module inner architecture. 36

5.2 Using Vis.js to visualize a GSPN model. 36

5.3 Visualization module input screen. 37

5.4 GSPN visualization module in Python 3. 38

5.5 Interaction with the standalone online visualization. 38

5.6 Interaction with ROS online visualization. 39

5.7 GSPN visualization module in ROS. 39

xiii

6.1 GSPN to test the increase of tokens. 42

6.2 Results for an increasing number of tokens. 43

6.3 Initial GSPN to test increase of places. 43

6.4 Results for an increasing number of places. 44

6.5 Results for an increasing number of action servers. 45

6.6 Results for an increasing number of places with only one token. 45

6.7 Critical room viewed from the top. 46

6.8 The metric map of our environment (a) and our topological map (b). 47

6.9 Temperature patrol designed GSPN. 48

xiv

Chapter 1

Introduction

1.1 Motivation

It has long been recognized that there are several tasks that can be performed more efficiently and

robustly using multiple robots. Applications such as: inspection [1], surveillance, search and rescue [2],

mapping of unknown or partially known environments [3] or transportation of large objects greatly benefit

from the use of multi-robot systems.

Presently, an issue of this area is the fact that the solutions for these applications tend to be hand

crafted almost every time a new problem occurs and on most cases, they don’t assure any formal

guarantees. Besides this, if the problem in hand is too complex, the designer will surely have difficulties

coming up with an adequate solution, which most times leads to inefficient and unreliable results.

A good way to solve the mentioned issues is by using a formal model, such as generalized stochastic

Petri nets (GSPNs), because it provides methods to synthesize policies to coordinate the multi-robot sys-

tem that respect formal requirements. Besides this, they also present great advantages in the modelling

of homogeneous robotic systems with its intuitive analysis of flow of information and control.

In most cases, the process of building a GSPN starts out by iteratively building a model and analyzing

it until the obtained one formally guarantees the existence of certain properties. Next, a policy is obtained

by an optimization method and finally, the plan is executed, taking into account the acquired policy and

the built network.

Nowadays, one lacks a tool that unifies the above mentioned process [4], and consequently, the user

has to implement interfaces that connect distinct 3rd-party tools, many of which implemented in different

programming languages, which obviously is a cumbersome task.

1.2 Objectives

The main objective of this master thesis, is to improve on an already implemented GSPN software

framework developed in [5], in order to allow the visual representation of the model and the execution of

GSPN plans. On Figure 1.1 we included the framework’s architecture before we started developing our

1

GSPN module
● design of the GSPN model;
● simulate token game.

Tools module
● visualize GSPN model.

Analysis module
● analyze GSPN model.

Figure 1.1: Framework initial architecture.

work (the arrows represent data flow). The GSPN module allows the user to manually design multi-robot

system as a GSPN using the xml language. The tools module can be used to parse the GSPN in the xml

language and translate it into an object that can be understood by the rest of the framework. Besides

this, it also allows the user to manually draw other models such as a CTMC. Finally, the analysis module

allows the user to directly verify a set of formal properties of the built GSPN. These formal properties

will be introduced later on.

The main two components that we added are the execution module and the visualization module.

The former allows the user to execute a GSPN plan, which represents a set of actions that an agent or a

robot must perform. To execute a GSPN is to complete the mentioned actions. The latter is a graphical

front-end, that provides an user friendly interface for the visualization of the GSPN model, the execution

progress and the properties obtained from the model analysis.

On Figure 1.2 we included the framework’s final architecture where the arrows represent data flow.

The execution module uses the GSPN created with the GSPN module and sends the changes of the

marking of the GSPN into the visualization module, which are posteriorly reflected on the visualization

module’s interface. The visualization module also uses the tools module to parse the GSPN into an

object that it can understand.

Our framework is integrated with the Robot Operating System (ROS) middleware which enables the

execution of plans in real robots or in simulated environments, such as the ones provided by Gazebo 1,

but we also built a standalone version which does not need ROS to be used. On Figure 1.3, we included

a detailed version of the architecture of the two modules that we introduced. The Figure is divided in

half to explicitly show the two different implementations. On the left side, we have the ROS integrated

version, where the ROS execution module communicates with the ROS online visualization module. As

portrayed by the Figure, the ROS integrated version does not have an offline visualization. On the right

side, we have the standalone version, where the standalone execution module communicates with the

standalone online visualization module. On the other hand, the offline standalone visualization module

is not connected with the execution module because it is used to simulate a GSPN, instead of executing

it. An important note to take is that both the standalone offline and online visualizations are accessed

through the same interface: the selection of one or the other is performed through the click of two

different buttons.

1http://gazebosim.org/tutorials?tut=ros_overview

2

http://gazebosim.org/tutorials?tut=ros_overview

Manager

GSPN
Model

Policy

Flags

FREE: First state or the robot has finished previous task;

OCCUPIED: The robot started a task;

DONE: The robot finished a task and is ready to move. Complete

Incomplete

Check robot’s sensors;

Check environment threads;

Decide Randomly.

Robot checks possible transitions.

GSPN module

Tools module

Analysis module

Execution module Visualization module

Indicates next place to go.

Indicates robot to decide.

FREE: First state or the robot has finished previous task;

OCCUPIED: The robot started a task;

DONE: The robot finished a task and is ready to move.

Check robot’s sensors;

Check environment threads;

Decide Randomly.

Figure 1.2: Framework final architecture.

Standalone execution module

Standalone Online
visualization

Standalone Offline
visualization

ROS execution module

ROS Online visualization

Vi
su

al
iz

at
io

n
m

od
ul

e
Ex

ec
ut

io
n

m
od

ul
e

Figure 1.3: Visualization and execution module architecture.

1.3 Thesis Outline

On Chapter 2, the relevant theoretical concepts for the understanding of this work are presented.

On Chapter 3, we go through literature that we consider relevant concerning execution, analysis and

visualization of single and multi-robot systems.

On Chapter 4 and Chapter 5, we explain how we implemented the execution and the visualization

module respectively, both for the standalone version and the ROS integrated version.

Closer to the end, on Chapter 6, we present the group of tests that we chose to perform in order to

understand the limits of our framework and discuss the obtained results.

Finally, on Chapter 7 we present the final overview of our achievements, our final conclusions and a

list of suggestions of future work that other developers might find interesting in order to further improve

this framework.

3

4

Chapter 2

Background

This section introduces the necessary formalisms and notations to understand the rest of this master’s

thesis. We start by introducing generalized stochastic Petri nets (GSPNs) and afterwards, explain how

we will see them in the context of our framework. We then introduce the definition of policies and finally

we present the set of formal guarantees that make the use of GSPNs advantageous.

2.1 Generalized Stochastic Petri Nets

Definition 1. Formally, a GSPN can be defined by the following tuple:

GSPN = (P, TI , TE , F,W
−,W+,m0, ZI , R) (2.1)

• P is a finite set of places;

• TI is the set of immediate transitions and TE is the set of exponential transitions where T = TI∪TE .

Immediate transitions model activities that can occur in the system and fire as soon as they have

the necessary number of tokens. Exponential transitions are characterized by an exponential

distribution which models the elapsed time until firing;

• F is the set of arcs where F = (P × T) ∪ (T × P);

• W− : P × T → N and W+ : T × P → N are input and output arc weight functions, respectively.

Input arcs go from places into transitions and output arcs go from transitions into places;

• m0 : P → N is the initial marking, which can be represented by a vector with a size corresponding

to the number of places;

• ZI : TI → [0, 1] is the weight of each immediate transition, which means that on the case of having

two or more enabled transitions, this value will determine the probability of each transition being

fired;

• R : TE → R> 0 is a function that associates each exponential transition with a rate.

5

P1 P2T1

T2
P3

Figure 2.1: A marked GSPN with an immediate (T1) and a exponential transition (T2).

On Figure 2.1 we included an example of a GSPN. More intuitively, a GSPN is composed by a net

structure and a marking. The net structure is a bipartite graph built with four elements: places, immediate

transitions, exponential transitions and arcs. Places are represented by circles, and the transitions are

represented by rectangles. Places can be either input or output, depending on their interaction with a

transition. Considering T = TI ∪ TE , t ∈ T and p ∈ P , the set of input places of t can be defined as

IN = {p|(p, t) ∈ F} and the set of output places of t can be defined as OUT = {p|(t, p) ∈ F}. The net

structure of a GSPN will remain constant all throughout the execution.

The marking, on the other hand, is the discrete number of tokens inside each place and is defined

by S : P → N. The marking is visually represented by small dots inside each place. The only way

a transition is fired is if the said transition is enabled. A transition is considered to be enabled if each

input place IN is marked with at least W− tokens. If the transition is enabled, then it can be fired,

removing W− tokens from the input places and adding W+ tokens to the output places. The tokens’

configuration will change all throughout the execution and they’re what empowers this tool: with tokens

we can observe the evolution of the model during the passing of time.

An important feature of GSPNs is the marking graph which formally can be defined as < S,E >

considering E : S × S → T ∪ ∅, where T is a transition. We consider that E can be null in order to cover

the case where we have two markings, that are not connected by a transition.

A more intuitive explanation is the following: on every level of the graph, we observe the possible

markings of the network. Consider the following example, which is illustrated on Figure 2.2, where we

have a network with 3 places and a total of 2 tokens. Initially the tokens are all in place P1 and as such,

their marking will be [2,0,0], meaning that the head of our marking graph will be this marking. However,

as time progresses, the transitions will fire and the tokens will start moving onto different places. On our

simple example, one of the tokens can move onto place 2 while the other stays behind or one of them

goes to place 3 while the other stays behind. The markings that represent the positions of the tokens

are [1,1,0] and [1,0,1] respectively, meaning that attached to the head of the graph, we will have two

children nodes. This process is iterated until no more markings are achieved. On the left of Figure 2.2,

we have our initial Petri net and the resulting two children and on the right, we have the corresponding

marking graph.

6

P1 P2T1

T2
P3

P1 P2T1

T2
P3

P1 P2T1

T2
P3

T1 T2

[2,0,0]

[1,1,0] [1,0,1]

T1 T2

Figure 2.2: Evolution of network and corresponding marking graph.

2.2 GSPNs and multi-robot systems

A multi-robot system is a group of two or more robots which have the ability to communicate with each

other and achieve goals as a team.

In our context, the tokens of a GPSN represent two different elements, depending on the places

where they are: robots or counters. Tokens will be seen as robots when they are in a place where

an action (such as moving into a specific room) can be performed (action places). Besides this, these

kinds of tokens are always associated with a physical or simulated robot. On the other hand, tokens will

be seen as counters when they are in a place where no action is being performed (resource places),

meaning that their existence is merely informative to the designer and to the analysis and synthesis

algorithms. These counters will be useful to count, for example, the number of robots that went through

a certain place.

Immediate transitions model action selection while exponential transitions model uncontrollable events

which can represent the reaction of the environment towards an action executed by the robot or an in-

ternal change.

As an example, consider the GSPN and the robot system illustrated on Figure 2.3. On the upper

part, the reader can observe the GSPN with five places, four exponential transitions, two immediate

transitions and three tokens. One of the tokens is on P1, another one is on P3 and the third one is on

P5. On the lower part, we have an illustration of the multi-robot system associated with this specific

GSPN.

The GSPN represents a system where two robots must measure the temperature of a critical area. If

the temperature is higher than a predefined threshold, an alarm will be activated. It is advantageous to

use a multi-robot system because by doing so, we can have a more efficient monitorization of the critical

system: when one of the robots is taking measurements, the other one is rebooting its system in order

to avoid working for long periods of time. All places except P3 represent action places, where a specific

action is being performed, while P3 represents a resource place, where no action is being performed.

As such, both the tokens on P1 and P5 represent robots, while the token on P3 represents a counter.

This token is not associated with any robot and on the case where the user checks the current marking,

by checking the number of tokens inside P3, it will be clear that the number of measurements done is 1.

7

ON OFF

P1:measuring temperature
T1:temperature low

P2:decide next step

T6:rebooted

S2

S3

S1

S4

P3:counting measurements

T2:temperature high P4:sounding alarm

P5:rebooting

T3:alarm off

T4:do reboot
T5:go measure temperature

Figure 2.3: A GSPN with the corresponding multi-robot system.

Regarding the transitions, T4 and T5 are immediate transitions and represent the selection of an action,

meaning that when a robot enters P2, it will decide its next step based on the current marking. The

remaining transitions are exponential because we do not know how long it will take to accomplish any of

the actions associated with them. For instance, when on P1, we do not know how long it will take a robot

to check the temperature of the critical area, and as such, the associated transitions are exponential.

The illustrated case is cyclic, which means that while the user does not interrupt the execution, the

number of measurements done will continue to increase, which of course means that the number of

tokens inside P3 will also continue to increase. In order to avoid having robots inside a resource place,

we built an algorithm to distribute the tokens during the execution, which will be further explained.

2.3 Policies

A policy defines how a certain system behaves at a given time. To be simply put, a policy dictates what

should be done in each state. A state in GSPNs is the current marking of our GSPN and what should

be done is a subset of immediate transitions, ti, where ti ∈ Ti.

Definition 2. A policy is formally defined as: π : ST → A, where ST is a set of states and A is a set of

actions. In the context of GSPNs, an action A can be defined as a set of transitions T and associated

probabilities Pr, (T, Pr). We can have four different forms of policies (which are inter-changeable), such

as deterministic, stochastic, stationary and non-stationary. However, we will only focus our attention on

stationary and deterministic policies since this will be the kind that we will use further on. Deterministic

are the simplest cases of policies and there are no uncertainties to which action the system will execute

on each state. Stationary policies are policies that don’t change over time.

8

2.4 Petri net properties

Petri nets (PNs) are the predecessor of GSPNs and as such, their properties are passed onto the latter.

The usage of PNs or GSPNs has many advantages but the main ones are related to the fact that they

are mathematical models that can be analyzed to check for properties of the modeled system. Besides

this, GSPNs are flexible to the point where they can be converted to other graph-like representations,

such as Markov Decision Processes (MDPs), Discrete Time Markov Chains (DTMCs) and Continuous

Time Markov Chains (CTMCs) under some assumptions.

PN properties can be divided into two main groups [6]: qualitative or logical, which have to do with the

structure of the PN and quantitative or performance analysis, which have to do with their performance.

The properties are listed and shortly described below but for more information about them, consult

[7] and [8].

• Qualitative Properties:

– Reachability and coverability: This property allows us to assess if the system moves into un-

desired states. A marking mn is considered reachable from m0 if there is a certain sequence

of firings that transforms m0 into mn. Associated with reachability, we have reversibility which

states the possibility of returning to m0. On the other hand, coverability is the property that

states if a certain state is covered or not;

– Boundedness: If the GSPN is bounded, the reachability graph is finite;

– Safety: if every place of a Petri net has at most k tokens for all reachable markings, then the

net is k-safe;

– Liveness and Deadlock: A transition is said to be live if it can be fired at least once for every

marking of the model. If the net is not live, then it’s dead. Besides this, if at least one

transition is live, then the net cannot deadlock, which is a state where it’s not possible to fire

any transition.

• Quantitative Properties:

– Transient: During the transient phase, the GSPN state suffers various alterations until the

steady state is reached. The user can analyze how the probability distribution of tokens per

place evolves until the steady-state is reached. Besides this, the time that it takes to reach

the steady-state can also be analyzed.

– Steady-state: The PN reaches a steady state when a certain balance is achieved. The user

can analyze data related to the efficiency of the net such as the mean time to reach a certain

state, the mean time spent on each state, the average number of tokens in each place or the

average throughput of each transition.

9

10

Chapter 3

Related Work

On a survey made in 2019, Luckcuck et. al have parsed the state of the art of formal specification and

verification models [4]. The survey presents three research questions: (i) what are the difficulties in

specifying and verifying the behaviour or robotic systems, (ii) what are the best tools and approaches to

these systems and finally, (iii) what are the current limitations of the best practices identified before.

Concerning the second question, the answer provided indicates that temporal logics, discrete event

systems and model-checkers are currently the best practice due to the existence of formal guarantees,

which essentially indicates that GSPNs (which are discrete event systems) are a good approach. On

the other hand, the answer to the third question presents the problem that we aim to solve: the main

issue behind the use of several formal specification and verification frameworks is that there is always

the need of using some sort of translation between every tool, since there isn’t any unified way of doing

so.

Many ways of modelling multi-robot systems have been proposed but as of today, the main ones are

Finite State Automata (FSA), Belief-Desire-Intention Systems (BDI) and Petri nets (PN).

3.1 Finite State Automata Approaches

A Finite State Automata (FSA) is composed by nodes, which represent states, and arcs, which represent

transitions between the nodes. In Figure 3.1 we have included a short example of a FSA.

FSA based approaches have been very successful in modelling robotic systems and tasks because

of their intuitive approach to design: FSAs only have two building blocks (nodes and transitions) and

they are relatively simple to build.

In [9] the authors introduce a FSA-based approach to use a multi-robot system to patrol a certain

perimeter. Based on the Null-Space-based behavior control [10], which essentially is a way of combining

multiple smaller behaviors into a single complex one, the system creates actions using several of the

elementary behaviours. The supervisor, which is a FSA, selects the intended actions and orders the

robots in the system to complete them. The supervisor has the job of deciding what each robot should

do and controlling the robots’ whereabouts. This can be advantageous because all possible transitions

11

S2

S3

S1

S4

Figure 3.1: FSA example

between actions can be explicitly encoded but on the other hand, this can be hard if a large volume of

changes happens in the environment. This work’s intention is to create a way of delegating actions using

a FSA. In this case, there is no apparent need for time monitoring and as such, FSA are a considerable

model to solve this issue.

Although FSA doesn’t directly allow the modelling of systems where time is relevant, several ap-

proaches have tried to manipulate its definition in order to have some kind of time variable. The most

popular one is presented as a framework based on timed automata [11]. Timed automata extends the

definition of an automaton with a group of real-valued clock variables. Based on the definition presented

on [12], the timed automaton is a tuple A = (L, l0, E, I, V) where L is a finite set of locations, l0 is the

initial location, E is a finite set of edges, I is a function that assigns a clock constraint to every location

and finally V is a function that assigns a set of true atomic propositions. The robots’ world is defined as

a grid and the clock measures the amount of time spent in a location since it was last reset, which hap-

pens every time the robot enters a new location. To verify the properties of the multi-robot system, the

authors use UPPAAL, [13], which is a tool box used for modeling, simulation and verification of real-time

systems.

When comparing a FSA to a GSPN (or even a PN), GSPNs are usually smaller and although the

growth of the size of the marking process is exponential for both models, in the case of GSPNs, it is

possible to model, in a finite way, FSAs that are theoretically infinite. Although the construction of a FSA

can be very intuitive and simple, most systems built with this approach tend to represent single-robot

systems, since the existing mechanisms to build concurrency are not very intuitive and less explicit than

on GSPNs.

3.2 Belief-Desire-Intention Approaches

Belief-Desire-Intention systems, or BDI, appeared as an alternative to FSA-based approaches. To be

simply put, BDI [14] is an architecture where the agent has three main components:

12

• Beliefs, which represent what the agent knows about the environment, which is usually imperfect

since it depends on the list provided by the programmer;

• Desires, which represent the agent’s goals and as such, some can represent a possible end state.

Most of the desires will be sub-goals that the agent will need to accomplish in order to achieve his

final goal;

• Intentions, which represent the selected behaviours to be executed. This is useful on the case

where the environment changes and the agent has to change its desires frequently.

Besides these three components, the system also has a predefined library of plans where the pro-

cedural knowledge is stored.

The main reason why this approach is an evolution in comparison with the previous one is that with

BDI, the programmer is not forced to create a very solid list of tasks to be completed. Instead, the robot

itself has a certain degree of freedom to choose what he feels is more adequate to execute at the time.

In terms of BDI approaches, the most relevant applications are BITE [15] and STEAM [16]

BITE (Bar Ilan Teamwork Engine) is a behaviour-based teamwork architecture that aims to simplify

and automate collaboration among the robots of a multi-robot system. To achieve this, BITE has an

organization hierarchy, a task/sub-task behaviour graph and a library of social interaction behaviours.

The main goal of BITE is to create a teamwork architecture that provides integrated synchronization and

allocation and allows to combine different synchronization and allocation protocols.

STEAM, on the other hand, is based on the Joint Intentions Theory [17] which is based on the

definition of a common goal for every member of a team, and whose main focus is that the goal has not

been reached yet. While this is maintained, the team wont stop trying to achieve it, unless it is considered

impossible to be achieved or irrelevant by every member. Moreover, STEAM aims to create a model of

teamwork where agents are able to overcome changes in their acting environments, communicating

through each team member’s commitment in joint intentions and reorganizing it if necessary. On the

mentioned paper, the authors apply STEAM in virtual environments of events such as battlefield combat

and robot soccer but never on real robots.

A variant of BDI systems was explored on [18], which adds an extra layer to the definition of BDI,

specifying two different types of agents, depending on their degree of commitment. If the agent will try

anything to achieve his goals, he is described as a fanatic. On the other hand, the relatively committed

has the choice to stop his actions if some other conditions are met. This allows for the user to define

two degrees of agent motivation, creating more dynamic and realistic systems.

3.3 Petri Net Approaches

In comparison with the previously mentioned approaches, PNs seem like a more viable approach due

to their capability of representing concurrent systems and also verification of formal properties on the

performance of the system.

13

In [19] the authors define a framework based on a modular approach to represent robot task plans

using PNs. The building blocks of the framework don’t add any changes in PN definitions but are

essential in order to simplify the modelling process. These building blocks include predicate places,

used to check for a certain condition; action places, which is where a task is performed meaning that

the world can be changed; task places, which are modeled as PNs and represent sets of actions to be

done; memory places which is another designation for a place that isn’t any of the previous ones. Adding

to this, the authors define three layers: environment layer, which models the external environment;

action execution layer, which includes the PNs that represent actions; action coordination layer, which

includes PNs that represent compositions of actions. With these elements, the authors propose a set

of algorithms to transform all of these PNs into a single one so that the analysis and the execution are

simplified. The main contribution of this framework is the possibility of representing everything related

to a robot through PNs, making it easier to analyze and execute the desired system. Furthermore, its

design-analysis-design approach improves significantly the resulting models and by separating the PNs

into different layers, the complexity of modelling is reduced significantly.

Another approach taken in [20] uses PNs as a language to program the high-level behavior of multi-

robot systems. The main goal behind it is creating a rich and intuitive modelling language to support

robot developers in designing and implementing high-level robot and multi-robot behaviors. This frame-

work takes inspiration from action languages, which are languages where the program is defined with

actions and so, the flow of the program will be composed by several PNs, where each node corresponds

to an action. An important note is that, since we’re working with robots, we must consider that these

actions take time to execute the necessary actions. With this framework we see a different way of

modelling multi-robot systems. On the previously mentioned approach, the authors modeled both the

environment and the robot in the same PN model, whereas in this paper, the authors simply modelled

the tasks that the robot has to finish using PNs. Although it has many advantages, one should note that

the main issue with this framework is the fact that the user is constrained to the framework’s building

blocks, meaning that the framework itself doesn’t allow much deviation from its primary objective.

More recently, [21] have created a framework that uses PNs and safe linear temporal logic (LTL) to

model the multi-robot system’s behaviour and to specify rules that control the coordination, respectively.

Besides this, it also uses a PN as a supervisor for the robots’ behaviours, restricting what they can do. As

opposed to remaining papers presented so far, in this framework the work behaviours are synthesized

from the PN while using LTL to specify behaviours in a user-friendly and intuitive way.

On [22], the authors aim to solve the problem of planning a team of robots using a Boolean-based

specification to model regions of interest. Although the environment is known and considered to be

static, the specification, which is known by every member of the team, imposes Boolean requirements

on the locations visited by the robots during the model’s execution. The presented solution models

the team’s movement and the satisfaction of regions with a PN model in order to avoid a state-space

explosion. The robot’s mission is converted into a set of linear inequalities and later into PN markings,

in order to finally be able to solve an integer linear programming problem.

14

3.4 Software tools

There are many tools with the purpose of modelling, visualizing and analyzing PNs. However, the main

limitation of these tools is the fact that they don’t do all of these tasks in an integrated way, causing the

programmer’s job to be more difficult than it has to be.

PRISM [23] is an open-source probabilistic model-checker. It provides mechanisms to build and

analyse DTMCs, CTMCs, MDPs and the extensions of these models with rewards. A PRISM model is

composed by various modules whose states are represented by a finite set of variables and is based

on the Reactive Modules [24] formalism with the intention of being able to describe the various modules

that compose the model. Other DTMC and CTMC analysis tools are available but unlike PRISM, they

do not allow logic specifications. However, being focused on model-checking, PRISM does not allow

execution of plans.

STORM [25] is another probabilistic model checker like PRISM, but since it was developed more

recently, it’s more optimized than the former. However, STORM doesn’t support LTL model checking

and doesn’t support the PRISM features such as probabilistic timed automata and multi-objective model

checking.

SMACH [26] is a ROS-integrated Python framework used for modelling of robotic systems based on

FSA. It was created with simplicity in mind so that any programmer who needs a small state machine

to define the behavior of its robot can build it rapidly and intuitively. Additionally, the creators of the

framework made it very simple for the robot to recover from error situations, since this can be a very

tricky event to program. Unlike usual FSAs, SMACH allows parallel execution, using the execution policy

Concurrence. Nevertheless, this concurrency is not very explicit because of the way it is presented.

Moreover, it doesn’t show the passing of time, which can be an essential metric do analyze in a multi-

robot system. Adding to this, this tool doesn’t allow formal analysis, which makes it impossible to obtain

formal guarantees from the model.

Pipe 1 is a tool to design GSPNs and PNs. It has as simple user interface and moreover, you can

also simulate the token game, which means that we can observe the tokens being exchanged between

the places. However, it doesn’t allow an execution of the network, meaning that although the user can

see the token’s movements, there aren’t any functions being executed on real robots.

GreatSPN [27] is another tool created with the purpose of analysing Discrete Event Dynamic Sys-

tems (DEDS), or more concretely, GSPNs. As of today, the tool allows the user to build the GSPN,

visualize it in a graphical way, evaluate the network’s qualitative and quantitative properties and finally,

visualize the obtained results. Although this tool allows the user to model and analyse a certain GSPN,

it doesn’t allow its execution.

Contrary to the previously mentioned tools, Petri net plans [20] can execute a PN. However, they

are based on PNs, which we can be considered as a slightly less expressive model when compared to

GSPNs since they don’t take into account uncertainty. Besides this, Petri net plans aren’t very flexible

in the sense that the user has to use a series of predefined building blocks that compose the framework

1http://pipe2.sourceforge.net

15

http://pipe2.sourceforge.net

and although these building blocks are a good way of creating a robust model, this limits the user’s

possibilities.

On Table 3.1, we summarize the purpose of each tool and its main characteristics.

Tool name Purpose Modelling Analysis Execution

PRISM [23] probabilistic model-checker models DTMCs, CTMCs and MDPs Logic and Performance No
STORM [25] probabilistic model-checker models DTMCs, CTMCs and MDPs Logic and Performance No
SMACH [26] design of FSAs models FSAs No No
PIPE 2 design and simulation of PNs models PNs and GSPNs Logic and Performance No
GreatSPN [27] design and analysis of GSPNs and SWNs models DEDS Performance No
PN Plans [20] design analysis and execution of PNs models PNs Logic Yes
Our Framework design, analysis and execution of GSPNs models GSPNs Logic and Performance Yes

Table 3.1: Summary of mentioned tools.

16

Chapter 4

The Execution Module

The execution module’s main goal is to execute the action plan of a GSPN. This module was firstly

developed in a standalone version without ROS, using only Python 3, where agents are seen as tokens

and functions are seen as places. This version can be used by anyone who is interested in working with

a GSPN tool to model and execute plans without robots. Afterwards the module was integrated with

ROS, where robots are seen as tokens and actions are seen as places, in order to accomplish the final

goal of using it with simulated robots. The purpose of this integration is to allow robot developers to use

our tool in a real robot system.

Taking all this into account, by using and executing plans of GSPNs, we are creating a generally

transparent system where the user can easily understand what each agent/robot is doing at every point

in time because each place is directly associated with a specific function/action. If an agent/robot is, for

instance, stuck in place P1, then the programmer can have the intuition that the reason can be inside

the code of the function/action.

Generally, the algorithm created to perform the execution takes as input a GSPN, a policy and a

mapping between function/action and each place. When an agent/robot, which is represented by a

token, enters a place, it will start executing the corresponding function/action. When it is done with it,

the function/action outputs either the transition to fire in the GSPN or a flag that requires the algorithm

to check the input policy in order to determine the next transition that should be fired. Afterwards, the

transition is fired and the agent/robot moves into the next place, starting this process once again. The

process where the function/action outputs a transition is described on Figure 4.1.

4.1 Execution Module: standalone implementation

In this section we will not be talking about robots and instead, we will refer to the tokens as agents

because the standalone implementation’s objective is to coordinate virtual agents instead of multi-robot

teams.

In the scope of this master’s thesis, an agent is represented by a token with an identifier and a state

attached to it internally. The purpose of the id is to distinguish each agent, since once they enter a

17

p1: execute function/action 1
t1

p2: execute function/action 2

p1: execute function/action 1
t1

p2: execute function/action 2

executing...

output: t1

p1: execute function/action 1
t1

p2: execute function/action 2

executing...

Figure 4.1: Execution process for agents/robots.

different place, a new action will have to be executed (the assignment of the ids is performed automati-

cally by our algorithm). On the other hand, the purpose of the agents’ states is to inform the execution

algorithm about what an agent is doing in its current place. This is necessary because the marking for a

system where an agent has already executed a function is the same as the marking where an agent is

still executing it.

The state of each agent is stored as a string inside a Python list, where the order is directly related

to the agents’ ids: in order to read, for example, the state of the agent with id number 3, we must access

the third element of the list. The current place of each agent is stored in a different Python list and its

access is performed in the same way as before. This means that the length of each list will be the same

as the total number of agents. On Figure 4.2 we included an example of how the lists of agent states

and agent places look like, when compared with a GSPN. The main cycle will go through the list with

the agent states and taking the state into account, will decide what the agent should do next.

In a very high level overview, we created a system that at all times checks the progress of each

agents’ execution, checks if they are done with their action or not and decides what they should do next.

This cycle is infinite unless the user explicitly stops it or on the case where all agents reach a place

without any output arcs.

The main idea of this module is to receive as input a policy, a GSPN model and the mapping between

each place and the function that is supposed to be executed there. The output is the token game and the

output of the functions that are executed. The graphical representation of this exchange is represented

on Figure 4.3.

18

Agent states: [‘Free’, Done, ‘Free’]

Agent places: [‘P1’, ‘P2’, ‘P2’]

T1P1 P2

T2

Figure 4.2: High level execution.

Execution
Module

GSPN
Policy
Place/ function mapping

Token game
Output transitions

Figure 4.3: Standalone execution module inputs and outputs.

4.1.1 Allowing parallelism in our system

The mentioned cycle requires a high level of parallelism because it must guarantee that at all times, every

agent is busy. Regarding parallelism we essentially have two approaches: we either use processes or

threads. We chose to use threads because of its lightweight, when compared to processes. This way

we can operate systems with much more agents.

By using Python 3, we had at our disposal a Python library called concurrent futures 1 which provides

the same functionality as threads but in a more programming-friendly way. Concurrent futures are built

over the same concepts that threads are, but they have several built-in methods that make certain

operations easier. For instance, threads don’t directly allow the return of function outputs, meaning that

if a thread executes a certain function, its output can’t be directly returned by it. Concurrent futures, on

the other hand, allow functions to return outputs, which is advantageous to our implementation because

after the completion of an action, the resulting transition should be returned as output.

Each agent will be associated with one concurrent future which will make the agent execute the

functions corresponding to the place where it is presently. After being finished with the function, the con-

current future moves the agent into the next place and once again makes him execute the corresponding

function. This cycle continues until either the execution is interrupted or the agent moves into a place

with no output arcs.

1https://docs.python.org/3/library/concurrent.futures.html

19

https://docs.python.org/3/library/concurrent.futures.html

P1 P2

P1

T1

P4

P2

P3

Figure 4.4: Synchronization and inactive cases.

4.1.2 Agent states

In order for our cycle to know the whereabouts of each agent, we created a mechanism to differentiate

the several stages where the agents can find themselves. One should not confuse the agent states with

the agent identifiers. The states represent what the agents are doing, while the identifiers are a sort of

name to the agents, with the purpose of distinguishing each one.

Each agent will have 6 different states which can be attained at any point of the plan’s execution:

• Free: indicates that the agent is available to start working. In the beginning of the execution, every

single agent will have this state;

• Occupied: indicates that the agent is occupied with a certain action;

• Done: indicates that the agent finished the action and is ready to move onto the next place;

• Waiting: in synchronization cases, such as the one on the left side of Figure 4.4, the agents will

have to wait for every agent involved to be finished. For example, on the left side of Figure 4.4,

both tokens on P1 and P2 will be on this state after completing the functions of P1 and P2 because

there are no tokens on P3. T1 only fires when the three places have agents in it and have finished

their actions;

• Inactive: used for the cases where the agents reach a place with no output transitions. For exam-

ple, on the right side of Figure 4.4, once the agent finishes the action of P2, it reaches the Inactive

state because it doesn’t have any output arc;

• Void: used for cases where we have ”destruction” of agents. Taking the synchronization example

again on the left side of Figure 4.4, once T1 fires, the tokens on P1, P2 and P3 will be consumed

and only one will be created on P4. Taking into account that we are using concurrent futures,

we came to the conclusion that the deletion of these objects is quite difficult and if we were to

delete them mid-execution, then many problems would arise with the cycle that goes through all

concurrent futures. And so, we decided to create this new state to describe agents that aren’t

considered anymore.

20

Free Occupied

Done

starts executing task

finishes task
fire transition

Inactive

no output arcs?

Waiting

synchronization case?

all agents are waiting?

Void

n: number of agents waiting
x: number of output arcs

n - x agents

x agents

initial state

Figure 4.5: The agents’ possible states.

21

P1

P2

P3

P4

Figure 4.6: Fork case.

In order to fully understand how the states are modified during the execution, we included Figure 4.5.

An agent starts the execution with Free. Afterwards, it will start executing the action that it is assigned

to and since it is occupied, its state is altered to Occupied. When it finishes its action, its state is altered

to Done. By confirming that a certain agent has Done, the number of output arcs is checked. If we have

zero output arcs, then the agent’s state is updated to Inactive and its execution has come to an end. If

we are not in a synchronization case (cases where we have only one input arc), then its state is updated

to Free. On the other hand, if we have a synchronization case, then the state is altered to Waiting. Once

every agent’s state is labeled as Waiting, then all of them are fired and once again created on the output

places. In this case, if the number of agents waiting, n, is the same as the number of output arcs x,

then all the agents will be labeled as Free. However, if n is larger than the number of output arcs x, then

some of the agents will be randomly picked to be labeled as Void. On the case where n is smaller than

the number of output arcs x, then new tokens are created into the execution and labeled as Free.

Done and Free can be confused very easily due to their similarity in wording, however, they are quite

different because if Free, then the agent has already moved to a new place, meaning that the transition

has already fired, while if Done, the agent still has to go through this process.

In order to cover fork cases, where we have a growth of the number of agents in the marking, such

as the one illustrated on Figure 4.6, we decided that instead of creating exactly n concurrent futures for

n initial agents in the beginning of the execution, we would create 3n concurrent futures. Since these

elements are rather lightweight, we did not heavily compromise our execution.

4.1.3 Defining the user input

We simplified the user input as much as possible. The input will need to include the following elements:

• The path to the project folder;

• The GSPN model;

• The policy;

• The mapping between each place and function.

We decided that the input was to be provided through a JSON file, which is a lightweight data-

interchange format. Although being highly important, this JSON file can be placed anywhere because

22

{ "project_path":"/home/execution_functions/",

 "gspn": "gspn_4_places.xml",

 "place_to_function_mapping": "{'p1': ‘functions.scan_room',
 'p2': 'functions.decide',
 'p3': 'functions.pick_object',
 'p4': 'functions.go_to_base'}",

 "places_tuple": "('p1', 'p2', 'p3', 'p4')",

 "policy_dictionary": "{ (1,1,0,0): {'t2':0.6, ‘t3’:0.4}, (0,1,1,0): {'t2':1} }" }

P1 P2

T2

T3

P3

P4

T1

Figure 4.7: A GSPN and an example of the corresponding JSON input.

once the user starts the execution module, it is queried about its location. On Figure 4.7 we included a

simple GSPN and an example of the corresponding input file.

The first input that should be provided is the path to the folder where the functions to execute are

located. Inside this folder should also be included the GSPN represented in the xml language, which

is provided through the ”gspn” field. The translation from xml to a data structure that the module can

understand and manipulate is possible through an xml parser which was already implemented on [5].

The mapping between each place and function is a Python dictionary (which are unordered, change-

able and indexed collections with keys and values) where the key is the name of the place and the value

is the name of the file followed by the name of the function to be executed. This file must be placed inside

the project path that was previously defined. This mapping establishes the direct connection between

the GSPN and the functions to be executed.

Finally, regarding the policy, we defined a policy Python class once again with the help of Python

dictionaries. This class is composed by two elements: The policy dictionary, which is a dictionary where

the key is a tuple with the marking and the value is another dictionary where the key is a transition and

the value is the probability of being fired; The places tuple, which is a tuple with the order of the places

that are represented in the previously mentioned dictionary.

4.2 A summary of the standalone execution module

On the following list we included a summary of the most relevant features and elements of the standalone

execution module:

• The Python 3 library concurrent futures is used to allow parallelism in this module;

• All agents are the same visually, but inside the source code, each one has a different integer to

identify them;

• Each agent has six different possible states to distinguish in what phase of the execution each one

is currently;

• In order to use this module, the user must input the project file, the GSPN model in xml, the

calculated policy and the mapping between each place and function;

23

Execution
Module

GSPN
Policy
Place/ action mapping
Resource places
Information flag

Token game
Action feedback
Output transitions

Figure 4.8: ROS execution module inputs and outputs.

• The execution module’s essence lies on a single file with a main infinite cycle that constantly

checks the current states of each agent and moves them accordingly.

4.3 Execution Module: ROS integration

The following section will introduce the integration of the execution module with ROS. This module was

developed to be used with the latest distribution of ROS, Noetic, which implies that it was developed and

tested with Ubuntu 20.

We decided to use this distribution and subsequent Ubuntu version because some of the libraries

that we based our code on were only available for Python 3. Besides this, there was no reason to keep

using Python 2, since it lost its support earlier this year, meaning that there wont be any more bug fixes

for it.

Although on Section 4.1 we viewed agents as tokens, on this Section we describe them as robots,

since our main goal is to coordinate multi-robot teams. However, since each robot is still a separate

entity that will move and execute functions independently from the rest of the team members, they also

need to be tagged with a unique identifier.

Instead of using token states as the main focus of the execution module, with the ROS integration we

used the built-in states that are provided with ROS actions. In a high level overview, this module will take

a GSPN, and for each one of its places, it will run an action server whose result will be a transition to

be fired. As robots finish actions, they take the output transition and fire them, entering into a new place

and running new action servers, restarting this process. The changes on the marking of the GSPNs are

transmitted through either a service or a topic, depending on the quantity of information that the user

wants to receive.

As inputs, the user must provide the GSPN model, the policy, the mapping between each place and

action, a list with the names of the resource places and a flag that indicates the the desired quantity

of information received. As outputs, the user receives the token game, the action’s feedback and the

output transitions (Figure 4.8).

24

4.3.1 General architecture of our system

Regarding the general system architecture, two options were considered:

• A centralized architecture: where there is a single entity that is responsible for each robot and the

actions that they are carrying out. This single entity would also be responsible for the update of

any internal structures (such as the marking, for instance);

• A decentralized architecture: where a peer-to-peer communication based protocol would be im-

plemented in order to make the robots coordinate among themselves and execute the actions. On

this architecture, there is no central entity that has knowledge of the full system. Instead, each

robot contains the algorithms and the tools necessary to carry on the execution. Every time a

robot changes an internal structure (such as the marking), it should be able to communicate the

change to the remaining members of the network.

We chose to use a decentralized architecture due to the nature of the problem we need to solve:

our framework’s main goal is to be used with multi-robot systems and as such, it is not a wise choice to

concentrate the entirety of our algorithm into a single point of failure. However, this choice also means

that the synchronization task falls upon each member of the robot team and it also demands a larger

processing capacity from each robot, which would not happen in a centralized architecture.

A final note on the architecture of our system that should be pointed out is that inside each robot

we will have an execution node running inside it, which means that for each robot, we will have the

same number of execution modules running. Since the execution module is the one responsible for the

modification of the GSPN’s marking, this means that extra steps were necessary in order to guarantee

the synchronization of the GSPNs inside each member of the multi-robot team.

4.3.2 Inner robot communication: Using ROS actions to execute functions

The inner robot communication defines how each robot is able to execute the many actions of its plan.

Our framework uses the actionlib 2, which is based on a client-server model where the action client

communicates with an action server. Actions consist of three separate parts: a goal, which is firstly sent

to the server, a result, which represents the output of the function that was executed and a feedback

which can be provided to understand the system’s progression.

Consider Figure 4.9, which represents a robot’s inner structure. On the left side, we have the robot’s

action client and servers, while on the right side we have the current GSPN. For each place of the GSPN,

we have one action server, which are named according to the places they represent. For instance, place

P1 is associated with the P1 action server. Taking into account that the robot is on P1, then it will

connect its action client to the P1 action server. This connection is represented by the bi-directional

arrow between the action client and the P1 action server. In general, after completing the action, the

server will either return a transition (if it is an exponential transition) or a flag that requires the policy and

the current marking to be checked (if it is an immediate transition). Afterwards, the transition is fired, the
2http://wiki.ros.org/actionlib

25

http://wiki.ros.org/actionlib

Action client

P1 action
server

P2 action
server

P3 action
server

robot 1

P1

P2
T1

P3T2

Figure 4.9: ROS action client and servers and corresponding GSPN.

robot will disconnect its action client from the current action server and connect it to the action server of

the new current place. This process repeats itself until the robot’s current place has no output arcs or

until the user explicitly stops the execution.

Taking into account that every robot will have to run inside it one server per place of the GSPN, this

means that for example, a GSPN with three places and three robots, a total of nine action servers will

be created.

For a better understanding of the algorithm behind the execution, please consider Algorithm 1. The

red and blue portions will be introduced on the next Section. For now, only consider the black colored

portions of the pseudo-code. The algorithm takes as inputs a GSPN, the policy, the mapping between

each place and server and a flag to decide whether the outer communication is performed via topic or

service. The list of resource places is not used directly in this algorithm and as such, we chose to omit

it. The first step is to know the current place of the robot, so that it can map it to the corresponding

action server. Afterwards, the action is executed and once it is finished, the algorithm checks whether

the robot’s current place has output arcs or not. If not, then the execution is finished for the robot. On the

other hand, if there are output arcs, then the algorithm checks the result provided by the action server.

If the result equals to the string ”None”, this means that the transition to be fired is immediate. As such,

the algorithm must take the current marking, check the policy that was provided and fire the resulting

transition. On the other hand, if the result is a concrete transition, this means that the transition to be

fired is exponential and as such, it is simply fired. The remaining parts of the algorithm will be explained

on the next Section.

4.3.3 Outer robot communication: Using ROS topics and services to change

the GSPN

In order to guarantee a robust exchange of information between every robot, such as the exchange of

the GSPN’s current marking, we chose to use ROS topics 3. In its essence, a topic is a way of com-

municating between nodes through ROS using a publisher/subscriber architecture. When a message is
3http://wiki.ros.org/Topics

26

http://wiki.ros.org/Topics

Algorithm 1: ROS execution algorithm.
Input: GSPN, policy, mapping between each place and server, communication flag to decide

between topic and service
Output: Execution of actions

1 while True do
2 Get the robot’s current place, connect to the corresponding action server and start executing

action;
3 if The action server is done then
4 Check GSPN and get the output arcs of the current place;
5 if There are any output arcs then
6 Get the result returned by the action server;
7 if Result is immediate transition then
8 Check the communication flag;
9 if Communication flag is topic then

10 Check transition to fire in the policy and fire it;
11 Share the firing information with the topic;

12 else if Communication flag is service then
13 Get the other robots’ current places, check the policy and get the other robots’

current states;
14 if All robots are in state ’Done’ then
15 Fire the transition obtained from the policy;
16 Share the firing information with the topic;

17 else
18 Wait

19 else
20 Fire the transition obtained from the action server;
21 Share the firing information with the topic;

22 else
23 End execution of this robot.

24 else
25 Wait for result

27

P1 T1

P3

P4

P2

T2

T3

P1

T1

P4

P2

P3

Figure 4.10: Moments where robots need to communicate.

published to a topic, every subscriber of the said topic executes a listener callback function. This archi-

tecture is also supported by other callback functions such as feedback and cancel callback functions. In

our specific case, every robot is both a publisher and a subscriber to the exact same topic, which sim-

plifies the task of synchronizing the system but can lead to unwanted behaviours, which we will further

get into.

Communicating through topics can, however, make the understanding of the network much harder

since every time there is a change, a message is published to the topic. We concluded that there are only

two moments when the robots actually need to communicate their current place, which is the moment

when a robot has to choose which immediate transition it should fire (such as the robot on P2 on the

left side of Figure 4.10) and the moment when a robot is on a synchronization case (such as the robots

on P2 and P3 on the right side of Figure 4.10). Taking this into account, we decided to create an extra

communication channel, through ROS services 4, which instead of being called every time someone

publishes to it, is only executed when it is necessary.

Using ROS topics to communicate changes

Every time a robot finishes executing an action, it publishes the changes to a topic and the other robots

listen to it, in order to also apply those same changes into their own inner structures. Every publisher

publishes the fired transition, the id of the firing robot, the resulting marking and a timestamp of the time

when the publishing occurred. The reason why we chose each one of these elements is summarized in

the following list:

• fired transition: to inform the remaining team members of the changes that occurred to the network

so that they can also apply them to their version of the marking;

• resulting marking: to confirm how the marking should look like after the transition was fired;

• firing robot id: to avoid firing the same transition twice and to know which token has to be consumed

and created. Taking into account what was said before about the publisher/subscriber architecture,

our listener callback function takes this id and on the case where it corresponds to the id of the

4http://wiki.ros.org/Services

28

http://wiki.ros.org/Services

Action client

P1 action
server

P2 action
server

P3 action
server

robot 1

P1

P2
T1

P3

Action client

P1 action
server

P2 action
server

P3 action
server

robot 2

Fired transitions topic

P1

P2
T1

P3

T2

T2

Figure 4.11: Execution module outer communication.

robot that is listening, then the message is ignored. However, if the id is different from the id of the

robot listening, the transition on the messaged is fired in the current robot’s GSPN;

• firing timestamp: for debug purposes and to take metrics from the execution.

On Figure 4.11 you can analyze the outer communication model. In this example we have a multi-

robot system composed by two robots and a GSPN with three places, which translates into three servers

for each robot. Robot 1 is on P1 and as such, it connects its action client to the P1 action server. On

the other hand, robot 2 is on P2 and as such, it connects its action client to the P2 action server. If one

of the robots finishes the action, they will fire a transition and as such, the marking will change. These

changes are published to the fired transitions topic and each subscriber of the same topic receives them.

On Algorithm 1, the topic communication is performed by the red colored portions of the pseudo-code.

Every time a robot fires a transition, it will have to publish to the topic the information that was previously

mentioned, so that the remaining members of the team can update their local GSPNs.

Using ROS services to communicate changes

On Sub Section 4.3.3 we briefly explained that there are only two moments when the robots need to

explicitly communicate with each other:

• when the robot has to choose which immediate transition it will fire, because when an immediate

transition has to be fired, the policy has to be checked. As defined in Definition 2, a policy corre-

29

sponds a set of states to a set of actions. The states are, in our context, a marking. And so, for

each marking, there will be a resulting action. Since the marking is essentially what decides which

transition will be fired, then this means that the key point of the immediate transition is to know the

configuration of the marking;

• when the robot is on a synchronization case, because on this case, the robots need to know exactly

whether every other input place has at least one robot or not.

To solve the first bullet point, we defined a very simple service for each robot which returns its current

place. Every time a robot needs to make a decision regarding which Immediate transition will be fired, it

calls the service of every remaining member of the team and registers their current places. After having

the quorum from every member, the robot builds the current marking of the GSPN and makes a decision

regarding the transition to fire, based on the obtained marking.

This implementation has two main advantages:

• It requires less computational power from the robots which in the long run means that our solution

becomes scalable and allows for the user to test plans with a bigger number of robots;

• Every time a robot publishes to the topic or calls a service, an output message is generated to

inform the user. Since services are called less often than topics (because they are only called on

the two cases presented on Figure 4.10), than this means that the number of output messages

for the user will be much smaller which implies that the system will also be easier to follow and

understand.

Figure 4.12 includes a general explanation of how the service procedure works. Firstly, the robot that

needs to make a decision calls the services of the remaining members of the team, which returns the

current place of the said members. Finally, the robot builds a marking with the information it received

and makes a decision regarding the transition that it will fire.

To solve the second bullet point, we used the previously introduced service and two new ones: a

service to return the robot’s current activity state and a service to change the robot’s current place. Both

these values are defined as global variables and the robot’s current activity state is either Done or Doing,

depending on whether it is done with its current action or not.

If the robot encounters a synchronization case, the first thing it does is check whether the current

marking is the same as the one that will allow the transition to fire. If it is not, then the robot stays blocked

and waiting for a change in its state. On the other hand, if it does correspond to the necessary marking,

then we check where each robot is with the current place service and whether it finished its action or

not. If some of the robots are still Doing, then the current robot stays blocked and waiting for a change

in its state. If all robots are Done, this means that the current robot is the last one to be ready and as

such, it will be responsible of connecting to the service used to change the current place of every robot

and calculating their new places. After assigning new places to every member of the team, the last robot

simply fires the transition and assigns its own place as well.

Considering Algorithm 1, the blue colored lines represent, in a very simplified manner, the lines that

were introduced to allow this communication mechanism’s functionality. If the communication flag is

30

P1

P2

P3T1

T2

T3

T4

P4

P51- Call service

2- Return
current places

3- Make decision

Figure 4.12: Service Process.

set to service, then this means that the outer communication is performed via service. As such, the

algorithm must get the other robots’ current places, check the input policy and get the other robots’

current states. If all robots are done, then the transition is fired, however, if some robots are still in the

middle of the execution of an action, then it will wait for them to finish.

4.3.4 Resource tokens and resource places

Besides having robots on our GSPNs, we also have the possibility of having resource tokens and re-

source places. In order to allow their existence, we must first define them:

Definition 3. A resource place is a place of the GSPN where no action is executed and where instead

of robots, we have resource tokens. These tokens can be used to take metrics from the execution of a

GSPN.

Considering Figure 4.13, P2: Counting measurements done is a resource place and as such, the

tokens inside it do not represent any robot and therefore are not associated with the execution of any

action. These tokens exist in this place in order to inform the user of how many measurements were

done, through the analysis of the GSPN’s marking. Every time transition t1: Temperature measured is

fired, a new token is created both on P2 and P3.

The user should provide a list with all the resource places of the GSPN, so that the execution al-

gorithm, when confronted with such a place, knows that a real robot should never be placed on that

particular place.

31

P1: Measuring
temperature

P2: Counting
measurements done

t1: Temperature
measured

P3: Going to base P4: Recharging

t2: Base reached

t3: Recharged

Figure 4.13: Resources example.

4.3.5 Limiting the possible input GSPNs

Before the execution starts, our algorithm analyzes the GSPN that the user provided as input (see Figure

4.14). This analysis depends on the list of resource places that the user also provides in the beginning

of the execution. The algorithm creates a temporary GSPN, equal to the one provided and removes the

resource places by using a ”delete place” function from the GSPN module. Afterwards, it removes the

transitions that were left unconnected with a ”delete transition” function also from the GSPN module.

Next, it obtains the reachability graph for this newly created GSPN and counts the number of tokens

in each node of the graph. If the number of token sums changes in any part of it, then there is either

creation or destruction of tokens, which cannot be allowed since we are working with robots, which are

physical entities, and we reject the input GSPN. However, if the number stays constant throughout the

reachability graph, we accept the GSPN.

4.3.6 Defining the user input

The input will need to include several elements such as:

• The GSPN model;

• The policy;

• The mapping between the place, the server name and the action type;

• A flag that indicates whether we want to use the topic (full synchronization) or the service (partial

synchronization) for the outer communication;

• A list with the names of the places that are considered to be resources.

32

P1: Measuring
temperature

P2: Counting
measurements done

t1: Temperature
measured

P3: Going to base P4: Recharging

t2: Base reached

t3: Recharged

P1: Measuring
temperature

t1: Temperature
measured

P3: Going to base P4: Recharging

t2: Base reached

t3: Recharged

Get temporary
GSPN

Get reachability
graph and

count number
of tokens in
each node[1,0,1]

[0,1,1] [2,0,0]

[0,0,2] [1,1,0] [1,1,0]

t1 t3

t2 t3 t1

Accept GSPN

Reject GSPN

If number of tokens
across reachability
graph is constant

If number of tokens
across reachability NOT

constant

Figure 4.14: Algorithm to limit possible input GSPNs.

Regarding the GSPN model and the calculated policy, the definitions remain the same as the ones

presented on Section 4.1.3. The mapping between the place and the name of the file to be executed

there is simply a dictionary where the key is the name of the place and the value is a list with the type of

action and the server name. To determine whether the user intends to use full or partial synchronization,

a boolean variable should also be included. And finally, the list of resource places will help our framework

determine whether the input GSPN is valid in our scope or not.

4.4 A summary of the ROS execution module

On the following list we summarize the main characteristics of the execution module in ROS.

• Our system architecture is decentralized in order to make our framework as robust as possible to

robot related flaws. This way, if one of the robot stops working spontaneously, the system stays up

and running since every single robot knows the configuration of the network;

• The inner communication is performed using ROS actions. Each robot has an action client that

connects itself to different action servers, depending on the place where it is presently. Each robot

has one action server for each place of the GSPN and each robot connects to its group of action

servers. The encapsulation is achieved by using different namespaces for each robot;

• The outer communication is performed using a ROS topic or service, depending on the chosen

synchronization type. If the synchronization type is full, the robots publish and subscribe to the

same topic and every time a transition is fired, a new message is published to the topic. On the

other hand, if the synchronization type is partial, the robots only communicate with each other

through a service when they are before an immediate transition or when they are in a synchroniza-

tion case;

33

• We defined a concept known as resource places which represents places that are used to count

elements from the execution and inside them we have resource tokens;

• We created an algorithm to reduce the number of accepted GSPNs in order to avoid unwanted

cases.

34

Chapter 5

The Visualization Module

The visualization module’s main goal is to visualize a GSPN and its execution. This visualization can

be both offline, where the user has the chance of simulating the built GSPN, and online, where the user

can monitor the progress of the execution of a GSPN.

On the case where the user only intends to visualize and simulate a GSPN, the offline visualization

is used. On the other hand, if the user wants to execute a plan, the online visualization is used, which

communicates with the execution module.

While on the execution of a plan, the algorithm runs either a function or an action for each place,

on a simulation, the algorithm simply fires a number of random enabled transitions with the purpose of

illustrating how the designed GSPN will work in a real execution.

Although we created the online visualization for both the standalone and ROS integrated versions,

the offline visualization was only created in the standalone version. We chose to do this because the

idea behind the visualization module was to create a single interface for everything and we did not want

to overwhelm the ROS visualization module’s interface. However, as we explain further down, a robot

developer can always use the offline visualization from the standalone version because the necessary

input is rather simple.

5.1 The visualization module architecture

The visualization module’s architecture is composed by three different elements, which are very common

in today’s web-apps: a backend, a frontend and a web framework tool to allow the flow of information

between the two previous elements.

Since our whole framework was already built on Python 3, we decided to use this language for our

backend as well. Regarding frontend, we chose to use a combination of HTML, CSS and Javascript,

since our application will be very simple-looking. Another element we incorporated into the frontend was

a framework to build graphs, Vis.js 1. Finally, we chose to use Flask 2 in order to allow the communication

1https://visjs.org/
2https://flask.palletsprojects.com/en/1.1.x/

35

https://visjs.org/
https://flask.palletsprojects.com/en/1.1.x/

Python Flask CSS/HTML/Vis.js

Backend FrontendWeb Framework

Figure 5.1: Visualization module inner architecture.

between the frontend and the backend. On Figure 5.1 you can analyze the inner architecture of the

visualization module. The arrows represent data flow.

To make the mechanics of our architecture clear, suppose the following simple example: Imagine

an interface with only a button that when clicked, prints a message on the screen. When a user clicks

that button, its ID is sent through Flask into the backend, where it is processed. After this, the backend

returns another message through flask that instructs the frontend to display a message and finally the

message is shown into the user’s screen.

5.2 Visualizing GSPNs

For simplicity reasons, we minimized a GSPN’s visual complexity into a graph with two different types

of nodes (transitions and places) and directed edges. With this in mind, we decided to use a Javascript

modelling tool, Vis.js. Our task was to create a parser that would take a GSPN represented in xml and

render it as a Vis.js graph.

An interesting characteristic of Vis.js is that although the programmer can choose the absolute posi-

tion of each node of the graph, it can also simply place it randomly. However, Vis.js is malleable to the

point that after rendering the graph, the user can actually move and select each node and zoom in or

out on the rendered area. This means that after generating a GSPN, the user of our framework will be

able to move around each place and each transition until reaching a configuration that is intuitive. An

example of this is presented in Figure 5.2.

(a) Before organizing GSPN. (b) After organizing GSPN.

Figure 5.2: Using Vis.js to visualize a GSPN model.

36

Figure 5.3: Visualization module input screen.

5.3 Offline visualization

The offline visualization is not integrated with ROS, however, if a robot developer wants to visualize its

GSPN, all that is necessary is an input with the same configuration as the one mentioned in Sub Section

4.1.3 (since the robot developer will not execute the GSPN using this module, it is not necessary to

provide a real policy or a real mapping between each place and function) with the intended GSPN. The

input is provided through the screen presented on Figure 5.3.

This module also allows the simulation of one or n steps of the token game. Notice that this is not

an execution, instead it is only a simulation that can be used to understand how the GSPN would react

in an execution scenario. We define one step as one transition being fired. On the case where we

have two possible exponential transitions, one of them will be chosen randomly or according to the firing

probabilities set by the user.

Other features of this module include the possibility of firing a chosen transition (if it is enabled),

the possibility of restarting the simulation and the highlight of transitions that are about to be fired. On

Figure 5.4 we included the final version of the visualization module’s interface. The simulation tools are

available with ”simulate 1 step”, ”reset simulation”, ”clear network”, ”fire chosen transition” and ”simulate

n steps”. On the right panel, the user can take some metrics from the input GSPN, however, most of the

metrics are not available at the present time.

5.4 Online visualization

Similarly to the execution module, the online visualization section is composed by two different imple-

mentations: a standalone version and the one integrated with ROS, both to be used with the correspond-

ing execution modules.

5.4.1 Online visualization: standalone implementation

Considering Figure 5.4, the online visualization can be initiated and stopped by pressing ”start execution”

and ”stop execution” respectively. When the former button is pressed, the execution module is initiated

by the backend of the visualization module and on the frontend, a timer is set to make sure that every

37

Figure 5.4: GSPN visualization module in Python 3.

Backend Frontend

The user

1- user clicks to
start execution2- start execution

5- forward marking
updates when
received

Execution
Module

4- send new
marking when
changed

3- start execution
module

6- marking changes
on screen

Figure 5.5: Interaction with the standalone online visualization.

second the marking updates are sent over from the backend into the frontend. This process is described

on Figure 5.5 in a visual way. We chose to omit the middle man, Flask, in order to simplify the Figure.

Steps 4, 5 and 6 occur every time the marking changes until the execution reaches its end.

5.4.2 Online visualization: ROS integration

By using ROS, we were able to take advantage of all its built-in functions and components. Topics and

topic callbacks were crucial while building this module. Whenever a publisher of the topic mentioned in

Section 4.3.3 publishes to it, the backend of the visualization module registers this change and applies

it to the GSPN presented in the frontend. This mechanism is illustrated on Figure 5.6 and in order to

achieve it, we created a new subscriber to the above mentioned topic in the backend of the visualization

module. We then associated a callback function to it, which saves the fired transition and the resulting

marking into a Python list. On the frontend side, a periodic function that fetches the saved updates is

38

Backend Frontend

The user

Execution
Module

Topic

Visualization module

1- start execution
module

2- publishers send
updates

3- publishers receive
updates
3- subscribers
receive updates

4- fetch updates

5- return updates 6- marking changes
on screen

Figure 5.6: Interaction with ROS online visualization.

Figure 5.7: GSPN visualization module in ROS.

executed every second and applies them.

And so, the only connection between the execution module and the visualization module is the topic

that is used to divulge the transitions that were fired. This abstraction makes these two models more

independent from each other than on the standalone version of our framework.

Although elegant, this solution has a slight limitation: on Sub Section 4.3.3 we mentioned the option

of executing the plan with services (instead of topics) to improve efficiency. However, while using the

online visualization, the user is obliged to use the communication with the topic, since the whole module

depends on it.

The final version of the online visualization module interface is presented on Figure 5.7.

5.5 A summary of the visualization module

The following list presents the most important topics that were discussed in this Chapter:

39

• The visualization module architecture is composed by a backend in Python 3, a frontend in CSS

and HTML and the communication between both elements is made with a Python based frame-

work, Flask;

• The visualization module uses a Javascript framework to design graphs, Vis.js in order to be able

to design GSPNs;

• The offline visualization can be used to visualize and simulate a GSPN;

• Generally speaking, the online visualization module communicates with the execution module in

order to be able to reflect the occurring changes;

• The online visualization in ROS is based on the topics that were already built in the execution

module. When a transition is fired on the execution module, a message is published to the topic

and the visualization module, which is a subscriber to this topic, applies the necessary changes in

the visualized GSPN.

40

Chapter 6

Results

We created two different types of tests, both built solely for the modules integrated with ROS: on the first

batch of tests, we decided to test the scalability of our framework without simulated robots, meaning that

we did not use the Gazebo simulator. On the second batch of tests, our goal was precisely to test our

framework with a multi-robot simulated system on Gazebo, with a scenario as realistic as possible, to

illustrate how our framework could be used in the future.

The setup that was used to test this framework consists of a laptop with an Intel Core i7-8550U CPU

and 11 Gb of RAM.

6.1 Testing the framework

On this section we aimed at testing only our framework. We created three different types of tests:

1. The number of robots is increased while the number of actions that they can execute is kept

constant;

2. The number of robots is kept constant while the number of actions that they can execute is in-

creased;

3. The number of robots is kept equal to one while the number of actions that it can execute is

increased.

In the three tests we measured the percentage of CPU and virtual memory (not including swap) that was

consumed throughout the execution by using two functions from the python library, psutil 1, cpu percent

and virtual memory respectively. For each moment of the test, we took a sample of five measurements

and calculated the average of them. These values should be taken carefully, since CPU and memory

consumption are variable, depending on the moment they are analyzed. However, for a better contextu-

alization, the baseline of each value was 0,8% of CPU and 25,9% of virtual memory.

1https://pypi.org/project/psutil/

41

https://pypi.org/project/psutil/

Figure 6.1: GSPN to test the increase of tokens.

6.1.1 Increasing the number of tokens

The GSPN we chose is presented in Figure 6.1 and in order to simplify it as much as possible, we chose

to shorten the names of each place and transition. Besides this, inside each place, each identified token

simply executes a for-loop with an addition operation and a sleep for 0.2 seconds inside it.

The results can be analyzed in Figure 6.2 and as expected, both values increase with an increasing

number of tokens. Besides the increase on consumed resources, the time that the system took to start

the execution also increased with the addition of more tokens, creating wait times of around 20 minutes,

for more than 13 tokens.

6.1.2 Increasing the number of places

Next, we tested how our system would react to an increase in the number of places. We decided to start

with a circular GSPN with only two places. The initial GSPN can be analyzed in Figure 6.3 and as we

added new places (and transitions of course), we kept the circular structure. However, the number of

tokens remained equal to five all throughout the execution.

The results are presented in Figure 6.4 and as expected, the percentage of CPU and virtual memory

both increased with the increase of the number of places. Also in this test, as we inserted more places,

the time it took the system to start the execution also took longer. And at times we had to wait around

20 minutes for the execution to begin.

We took the percentage of CPU used on the first test and the percentage of CPU used on the

second test and related both these values to the total number of action-servers and obtained the results

on Figure 6.5. Taking into account the growth in action servers of each test, we can easily see that

although on both cases the percentage of CPU increases heavily, on the test where we are increasing

the number of tokens, the percentage quickly surpasses the percentage of the test where we are adding

places.

Although in some points, a smaller number of action-servers corresponds to a bigger percentage of

42

2 4 6 8 10 12 14
tokens

15

20

25

30

35

40

45

50

55

pe
rc

en
ta

ge
 (%

)

% of CPU and virtual memory for an increasing number of tokens
CPU %
Virtual memory %

Figure 6.2: Results for an increasing number of tokens.

P1 P2

T1

T2

Figure 6.3: Initial GSPN to test increase of places.

43

2 4 6 8 10 12 14 16
places

25

30

35

40
pe

rc
en

ta
ge

 (%
)

% of CPU and virtual memory for an increasing number of places
CPU %
Virtual memory %

Figure 6.4: Results for an increasing number of places.

CPU, we can see that every time we add an action-server, the percentage of CPU increases.

6.1.3 Increasing the number of places with only one token

In order to test how our system would react in a truly decentralized architecture, where each robot

only runs their action servers, we ran a third set of tests, very similar to the previous one, but with the

exception of having only one token to execute the plan.

We started this test with two places, two transitions, but only one token, and went up to 35 places

and afterwards we went up to 100, counting 5 by 5. The results are presented in Figure 6.6 and they are

very similar to the ones obtained previously. However, we registered a major difference in terms of the

time it took to initiate the execution. On the two previous tests, we pointed out that there was a major

time gap between the moment we launched the command to start the execution and the moment the

execution started. On this third test, the time gap was very close to zero.

6.2 Testing the framework with simulated robots

6.2.1 Problem Description

Consider the turtlebot basic environment (Figure 6.7) and suppose that it represents a room that needs

24/7 surveillance on the temperature of four different areas. The temperatures should not go above a

certain value because if they do, systems can fail spontaneously. A team of mobile robots is a good

option because it automates a monotonous but important task and, besides this, the more robots we

44

20 40 60 80 100
action servers

15

20

25

30

35

40

45

pe
rc

en
ta

ge
 (%

)
% of CPU for an increasing number of action servers

Increasing tokens
Increasing places

Figure 6.5: Results for an increasing number of action servers.

0 20 40 60 80 100
places

15

20

25

30

35

40

pe
rc

en
ta

ge
 (%

)

% of CPU & virtual memory for an increasing number of places and 1 token
CPU %
Virtual memory %

Figure 6.6: Results for an increasing number of places with only one token.

45

Figure 6.7: Critical room viewed from the top.

have, the less area each one will have to cover, which of course means that each area can be covered

more quickly, consequently, improving the efficiency of the system.

The robots will move around the area inside the black barriers and they the white cylinders represent

obstacles that must be avoided.

The goal of the team of robots is to go around the critical room and perform a quick sweep of the

room, meaning that depending on the size of the team, each robot will have to move more (if the team

is composed by few members) or less (if the team is composed by many members).

We took the environment that was presented previously and divided it into four different locations:

L1, L2, L3 and L4. With these four locations, we designed a topological map and obtained the one

presented on Figure 6.8. With simplicity in mind, we created a system where the robots can only move

into the next location or stay in their current one.

Besides the ones that were already mentioned on the previous Chapters, we used extra ROS pack-

ages such as move base 2 (to plan movement), map server 3 (which offers map data as a ROS service),

amcl 4 (a localization package based on the adaptive Monte Carlo algorithm), tf2 ros 5 (which keeps

track of multiple coordinate frames over time) and gazebo ros 6 (which allows the simulation). Further-

more, we also used several configuration files specific to the turtlebot3 robot from packages such as

turtlebot3 navigation 7 turtlebot3 gazebo 8 and turtlebot3 description 9.

2http://wiki.ros.org/move_base
3http://wiki.ros.org/map_server
4http://wiki.ros.org/amcl
5https://wiki.ros.org/tf2
6http://gazebosim.org/tutorials?tut=ros_overview
7http://wiki.ros.org/turtlebot3_navigation
8http://wiki.ros.org/turtlebot3_gazebo
9http://wiki.ros.org/turtlebot3_description

46

http://wiki.ros.org/move_base
http://wiki.ros.org/map_server
http://wiki.ros.org/amcl
https://wiki.ros.org/tf2
http://gazebosim.org/tutorials?tut=ros_overview
http://wiki.ros.org/turtlebot3_navigation
http://wiki.ros.org/turtlebot3_gazebo
http://wiki.ros.org/turtlebot3_description

(a) (b)

Figure 6.8: The metric map of our environment (a) and our topological map (b).

6.2.2 Creating a GSPN for the plan

The obtained GSPN is presented on Figure 6.9. The Figure is a screenshot taken from the ROS online

visualization module.

The designed GSPN is very symmetrical and has four kinds of places: places where the robots are

taking measurements from a specific location (p1:Check Temperature L1, p5:Check Temperature L2,

p9:Check Temperature L3, p13:Check Temperature L4), places where the robots are deciding

what they should do next (p3:Decide L1, p7:Decide L2, p11:Decide L3, p15:Decide L4), places

where the alarm of high temperatures is activated (p2:Alarm L1, p6:Alarm L2, p10:Alarm L3,

p14:Alarm L4) and places where they are waiting (p4:Wait L1, p8:Wait L2, p12:Wait L3,

p16:Wait L4). On the other hand, we use both immediate and exponential transitions. The

immediate transitions (t4:Go Wait L1, t6:Go Check L2, t10:Go Wait L2, t12:Go Check L3,

t16:Go Wait L3, t18:Go Check L4, t22:Go Wait L4, t24:Go Check L1) model action selection while

the exponential transitions (t1:Temperature High L1, t2:AlarmOff L1, t3:Temperature Low L1,

t5:Wait Done L1, t7:Temperature High L2, t8:AlarmOff L2, t9:Temperature Low L2, t11:Wait Done L2,

t13:Temperature High L3, t14:AlarmOff L3, t15:Temperature Low L3, t17:Wait Done L3,

t19:Temperature High L4, t20:AlarmOff L4, t21:Temperature Low L4, t23:Wait Done L4) model the

outputs of the various actions that are executed all throughout the execution.

An important fact that we should point out is that the robots are not actually taking measurements

from a location, they are only moving along the said location. We chose to create this wrap-around the

execution in order to make it more interesting.

47

Figure 6.9: Temperature patrol designed GSPN.

6.2.3 Results

We ran our setup with one, two, three and four robots. For the first three tests we managed to run an

execution successfully, however, the test with four robots led to errors and was not successful. For each

test, we filmed a short video and made it available through the following link:

https://drive.google.com/drive/folders/1DuohmLUU7pl7-_JWS_TGHT3f48blpQ3T?usp=

sharing

The names of the videos are numerated from 1 to 4, depending on the number or robots used.

When testing the system with one robot, the execution was both smooth and relatively fast.

With an increasing complexity, our system started having some performance issues. When we tried

running the test for the first time, we realized that instead of moving, the second robot would initiate

its recovery behaviour, which is an embedded mechanism that attempts to clear the space around the

robot. Although disappointing, we understood that we could bypass this issue by manually clearing the

robot’s costmaps. We had to do this in the beginning of the execution but after doing it a couple of times,

the system was able to continue autonomously.

When running the test with three robots, we faced similar issues to the previous test, where only one

of the robots managed to start moving autonomously. The remaining two got stuck in the beginning of

the execution and we had to manually clear their costmaps. The movement of the simulated robots was

generally not very smooth.

An important note to take is that on some cases, our framework would not apply the input policy

when confronted with an immediate transition and the simulated robots would keep waiting for the cor-

responding action server indefinitely, which of course is an unwanted behaviour.

Finally, we achieved the bottleneck of our tool on the test with four robots. On most cases, the robots

would stop moving and not even the costmap clearing service would be able to recover them. Besides

this, being a cyclic environment, on the case where one of the robots stopped moving, the others would

stay waiting behind.

48

https://drive.google.com/drive/folders/1DuohmLUU7pl7-_JWS_TGHT3f48blpQ3T?usp=sharing
https://drive.google.com/drive/folders/1DuohmLUU7pl7-_JWS_TGHT3f48blpQ3T?usp=sharing

6.3 Discussion

6.3.1 Testing the framework with no robots

In order to simplify the identification of each test, we will refer to the test of Sub Section 6.1.1 as test 1,

the test of Sub Section 6.1.2 as test 2 and the test of Sub Section 6.1.3 as test 3.

The first result we would like to talk about is the increase of both computational power and memory

usage when we increased the number of tokens and the number of places. This is due to the fact that

the more elements we introduce into our plan, the more resources will need to be provided by the host

computer. The values for the virtual memory increased in a much more linear way, when compared to

the increases of the processing power, because adding a new place or adding a new token (for example)

usually takes almost the same amount of memory every time (in the case of our framework, we are using

sparse matrices, and as such, this means that a new connection is created when we add a new place).

When talking about the percentage of CPU, the values tend to reflect a bigger variation because as we

add more tokens, more actions are being executed at the same time.

The most interesting and surprising result was the wait time necessary to start the execution that

we mentioned for test 1 and 2. This increase is mainly due to the time that the processor requires to

assign each task. Increasing the initial number of tokens means an increase on the number of action

clients to match with action servers. Increasing the initial number of places, adds more action servers

that can be paired up with action clients. This does not occur with test 3 because we only had one token

to execute the plan, which means that the processor is only assigning one task at a time, even though it

has increasingly more action servers active.

Still regarding action servers and their overall impact on the system, we would like to discuss the

result obtained in Figure 6.5, when we directly compared the percentage of CPU of test 1 and 2 with the

number of action servers available in each one. In the case of test 1, by adding a new token, we were

essentially adding seven new action servers (one for each place) while in test 2, when we added a new

place, we were adding five new action servers (one for each token). The results obtained show that the

action servers directly impact the computational overhead because test 1 starts with a lower percentage

of used CPU than test 2, however, as we add more elements into each one, since test 1 has a higher

order of growth (seven), its computational overhead quickly surpasses the second one’s (which has an

order of growth of five).

Regarding test 3, we managed to run the execution with a high number of places and taking this into

account, we can conclude that in a truly decentralized system, our framework would work well.

6.3.2 Testing the framework with robots on Gazebo

When we ran the test with one and two simulated robots, the results were adequate, not considering

the issue that was mentioned with the costmaps. Nevertheless, when running the test with three and

four robots, we started to register some flaws with the developed framework. One of the flaws is of

course the sporadic case where the policy is not applied and the involved simulated robot’s movement is

49

brought to a halt. Although we tried understanding the reason behind this issue, we were not successful

due to the randomness of the event. However, we concluded that the system worked best when the

places and the transitions represented on the visualization module were not moved around, hence the

strangely organized left side of the video for the simulation with three robots.

On the other hand, the simulation with four robots showed that our framework is only feasible to use

with up to three robots, due to the high computational overhead (which means that for a setup with more

processing capacity, the results might differ). On the presented video, the execution takes very long to

start itself (it only starts around timestamp 2:42) and some robots eventually get stuck in the environment

and can never recover from that (not even with the help of the already mentioned service). When this

happens, move base automatically discards the current objective and considers it done. Although this

is unwanted, an even worse issue arises at times: for instance, on timestamp 6:17, we see robot 3

surpassing robot 4, which is not something that should happen due to the nature of our GSPN. This

happens because robot 3 spent too much time on L1 without moving and at some point move base

discarded that goal and with that, both robot 3 and robot 4 got entangled into the waiting area and

eventually robot 3 was sent into L2 (while robot 4 stayed in the waiting area), moving in a horizontal

manner and completely surpassing robot 4. In the end of the video, every robot was stuck and not

moving, which of course led to the premature end of the execution of the plan.

50

Chapter 7

Conclusions

7.1 Achievements

The developed tool is available on:

https://github.com/PedroACaldeira/gspn_framework_package.git

We were able to successfully lay down the groundwork for a multi-robot GSPN software framework

to execute and visualize plans both in ROS and in systems without robots. Besides this, we were also

able to develop a graphical visualization tool for the execution and simulation of GSPNs.

Although the results were obtained from a simulated environment, taking into account that a vast

majority of the framework’s code was integrated with the ROS middleware and that when we tested

a truly decentralized system, everything ran fairly well, we believe that, with more future work, this

framework will work well in a multi-robot system with real robots.

Even though the visualization module is operable and accomplishes its mission, it does not have the

most user-friendly interface, which was one of the objectives that was layed down.

7.2 Future Work

The following list includes some elements that might be interesting to pursue in the future. Some

changes are related to the most basic foundations of our framework, while others are less disruptive,

however, all of them can improve the framework’s overall quality and usability.

7.2.1 Execution Module

On the standalone execution side of the framework, a new approach should be explored in order to

avoid concurrent futures and use a different tool that allows the algorithm to create threads during the

execution. This way, the efficiency will improve since we would not be creating three times the necessary

concurrent futures (as mentioned in Section 4.1.1).

Regarding the ROS integrated execution, after having the necessary updates to the involved pack-

ages, one should try to get our framework working in real robots, instead of simulated ones in order to

51

https://github.com/PedroACaldeira/gspn_framework_package.git

truly understand the framework’s limitations and improve them. It could also be interesting to deploy this

framework with a team of different robots from the turtlebots. Besides this, one can focus their attentions

in correcting the issue of the execution with four robots. An interesting first step would be to create a

setup with a bigger environment that would allow more time to clear the costmaps and to avoid having

robots collide into each other.

Finally, regarding both sides of the execution module, a new way of checking and applying the policy

should be implemented. The current one works relatively well for small systems (the ones that were

tested worked well, for instance), however, the more complex a system is, the longer it takes to check

and apply a policy, which can be a caveat for systems where a user wants an immediate response. A

possible solution would be to create a ”shortcut” to the policy, meaning that each place would have an

inner structure associated with it that included the parts of the policy that involved transitions linked to

it. This way, the algorithm would first check this list and on the case where the current marking does not

match any marking available in it, the full policy would be checked.

Besides this, presently, our framework is not integrated with any tool that allows policies to be auto-

matically generated, which of course can be very cumbersome and inefficient.

7.2.2 Visualization Module

On the visualization module, it would be interesting to try a new approach that avoided using Vis.js (see

Section 5.2). Since this tool was created to generate graphs, it does not allow the direct creation of

tokens inside each place. However, it allows the user to put images inside each node and as such, the

solution we came up with was to place an image with the number of tokens inside each place, which of

course means that our framework is limited to the number of images created to represent the marking.

Although this solution works well with small systems, once the marking of a specific place reaches a

value larger than the maximum number of available images, the system will not be able to represent the

marking. It will not crash, but instead of presenting an image with the marking, it will simply present a

black image inside the place in question, which is of course unwanted behaviour.

Finally, on the offline part of the module, the analysis panel of the right side of the visualization

module interface is not complete because we did not implement the necessary algorithms in order to

make it functional. This could be interesting to complete because it can improve the user’s workflow.

Besides this, the final interface is not very adequate and as such, it should be redesigned and tested

along with users in order to build it in a user-centered way.

52

Bibliography

[1] K. Jose and D. K. Pratihar. Task allocation and collision-free path planning of centralized multi-

robots system for industrial plant inspection using heuristic methods. Robotics and Autonomous

Systems, 80:34–42, 2016.

[2] R. Mendonça, M. M. Marques, F. Marques, A. Lourenco, E. Pinto, P. Santana, F. Coito, V. Lobo,

and J. Barata. A cooperative multi-robot team for the surveillance of shipwreck survivors at sea. In

OCEANS 2016 MTS/IEEE Monterey, pages 1–6. IEEE, 2016.

[3] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri. Simultaneous localization and mapping using

rao-blackwellized particle filters in multi robot systems. Journal of Intelligent & Robotic Systems, 63

(2):283–307, 2011.

[4] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher. Formal specification and verification

of autonomous robotic systems: A survey. ACM Computing Surveys (CSUR), 52(5):100, 2019.

[5] C. Azevedo and P. U. Lima. A gspn software framework to model and analyze robot tasks. In

2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC),

pages 1–6. IEEE, 2019.

[6] H. F. C. de Castro. Robotic tasks modelling and analysis based on discrete event systems. PhD

thesis, Dissertation to obtain the Doctorate Degree in Electrical and Computer . . . , 2010.

[7] G. Balbo. Introduction to generalized stochastic petri nets. In International School on Formal Meth-

ods for the Design of Computer, Communication and Software Systems, pages 83–131. Springer,

2007.

[8] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–

580, 1989.

[9] A. Marino, L. Parker, G. Antonelli, and F. Caccavale. Behavioral control for multi-robot perimeter

patrol: A finite state automata approach. In 2009 IEEE International Conference on Robotics and

Automation, pages 831–836. IEEE, 2009.

[10] G. Antonelli, F. Arrichiello, and S. Chiaverini. The null-space-based behavioral control for au-

tonomous robotic systems. Intelligent Service Robotics, 1(1):27–39, 2008.

53

[11] M. M. Quottrup, T. Bak, and R. Zamanabadi. Multi-robot planning: A timed automata approach. In

IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004,

volume 5, pages 4417–4422. IEEE, 2004.

[12] K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In International

Symposium on Fundamentals of Computation Theory, pages 62–88. Springer, 1995.

[13] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal on Software

Tools for Technology Transfer (STTT), 1(1):134–152, 1997.

[14] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-intention model

of agency. In International workshop on agent theories, architectures, and languages, pages 1–10.

Springer, 1998.

[15] G. A. Kaminka and I. Frenkel. Flexible teamwork in behavior-based robots. In Proceedings Of The

National Conference On Artificial Intelligence, volume 20, page 108. Menlo Park, CA; Cambridge,

MA; London; AAAI Press; MIT Press; 1999, 2005.

[16] M. Tambe. Towards flexible teamwork. Journal of artificial intelligence research, 7:83–124, 1997.

[17] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.

[18] A. Rao and M. Georgeff. Modelling rational agents within a bdi architecture, prin. of knowl. Rep. &

Reas., San Mateo, CA, 1991.

[19] H. Costelha and P. Lima. Robot task plan representation by petri nets: modelling, identification,

analysis and execution. Autonomous Robots, 33(4):337–360, 2012.

[20] V. A. Ziparo and L. Iocchi. Petri net plans. In Proceedings of Fourth International Workshop on

Modelling of Objects, Components, and Agents (MOCA), pages 267–290, 2006.

[21] B. Lacerda and P. U. Lima. Petri net based multi-robot task coordination from temporal logic speci-

fications. Robotics and Autonomous Systems, 122:103289, 2019.

[22] C. Mahulea and M. Kloetzer. Robot planning based on boolean specifications using petri net mod-

els. IEEE Transactions on Automatic Control, 63(7):2218–2225, 2017.

[23] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model checker. In

International Conference on Modelling Techniques and Tools for Computer Performance Evaluation,

pages 200–204. Springer, 2002.

[24] R. Alur and T. A. Henzinger. Reactive modules. Formal methods in system design, 15(1):7–48,

1999.

[25] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. A storm is coming: A modern probabilistic model

checker. In International Conference on Computer Aided Verification, pages 592–600. Springer,

2017.

54

[26] J. Bohren and S. Cousins. The smach high-level executive [ros news]. IEEE Robotics & Automation

Magazine, 17(4):18–20, 2010.

[27] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Franceschinis. 30 years of greatspn.

In Principles of Performance and Reliability Modeling and Evaluation, pages 227–254. Springer,

2016.

55

56

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Outline

	2 Background
	2.1 Generalized Stochastic Petri Nets
	2.2 GSPNs and multi-robot systems
	2.3 Policies
	2.4 Petri net properties

	3 Related Work
	3.1 Finite State Automata Approaches
	3.2 Belief-Desire-Intention Approaches
	3.3 Petri Net Approaches
	3.4 Software tools

	4 The Execution Module
	4.1 Execution Module: standalone implementation
	4.1.1 Allowing parallelism in our system
	4.1.2 Agent states
	4.1.3 Defining the user input

	4.2 A summary of the standalone execution module
	4.3 Execution Module: ROS integration
	4.3.1 General architecture of our system
	4.3.2 Inner robot communication: Using ROS actions to execute functions
	4.3.3 Outer robot communication: Using ROS topics and services to change the GSPN
	4.3.4 Resource tokens and resource places
	4.3.5 Limiting the possible input GSPNs
	4.3.6 Defining the user input

	4.4 A summary of the ROS execution module

	5 The Visualization Module
	5.1 The visualization module architecture
	5.2 Visualizing GSPNs
	5.3 Offline visualization
	5.4 Online visualization
	5.4.1 Online visualization: standalone implementation
	5.4.2 Online visualization: ROS integration

	5.5 A summary of the visualization module

	6 Results
	6.1 Testing the framework
	6.1.1 Increasing the number of tokens
	6.1.2 Increasing the number of places
	6.1.3 Increasing the number of places with only one token

	6.2 Testing the framework with simulated robots
	6.2.1 Problem Description
	6.2.2 Creating a GSPN for the plan
	6.2.3 Results

	6.3 Discussion
	6.3.1 Testing the framework with no robots
	6.3.2 Testing the framework with robots on Gazebo

	7 Conclusions
	7.1 Achievements
	7.2 Future Work
	7.2.1 Execution Module
	7.2.2 Visualization Module

	Bibliography

