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Abstract—Publish-subscribe systems are a powerful abstrac-
tion to build distributed applications. This paper addresses the
problem of reducing subscription latency in reliable publish-
subscribe systems. In most systems that offer reliability guar-
antees, a subscriber needs to wait until its subscription has
been propagated throughout the entire system, and known
by all relevant publishers, before starting to receive events.
Interestingly, this may happen even when a previously deployed
subscription covers a new one. In this paper, we study the
properties that need to be satisfied to reduce the subscription
latency and propose a new publish-subscribe system that
leverages causal order multicast to offer low subscription
latency when these conditions are met.

I. INTRODUCTION

The publish-subscribe abstraction [1] has emerged as a
fundamental tool to build distributed systems that preserve
strong decoupling among participants. These can be either
information producers or consumers. Producers are named
publishers and generate events. An event is a data unit
that can be modeled as a tuple containing multiple fields.
Consumers are named subscribers, which receive events they
subscribe to. Participants may express interest in a given
content by subscribing to a topic. Systems that support this
type of subscription are referred to as topic-based publish-
subscribe systems. Alternatively, participants can express
constraints on the event’s fields. This type of system is called
a content-based publish-subscribe system. In this paper,
we are particularly interested in studying the subscription
latency in reliable publish subscriber systems. This latency
is the delay that occurs from the time a subscriber performs
a subscription and the time it receives the first event from
any publisher. This delay varies between different systems:
it is a function of the number of steps the algorithm needs to
execute, in the routing overlay, to deploy the state required
to enforce the desired reliability guarantees.

We consider two variants of reliable delivery: gapless
FIFO delivery (GFD) and gapless causal delivery (GCD).
Informally, GFD ensures that, once a subscriber starts
receiving events from a given publisher, it receives all
subsequent events produced by that publisher that match
the subscription. Gryphon [2], [3] is a well-known system
that offers this type of reliability. GFD is defined for each
publisher, regardless of the interactions between publishers.
GCD is a stronger reliability criterion for publish-subscribe

systems that avoids the anomalies that may result from miss-
ing cause-effect relations among events. These are created
as a result of the interactions among different publishers.
Examples of systems that offer GCD are [4], [5], [6], [7], [8].
In this paper, we answer the following interesting question:
given that GCD is stronger than GFD, is the subscription
latency for the former necessarily greater than for the latter?
Surprisingly, we show that the answer is no. In fact, by
leveraging causality in the propagation of control messages
among event brokers, we show that systems can guarantee
GCD quickly. As soon as a subscription is known by all
brokers in a single path from one of the publishers to
the subscriber it becomes possible to enforce GCD. This
property is substantially weaker than the property that is
used by existing implementations, such as [9], [8], that
require the subscription to be known by all brokers in all
paths from all publishers.

One of the core characteristics of publish-subscribe sys-
tems is the covering relation that may exist between sub-
scriptions. Informally, subscription Sa is said to cover sub-
scription Sb if all events that match Sb also match Sa.
Another interesting question we address in this paper is the
following: can coverage relations be used to decrease the
subscription latency? If yes, in which conditions? Covering
relations have been used to decrease subscription latency
in best-effort systems [10], [11]. However, to the best of
our knowledge, previous reliable publish-subscribe systems
have not been able to exploit coverage to speed up subscrip-
tions. Therefore, we also study the conditions that allow
a system to decrease the subscription latency for covered
subscriptions. Finally, we introduce LOCAPS, a novel algo-
rithm supporting GCD that leverages our findings. LOCAPS
expands previous work on localized causal multicast [12]
to implement efficient subscription protocols. These offer
low subscription latency when suitable coverage relations
are observed between a new subscription and previously
deployed ones.

The rest of the paper is organized as follows. Section II
presents the concepts related to our work and defines the
GFD and GCD subscription semantics. In Section III we
present two sufficient conditions to support these seman-
tics. Section IV details a necessary (weaker) condition that
provides lower subscription latency, and we present an
algorithm based on said condition. In Section V, we discuss
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(a) A subscription that satis-
fies Gapless Causal Delivery.
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(b) A subscription that satis-
fies Gapless FIFO Delivery.

Figure 1. Subscription semantic examples.

how we can leverage already deployed subscriptions to
reduce the subscription latency and present algorithms that
support these optimizations. Section VI describes LOCAPS,
a system that materializes our findings; we experimentally
compare its performance with previous work in Section VII.
Section VIII discusses related work and, finally, Section IX
concludes the paper.

II. SUBSCRIPTION SEMANTICS

In this section, we provide a precise characterization of
Gapless FIFO Delivery (GFD) and Gapless Causal Delivery
(GCD).

A. Definitions
Subscription semantics are defined using the concepts of

event graph, subscription history, subscription starting cut,
and subscription ending cut, that are introduced with the
help of the examples depicted in Figure 1.

Assuming a publish-subscribe system, with multiple pub-
lishers and subscribers, where events may be causally re-
lated. We use the notion of causal order from Lamport [13].
If two events e1.1 and e1.2 produced by the same publisher
p1, where e1.2 is produced after e1.1, then e1.2 may be
causally dependent of e1.1, denoted e1.1 → e1.2. Publishers
may also subscribe to events from other publishers, cre-
ating potential cause-effect relations between events from
different publishers. Again, we use Lamport’s definition, and
if publisher p3 produces some event e3.2 after delivering
event e2.1 from publisher p2, we also say that e2.1 → e3.2.
This defines a partial order on the events produced in the
system, represented by an event graph where edges represent
causal relations. The events may have different topics and/or
contents: in the examples from Fig. 1, we have white and
red content events.

The sequence of events delivered to a subscriber, asso-
ciated with its subscription, defines the subscription event
history. A special subscribe event bounds the subscription
history, which is locally generated at the subscriber when it
issues the subscription. Another special unsubscribe event is
generated when the subscriber terminates the subscription.
The set of events composed by the first event from each
publisher that appears in the subscription history defines a
cut in the event graph, which is the subscription starting
cut. Similarly, the set of events composed by the last event
from each publisher that appears in the subscription history
defines a cut in the event graph, which is the subscription
ending cut.

B. Semantics

We consider two different semantics that can be found in
the literature, namely Gapless FIFO Delivery and Gapless
Causal Delivery. We define them precisely based on the
notion of starting cut and ending cut. Let G be an event
graph, and let Si be a subscription performed by some
subscriber si. Considering Hi(Si) to be the subscription
history for subscriber si, then Hi(Si, pj) is the set of events
from Hi(Si) that have been published by publisher pj . For
each publisher pj , we denote ej.start the event from that
publisher that defines the starting cut, and ej.end the event
from that publisher that defines the end cut of Hi(Si).
Finally, let matching(G,Si, pj) be the set of events from the
event graph G that have been published by pj after ej.start
and before ej.end that match the subscription Si.

Definition 1. Gapless FIFO Delivery (GFD): There are no
constraints on the set of events that belong to the starting
cut and ending cut of a subscription Si. Only Hi(Si, j) =
matching(G,Si, pj) needs to be verified, i.e, all matching
events between ej.start and ej.end need to be included in the
subscription history.

Definition 2. Gapless Causal Delivery (GCD): The sub-
scription must satisfy the conditions of definition 1 plus the
following property. Let j and k be two distinct publishers,
let ej.cause be some event such that ej.cause ∈ Hi(Si, pj), and
let ek.effect ∈ G : ej.cause → ek.effect → ek.end. Gapless Causal
Delivery states that ek.effect ∈ Hi(Si).

Figure 1 illustrates the difference between GFD and GCD.
The two subscription event histories have been obtained
from the same event graph. In both cases, the subscriptions
match red events only, however, the starting cut in each sub-
scription is different. Subscription S1, in Figure 1(a) satisfies
GCD: the starting cut is defined by events {e1.3e2.2, e3.2}
and all events that are in the causal future of the starting
cut are included in the event history. The subscription s2,
in Figure 1(b) satisfies GFD but not GCD: the starting cut
is defined by events {e1.3e2.1, e3.3} but event e3.2 is not in-
cluded in the event history of s2 even if e2.1 → e3.2 → e3.3.
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III. SUFFICIENT CONDITIONS TO ENFORCE THE
SEMANTICS

In this section, we focus on a particular class of imple-
mentations of publish-subscribe systems, arguably the most
common, based on the use of a network of event brokers.
For these systems, we identify the properties that need to be
satisfied to offer GFD and GCD.

A. System Model
We consider a content-based publish-subscribe system

which supports three types of participants: publishers, sub-
scribers, and event brokers. Publishers and subscribers are
also denoted clients, while message brokers are called
servers. Clients can only connect to one of the available
servers at any given time. A server can attend to multiple
clients.

Publishers produce events that need to be delivered to
the interested subscribers. To route events from publishers
to subscribers, servers are organized in a network, that can
be modeled by a general (cyclic) undirected graph. While
some implementations use flooding to propagate events in
the network, we consider the case where event flooding is
avoided. Servers keep two different types of routing tables,
namely: subscription routing tables and event routing tables.
The former is used to forward subscriptions to publishers,
and the later is used to forward events to subscribers. Pub-
lishers are required to send special advertisement messages
to build the subscription routing tables. Advertisements are
the only control messages flooded in the network. In the
following, we describe the creation of the aforementioned
routing tables for a publish-subscribe system with these
characteristics. An advertisement includes a template of the
type of events provided by the publisher. Advertisements are
flooded in the broker network and are used to populate the
subscription routing table at every server.

The event routing tables of message brokers are populated
using special subscription messages generated when a client
issues a new subscription. The subscription message includes
the identifiers of both the client and broker, as well as
constraints for the matching events. Subscriptions are propa-
gated to all publishers that match the subscription, along the
paths established during advertisement propagation. When a
subscription is propagated, the following steps are performed
by the server: i) an entry to the subscriber, associated
with the server edge, is added to the event routing table;
ii) the subscription is propagated throughout the paths to
matching publishers. When a brokerk receives some event
e from publisher pi, via link l, it checks if there is one or
more matching subscription Si. This match is performed by
verifying the local event routing table of brokerk. If there is
no subscription that matches e, then the broker discards the
event. If there is, let L be the set of downstream links that
are in a path from brokerk to si (L is stored in brokerk’s
event routing table). For every link l ∈ L, the brokerk adds
l to a set named link-matches(k, e). The brokerk does this
for every subscription Si that matches the event e. Finally,
e is forwarded on all links in link-matches(k, e).

B. Subscription Stability

We now define a number of properties that are relevant
to capture the sufficient conditions for achieving GFD and
GCD. Let Si be a subscription performed by subscriber si.

Definition 3. Link Stability: Let brokera and brokerb be
two direct neighbours in the broker network and linkab
be the network link connecting these two brokers. We say
that a subscription Si is link stable on linkab, denoted
link-stable(Si, lab), if Si is known both by brokera and
brokerb.

Definition 4. Path Stability: Let pj be a publisher and
let Pk be a path in the broker network connecting pj to
si. We say that a subscription Si is path stable, denoted
path-stable(Si, Pk), iff, for every link l ∈ Pk, we have
link-stable(Si, l).

Definition 5. Publisher Stability: Let pj be a publisher
and Si a given subscription performed by subscriber si.
We say that Si is stable regarding publisher pj , denoted
pub-stable(Si, pj), iff, for every path Pk connecting pj to
si, we have path-stable(Si, Pk).

Definition 6. Full Stability: We say that Si is fully stable,
denoted F-stable(Si), iff, for every publisher pj that matches
Si, we have pub-stable(Si, pj).

C. Stablity-Based Conditions

Using the definitions above, we can define two sufficient
conditions to enforce GFD and GCD.

Condition 1. Sufficient condition for GFD: Let Si be a
subscription performed by subscriber si that is attached to
broker bi. Let e be some event from publisher pj received by
bi such that e matches Si. To deliver e to si without risking
violating GFD it is sufficient that e has been sent by pj after
pub-stable(Si, pj).

Condition 2. Sufficient condition for GCD: Let Si be a
subscription performed by subscriber si that is attached to
broker bi. Let e be some event from publisher pj received by
bi such that e matches Si. To deliver e to si without risking
violating GCD it is sufficient that e has been sent by pj after
F-stable(Si).

D. Evaluating Full Stability

The sufficient conditions expressed above are relevant
because they are used by different publish-subscribe sys-
tems, to enforce both GFD and GCD (for instance, by [9],
[14], [8]). An example of a system that offers GFD and
that relies on full stability is described in [9], [14]. In
this system, an acknowledge needs to be received from
every broker in the path to publishers before the subscrip-
tion returns. When a subscriber joins, its broker sends a
subscription message to all neighbors in the path to the
subscriber. The neighbors, in turn, send the subscription to
their neighbors, until the subscription messages reach the
publishers, where an acknowledgment is generated and then
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propagated back to the subscriber using the reverse path
of the subscription. Each broker collects acknowledgments
from all downstream brokers before propagating one up-
stream, making the acknowledgment collection process to
operate as an aggregation tree. A subscriber si knows it
is F-stable(Si) in the system once its server receives the
aggregated acknowledgments from its broker.

It is also possible to find examples of systems that use
full stability to implement GCD, such as VCube-PS [8].
Similarly to [9], [14] above, VCube-PS also uses acknowl-
edgment messages to detect full stability. To forward a
subscription, the client’s broker creates a spanning tree,
which contains every node on the network, and uses it
to disseminate the subscription to every broker. It then
waits for every broker to acknowledge the subscription. A
subscriber si knows it is F-stable(Si) as soon as it receives
all acknowledgement messages.

E. Impact on Latency

These sufficient conditions, and their use in existing
systems, suggest that the subscription latency for GFD can
be smaller than the subscription latency for GCD. For
instance, consider two different publishers pj and pk that
match some subscription Si. Assume that some event e is
sent by publisher pj after pub-stable(Si, pj) is established
but before pub-stable(Si, pk) is verified. According to the
conditions above, a subscriber Si would be able to deliver e
under GFD, but not under GCD. However, as we show next,
these conditions are stronger than needed, and it is possible
to define weaker necessary conditions that allow both GFD
and GCD to be enforced more efficiently.

IV. A NECESSARY (AND SUFFICIENT) CONDITION TO
ENFORCE THE SEMANTICS

As noted above, although the sufficient conditions ex-
pressed in Section III are sufficient to enforce reliabil-
ity, they may be more restrictive than necessary. In fact,
Gryphon [3], [2] is able to enforce GFD based on a weaker
guarantee, namely it starts delivering events as long as
one (and only one) of the paths Pk to the subscriber si
is path-stable(Si, Pk). However, Gryphon does this at the
cost of resorting to flooding, when brokers propagate events
on non-stable paths. This raises the interesting question of
knowing if it is possible to use weaker conditions while still
avoiding event flooding. Below, we show that this is, in fact,
possible.

A. Causality-Based Condition

Our work departs from the following observation: GCD
requires events to be delivered in causal order, regardless of
the algorithm used to identify the subscription starting cut.
Thus, any algorithm that implements GCD must necessarily
include mechanisms to keep track of causal dependencies
and to ensure the delivery of messages in causal order.
An algorithm to process subscriptions may then leverage
causality to define a necessary and sufficient condition that

is weaker than the sufficient conditions presented before.
Namely:

Condition 3. Necessary and sufficient condition for en-
forcing both Gapless FIFO Delivery and Gapless Causal
Delivery: Let Si be a subscription performed by subscriber
si that is attached to brokeri. Let e be some event from
publisher pj received by brokeri such that e matches Si.
For e to be delivered to si without risking violating GFD
or GCD it is necessary and sufficient that e has been sent
by pj after there is some path Pk from pj to si, such that
path-stable(Si, Pk).

Note that, contrary to Conditions 1 and 2, Condition 3
does not require all paths from the publisher (Condition 1) to
the subscriber or all paths from all publishers (Condition 2)
to the subscriber to be stable; instead a single path needs to
be stable. This condition is valid for both GFD and GCD,
which indicates that GCD does not necessarily impose larger
subscription latencies than GFD. Another advantage of Con-
dition 3 is that it is possible to derive simple algorithms that
allow subscribers to check if the condition is met.

B. Leveraging Causality
We now describe the generic subscription propagation al-

gorithm that leverages Condition 3. The algorithm, depicted
in Algorithm 1, assumes a system with the characteristics
described in Section III-A. When a publisher pj receives
a subscription Si from subscriber si on a given path Pk,
pj knows that path-stable(Si, Pk). Then pj knows that
Condition 3 has been met. To announce this , the publisher
pj issues a marker, M j

Si
, to all subscribers that subscribe

to pj (line 14). When another publisher pk receives the
marker M j

Si
, it will also become aware that the necessary

and sufficient condition has been met. This publisher then
also announces this fact by also publishing the marker Mk

Si

to all its subscribers (line 21). Notice that, in this way, every
publisher px that may send an event in the causal future
of the marker M j

Si
, also sends a marker Mx

Si
. The set of

markers define the subscription starting cut (line 23). More
precisely, the first event received from pj , after receiving its
marker M j

Si
, belongs to the starting cut of the subscription

(line 30). Events from any publisher pj , sent before the
marker M j

Si
, are discarded by the subscriber si. Events sent

after the marker are accepted (line 31).
The reader may notice the similarities between the al-

gorithm above and the Chandy-Lamport [15] algorithm to
compute distributed snapshots. A subscription starting cut is
nothing more than a causally-consistent cut of the distributed
execution. This cut is defined by the sequence of producing,
forwarding, and receiving events in the broker network
overlay.

C. Correctness
We now prove the correctness of Condition 3 and of

Algorithm 1.

Theorem 1. Condition 3 is a necessary condition.
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Algorithm 1 Subscription Algorithm
1: subsc(bk) . local subscribers attached to broker bk
2: pubs(bk) . local publishers attached to broker bk
3:
4: procedure SUBSCRIBE(si, Si) at bk
5: subs(bk)← subs(bk) ∪ {si}
6: starting-cut[Si, pj ]← ⊥,∀pj : matches(pj , Si)
7: SUBSCRIPTIONFORWARD(subscription, si, Si)

8: procedure PROCESS(subscription, si, Si) at bk
9: UPDATEEVENTROUTINGTABLE(si, Si)

10: SUBSCRIPTIONFORWARD(subscription, si, Si)
11: if ∃px ∈ pubs(bk) : matches(px, Si) then
12: if ¬markersent[px, si, Si)] then
13: markersent[px, si, Si]← true
14: EVENTFORWARD(event, px, MARKER(si, Si))

15: procedure PROCESS(event, pj , MARKER(si, Si)) at bk
16: stable-paths← stable-paths ∪ {(bk, pj , Si)}
17: EVENTFORWARD(event, pj , MARKER(si, Si))
18: if ∃px ∈ pubs(bk) : matches(px, Si) then
19: if ¬markersent[px, si, Si)] then
20: markersent[px, si, Si]← true
21: EVENTFORWARD(event, px, MARKER(si, Si))

22: if ∃si ∈ subsc(bk) : starting-cut[Si, pj ] = ⊥ then
23: starting-cut[Si, pj ]← MARKER

24: procedure PUBLISH(pj , EVENT(e)) at bk
25: EVENTFORWARD(event, pj , EVENT(e))

26: procedure PROCESS(event, pj , EVENT(e)) at bk
27: EVENTFORWARD(event, pj , EVENT(e))
28: if ∃si ∈ subsc(bk) : matches(e, Si) ∧ starting-cut[Si, pj ] 6= ⊥

then
29: if starting-cut[Si, pj ] = MARKER then
30: starting-cut[Si, pj ]← e . Si’s starting cut
31: DELIVER(si, e)

Proof: Assume that broker bi serves two subscribers,
si and sj . Subscriber sj has previously issued a subscrip-
tion Sj , and publisher pk produces events that match Sj .
Assume that si makes a subscription Si and that bi needs
to define the starting cut for that subscription. Assume two
events e1 and e2 such that e1 → e2, matches(e1, Si) ∧
matches(e1, Sj), matches(e2, Si) ∧ ¬matches(e2, Sj). As-
sume that F-stable(Si) but that Condition 3 is not sat-
isfied, i.e., there is no Pk from pk to sj , such that
path-stable(Sj , Pk). Thus, bk that serves publisher pk is not
aware of subscription Sj . Because bk is not aware of Sj it
will drop e2, thus accepting e1 would violate both GFD and
GCD.

Theorem 2. Condition 3 is a sufficient condition.

The proof is based on the correctness of Algorithm 1,
which depends solely on Condition 3. Intuitively, the algo-
rithm works because the marker MSi causally depends on Si

(i.e, Si →MS). Thus, the marker is always delivered to any
broker after Si has been delivered to that broker. Any event
e sent after the marker is transitively also in the future of Si,
and delivered to any broker after Si. This implies that, when
a broker processes an event in the future of the subscription
starting cut, it is already aware of the subscription and will
not drop the event.

Proof: The proof is by contradiction. Let e1 be some
event published by pk such that matches(e1, Si). Assume
also that e1 is sent by pk after there is some path Pk between

S1

B1

B3

B5

B6

B7

B8

P1

B2

B4

S2

P2

Figure 2. Single path subscription coverage.

pk and si, such that path-stable(Si, Pk). From Algorithm 1,
in line 14, broker bk that serves pk sends marker Mk

Si
as

soon as Pk becomes stable. Therefore, we have Mk
Si

→ e1.
Assume that there is some event e2 published by ph, such
that e1 → e2. By transitivity of causality, we have Si →
Mk

Si
→ e1 → e2. From Algorithm 1, line 21, broker bh that

servers ph sends marker Mh
Si

as soon as it receives Mk
Si

.
Thus, we have Si →Mk

Si
→Mh

Si
→ e2. From Algorithm 1,

line 23, if e2 is received by bi after Mh
Si

, then e2 is delivered
to si. For e2 not to be delivered to si we would require: i)
a broker to receive e2 before being aware of Si, and failing
to forward e2 (a contradiction, as this violates causality)
or ii) bi that serves si to process e2 before Mh

Si
(again, a

contradiction as this would also violate causality).

V. LEVERAGING COVERAGE

We now discuss how subscription coverage can help in
further reducing the subscription latency. Let Si and Sj

be two subscriptions performed by subscribers si and sj ,
respectively. Before proceeding, we introduce the following
auxiliary definitions:

Definition 7. Subscription Coverage: We say that a sub-
scription Si covers subscription Sj denoted covers(Si, Sj),
iff for every event e : matches(e, Sj) then matches(e, Si).

Definition 8. Link Coverage: Let ba and bb be two direct
neighbours in the broker network and lab be the link con-
necting these two brokers. We say that a subscription Sj

is link covered on lab, if there is a subscription Si such
that covers(Si, Sj) and link-stable(Si, lab). We denote this
by link-covered(Sj , lab).

Definition 9. (Sub-)Path Coverage: Let Pk be a path in the
broker network connecting brokers bi and bj . We say that
a subscription Sj is path-covered(Sj , Pk), iff for every link
l ∈ Pk, we have link-covered(Sj , l).

A. Single-Prefix Coverage

We first propose an optimization to Algorithm 1 that
allows a system to reduce the subscription latency when
there is a single common prefix among covered and covering
subscriptions. This optimization is based on the concept of
pivot broker, that is defined as follows:

Definition 10. Pivot Broker: Let pk be a publisher. Let si
and sj be two subscribers that perform subscription Si (resp.
Sj) such that matches(pk, Si) and matches(pk, Sj). Let
P(pk, si) be the set of paths from publisher pk to subscriber
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si and P(pk, sj) be the set of paths from publisher pk to
subscriber sj . Let LCP(pk, si, sj) = {pi, b1, b2, . . . , bn} be
the longest common prefix among all paths in P(pk, si) and
P(pk, sj). We call broker bn, which is the last broker in the
LCP , the pivot broker, denoted pivot(pk, Si, Sj).

Consider the example depicted in Figure 2. In this ex-
ample, there is a subscription S1, by subscriber s1 that has
already been deployed on the broker overlay (on paths from
publishers p1 and p2 to s1). These paths are represented
by the blue and green links. Subscriber s2 makes a new
subscription S2 such that covers(S1, S2). There are two
paths from p1 to s2 (one via b2 and the other via b4),
represented by the red and green links. The green portion of
the paths is the portion common to both S1 and S2. In this
case, the LCP(p1, s1, s2) = {p1, b8, b7, b6, b5} and the pivot
broker pivot(p1, S1, S2) is broker b5.

Pivot as proxy for publisher: Assume that subscrip-
tion Sj is already covered by some other subscription Si

on LCP(p1, si, sj). In this case, the pivot broker bk =
pivot(pk, Si, Sj) may generate a marker on behalf of pk and
soon as it receives Sj . Note that, any event that is forwarded
by bk after the marker has been sent will have Sj in its causal
past and will, necessarily, be processed by a broker after Sj .

In the example of Figure 2, the subscription latency for
subscriber s2 is significantly reduced by this optimization.
With Algorithm 1 the marker is produced by publisher p1.
This requires the subscription to make 6 hops towards the
publisher and the marker another 6 hops on the reverse path.
The propagation amounts to a total of 12 hops before the
subscriber starts receiving events. With the optimization, the
marker is generated by the pivot broker b5, taking a total of
just 4 hops to be received. Note that, also in this example,
similar reasoning can be applied to publisher p2. Thus, the
pivot broker b5 would send markers on behalf of both p1
and p2.

B. Multi-Prefix Coverage

We now consider a more complex optimization, that aims
at addressing the case where a subscriber has partially dis-
joint paths to the publisher. Both the previously mentioned
optimization in V-A and this new one can be performed in
the same algorithm. Another subscription partially covers
each of these paths.

Consider the example depicted in Figure 3. As before,
there is a subscription S1, by subscriber s1 that has already
been deployed on the broker overlay (on paths from pub-
lisher p1 to s1). Subscriber s2 makes a new subscription S2

that is covered by S1. In this case the LCP(p1, s1, s2) =
{p1, b1, b2} and the pivot broker pivot(p1, S1, S2) is broker
b2. Using the optimization described in the previous section,
broker b2 could send a marker on behalf of publisher p1 for
subscription S2. However, in this case we can observe that
S2 is already covered by S1 on the following path prefixes:
P1 = {p1, b1, b2, b3, b5, b7} and P2 = {p1, b1, b2, b4, b6, b8}.
In the following we discuss how brokers b7 and b8 can
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Figure 3. Multi-path subscription coverage.

cooperate to reduce the latency of S2. Our optimization
is based on the concept of a partial pivot set, defined as
follows:

Definition 11. Partial Pivot Set: Let pk be a publisher.
Let si and sj be two subscribers that perform some
subscription Si (resp. Sj) such that matches(pk, Si) and
matches(pk, Sj). Let P(pk, si) = {Pi,1, Pi,2, . . . , Pi,n} be
the set of paths from publisher pk to subscriber si and
P(pk, sj) = {Pj,1, Pj,2, . . . , Pj,n′} be the set of paths from
publisher pk to subscriber sj . Let pairwise-lcp(Pi,x, Pj,y)
be the longest common prefix to Pi,x ∈ P(pk, si) and
Pj,y ∈ P(pk, sj). Let max-pairwise-lcp(Pi,x,P(pk, sj)) =
{p1, b1, b2, . . . , bn} the longest pairwise-lcp(Pi,x, Pj,y) for
every Pj,y ∈ P(pk, sj). We define bn to be the best partial
pivot for path Pi,x ∈ P(pk, si) with regard to Sj . We define
the Partial Pivot Set for Si with regard to Sj , denoted
PPSet(pk, Si, Sj), the set of the best partial pivots for all
Pi,x ∈ P(pk, si).

In the example depicted in Figure 3, PPSet(p1, S1, S2) =
{b7, b8}. One challenge in using partial pivots is that a partial
pivot cannot proxy the publisher and send a marker on its
behalf. This is because a partial pivot may only forward a
subset of the events produced by the publisher. We overcome
this challenge by using partial makers. Each partial pivot
in PPSet(pk, Si, Sj) can produce a partial marker for Sj on
behalf of publisher pk. The union of all partial markers from
all partial pivots can be used as evidence that subscription Sj

is covered in all paths that belong to P(pk, si). This results
in the following optimization:

Partial pivot proxy for publisher: Assume a sub-
scription Si that is already F-stable(Si). Consider a new
subscription Sj that is covered by Si. Each partial pivot in
PPSet(pk, Si, Sj) produces a partial marker for Sj on behalf
of the publisher pk. Subscriber sj uses the partial markers
to define the first event from pk that belongs to Si’s starting
cut.

Another challenge in using partial pivots is that it makes it
harder to define the starting cut. When using a (full) marker,
the first event e from publisher pk, received after the marker
from pk, belongs to the starting cut of the subscription.
Furthermore, all events in the future of e are guaranteed to
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be received by brokers after e. With partial markers, this is
no longer applies, and a more complex algorithm is needed
to find a safe starting cut. We propose a novel algorithm to
select the first event from pk to belong to the starting cut of
the subscription.

The subscription broker keeps a buffer for each set of
paths that lead to each partial pivot broker. Note that there is
a different set of paths for each pivot broker. All events from
pk that are received via a given partial pivot, before a partial
marker from that partial pivot is received, are discarded. All
events from pk that are received via a given partial pivot,
after a partial marker from that partial pivot is received, are
buffered. The receiver broker waits until all buffers have at
least one event from pk. When this condition is met, the most
recent event e among all events in all buffers is selected to
be part of the starting cut. From this point, all events in the
future of e are accepted and all events in the past of e are
discarded (including buffered events in the past of e).

Another publisher that receives a partial marker for a
given subscription, sends its full marker for that subscription
as in Algorithm 1. After a full marker is received by a
subscriber it can start delivering events from all publishers.

C. Correctness

An extension to Algorithm 1, that includes both the
single-prefix and the multi-prefix optimizations is presented
in Algorithm 2. We now prove the correctness of these
optimizations. The reader should note that the single-prefix
optimization is just a particular case of the multi-prefix
optimization, i.e., when a partial pivot set has a single broker,
this broker is a pivot broker. Therefore, we only prove
the more general optimization described in Section V-B.
Our proofs assume that Algorithm 2 is executed on top
of a multicast layer that enforces causal order. We want to
show that the optimized subscription coverage algorithm can
safely enforce a GCD semantic for subscribers. To do so, we
consider that we are using a system that guarantees causal
message delivery.

Theorem 3. Let e1 and e2 be two events that match Sj ,
such that e1 is delivered by sj and e1 → e2. Then, when
using Algorithm 2, e2 is necessarily delivered to sj .

Proof: Let p1 be the publisher of e1 and p2 be the
publisher of e2. Let bj be the broker that serves subscrive
sj . We have 5 different cases:

case 1: 6 ∃S1 : PPSet(p1, S1, Sj) 6= ∅∧ 6 ∃S2 :
PPSet(p2, S2, Sj) 6= ∅. In this case, no optimization is
triggered and the proof from Theorem 2 still applies.

case 2: 6 ∃S1 : PPSet(p1, S1, Sj) 6= ∅ ∧ ∃S2 :
PPSet(p2, S2, Sj) 6= ∅. Since there is no S1 for which a
set of partial pivot brokers for p1 exists, then it needs to
send a marker M1

Sj
explicitly before event e1, for e1 to be

delivered by bj to sj (M1
Sj

→ e1). From causal order, p2
will receive M1

Sj
before receiving e1, and will therefore send

an explicit M2
Sj

before sending e2. Also from causality, bj
will receive M2

Sj
before e2 and will deliver e2 ro sj .

Algorithm 2 Optimized Algorithm (only parts that differ
from Algorithm 1)
1: procedure PROCESS(subscription, si, Si) at bk
2: UPDATEEVENTROUTINGTABLE(si, Si))
3: SUBSCRIPTIONFORWARD(subscription, si, Si)
4: // publisher px sends the marker (default)
5: if ∃px ∈ pubs(bk) ∩ pubs(bk) : matches(px, Si) then
6: if ¬markersent[px, si, Si)] then
7: markersent[px, si, Si]← true
8: EVENTFORWARD(event, px, MARKER(si, Si))

9: // broker bk sends marker on behalf of px (proxy marker)
10: if ∃px, Sx : bk = pivot(px, Sx, Si) then
11: if covers(Sx, Si) ∧ {(bk, px, Sx)} ∈ stable-paths then
12: if ¬markersent[px, si, Si)] then
13: markersent[px, si, Si]← true
14: EVENTFORWARD(event, px, MARKER(si, Si))

15: // broker bk sends partial marker on behalf of px
16: if ∃px, Sx : bk = PPSet(px, Sx, Si) then
17: if covers(Sx, Si) ∧ {(bk, px, Sx)} ∈ stable-paths then
18: if ¬pmarkersent[px, si, Si, Sx)] then
19: pmarkersent[px, si, Si, Sx]← true
20: EVENTFORWARD(event, px, PMARKER(bk, si, Si, Sx))

21: procedure PROCESS(event, pj , PMARKER(bx, si, Si, Sx)) at bk
22: pmarkers← pmarkers ∪ {(pj , bx, si, Si, Sx)}
23: EVENTFORWARD(event, pj , PMARKER(bx, si, Si, Sx))
24: if ∃px ∈ subsc(bk) ∩ pubs(bk) : matches(px, Si) then
25: if ¬markersent[px, si, Si)] then
26: markersent[px, si, Si]← true
27: EVENTFORWARD(event, px, MARKER(si, Si))

28: procedure PROCESS(event-message, pj , EVENT(e)) at bk
29: EVENTFORWARD(event-message, pj , EVENT(e))
30: if ∃si ∈ subsc(bk) then
31: if starting-cut[Si, pj ] 6= ⊥ then
32: if starting-cut[Si, pj ] = MARKER then
33: starting-cut[Si, pj ]← e
34: DELIVER(si, e)
35: else if starting-cut[Si, pj ]→ e then
36: DELIVER(si, e)

37: else if ∃bx ∈ path(e) : {(pj , bx, si, Si)} ∈ pmarkers then
38: buffer[Si, pj , bx] = buffer[Si, pj , bx] ∪ {e}
39: if ∃Sj : covers(Sj , Si) ∧ ∀bx ∈ PPSet(pj , Si, Sj) :

buffer[Si, pj , bx] 6= ∅ then
40: e ← MOSTRECENT(buffer[Si, pj , bx], ∀bx ∈

PPSet(pj , Si, Sj))
41: starting-cut[pj , Si]← e
42: DELIVER(si, e)

case 3: ∃S1 : PPSet(p1, S1, Sj) 6= ∅∧ 6 ∃S2 :
PPSet(p2, S2, Sj) 6= ∅. If sj delivers e1 then, either p1
sends M1

Sj
→ e1 (no optimization was triggered) or every

bx ∈ PPSet(p1, S1, Sj) sends a partial marker PM1,k
Sj

→ e1,
on behalf of p1. Note that every path from p1 to p2 includes
some bx ∈ PPSet(p1, S1, Sj) (if another path would exist,
there there would be a path from sj to p1, passing via p2,
that will not include members of PPSet(p1, S1, Sj) which
would be a contradiction). From causality, p2 will receive
M1,x

Sj
from some bx ∈ PPSet(p1, S1, Sj) before receiving

e1, and will send M2
Sj

→ e2 before sending e2. Also from
causality, bj will receive M2

Sj
before e2 and will deliver e2

to sj .
case 4: ∃S1 : PPSet(p1, S1, Sj) 6= ∅ ∧ ∃S2 :

PPSet(p2, S1, Sj) 6= ∅ ∧ PPSet(p1, S1, Sj) 6=
PPSet(p2, S1, Sj). The reasoning from case 3 also
applies, and the proof is the same.
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case 5: ∃S1 : PPSet(p1, S1, Sj) 6= ∅ ∧ ∃S2 :
PPSet(p2, S1, Sj) 6= ∅ ∧ PPSet(p1, S1, Sj) =
PPSet(p2, S1, Sj). If bj delivers e1 to sj then M1

Sj
→ e1,

either because p1 sends M1
Sj

explicitly or because
every bx ∈ PPSet(p1, S1, Sj) sends a partial marker
PM1,x

Sj
→ e1, on behalf of p1. However, because

PPSet(p1, S1, Sj) = PPSet(p2, S1, Sj), every bx that
sends PM1,x

Sj
also sends immediately PM2,x

Sj
on behalf of

p2. Thus, because e1 → e2, when e2 is received by bj a
partial makrker PM2,x

Sj
has lready is received from every

bx ∈ PPSet(p2, S2, Sj) (toghether with PM1,x
Sj

), and thus, if
e1 is delivered, e2 is also delivered.

VI. AN IMPLEMENTATION

In the previous section, we have proposed several op-
timizations that allow us to reduce subscription latency.
Unfortunately, these optimizations are hard to implement in
general topologies. In fact, in the general case, it may be
hard, or even impossible, for a broker to know if it is a pivot
broker. In the case of a subscriber, it is hard to identify the
size of the PPSet when it receives a partial marker. Without
this information, the subscriber cannot start delivering events
earlier and needs to receive a marker directly from the
publisher. This may explain why most implementations that
offer GFD or GCD semantics fail to leverage the coverage
property to speed up the subscription process. When suitable
overlays are used, it is possible to leverage our findings
to derive an efficient implementation that can offer low
subscription latency. In this section, we give a concrete
example that shows that it is, in fact, possible.

We describe a new system, named LOCAPS, that lever-
ages the necessary and sufficient condition presented in
section IV and the optimizations from sections V-A and V-B
to build an efficient publish-subscribe system. Our system
is built on top of LoCaMu [12], a causal multicast substrate
for publish-subscribe systems. LOCAPS also offers low
subscription latency in favorable conditions. We start by
describing LoCaMu and then describe how we can exploit
the properties of LoCaMu for applying the optimizations
proposed in Section V.

A. LoCaMu

LoCaMu [12] is a causal multicast substrate for publish-
subscribe systems. LoCaMu does not support dynamic sub-
scriptions: in its current form, all subscriptions must be
statically deployed in the network before it starts operating.
LOCAPS extends LoCaMu with dynamic (low latency)
subscriptions. The main feature of LoCaMu is that it works
using localized information, i.e., each node only needs to
maintain metadata regarding a set of nodes in its neigh-
borhood. Although the localized feature of LoCaMu is
interesting, it is not the most relevant to the work described
in this paper. The most prominent feature of LoCaMu that is
relevant to LOCAPS is its particular broker topology, which
is inherited from [14].
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B6

P1

B3
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(a) Underlying base acyclic graph

S1

B1

B2

B4

B5
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P1
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S2

(b) Extended graph (f = 1)

Figure 4. LoCaMu broker network topology.

The topology of the broker network used by LoCaMu is
presented in Figure 4. LoCaMu organizes the brokers in an
undirected acyclic graph, as depicted in Figure 4(a). In this
underlying base graph, there is a single path connecting a
subscriber to a publisher. The underlying graph is not fault-
tolerant: if a broker fails the broker topology becomes dis-
connected. To achieve fault-tolerance the underlying graph
is augmented with additional links, that allow a path to
circumvent f failed nodes. This is illustrated in Figure 4(b)
for the case of f = 1. As such, LoCaMu can offer reliable
causal delivery, and tolerate f faulty nodes in each local
neighborhood.

B. LOCAPS

Looking at LoCaMu’s topology, it is possible to make the
following key observations: In the extended graph, for fault-
tolerant reasons, there are multiple paths from a publisher
to a subscriber. As such, the optimization described in
Section V-A cannot be applied. In the extended graph,
PPSets always have f + 1 members, this simplifies the use
of the optimizations described in Section V-B.

Let Sj be some subscription issued by subscriber sj that is
covered by some subscription Si issued by subscriber si. Let
pk be a publisher that matches both Si and Sj . In LOCAPS,
PPSet(pk, Si, Sj) consists of both pivot(pk, Si, Sj) on the
underlying acyclic graph (in Figure 4(a), broker b4), and the
next f nodes on the underlying acyclic graph on the path
to the publisher (in Figure 4(b), broker b5). Thus LOCAPS
implements Algorithm 1 on top of LoCaMu, using the rules
above to define the PPSet. Two different scenarios can define
the first event, from a given publisher pk, to belong to the
starting cut of a given subscription. Either by a full marker
sent by the pivot broker directly or by f +1 partial markers
from a given PPSet. After a subscriber receives the markers,
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as described in Algorithm 1, LOCAPS can start to deliver
events to it without violanting the GCD semantic.

VII. EVALUATION

In this section, we evaluate the performance of LOCAPS,
in terms of subscription latency. We compare the observed
latency by the subscribers with two of the systems from
the related work that most resemble ours, namely the δ-
fault-tolerant [14] (Delta) and Gryphon systems [2], [3]. The
Delta system ensures a GFD to the subscribers and also uses
the concept of neighborhood and localized information. The
Gryphon system provides a GFD to the subscribers as well
and uses logical clocks to define the subscription starting
cut. We evaluate how these systems behave when we vary
different system characteristics. The parameters to modify
include the network diameter, the distance to the publishers,
and the size of the neighborhood. Another parameter that we
also consider in the evaluation is the likelihood that a new
subscription is covered by other subscriptions, previously
deployed on the system. To perform the evaluation we use
the Peersim [16] simulator with an extension that simulates
network latency. We consider an average latency of 50ms
between brokers, which approximates thee average latency
between google datacenters in North America. We consider
that the time required to process the messages on the brokers
is negligible. We have chosen a binary tree as out network
topology. Subscribers are placed on the leaves, to not impair
the Delta system, where the latency always depends on the
network diameter. In the Gryphon system, subscribers must
always be placed on the tree leaves and the publishers on
the tree root. The network diameter is set at 18 in a network
with 512 brokers, unless stated otherwise.

Figure 5(a) illustrates the average latency observed by
subscribers from both systems when the network diameter
is increased. In this scenario, the publishers are always at a
5 hop distance from subscribers. In Figure 5(b), the distance
to publishers varies. As we would expect, on LOCAPS,
the latency increases with the distance to the publisher, not
increasing with network diameter. In the Delta system, the
latency will be proportional only to the network diameter
and does not depend on the publisher’s location, increasing
the latency with a bigger diameter.

Figure 5(c) illustrates the average subscription latency in
the three systems when there is a publisher on the graph
root and stable subscriptions in the systems. We set f = 1.
We vary the probability that a new subscription on the tree
leaves is already covered. In this case, the latency of the
Delta and Gryphon systems is constant, since these do not
use subscription coverage to decrease latency. Subscription
latency in LOCAPS decreases as the coverage probability
increases. Figure 5(d) illustrates the average latency reached
by LOCAPS with the parameters mentioned in the scenario
for Figure 5(c). Once again, we vary the coverage probability
as well as the network diameter. In this case, we also note
that the latency will tend to the same value, regardless of the
network diameter. This is because the latency is proportional
to the value of f .

Figure 5(e) presents the average subscription latency when
we vary the neighborhood size of a node, defined by the
fault tolerance value f . In this case, there is a publisher on
the root, and every new subscription is already covered. For
the Delta system, the latency is constant for the different
neighborhood sizes. In the case of LOCAPS, we observe
that the latency increases with the neighborhood size. In
Figure 5(f), we use the same parameters as in Figure 5(e).
In this scenario, we also vary the network diameter. We can
observe that the latency only depends on the broker’s neigh-
borhood size in case the subscription is already covered.

VIII. RELATED WORK

It is possible to find in the literature systems that fo-
cus on decreasing the subscription latency. However, most
provide a best-effort semantic to their subscribers, which
is characterized by offering no guarantees. One example
of this approach is the Semi-Probabilistic Pub-Sub [17]
system. In this system, the subscription is only known by
a subscriber’s neighborhood. Therefore, the latency depends
on the neighborhood size.

One way to reduce latency is to leverage subscription
coverage. However, most systems that use coverage, such as
the SIENA [10] and GEPS [11], provide only a best-effort
semantics for the subscriptions.

Gryphon [2], [3] is a well-known system that provides a
GFD semantic. Similar to LOCAPS, Gryphon also relies on
causality to ensure reliability. In comparison to our work, the
most relevant limitation of Gryphon is that it cannot leverage
subscription coverage to reduce the subscription latency. In
Gryphon, reliability is only guaranteed if the subscription is
acknowledged by the publisher, regardless of the existence
of other covering subscriptions. The same limitation applies
to the δ-fault-tolerant system [14].

P2PPS [7] is a P2P (Peer-to-Peer) publish-subscribe sys-
tem that offers GCD. Unlike our system, this work does
not address the problem of reliability when considering
dynamic subscriptions. The system described in [6] also
supports GCD but requires the use of an external Distributed
Shared Memory system to share information among bro-
kers. As such, scalability is limited. Finally, like LOCAPS,
VCube-PS [8] also exploits the use of a causal broadcast
primitive [5] to offer GCD. However, unlike our system,
they are not able to exploit subscription coverage, and all
subscriptions need to be propagated and acknowledged by
the entire network.

IX. CONCLUSION

In this paper, we have studied the necessary and sufficient
conditions that need to be met to offer different reliability
semantics to subscribers, namely Gapless FIFO delivery
and Gapless Causal delivery. Our conditions are weaker
than those typically used in previous systems. These have
allowed us to implement LOCAPS, a reliable causal publish-
subscribe system that offers low subscription latency. In
particular, when a subscription is covered by another al-
ready deployed in the system. An experimental evaluation
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Figure 5. Performance of LOCAPS vs. performance of the Delta and Gryphon algorithms.

of LOCAPS shows that it can achieve significantly better
performance than previous state-of-the-art solutions.
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