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Resumo

SLAM é um método computacional baseado em sensores que permite equipar robots móveis

com a capacidade de criarem mapas do seu ambiente e de se localizarem nesses mapas. SLAM

permite criar robots autónomos, sendo atualmente um tópico de forte investigação e desenvolvi-

mento. O objetivo principal desta dissertação é o desenvolvimento de um método de SLAM que

pode ser utilizado como base de comparação e avaliação de outros métodos SLAM, estado da

arte, disponíveis publicamente.

Esta dissertação foca o caso especí�co de os dados sensoriais serem exclusivamente se-

quências de imagens ou sequências de imagens complementadas com mapas de profundidades.

COLMAPandVisual SfMsão duas implementações de SLAM, estado da arte, que são consid-

eradas nesta dissertação para comparação e avaliação, utilizando a implementação proposta de

SLAM.

São considerados várias bases de dados utilizadas comummente para avaliação de imple-

mentações de SLAM. Em particular considera-seETHD3D SLAM & Stereo Benchmarks, base

de dados que contém sequências de imagens monoculares e estério, complementadas por val-

ores de referência de pose da câmara e da estrutura, e considera-se a base de dadosTUM RGB-D

SLAM Dataset and Benchmark, que contém sequências de imagens e respetivos mapas de pro-

fundidade, complementados por valores de referência de movimento da câmara.

A implementação de SLAM proposta é baseada em módulos (toolboxes) de Matlab. Os

vários métodos considerados, e o método proposto, são complexos em termos de cálculo com-

putacional e memória necessários, por natureza da metodologia SLAM. Os resultados obtidos

com a implementação proposta são comparáveis em termos de precisão aos resultados das im-

plementações estado da arte. Estes resultados mostram que SLAM sobre sensores de imagem

tem um nível de maturidade elevado, as várias implementações são e�cazes, permitindo a sua

utilização em muitas aplicações robóticas.

Palavras chave:SLAM, Mapa de profundidades, VSFM, COLMAP
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Abstract

Simultaneous Localization And Mapping (SLAM) computational methods endow moving robots

with the capabilities of building maps of unknown environments and localizing within those

maps. SLAM is an essential component for robotics autonomy, required in many applications

and therefore subject of constant research and development. The main objective of this disser-

tation is the development of an implementation of a SLAM method that serves as a comparison

and assessment baseline for state of the art, public domain, implementations.

This thesis is concerned with the speci�c cases where the input data is based just on video

cameras, acquiring 2D images, or is based on colour-depth cameras, acquiring 2D images and

depth maps.COLMAP and Visual SfMare the two state of the art, public domain, SLAM

implementations that are considered to compare and assess with respect to the baseline.

Various datasets commonly used for SLAM developing are considered. The datasets origi-

nate from two public domain sources, namely theETHD3D SLAM & Stereo Benchmarks, which

provides monocular and stereo, colour, sequences of images and a ground truth SLAM data,

and theTUM RGB-D SLAM Dataset and Benchmark, which provides colour images and depth

maps, complemented with ground truth motion information.

The proposed SLAM method was implemented based on standard Matab toolboxes as a

baseline to compare and assess state of the art SLAM methods. As expected, all SLAM methods

were found to be complex in computation time and memory. The results obtained with the

proposed implementation were found to have an accuracy comparable to the one obtained with

a state of the art implementation. This shows that SLAM may have already reached a high

research and engineering maturity level.

Keywords: SLAM, Depth map, VSFM, COLMAP
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Chapter 1

Introduction

Computer vision provides a vast variety of applications for robotics. The creation of naviga-

tion maps is a main application subject either for vehicles driven by humans and autonomous

(uncrewed) vehicles.

In the beginning of the R&D on robotic navigation, topographic and engineering technolo-

gies were combined, to create digital elevation models (DEMs) using photogrammetry, differen-

tial global positioning station (GPS) and total station 3D positioning data. More recently, laser

scanning systems were in the demand for providing a high quality/resolution data in the form of

3D point clouds similar to LiDAR. Since both these approaches are costly and require advanced

technology, Simultaneous localization and mapping (SLAM) started to become more popular

as a low-cost alternative that provides high-resolution data with reduced user supervision.

SLAM became possible through advancements of computers, digital cameras and unmanned

aerial systems (UAS). The rapid growth and research interests using this technology further

demonstrated the actual potential, and the applicability is to it.

SLAM is also used to create orthophotograph mosaics, 3-D point clouds, and digital eleva-

tion models. All this can be used in mapping and photogrammetry, to determine tree biomass,

analyze geology, detect topographic changes to monitor glacial, �uvial, coastal, hill slopes en-

vironments and also in robotics and self-driving vehicles.

Autonomous vehicles typically use computer vision for navigation by producing a map of

its environment (SLAM), for detecting obstacles and detecting speci�c tasks. It is already

applicable in Space exploration in autonomous vehicles, for example, NASA's Curiosity and

CNSA's Yutu-2 rover[12].
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1.1 Brief Overview of SLAM

Several different software packages were developed in the scope of SLAM, as Visual SfM,

COLMAP, Regard3D and OpenSfM. Their functional principles are based on extracting and

corresponding features from the set of 2D images, computing the camera pose and assembling

the complete 3D scene point cloud.

In order to �nd correspondence between images, features such as points from corners or

objects are extracted. Then they are matched with the following image, in order to �nd the

relative camera pose. A standard feature detector is a SURF (speeded-up robust features), which

instead of evaluating the gradient histograms, it computes the sums of gradient components and

the sums of their absolute values. Scale-invariant feature transform (SIFT) is another feature

detector that uses the maxima from the difference-of-Gaussians (DOG) pyramid as features.

SURF proved to be a better extractor since it was much faster in extracting features but had the

disadvantage of being less accurate on acquiring their positioning.

After extracting features from an image, they will be matched using matching algorithms

that track features from one image to another. Fischler and Bolles provided an algorithm using

RANSAC to solve the location determination problem (LDP), to determine the 3D position

of the extracted features. Then the positioning of the features is used to reconstruct their 3D

positions.

If the camera position is computed each time a new camera is added to the system, the

method is called incremental SLAM. The global SLAM computes all the camera poses at the

same time. The out-of-core SLAM is an intermediate approach where the solution is computed

partially globally and partially relative.

From the above reasons and as Matlab is one of the most promising tools being used, the

main objective of this thesis was settled to be the development of an alternative software of

SLAM using Matlab, in order to compare our results with the most recent SLAM software

developed. This comparison was made to investigate if the current SLAM software has been

improving their results.

SLAM is one of the most promising areas in development, the wide variety of applications,

and the growth of the technology has continuously increased with time. It can be applied to

almost every area of interest, from mapping �orets to autonomous self-driving vehicles.

The applicability in aerospace was also one of the main interest since it's used as a tool

to construct detailed maps of the surface of different planets though rovers and help estimate

trajectories of satellites.

The main objective of this thesis was de�ned as the development of an image-based nav-



1.2 Objectives and approach 3

Figure 1.1: The three major steps on a SLAM software.

igation system software using colour images(RGB) and colour-depth images(RGB-D). After-

wards, compare the results to other states of the art software to established if the accuracy has

improved signi�cantly over the latest years. The datasets used are a collection of images pre-

viously taken (RGB), that contain other properties, as the intrinsic parameters, the ground truth

and timestamps that are used for testing and debugging.

1.2 Objectives and approach

Navigation is present in several areas of interest, focussing on the process of monitoring the

trajectory of an object. The present work aims to develop a Images based Navigation software

in Matlab and analyse the output results using datasets of ETH3D and TUM as an example of

the capabilities of the software.

The �rst approach was analysing the structure of both datasets, to see what type of informa-

tion was available. Since colour datasets only contain RGB images and colour-depth datasets
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depth images, the structure had to be different as the colour depth has one extra layer of infor-

mation.

The second approach was to design the pipeline for both software. The overall structures

are very similar to other pipelines of the alternative software (VSfM, COlMAP, etc.), but with

some small twists.

Since colour datasets only have RGB images, the overall pipeline is VSFM, COLMAP, etc.

For colour-depth datasets (RGB-D) was used to construct the depth map after analysing all RGB

images. This was made using functions to extract the depth map and merge it with the RGB

data.

The next step was to select the type of features detector to use. After re�ecting on the

advantages/disadvantages, it was decided to use a SURF detector, since it is faster in comparison

to other alternatives.

Then, after acquiring the features, it was possible to estimate the relative pose of the camera

using a P5P algorithm and then compute the essential matrix using M-SAC.

Afterwards, the results are compared to COLMAP and VSFM outputs, as a quality factor to

evaluate the accuracy of our software and conclude on how is the evolution of the other state of

the art software.

1.3 Problem Formulation

Simultaneous localisation and mapping (SLAM) with multi-view stereo cameras, is a technique

from photogrammetry and computer vision that uses overlapping images to perform a 3D recon-

struction of the scene. To building software for SLAM, various aspects have to be considered:

1. Type of SLAM pipeline, incremental or global;

2. What images were going to be analysed;

3. Selecting the best feature extraction and matcher method;

4. How the bundle adjustment would be implemented.

The �rst major aspect is how the SLAM pipeline is built and, if use Matlab standard tool-

boxes has any impacts.

Concerning the pose estimation, the most impactful decision is what type of features extrac-

tor/matcher to use, and the algorithm to compute the camera pose.
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In terms of performance, what affects the most is the number of features extracted and the

type of features extractor. However, performance is inversely proportional to accuracy. Pre-

liminary studies show this aspect is visible in the chosen matcher. If a SLAM software uses

BFMatcher, the computation times increases since this type of matcher will search for all pos-

sibilities to �nd the best match. In the case of the FLANN matcher[23], it will be much faster.

However, the precision will decrease since it searches an approximate nearest neighbours. It

will �nd a good matching, but not necessarily the best possible one, as stated in [25].

After obtaining the results, another major issue was how the bundle adjustment was going

to be built into the pipeline, as several approaches were used in SLAM.

The next phase is making a script able to extract all results, rescale them and change their

reference system, to allow the comparison.

After obtaining the results, it is possible to draw some conclusions about the evolution of the

new SLAM pipelines. Moreover, is possible comparing Matlab based results with COLMAP

and VSFM, which are state of the art, public domain, SLAM implementations.

1.4 Thesis Structure

This thesis is divided in �ve chapters. The present chapter introduces the general framework

in which the thesis is developed, the motivation, the main objectives to be ful�lled and the

approaches taken to achieve the objectives established.

Chapter two starts by introducing all background knowledge, linked to this thesis and related

work previously developed. It continues by explaining the latest works performed in the same

scope.

Chapter three shares the pipeline structure of the software developed. Each block is shortly

explained according to there input, output and primary function.

Chapter 4 exhibits the results obtained on the pairwise error, last pose error and computation

time, concluding if the evolution has improved other SLAM pipelines.

Chapter 5 �nishes by concluding the results obtained, analysing relevant factors that were

taken into account when comparing to other software. Measure the current contribution of

other SLAM software alternatives. Also explains future developments that could contribute to

the growth of the current achievements.
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Chapter 2

Background and Related Work

Navigation is present in several engineering working areas. Navigation is required in land,

marine, aeronautic, and space environments. In the past times of discoveries, when Portuguese

were explorers, it had an essential role in their success. From then, a huge body of knowledge

and engineering has been built, specially with the appearance of computers and digital sensors.

Techniques that involve locating the navigator's position, other boats and compared them to

the known locations or even uncover patterns on the trajectories. On Aerospace, a great example

is the Global positioning satellites(GPS) that used this concept of monitoring trajectories and

estimation of positions of objects.

Furthermore, navigation is a �eld that focuses on the process of monitoring the movement

of an object. When applied to the area of simultaneous localization and mapping (SLAM),

this concept remains the same but applied to the estimation of the camera pose along the time.

In Aerospace, this can be observed on satellite trajectory monitoring [10], GPS modelling for

designing aerospace vehicle [11], etc. Our software pipeline manages to undercover the navi-

gation of the camera along with the scenario, allowing us to evaluate her trajectory and recover

the complete 3D scene.

In this chapter, is presented background knowledge related to the construction of SLAM

software.

2.1 Camera Projection Model

Nowadays, one of the best ways to help the computer tosee the world, i.e. providing the

necessary sensing to ful�l the objectives we established for this thesis, is through the use of

colour cameras and interpreting the acquired images.
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A single scene image can be a rich source of information on three-dimensional and four-

dimensional environments. The primary approach to interpreted those images is to handle them

in a two-dimensional reference system. However, RGB images are intrinsically ambiguous,

because one of the dimensions is lost in the projection from the three-dimensional world into

the two-dimensional.

Figure 2.1: This image shows us the different reference system. The �rst is the camera reference
system; The second is the 2D image reference system; The third image is the world reference
system centred on the north tower of IST; The last image corresponds to the 2D camera refer-
ence system in pixel coordinates.

The camera projection model describes the relationship between the coordinates in the 3D

world reference system and the 2D camera reference system (�g. 2.1). The camera opening can

be described as a point, where no lenses are used to focus light and do not include geometric

distortions or blurring of unfocused objects.

The camera projection model can be expressed by different mathematical relations, depend-

ing on which reference system is in demand. X, Y, Z are the coordinates in the world coordinate

system, x,y,z are the coordinates in the camera reference system.
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Figure 2.2: Rotation and translation matrices necessary to change from the world reference
system to the camera reference system

In order to go from the world reference system to the camera reference system, it is neces-

sary to know the rotation and translation of the camera, in relation to the world reference (�g.

2.2). The projection matrix gives us this relation, which can be written mathematical by:

P = [ RjT] (2.1)

The Projection matrix is a matrix 3 x 4, that when applied to a point in the world reference,

it projects it to the camera reference system.

On the other hand, if necessary to go from the camera coordinates to pixel coordinates, it's

only necessary to multiply by the intrinsic parameters of the camera:

K =

0

B
@

� f
sx

0 u0

0 � f
sy

v0

0 0 1

1

C
A (2.2)

In conclusion, in the case where we have a 3D point(X,Y,Z) and we want to �nd its pro-

jection in pixel coordinates (u,v), we have to multiply the homogeneous coordinates of the 3D
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point by the matrix P, K:
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In the case of back-projection, the process is the opposite approach of the mentioned above.

It's necessary to �nd the position of the 3D point using his 2D correspondence. This process is

prevalent in SLAM software since it's necessary to �nd the 3D coordinates of features extracted

from images. When a feature is present in the view of multiple cameras, the process to compute

the 3D world coordinates is called triangulation.

Each feature in an image always has a corresponding line in 3D space. Suppose a feature is

detected in different images. In that case, those lines will intercept in a common point, being

this point the correspondent 3D world point P. Formulating an algebraic relation the coordinates

of P (3D point) can be computed. From this relation and the epipolar constraint, we obtain the

coordinates of P.

2.2 Epipolar constraint

When a point is present in different cameras views, it is possible to obtain its 3D position by

performing a triangulation. The epipolar constraint allows us to express this problem geometri-

cally. When two cameras view a 3D point (P) from two different perspectives, it is possible to

withdraw a geometric relation between the 3D point and its projection onto the 2D images.
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Figure 2.3: Projection matrix scenario;C1 is the camera center of the �rst camera andC2 the
camera center of camera 2.p1 andp2 are the epipolar points; P is the 3D point present in the
two camera views.

The planeC1PC2 can be de�ned using three vectors,C1p1, C1C2 andC2p2. As these three

vectors are co-planar (�g. 2.3), it is possible to write the following condition:

~C1p1 � ( ~C1C2 � ~C2p2) = 0 (2.4)

Using ~P1 as the vector ~C1p1, and ~P2 as ~C2p2, we can rewrite the expression in a more

de�nite form:

~p1:(t � R~p2) = 0 (2.5)

where~t is the translation vector from the cameraC1 to C2 andRC1
C0

is the rotation of the camera

C2 in relation toC1

2.3 Essential Matrix

Given a set of corresponding image points, it is possible to compute an essential matrix. This

matrix satis�es the de�ning epipolar constraint for all the points. However, if they are subject to

noise, it will not be possible to �nd an essential matrix. The essential matrix can only be used

concerning calibrated cameras since the camera parameters must be known for the normaliza-

tion.
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In a system composed of normalized cameras, the world point is projected in their respective

image planes. If the 3D coordinates of the point P are(X; Y; Z ) andC1 andC2 are the relative

position to each cameras in the coordinate system.

Using the point P as a reference point,PC2 can be expressed by the following:

PC2 = R(PC1 � T) (2.6)

Resulting in the following expression, being E the essential matrix, and[t]x the skew matrix

of t.

E = R � [t]x (2.7)

2.4 Fundamental Matrix

The fundamental matrix can be described a relation between two images of the same scene once

the projection of the scene point into one of the images, the corresponding point in the image is

constrained to a line to help the search and enabling the detection of bad points.

Furthermore, the corresponding image points can be triangulated to world points with the

help of camera matrices, that is derived from the fundamental matrix. This matrix shows how

pixels (points) in each image is related to epipolar lines in the other image.

The essential matrix satis�es a similar relationship; the essential matrix is a metric object

pertaining to calibrated cameras, while the fundamental matrix describes the correspondence in

more general and fundamental terms of projective geometry.

The mathematic relationship between the fundamental matrixF and the essential matrix E

is:

E = K 0FK (2.8)

where K' and K are the intrinsic matrices relating to each image used.

A system with multiple cameras has an approach a bit more complicated in order to �nd

the transformation related to each of the cameras; it is necessary to use the features available.

This features can be points or lines that are retrieved from the data provided by images. These

problems originated several methods, using different algorithms and different inputs.
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2.5 Image models

Dataset is a collection of images from a scene or object that can be structured in two different

models, Red Green Blue images(RGB) and Red Green Blue - Depth images(RGB-D).

A Red Green Blue image(RGB) is a digital image in which each pixel is speci�ed in terms

of the relative brightness of red, green, and blue. These colours are then added together to

reproduce a broad array of colours.

The RGB model has the main purpose of representing an image so that it can be read in

electronic systems such as computers.

Moreover, with there information is possible to display the image, know precisely the colour

code of each pixel and the position of a feature in the camera reference system, if the intrinsic

camera parameters are known.

Figure 2.4: An example of what type of data can be acquired from each pixels. The three tables
correspond to the Red, Green and Blue values for the different pixels.

A Red Green Blue image- Depth(RGB-D) image is a combination of all the information in

the RGB images, and it's corresponding depth image. Each depth image links each pixel to the

distance between the image plane and the corresponding target.

The depth image is obtained using an infrared emitter when working in parallel with an

RGB camera, allowing to obtain images in RGB-D model. To compute the depth map, it is

necessary to project the pixel in the current scene and acquiring the deformation of the projec-

tions, resulting in pixel distances, depths. The depth map is all depths related to each pixel of

the image.
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RGB-D images allowed to improve the objective some of the tasks and allowed us to �nd

results to others, for example, real-time object segmentation, pose recognition and etc.

Figure 2.5: An example of an Depth image and an RGB image

2.6 Feature detectors

In computer vision, the operation of selecting image features according to geographic features

such as corners or surfaces present in an image is called feature extraction. This is accomplished

in several ways, but the more common methods will be presented here.

A feature is an "interesting" part of an image, and that is used as a starting point for many

computer vision algorithms. So, in order to obtain useful inputs for those algorithms is neces-

sary to use the best feature detector for the desired situation.

Features can be classi�ed as, edges, corners, blobs and ridges(�g. 2.6). Edges are features

extracted in boundaries between two image regions. Corners were originated from edge detec-

tors, and then analysed the edges where there was a rapid change in direction (corners). Blobs

are regions in the image de�ned as regions of interest (ROI). Ridge are one-dimensional curves

that represent an axis of symmetry.
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Figure 2.6: This image presents all the available features output according to the different fea-
ture detector methods

For SLAM, the most crucial characteristic of a feature is its repeatability, because it is

necessary to be able to compute the relative pose estimation in between pictures.

Feature detection is usually performed as the �rst operation on an image. Examines every

pixel to see if there is a feature on that pixel to use on future operations. And depending on the

feature detector, images can be converted to grayscale or not.

Many computer vision algorithms use feature detection as the initial step. As a result, a vast

number of feature detectors have been developed, according to computational complexity and

the repeatability.

The most used features detectors are SIFT, SURF, FAST and BRISK.

Scale-invariant feature transform(SIFT) [19] is a robust feature detector, use as an object

identi�er. An object is recognised in the new image by individually comparing each keypoint

feature to the database, �nding matching features based on Euclidean distance of their feature
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vectors.

SIFT feature detector is a very robust and can quickly identify objects even under partial

occlusion since it is invariant to uniform scaling, orientation, illumination changes, partially

invariant to af�ne transformations (scale, rotation, shear, and position)and robust to different

illumination, noise, and minor variations in viewpoint. This type of feature detector can be

applied to any required tasks of matching locations between images, for example, recognition

of particular object categories in 2D pictures, 3D reconstruction, motion tracking and segmen-

tation, robot localisation, image panorama stitching and epipolar calibration.

Speeded up robust features (SURF) [33] is a feature detector and descriptor used within the

same tasks as SIFT such as object recognition, image registration, classi�cation, or 3D recon-

struction. It was published by Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, and presented

at the 2006 European Conference on Computer Vision. SURF outperforms methods previously,

in terms of repeatability, distinctiveness, and robustness. It uses integer approximation on the

determinant of Hessian blob detector, which can be calculated with three integer operations

using a pre-computed integral image.

Features from accelerated segment test (FAST)[32] is a corner detection feature detector,

used to extract features to be used in pose estimation and many others. It was developed by Ed-

ward Rosten and Tom Drummond, and the main advantage is his fast computational ef�ciency

when compared to well-known feature extraction methods like SIFT. FAST corner detector is

mainly applicable for real-time video processing application due to his high-speed performance.

Binary Robust Invariant Scalable Keypoints(BRISK) [16] is a feature detector with high

performance when compared to previous state-of-the-art algorithms. It was developed by Sefan

Leutenegger, Margarita Chli and Roland Y. Siegwart. BRISK relies on a con�gurable circular

sampling pattern from which computes brightness comparisons to form a binary descriptor

string. This method has proven to be faster than SURF and is rotation and scale-invariant,

leading to a useful widespread of applications.

After investigating the different methods for detecting features, the software chosen was

SURF feature detector. The reason for this choice was based on the fast computation of the

method, and overall good results when compared with the other methods.
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2.7 Depth map

An RGB-D dataset, as seen before, its a group of RGB images with their correspondent depth

image. From the depth, images are possible to retrieve the correspondent depth map. A depth

map is an image that contains the information related to the distance to the surface to the scene

object.

The term "Depth" is linked to the coordinate of the z-axis, which is the central axis of the

camera reference system.

There can be distinct depth maps, that normally are seen together in order to complement

each other, a standard approach, which relates the distance from the camera to the surface.

Objects that are closer to the camera appear dark, and as they move away, they become lighter.

Other example shows the luminance of an object or scene in relation to the distance of the

camera. Surfaces closer to the focal plane are displayed darker and surfaces further away from

the focal plane are lighter.

Figure 2.7: Comparison between the different images. The �st image is the RGB; the image in
the middle is the depth image in relation to the distance; On the right the depth image linked to
the brightness[9]

Depending on how the depth-images are captured, depth maps can represent different dis-

tances according to the direction of the picture.

An advantage when using depth images is that depth maps with only one of the image set

only represent the �rst seen surface and cannot display information about those surfaces. If an

object has a high re�ection ratio or refraction ratio, these properties aren't transmitted. This

can limit the applicability of this reconstruction on simulation. Also, depth images cannot carry

multiple distances in a single pixel, in the case of hair or grass.

Moreover, depth images allow us to obtain extra information to build a more accurate 3D

reconstruction.
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2.8 Pose estimation

Camera Pose estimation is one of the most signi�cant problems in simultaneous localization

and mapping (SLAM). To be able to construct an accurate 3D reconstruction, it's necessary

to treat the features extracted and use them to estimate the relative pose of the image. In this

chapter, different types of pose estimation algorithms will be presented, according to the inputs

received.

Perspective-n-Point algorithm The Perspective-n-Point (PnP) problem has the main objec-

tive of retrieving the position and orientation of the camera, based on n points( in this case

3 points). There are numerous solutions to this problem that can be classi�ed into iterative,

non-iterative, linear, and non-linear ones.

This algorithm shows a way to do the estimation of the camera pose in order to solve the

Perspective-Three-Point Problem. Given the 3D locations of n points and there correspondent

2D points, it's possible to retrieve the orientation and translation of the camera with respect to

the object reference frame.

The standard approach to the pose estimation problem is �rst using P3P in a RANSAC, to

remove the outlier and then PnP on all remaining inliers (�g. 2.8).

This type of approach is divided into two stages: in the �rst stage, it is avoided determining

the points in the camera frame. On the second stage, the aligning transformation is estimated.

Most P3P solvers are associated with �nding the roots of a quartic equation but differ in how

this quartic equation is formulated from the known data, and how the solution is associated with

the roots.

Solving the P3P system results in up to 4 geometrically solutions for the relative camera

pose, that can be solved in close form.

Figure 2.8: Geometry overview of the Perspective of the Perspective-3-Point Problem

Perspective-n-Line algorithm In all pose estimation problems, it is necessary to �nd the

type of structure linked to the problem, perspective and non-perspective pose. The main differ-
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ence between the perspective and non-perspective pose estimation is that the light rays passing

through the 3D points, do not meet at a single point.

The Perspective-n-Line (PnL) algorithm, handles lines has an input to estimate the camera

pose. This method proposes the usage of a closed-form solution using a polynomial. The roots

of this polynomial are computed by deriving the minimal solution of this equation using three-

lines correspondences in the orthogonality constraint, and then it is solver using Grobner basis

[5]. The polynomial doesn't provide a unique solution; there can be up to 8 roots.

The Perspective-n-Line (PnL) problem remains a challenging topic, which leads to several

different methods. Recent work of Mirzaei and Roumeliotis [21], where their method is very

accurate when using a small number of correspondences and remains ef�cient when dealing

with many correspondences.

Later, a different method was proposed ([6]) in which the P3L polynomial is derived by

introducing a canonical con�guration.

A different method was proposed, so the camera rotation was �rst estimated and then the

translations ([18]. Later, Kumar and Hanson [14] improved this iterative algorithm by allowing

the camera orientation and translation to be estimated simultaneously.

Christy and Horaud [7] propose an iterative algorithm to estimate the camera pose using

either a weak perspective or a para-perspective camera model.

Solutions to Minimal Generalized Relative Pose Problems This method proposed a way to

estimate the camera pose using 6 points between two cameras, assuming that the cameras are

calibrated, i.e. the image rays are expressed in a known Euclidean camera coordinate systems.

This method has been solved, as well as the minimal relative pose for pure planar motion [39].

Overall, this method uses two Euclidean con�gurations, which consist of six lines each. The

camera pose estimation is done by �nding the rigid transformation of the �rst six lines so that

each line intersects there correspondence on the second set (�g. 2.9).

The �rst approach of this method is to use the derives the generalized epipolar constraint

developed by Pless[29]. Applying the Plucker coordinates and the constraint to the six lines,

resulting in a matrix 64 x 64 that can be solved in close form by extracting the Eigen-vectors,

using Grobner basis solver[5], Kruppa[14] demonstrated that in case a calibrated perspective

camera, there are up to 11 solutions in two images using �ve points.

In case, non-central cameras due to their geometry not having a projection center, several

methods were developed [28], [29], [4].
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Figure 2.9: Representation of the Perspective 5 lines algorithm use to solve the minimal relative
pose problem [27]

Algorithm using points and lines Instead of using only points or lines has inputs, it's possible

to use both, leading to the development of several algorithms. In order to compute the camera

pose, it's necessary always to have at least three features (lines and/or points).

A method developed by Miraldo [20] estimates the camera pose using 2 points and 1 line or

two lines and 1 point. The two minimal pose estimator solvers for a multi-perspective camera

system can be the following:

1. Using 2 points and 1 line can give up to 4 solutions;

2. Using 1 point and 2 lines can give up to 8 solutions.

When working with lines, the best way is to use plucker coordinates to represent a complete

line, similarly for the P-n-L method.

Using 2 points and one line, the minimal pose can be computed in close form, similar to

the P3P, using coplanarity constraint and the collinearity constraint associated with the point

correspondence.

Using 2 lines and 1 point is similar to the other scenario but uses the collinearity and the

coplanarity constraint of the second 3D line and its respective interpretation plane. Then, it's

applied RANSAC to the solution to improve the results.

This method proved to be similar or superior to the PnP and PnL algorithms by acquiring

similar or better results when using combinations of different types of features.
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RANSAC optimisation algorithm To improve the features used by the software, it necessary

to �lter our results, so it �ts better within the desired model.

Since part of the data used for the camera pose estimation contains outliers, it's applied an

algorithm to eliminate the outliers, so our pose estimations are more precise. This algorithm is

called RANSAC.

RANSAC is an evolution of Max-Consensus with a-priori information about the noise and

corrupted data. The main objective to use RANSAC in features extraction is to adapt our speci�c

data into a correspondent model setting thresholds value for inliers/outliers discrimination.

The RANSAC algorithm estimates parameters of a model with random sampling. Given

a data contain both inliers and outliers, RANSAC �nds the optimal �tting result 2.10. The

structure of this algorithm is essentially composed of two steps that are iteratively repeated, the

number of iterations is established by the user.

At �rst, a sample of the data is restrained randomly selected from the input data. A �tting

model and the corresponding model parameters are computed using the sample. After this, the

algorithm checks which elements of the entire data are consistent with the model started. If a

data element does not �t the model, it will be considered as an outlier. In this case, an outlier

is an element that is greater than the error threshold de�ned as the maximum deviation. The set

of inliers obtained for the �tting model is called the consensus set.

Figure 2.10: The current graphic shows the difference between linear regression and RANSAC.
Has shown , RANSAC is more robust to the outlier, in comparison to the linear estimation [30].

The procedure is repeated until it reached the best model with a greater number of inliers.

The number of iterations and the number of input data points are the main features that affect
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the speed of the RANSAC. With time, a different RANSAC appeared, to help in the cases which

is hard to determinate the threshold, AC-RANSAC.

AC-Ransac uses a different methodology so it �nds a model that best �ts the data with a

con�dence threshold T that adjusts automatically to the noise. Moreover, it �nds a model and

its associated noise. Following AC-RANSAC, a new model was introduced to enhance the

estimation of the fundamental matrix called ORSA (Optimized RANSAC).

Other different RANSAC algorithms were created since, it is a sensible choice to correct

noise threshold that de�nes which data �ts a model with certain parameters, because if the

threshold is too large, then all the hypotheses are equally good. On the other hand, when the

noise threshold is too small, the estimation of the parameters tend to be unstable. So, to com-

pensate for this undesirable effect, two modi�cation of RANSAC were introduced, one called

MSAC (M-estimator SAmple and Consensus) and MLESAC (Maximum Likelihood Estimation

SAmple and Consensus).

The method MSAC is just an adaptation of the ORSA RANSAC, but applicable to multiple

images. This strand is the one used by Matlab to estimate the fundamental matrix for the

datasets selected, that is used in my software.

RANSAC MLESAC takes into account the prior probabilities associated with the input

dataset. In case the information regarding the input data is known, whether a data is likely

to be an inlier or an outlier, the designed approach is called PROSAC (Progressive Sample

Consensus).

Bundle adjustment Bundle adjustment is de�ned as a re�nement tool for solving the problem

of localization and mapping simultaneous.

The 3D coordinates describing the geometry scene, parameters of camera and the relative

motion are all improved to �t the current scene better, accurately predicting the locations of the

observed points.

The name refers to the' bundle' of light rays leaving each 3D feature and converging on

the different camera centres, which are optimized for both feature and camera positions. When

using this algorithm, is always used as the last step of every 3D reconstruction algorithm, to

obtain an optimal reconstruction (�g. 2.11).
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Figure 2.11: On the left is a scene without any optimization. On the right, is the �nal result of
the optimization using a bundle adjustment. The complete set was corrected concerning all 3D
points, and all camera poses [1].

The main objective behind Bundle adjustment is to minimize the re-projection error between

the image locations of observed and predicted image points, which is represented as the sum

of squares of a large number of nonlinear, real-valued functions. Thus, the minimization is

achieved using nonlinear least-squares algorithms. It estimates the parameters that improve

upon the previous and the resulting series of iterates, which converge to a local minimum in the

objective function.

The parameters estimated are found by minimizing the cost function that quanti�es the

model �tting error, combined simultaneously with the concerning of both structure and camera

variations. Minimizing the total re-projection error with respect to all 3D point and camera

parameters.

The re-projection error is the geometric error corresponding to the image distance between

a feature detected in an image, and a corresponding world point projected into the same image,

equation 2.9.

eN =

p
jm1;i � m2;i j

N
(2.9)

The re-projection error quanti�es the deviation from the true image projections, so minimiz-

ing it will improve the points correspondence between two images. So it will be affected by the

quality of the camera calibration, as well as on the quality of the marked point on the images.

If the overall mean of the reprojection error is too high, the position of the camera is excluded

from the results since it's not usable.
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If some of the images are not good or distorted, the reprojection error can be used as a factor

to discard these images. Since, if the reprojection error is too high, it means that they do not �t

the quality intended.

Simultaneous localization and mapping Pipelines Simultaneous localization and mapping

(SLAM) is the process of reconstructing a 3D scene using a number of images previously taken.

This type of software mainly uses two approaches, the incremental and global SLAM.

The incremental SLAM approach is the standard, which consists of adding one image at a

time to grow the complete reconstruction (�g. 2.12). The advantages of this method is that it is

robust, but is not scalable since it requires to repeat all the operations every time one image is

added.

Figure 2.12: An example of a incremental SLAM software. The process of optimization is
performed each time an image is registered [38]

Global SLAM uses a different method, the entire viewgraph is computed at same time (�g.

2.13). Global SLAM methods have proven to be faster and more accurate, in comparison to the

incremental approach.

Figure 2.13: An example of a global SLAM software. The process of optimization is only
performed after registering all images available [38].

For both methods, after computing the camera poses, a triangulation method is performed

to obtain a correct 3D reconstruction. Then, from the previous results, it's used a Bundle Ad-
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justment to re�ne the pose of all cameras. In the incremental method, the bundle adjustment is

performed every time an image is added to the data; on the other hand, the global SLAM only

performs this action one time.

With time, a variety of SLAM methods have been proposed, incremental [37], [34], [13],

[43], and global approaches [26], [15], [42].

As the software developed uses an incremental approach, we will make a comparison with

other SLAM software that uses the same method, VSfM and COLMAP.

Visual SfM VisualSFM [44] is an open-source implementation of incremental SLAM pipeline

Compared to COLMAP, this software is less �exible since it only uses one set of algorithms to

make the complete 3D reconstruction (�g. 2.14). This SLAM software was developed in C/c++

and allowed SLAM con�guration.

VisualSFM is one of the fastest SLAM software, as it exploits the multicore parallelism

for feature detection, feature matching, and bundle adjustment. The reconstructions can be

exported in VisualSFM's NVM �le format.

Figure 2.14: Example of a 3D reconstruction using the Facade dataset from ETH3D

The feature detector/match uses SIFT on GPU (SiftGPU), which utilizes the GPU to perform

this action faster. Afterwards, the features are sorted in descending order according to their

scale. The top-scale subset has a higher chance of acquiring matches according to the number of
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images on this subset. This structure grants a decreasing computation time, without decreasing

accuracy.

After obtaining the matched features, an triangulation is performed. Later, if an image fails

to match features, VSFm tries to match them again using re-triangulate (RT).

Bundle adjustment [8] uses Levenberg-Marquardt (LM) has the method of choice, guaran-

teeing good convergence for most problems and reducing the number of necessary iterations.

VSFM, in order to decrease the computation time, performs a full bundle adjustment and a

partial Bundle adjustment.

Each time an image is added, instead of performing a full bundle adjustment, it will generate

a small group of recently added images, and then it performs a partial bundle adjustment on

top of that group. Therefore, the time spent on performing the BA is decreased, improving

performance issues.

The images with large re-projection errors or small triangulation angles are �ltered, to im-

prove accuracy.The resulted 3D reconstruction is enhanced using RANSAC (table 2.1).

Feature Extraction Feature Matching Geometric Veri�cation Image Registration Triangulation Bundle Adjustment Robust Estimation

SIFT

Exaustive
Sequential
Preemptive n/a n/a n/a Multicore BA RANSAC

Table 2.1: This table presents us all the different methods used by Visual SfM software on all
stages.[38]

COLMAP COLMAP[35] is an open-source implementation of incremental SLAM pipeline

that provides a general-purpose solution usable to reconstruct any scene (�g. 2.15).

This SLAM software was developed in C++ and allowed con�guration of some pipelines

parameters and to export the sparse reconstruction.
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Figure 2.15: An example of a 3D reconstruction using the Facade dataset from ETH3D

The feature detector/matcher used is RootSIFT.Analogous to VisualSfM, the triangulation

is performed, taking into account the drift effects prior to the global Bundle Adjustment (BA).

COLMAP uses Direct Linear Transform method (DLT) to perform the triangulation to estimate

the location of the 3D points. However, BA has better results in improving the camera and point

parameters.

Usually, a signi�cant part of the data introduced in the bundle adjustment are outliers, and

it can affect its result. To perform the bundle adjustment, COLMAP uses Ceres Solver[3], and

Multicore BA then �lters the observations with a large reprojection error.

Afterwards, COLMAP �lters the resulted data from the BA using several different types of

RANSAC (table 2.2).

Feature Extraction Feature Matching Geometric Veri�cation Image Registration Triangulation Bundle Adjustment Robust Estimation

SIFT

Exaustive
Sequential

Vocabulary Tree
Spatial

Transitive

4 Point for Homography
5 Point Relative Pose
7 Point for F-matrix
8 Point for F-matrix

P3P
EPnP sampling-based DLT

Multicore BA
Ceres Solver

RANSAC
PROSAC

LO-RANSAC

Table 2.2: This table presents us the different algorithms used by COLMAP software on all
stages.

Other state-of-the-art softwares There are numerous algorithms of SLAM, but the principle

is always the same, as already described. SLAM needs several overlapping images, captured at
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various angles, which is the entry data. From the images, different features, camera parameters,

location, orientation and position are extracted through different algorithms. Subsequently, the

3D model is produced depending on the speci�cations imposed by the user.

Due to the many applications of the SLAM methods in several areas, there is a consider-

able number of tools available. Beside COLMAP and VisualSFM, there are other open-source

softwares available.

OpenSfM [2] is an alternative open-source software produced in Python on top of OpenCV in

continuous development until the present date, with numerous contributions. It has the option

of implementing external sensors, such as GPS or accelerometer, for greater reconstruction

�exibility, allowing the user to see a sample of the model created for debugging purposes.

Regard3D [31] is an open-source structure, developed by Roman Hiestand, which offers the

same functionalities as the other state of the art software. This software can generate surfaces,

assign colours to vertices and even textures. It also allows integrating of several algorithms

developed by the users to improve the quality of the generated image.

Open Multiple View Geometry (Open MVG) [22] is another alternative, aimed at multi-

dimensional reconstructions. OpenMVG seeks to provide a complete kit of algorithms for the

total recovery of the surfaces. It is a C++ library that provides an extensive collection of SLAM

techniques. It was designed as a modular collection of algorithms, libraries and binaries to

allow the production of larger systems. The methods used are similar to the state-of-the-art

algorithms, with a minor difference in the optimization. It uses a contrario-RANSAC (AC-

RANSAC) which is an automatic alternative to the normal RANSAC.

Bundler [24] is another alternative software developed in C/C ++. The system reconstructs

the scene incrementally, working some images at a time. The optimization of the scene is done

using a modi�ed version of the Sparse Bundle Adjustment package of Lourakis and Argyros

as the underlying optimization engine. It produces a density point-cloud and can export all

results by using a package called PMVS2. The �rst step is running the Bundler to obtain the

camera parameters and the 3D reconstruction, then run the Bundler2PMVS program to convert

the results into inputs for PMVS2.

In conclusion, there are other SLAM softwares available besides the ones mentioned. And

each has a more appropriate �eld, depending on the demand and area of interest.



Chapter 3

Vision Based Navigation

This chapter details the vision-based navigation pipeline, as implemented in this thesis. Each

block is introduced in an input-output point of view, to present its function.

Two types of input are considered, namely a sequence of colour (RGB) images and a se-

quence of colour-depth (RGB-D) images, acquired by moving cameras.

In the �rst section is detailed the pipeline for the colour image sequences. Then is presented

the pipeline for the colour-depth (RGB-D) describe, using the same sequences of images.

3.1 SLAM, SfM or Navigation

As introduced in previous chapters, navigation consists in estimating the motion and location,

pose w.r.t. the world frame, of the camera1. Structure from Motion (SfM) involves estimating

motion to obtain also the structure of the navigation scenario.

Simultaneous Localisation and Mapping (SLAM), in particular Visual-SLAM, involve mo-

tion models from which navigation is observed and �ltered.

In this thesis, it is considered just navigation, i.e. estimating the camera pose along time,

using vision-based methodologies, as it is a critical component also in SfM and SLAM. In

many pipelines, the default options do not take advantage of structure or mappings to improve

navigation.

The background contents in the previous chapters indicate the necessary methods to be im-

plemented in the developed software. Techniques such as feature detector/extractor, matching

features, triangulation and bundle adjustment 2. Furthermore, how the depth images will be

1In some contexts navigation also involves motion control. Here navigation is intended in a sense closer to one
found ininertial navigation systems, not involving motion control.
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integrated into our image-based navigation system.

Various algorithmic components have been selected in order to achieve the main objective

of this thesis, which is analysing the trajectory and movement of the camera along the time.

3.2 Colour Images based Navigation

In this section, is described a detailed 3D reconstruction of a scene using only the images

as inputs, knowing the intrinsic parameters of the camera. The software developed uses an

incremental approach. Each time an image is received to be processed, the software will perform

the optimization operation again, to adjust the complete scene. The bundle adjustment and

triangulation are repeated, improving some of the overall results. The �gure 3.1 describes the

3D reconstruction as a cascade of processing blocks; the arrow re-entering the pose estimation

block means that the model is being reinserted to our partial model.

Figure 3.1: Pipeline applicable for the SLAM software developed using colour images, where
i = 1; 2; 3:::n corresponds to the number of images.i Ri � 1,i Ti � 1 corresponds to the relative pose
of the camera between image i andi � 1; K i ; K i � 1 is the intrinsic parameters of the camera.

3.2.1 Features Extraction

Upon reading all images and being converted to grey-scale, it is necessary to interpret each

image individually (I i ). After registering one (I i ), the extraction of features starts according to

the region of interest (ROI) established, in the camera reference system.

The feature detector here considered as, a baseline, is the SURF feature detector, well known

for its robustness and fast computation properties.

After, it is necessary to extract features location according to the output computed. This pro-

cedure results in two arrays of points that correspond to the features coming from each image,

(f i ) and (f i � 1). All extracted features are invariant under radiometric and geometric changes so
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