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Abstract—Currently one lacks a tool that integrates modelling,
visualization, logic and performance analysis and execution.
Generalized stochastic Petri nets (GSPNs) are a mathematical
model that have proven to be efficient for modelling homogeneous
multi-robot systems due to their compact form, asynchronous
execution and ability to capture temporal uncertainty. And so,
our work extended an existing multi-robot modelling and task
analysis tool that uses GSPNs.

The main goal of this master’s thesis is to develop a software
package that allows the execution of GSPN plans in multi-robot
systems and in multi-agent systems. In order to do so, we created
two new modules: an execution and a visualization module. The
execution module is responsible for executing the input GSPN
while the visualization module’s goal is to simulate or visualize the
execution of the GSPN, depending on the intentions of the user.
The integration with robots is assured by the robot operating
system middleware (ROS).

In order to test our framework, we ran a series of tests on
the part of the framework that was integrated with ROS. On the
first set of tests, we only ran our framework and on the second,
we used our framework alongside with the Gazebo simulator.

The obtained results for the tests where we only ran our
framework show that, for a system with only one robot, it is
possible to execute and visualize considerably large networks.
On the other hand, when we used the simulator, we verified
that it is possible to successfully run multi-robot systems with
up to three virtually simulated robots, however, our tool did not
support the computational overhead involved in the simulation
of a team of four robots or more.

Index Terms—Generalized stochastic Petri nets, Multi-robot
systems, Plan execution, Plan visualization

I. INTRODUCTION

It has long been recognized that there are several tasks that
can be performed more efficiently and robustly using multiple
robots. Applications such as: inspection [1], surveillance,
search and rescue [2], mapping of unknown or partially known
environments [3] or transportation of large objects greatly
benefit from the use of multi-robot systems.

Presently, an issue of this area is the fact that the solutions
for these applications tend to be hand crafted almost every
time a new problem occurs and on most cases, they don’t
assure any formal guarantees. Besides this, if the problem in
hand is too complex, the designer will have difficulties coming
up with an adequate solution, which leads to inefficient and
unreliable results.

A good way to solve the mentioned issues is by using
a formal model, such as generalized stochastic Petri nets
(GSPNs), because it provides methods to synthesize policies to

coordinate the multi-robot system that respect formal require-
ments. Besides this, they also present great advantages in the
modelling of homogeneous robotic systems with its intuitive
analysis of flow of information and control.

In most cases, the process of building a GSPN starts out by
iteratively building a model and analyzing it until the obtained
one formally guarantees the existence of certain properties.
Next, a policy is obtained by an optimization method and
finally, the plan is executed, taking into account the acquired
policy and the built network.

Nowadays, one lacks a tool that unifies the above mentioned
process [4], and consequently, the user has to implement
interfaces that connect distinct 3rd-party tools, many of which
implemented in different programming languages, which ob-
viously is a cumbersome task.

The main objective of this master thesis, is to improve on an
already implemented GSPN software framework developed in
[5], in order to allow the visual representation of the model and
the execution of GSPN plans. The main two components that
were added were the execution module and the visualization
module. The former allows the user to execute a GSPN plan,
which represents a set of actions that an agent or a robot must
perform. To execute a GSPN is to complete the mentioned
actions. The latter is a graphical front-end, that provides an
user friendly interface for the visualization of the GSPN
model, the execution progress and the properties obtained from
the model analysis. On Figure 1 we included the framework’s
final architecture where the arrows represent data flow. The
yellow components are the modules that were introduced.
The execution module uses the GSPN created with the GSPN
module and sends the changes of the marking of the GSPN into
the visualization module, which are posteriorly reflected on
the visualization module’s interface. The visualization module
also uses the tools module to parse the GSPN into an object
that it can understand.

Our framework is integrated with the robot operating system
(ROS) middleware which enables the execution of plans in
robots, but we also built a standalone version which does
not need ROS to be used. This standalone version will not
be discussed in this report. On Figure 2, we included a
detailed version of the architecture of the two modules that
we introduced. The Figure is divided in half to explicitly show
the two different implementations. On the left side, we have
the ROS integrated version, where the ROS execution module



communicates with the ROS online visualization module. As
portrayed by the Figure, the ROS integrated version does not
have an offline visualization. On the right side, we have the
standalone version, where the standalone execution module
communicates with the standalone online visualization mod-
ule. On the other hand, the offline standalone visualization
module is not connected with the execution module because
it is used to simulate a GSPN, instead of executing it.
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Fig. 1. Framework final architecture.
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Fig. 2. Visualization and execution module.

II. RELATED WORK

Many ways of modelling multi-robot systems have been
proposed but as of today, the main ones are finite state
automata (FSA), belief-desire-intention systems (BDI) and
Petri nets (PN).

A. Finite state automata

A finite state automata (FSA) is composed by nodes, which
represent states, and arcs, which represent transitions between
the nodes (Figure 3). FSA based approaches have been very
successful in modelling robotic systems and tasks because of
their intuitive approach to design: FSAs only have two building
blocks and they are relatively simple to build.

When comparing a FSA to a GSPN, GSPNs are usually
smaller and although the growth of the size of the mark-
ing process is exponential for both models, in the case of
GSPNs, it is possible to model, in a finite way, FSAs that
are theoretically infinite. Although the construction of a FSA
can be very intuitive and simple, most systems built with

this approach tend to represent single-robot systems, since
the existing mechanisms to build concurrency are not very
intuitive and less explicit than on GSPNs.

S1 S2 S3

Fig. 3. FSA example

B. Belief-desire-intention

Belief-desire-intention systems, or BDI, appeared as an al-
ternative to FSA-based approaches. To be simply put, BDI [6]
is an architecture where the agent has three main components:

• Beliefs, which represent what the agent knows about the
environment;

• Desires, which represent the agent’s goals and as such,
some can represent a possible end state;

• Intentions, which represent the selected behaviours to be
executed.

The main reason why this approach is an evolution in
comparison with the previous one is that with BDI, the
programmer is not forced to create a very solid list of tasks to
be completed. Instead, the robot itself has a certain degree of
freedom to choose what he feels is more adequate to execute
at the time.

C. Petri nets

There are many tools with the purpose of modelling, visu-
alizing and analyzing PNs. However, the main limitation of
these tools is the fact that they don’t do all of these tasks in
an integrated way, causing the programmer’s job to be more
difficult than it has to be.

PRISM [7] is an open-source probabilistic model-checker. It
provides mechanisms to build and analyse DTMCs, CTMCs,
MDPs and the extensions of these models with rewards. Other
DTMC and CTMC analysis tools are available but unlike
PRISM, they do not allow logic specifications. However, being
focused on model-checking, PRISM does not allow execution
of plans.

STORM [8] is another probabilistic model checker like
PRISM, but since it was developed more recently, it’s more
optimized than the former. However, STORM doesn’t support
support PRISM features such as probabilistic timed automata
and multi-objective model checking.

SMACH [9] is a ROS-integrated Python framework used
for modelling of robotic systems based on FSA. It was created
with simplicity in mind so that any programmer who needs a
small state machine to define the behavior of its robot can build
it rapidly and intuitively. Unlike usual FSAs, SMACH allows



parallel execution, using the execution policy Concurrence.
Nevertheless, this concurrency is not very explicit. Moreover,
it doesn’t show the passing of time, which can be an essential
metric do analyze in a multi-robot system. Adding to this, this
tool doesn’t allow formal analysis.

Pipe 1 is a tool to design GSPNs and PNs. It has as simple
user interface and moreover, you can also simulate the token
game, which means that we can observe the tokens being
exchanged between the places. However, it doesn’t allow an
execution of the network.

GreatSPN [10] is another tool created with the purpose of
analysing Discrete Event Dynamic Systems (DEDS), or more
concretely, GSPNs. As of today, the tool allows the user to
build the GSPN, visualize it in a graphical way, evaluate the
network’s qualitative and quantitative properties and finally,
visualize the obtained results. Although this tool allows the
user to model and analyse a certain GSPN, it doesn’t allow
its execution.

Contrary to the previously mentioned tools, Petri net plans
[11] can execute a PN. However, they are based on PNs,
which we can be considered as a slightly less expressive model
when compared to GSPNs since they don’t take into account
uncertainty. Besides this, Petri net plans aren’t very flexible
in the sense that the user has to use a series of predefined
building blocks that compose the framework and although
these building blocks are a good way of creating a robust
model, this limits the user’s possibilities.

On Table I, we summarize the purpose of each tool and its
main characteristics.

TABLE I
SOFTWARE TOOLS

Tool name Purpose Modelling Analysis Execution
PRISM Yes Yes Yes No
STORM Yes Yes Yes No
SMACH Yes Yes No No

PIPE Yes Yes Yes No
GreatSPN Yes Yes Yes No
PN Plans Yes Yes Yes Yes

Our framework Yes Yes Yes Yes

III. BACKGROUND

A. Generalized stochastic Petri nets

Definition 1. Formally, a GSPN can be defined by the follow-
ing tuple:

GSPN = (P, TI , TE , F,W
−,W+,m0, ZI , R) (1)

• P is a finite set of places;
• TI is the set of immediate transitions and TE is the set

of exponential transitions where T = TI∪TE . Immediate
transitions model activities that can occur in the system
and fire as soon as they have the necessary number of
tokens. Exponential transitions are characterized by an

1http://pipe2.sourceforge.net

exponential distribution which models the elapsed time
until firing;

• F is the set of arcs where F = (P × T ) ∪ (T × P );
• W− : P × T → N and W+ : T × P → N are input

and output arc weight functions, respectively. Input arcs
go from places into transitions and output arcs go from
transitions into places;

• m0 : P → N is the initial marking, which can be
represented by a vector with a size corresponding to the
number of places;

• ZI : TI → [0, 1] is the weight of each immediate transi-
tion, which means that on the case of having two enabled
transitions, this value will determine the probability of
each transition being fired;

• R : TE → R≥ 0 is a function that associates each
exponential transition with a rate.

More intuitively, a GSPN is composed by a net structure and
a marking. The net structure is a bipartite graph built with four
elements: places, immediate transitions, exponential transitions
and arcs. Between two places, we always have a transition
and both these elements are connected by arcs. The places are
represented by circles, and the transitions are represented by
rectangles. Places can be either input or output, depending on
their interaction with a transition. Considering T = TI ∪ TE ,
t ∈ T and p ∈ P , the set of input places of t can be defined
as IN = {p|(p, t) ∈ F} and the set of output places of t can
be defined as OUT = {p|(t, p) ∈ F}. The net structure of a
GSPN will remain constant all throughout the execution.

The marking, on the other hand, is the discrete number
of tokens inside each place and is defined by S : P → N.
The marking is visually represented by small dots inside each
place. The only way a transition is fired is if the said transition
is enabled. A transition is considered to be enabled if each
input place IN is marked with at least W− tokens. If the
transition is enabled, then it can be fired, removing W− tokens
from the input places and adding W+ tokens to the output
places. The tokens’ configuration will change all throughout
the execution and they’re what empowers this tool: with tokens
we can observe the evolution of the model during the passing
of time.

P1 T1 P2
T2

T3

P3

P4

Fig. 4. A marked GSPN with an exponential transition (T1) and two
immediate transitions (T2 and T3).

An important feature of GSPNs is the marking graph which
formally can be defined as < S,E > considering E : S×S →
T ∪∅, where T is a transition. We consider that E can be null

http://pipe2.sourceforge.net


in order to cover the case where we have two markings, that
are not connected by a transition.

B. GSPNs and multi-robot systems

In our context, the tokens of a GPSN represent two different
elements, depending on the places where they are: robots or
counters. Tokens will be seen as robots when they are in a
place where an action (such as moving into a specific room)
can be performed (action places). Besides this, these kinds of
tokens are always associated with a robot. On the other hand,
tokens will be seen as counters when they are in a place where
no action is being performed (resource places), meaning that
their existence is merely informative to the designer and to
the analysis and synthesis algorithms. These counters will be
useful to count, for example, the number of robots that went
through a certain place.

Immediate transitions model action selection while expo-
nential transitions model uncontrollable events which can
represent the reaction of the environment towards an action
executed by the robot or an internal change.

As an example, consider the GSPN and the robot system
illustrated on Figure 5. On the upper part, the reader can ob-
serve the GSPN with five places, four exponential transitions,
two immediate transition and three tokens. One of the tokens
is on P1, another one is on P3 and the third one is on P5.
On the lower part, we have an illustration of the multi-robot
system associated with this specific GSPN.

The GSPN represents a system where two robots must
measure the temperature of a critical area. If the temperature is
higher than a predefined threshold, an alarm will be activated.
It is advantageous to use a multi-robot system because by
doing so, we can have a constant monitorization on the critical
system: when one of the robots is taking measurements, the
other one is rebooting its system in order to avoid working
for long periods of time. All places except P3 represent action
places, where a specific action is being performed, while
P3 represents a resource place, where no action is being
performed. As such, both the tokens on P1 and P5 represent
robots, while the token on P3 represents a counter. This token
is not associated with any robot and on the case where the user
checks the current marking, by checking the number of tokens
inside P3, it will be clear that the number of measurements
done is 1. Regarding the transitions, T4 and T5 are immediate
transitions and represent the selection of an action, meaning
that when a robot enters P2, it will decide its next step based on
the current marking. The remaining transitions are exponential
because we do not know how long it will take to accomplish
any of the actions associated with them. For instance, when
on P1, we do not know how long it will take a robot to check
the temperature of the critical area, and as such, the associated
transitions are exponential.

C. Policies

A policy defines how a certain system behaves at a given
time. To be simply put, a policy dictates which actions should
be taken in each state. A state in GSPNs is the current marking

ON OFF

P1:measuring temperature
T1:temperature low

P2:decide next step

T6:rebooted

S2

S3

S1

S4

P3:counting measurements

T2:temperature high P4:sounding alarm

P5:rebooting

T3:alarm off

T4:do reboot
T5:go measure temperature

Fig. 5. A GSPN with the corresponding multi-robot system.

of our GSPN and an action is a subset of immediate transitions,
ti, where ti ∈ Ti.

Definition 2. A policy is formally defined as: π : ST → A,
where ST is a set of states and A is a set of actions. In
the context of GSPNs, an action A can be defined as a set
of transitions T and associated probabilities Pr, (T, Pr). We
can have four different forms of policies (which are inter-
changeable), such as deterministic, stochastic, stationary and
non-stationary. However, we will only focus our attention on
stationary and deterministic policies since this will be the kind
that we will use further on. Deterministic are the simplest
cases of policies and there are no uncertainties to which action
the system will execute on each state. Stationary policies are
policies that don’t change over time.

IV. IMPLEMENTATION

A. The execution module

This module was developed to be used with the ROS Noetic
distribution and was developed and tested with Ubuntu 20. In
a high level overview, each robot will be seen as a token and
each action will be seen as a place of the GSPN. By using
and executing plans of GSPNs, we are creating a generally
transparent system where the user can easily understand what
each robot is doing at every point in time because each place
is directly associated with a specific action. If a robot is, for
instance, stuck in place P1, then the programmer can have the
intuition that the reason can be inside the code of the action.

Generally, the algorithm created to perform the execution
takes as input a GSPN, a policy, a mapping between the
actions and each place (for a GSPN with five places, we will
have 5 actions available to be executed), a flag to determine
the amount of output information and a list with the resource
places. When a robot, which is represented by a token, enters
a place, it will start executing the corresponding action. When
it is done with it, the action outputs either the transition to
fire in the GSPN or a flag that requires the algorithm to check
the input policy in order to determine the next transition that
should be fired. Afterwards, the transition is fired and the robot
moves into the next place, starting this process once again. As
outputs, the user receives the token game, the action’s feedback
and the output transitions (Figure 6).
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GSPN
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Place/ action mapping
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Fig. 6. ROS execution module inputs and outputs.

1) General architecture: In general, our system has a
decentralized architecture because our framework’s main goal
is to be used with multi-robot systems and as such, it is not a
wise choice to concentrate the entirety of our algorithm into
a single point of failure. Each robot will have an execution
node running inside it, which means that for each robot, we
will have the same number of execution modules running.

2) Inner robot communication: The inner robot communi-
cation defines how each robot is able to execute the many
actions of its plan. Our framework uses the actionlib 2, which
is based on a client-server model where the action client
communicates with an action server. Actions consist of three
separate parts: a goal, which is firstly sent to the server, a
result, which represents the output of the function that was
executed and a feedback which can be provided to understand
the system’s progression.

Consider Figure 7, which represents a robot’s inner struc-
ture. On the left side, we have the robot’s action client and
servers, while on the right side we have the current GSPN. For
each place of the GSPN, we have one action server, which are
named according to the places they represent. For instance,
place P1 is associated with the P1 action server. Taking into
account that the robot is on P1, then it will connect its action
client to the P1 action server. This connection is represented by
the bi-directional arrow between the action client and the P1
action server. In general, after completing the action, the server
will either return a transition (if it is an exponential transition)
or a flag that requires the policy and the current marking to
be checked (if it is an immediate transition). Afterwards, the
transition is fired, the robot will disconnect its action client
from the current action server and connect it to the action
server of the new current place. This process repeats itself
until the robot’s current place has no output arcs or until the
user explicitly stops the execution.

Taking into account that every robot will have to run inside
it one server per place of the GSPN, this means that for
example, a GSPN with three places and three robots, a total
of nine action servers will be created.

For a better understanding of the algorithm behind the
execution, please consider Algorithm 1. The red and blue
portions will be introduced later. For now, only consider the
black colored portions of the pseudo-code. The algorithm

2http://wiki.ros.org/actionlib

takes as inputs a GSPN, the policy, the mapping between
each place and server and a flag to decide whether the outter
communication is performed via topic or service. The list of
resource places is not used directly in this algorithm and as
such, we chose to omit it. The first step is to know the current
place of the robot, so that it can map it to the corresponding
action server. Afterwards, the action is executed and once it
is finished, the algorithm checks whether the robot’s current
place has output arcs or not. If not, then the execution is
finished for the robot. On the other hand, if there are output
arcs, then the algorithm checks the result provided by the
action server. If the result equals to the string ”None”, this
means that the transition to be fired is immediate. As such,
the algorithm must take the current marking, check the policy
that was provided and fire the resulting transition. On the other
hand, if the result is a concrete transition, this means that the
transition to be fired is exponential and as such, it is simply
fired.

3) Outer robot communication: We chose to use ROS top-
ics 3 to exchange information between robots. In its essence, a
topic is a way of communicating between nodes through ROS
using a publisher/subscriber architecture. When a message is
published to a topic, every subscriber of the said topic executes
a listener callback function. In our specific case, every robot
is both a publisher and a subscriber to the exact same topic.

Action client

P1 action 
server

P2 action 
server

P3 action 
server

robot 1

P1

P2
T1

P3T2

Fig. 7. ROS action client and servers and corresponding GSPN.

On Figure 8 you can analyze the outer communication
model. In this example we have a multi-robot system com-
posed by two robots and a GSPN with three places, which
translates into three servers for each robot. Robot 1 is on P1
and as such, it connects its action client to the P1 action server.
On the other hand, robot 2 is on P2 and as such, it connects
its action client to the P2 action server. If one of the robots
finishes the action, they will fire a transition and as such, the
marking will change. These changes are published to the fired
transitions topic and each subscriber of the same topic receives
them. On Algorithm 1, the topic communication is performed
by the red colored portions of the pseudo-code. Every time
a robot fires a transition, it will have to publish to the topic
the information that was previously mentioned, so that the
remaining members of the team can update their local GSPNs.

Communicating through topics can, however, make the
understanding of the network much harder since every time

3http://wiki.ros.org/Topics

http://wiki.ros.org/actionlib
http://wiki.ros.org/Topics


Algorithm 1: ROS execution algorithm.
Input: GSPN, policy, mapping between each place

and server, communication flag to decide
between topic and service

Output: Execution of actions
1 while True do
2 Get the robot’s current place, connect to the

corresponding action server and start executing
action;

3 if The action server is done then
4 Check GSPN and get the output arcs of the

current place;
5 if There are any output arcs then
6 Get the result returned by the action server;
7 if Result is immediate transition then
8 Check the communication flag;
9 if Communication flag is topic then

10 Check transition to fire in the policy
and fire it;

11 Share the firing information with
the topic;

12 else if Communication flag is service
then

13 Get the other robots’ current places,
check the policy and get the other
robots’ current states;

14 if All robots are in state ’Done’
then

15 Fire the transition obtained from
the policy;

16 Share the firing information
with the topic;

17 else
18 Wait

19 else
20 Fire the transition obtained from the

action server;
21 Share the firing information with the

topic;

22 else
23 End execution of this robot.

24 else
25 Wait for result

Action client

P1 action 
server

P2 action 
server

P3 action 
server

robot 1

P1

P2
T1

P3

Action client

P1 action 
server

P2 action 
server

P3 action 
server

robot 2

Fired transitions topic

P1

P2
T1

P3

T2

T2

Fig. 8. Execution module outer communication.

there is a change, a message is published to the topic. We
concluded that there are only two moments when the robots
actually need to communicate their current place, which is
the moment when the robot has to choose which immediate
transition it will fire (left side of Figure 9) and the moment
when the robot is on a synchronization case (right side of
Figure 9). Taking this into account, we decided to create an
extra communication channel, through ROS services 4, which
instead of being called every time someone publishes to it, is
only executed on these two moments.

To cover the first one, we defined a very simple service
for each robot which returns its current place. Every time a
robot needs to make a decision regarding which Immediate
transition will be fired, it calls the service of every remaining
member of the team and registers their current places. After
having the quorum from every member, the robot builds the
current marking of the GSPN and makes a decision regarding
the transition to fire, based on the obtained marking.

Regarding the second moment, we used the previously
introduced service and two new ones: a service to return the
robot’s current activity state and a service to change the robot’s
current place. Both these values are defined as global variables
and the robot’s current activity state is either Done or Doing,
depending on whether it is done with its current task or not.
Considering Algorithm 1, the blue colored lines represent, in
a very simplified manner, the lines that were introduced to
allow this communication mechanism’s functionality. If the
communication flag is set to service, then this means that the
outer communication is performed via service. As such, the
algorithm must get the other robots’ current places, check the
input policy and get the other robots’ current states. If all
robots are done, then the transition is fired, however, if some
robots are still in the middle of the execution of an action,
then it will wait for them to finish.

4http://wiki.ros.org/Services

http://wiki.ros.org/Services
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Fig. 9. Moments where robots need to communicate.

4) Resource tokens and resource places: Besides having
robots on our GSPNs, we also have the possibility of having
resource tokens and resource places:

Definition 3. A resource place is a place of the GSPN where
no action is executed and where instead of robots, we have
resource tokens. These tokens can be used to take metrics from
the execution of a GSPN.

Considering Figure 10, P2: Counting measurements done
is a resource place and as such, the tokens inside it do not
represent any robot and therefore are not associated with the
execution of any action. These tokens exist in this place in
order to inform the user of how many measurements were
done, through the analysis of the GSPN’s marking. Every time
transition t1: Temperature measured is fired, a new token is
created both on P2 and P3.

P1: Measuring 
temperature

P2: Counting 
measurements done

t1: Temperature 
measured

P3: Going to base P4: Recharging

t2: Base reached

t3: Recharged

Fig. 10. Resources example.

5) Limiting the possible input GSPNs: Before the execution
starts, our algorithm analyzes the GSPN that the user provided
as input. This analysis depends on the list of resource places
that the user also provides in the beginning of the execution.
The algorithm creates a temporary GSPN, equal to the one
provided and removes the resource places. Next, it obtains the
reachability graph for this newly created GSPN and counts the
number of tokens in each node of the graph. If the number
of token sums changes in any part of it, then there is either
creation or destruction of tokens, which cannot be allowed
since we are working with robots, which are physical entities,
and we reject the input GSPN. However, if the number stays
constant throughout the reachability graph, we accept the
GSPN.

B. The online visualization module
The visualization module’s main goal is to visualize a GSPN

and its execution.
The visualization module’s architecture is composed by

three different elements: a backend in Python 3; a frontend in
HTML, CSS and Javascript that also uses Vis.js 5 to represent
the GSPNs; and a web framework tool to allow the flow of
information between the two previous elements, Flask 6. The
inner architecture of the visualization module is on Figure 11.
The arrows represent data flow.

Python Flask CSS/HTML/Vis.js

Backend FrontendWeb Framework

Fig. 11. Visualization module inner architecture.

By using ROS, we were able to take advantage of all its
built-in functions and components. Topics and topic callbacks
were crucial while building this module. Whenever a publisher
of the topic mentioned in Section IV-A3 publishes to it, the
backend of the visualization module registers this change
and applies it to the GSPN presented in the frontend. This
mechanism is illustrated on Figure 12 and in order to achieve
it, we created a new subscriber to the above mentioned topic
in the backend of the visualization module and associated a
callback function to it, which saves the fired transition and the
resulting marking into a Python list. On the frontend side, a
periodic function that fetches the saved updates is executed
every second and applies them.

Backend Frontend

The user

Execution 
Module

Topic

Visualization module

1- start execution 
module

2- publishers send 
updates

3- publishers receive 
updates
3- subscribers 
receive updates

4- fetch updates

5- return updates 6- marking changes 
on screen

Fig. 12. Interaction with ROS online visualization.

V. RESULTS AND DISCUSSION

We created two different types of tests: on the first batch
of tests, we decided to test the scalability of our framework
without the Gazebo 7 simulator. On the second batch of tests,
we tested our framework with a multi-robot simulated system
on Gazebo. The setup that was used consists of a laptop with
an Intel Core i7-8550U CPU and 11 Gb of RAM.

5https://visjs.org/
6https://flask.palletsprojects.com/en/1.1.x/
7http://gazebosim.org/tutorials?tut=ros overview

https://visjs.org/
https://flask.palletsprojects.com/en/1.1.x/
http://gazebosim.org/tutorials?tut=ros_overview


A. Testing the framework

We performed three tests without simulated robots. In all
of them we measured the percentage of CPU and virtual
memory (not including swap) that was consumed throughout
the execution by using two functions from the python library,
psutil 8, cpu percent and virtual memory respectively. For
each moment of the test, we took a sample of five measure-
ments and calculated the average of them. The baseline of
each value was 0,8% of CPU and 25,9% of virtual memory

On the first test, we increased the number of robots and
kept the number of places constant. The GSPN used is on
Figure 13 and the results can be analyzed in Figure 15. Both
values increase with an increasing number of tokens. Besides
this, the time that the system took to start the execution also
increased with the addition of more tokens, creating wait times
of around 20 minutes, for more than 13 tokens.

Fig. 13. GSPN to test the increase of tokens.

On the second test, we increased the number of places and
kept the number of tokens constant. The initial GSPN is on
Figure 14 and the results are presented in Figure 16. The
percentage of CPU and virtual memory both increased with
the increase of the number of places. Also in this test, as we
inserted more places, the time it took the system to start the
execution also took longer. And at times we had to wait around
20 minutes for the execution to begin.

P1 P2

T1

T2

Fig. 14. Initial GSPN to test increase of places.

8https://pypi.org/project/psutil/
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Fig. 15. Results for an increasing number of tokens.
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Fig. 16. Results for an increasing number of places.

The increase of both computational power and memory
usage for these two tests is due to the fact that the more
elements we introduce into our plan, the more resources will
need to be provided by the host computer. The values for the
virtual memory increased in a much more linear way, when
compared to the increases of the processing power, because
adding a new place or adding a new token (for example)
usually takes almost the same amount of memory every time.
When talking about the percentage of CPU, the values tend
to reflect a bigger variation because as we add more tokens,
more actions are being executed at the same time.

The wait time necessary to start the execution is related
to the time that the processor requires to assign each task.
Increasing the initial number of tokens means an increase on
the number of action clients to match with action servers.
Increasing the initial number of places, adds more action

https://pypi.org/project/psutil/


servers that can be paired up with action clients.
We took the percentage of CPU used from both these tests

and related both values to the total number of action-servers
and obtained the results on Figure 17. Taking into account
the growth in action servers of each test, we can easily see
that although on both cases the percentage of CPU increases
heavily, on the first test, the percentage quickly surpasses the
percentage of the second test. This occurs because on the first
test, by adding one token, we are adding seven new action
servers (one for each place), whereas on the second test, when
we add one place, we are adding five new action servers (one
for each token).
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Fig. 17. Results for an increasing number of action servers.

On the final test, we increased the number of places and kept
the number of tokens constant and equal to one. This test aims
to understand whether our framework would possibly work
well in a truly decentralized architecture or not. We started
this test with two places, two transitions, but only one token,
and went up to 35 places and afterwards we went up to 100,
counting 5 by 5. The results are in Figure 18 and they are very
similar to the ones obtained previously. However, we registered
a major difference in terms of the time it took to initiate the
execution. On the two previous tests, we pointed out that there
was a major time gap between the moment we launched the
command to start the execution and the moment the execution
started. On this third test, the time gap was very close to zero.

The time gap registered on the previous two tests does not
occur with test three because we only had one token to execute
the plan, which means that the processor is only assigning one
task at a time, even though it has increasingly more action
servers active.

B. Testing the framework with simulated robots

Consider the turtlebot basic environment and suppose that
it represents a room that needs 24/7 surveillance on the
temperature of four different areas. A team of mobile robots
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Fig. 18. Results for an increasing number of places with only one token.

is deployed in order to improve the efficiency of the monitor-
ization task.

The goal of the team is to go around the room and perform
a quick sweep of every single one of the four areas, meaning
that depending on the size of the team, each robot will have
to move more (if the team is composed by few members) or
less (if the team is composed by many members).

We took the map of the turtlebot basic environment and
divided it into four different locations: L1, L2, L3 and L4.
With these four locations, we designed a topological map and
obtained the one presented on Figure 19.

Fig. 19. Topological map with environment map.

The obtained GSPN is presented on Figure 20. The Figure is
a screenshot taken from the ROS online visualization module.

We ran our setup with one, two, three and four robots.
For the first three tests we managed to run an execution
successfully, however, the test with four robots led to errors
and was not successful. For each test, we filmed a short video
and made it available through the following link.

When testing the system with one robot, the execution was
both smooth and relatively fast.

https://drive.google.com/drive/folders/1DuohmLUU7pl7-_JWS_TGHT3f48blpQ3T?usp=sharing


Fig. 20. Temperature patrol designed GSPN.

With an increasing complexity, our system started having
some performance issues. When we tried running the test
with two robots for the first time, we realized that instead of
moving, the second robot would initiate its recovery behaviour,
which is an embedded mechanism that attempts to clear the
space around the robot. Although disappointing, we under-
stood that we could bypass this issue by manually clearing
the robot’s costmaps. We had to do this in the beginning of
the execution but after doing it a couple of times, the system
was able to continue autonomously.

When running the test with three robots, we faced similar
issues to the previous test, where only one of the robots man-
aged to start moving autonomously. The remaining two got
stuck in the beginning of the execution and we had to manually
clear their costmaps. The movement of the simulated robots
was generally not very smooth. Besides this, an important
note to take is that on some cases, our framework would not
apply the input policy when confronted with an immediate
transition and the simulated robots would keep waiting for
the corresponding action server indefinitely. Although we tried
understanding the reason behind this issue, we were not
successful due to the randomness of the event. However, we
concluded that the system worked best when the places and
the transitions represented on the visualization module were
not moved around, hence the strangely organized left side of
the video for the simulation with three robots.

Finally, we achieved the bottleneck of our tool on the test
with four robots. On most cases, the robots would stop moving
and not even the costmap clearing service would be able to
recover them. On the presented video, the execution takes
very long to start itself and some robots eventually get stuck
in the environment and can never recover from that. When
this happens, move base automatically discards the current
objective and considers it done, which leads to moments like
the one on timestamp 6:17, where we see robot 3 surpassing
robot 4, which is not something that should happen due to
the nature of our GSPN. This happens because robot 3 spent
too much time on L1 without moving and at some point move
base discarded that goal and with that, both robot 3 and robot 4
got entangled into the waiting area and eventually robot 3 was
sent into L2 (while robot 4 stayed in the waiting area), moving
in a horizontal manner and completely surpassing robot 4. In

the end of the video, every robot was stuck and not moving,
which of course led to the premature end of the execution of
the plan.

VI. CONCLUSIONS

In this paper we introduced a multi-robot GSPN software
framework to execute and visualize plans in systems with and
without simulated robots.

Although the results were obtained from a simulated en-
vironment, taking into account that a vast majority of the
framework’s code was integrated with the ROS middleware
and that when we tested a truly decentralized system, every-
thing ran fairly well, we believe that, with more future work,
this framework will work well in a multi-robot system with
real robots.

To improve this framework, tests with real robots should be
performed, so that it can be tested to its limit in a real life
scenario.
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