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Resumo

Atualmente, as unidades de processamento gráfico (do inglês GPUs) são um dos principais disposi-

tivos computacionais usados para acelerar aplicações de cariz paralelo. Contudo, esse imenso desem-

penho acarreta um alto consumo energético. Diversas soluções podem ser adotadas para aumentar a

eficiência energética desses dispositivos. Porém, o escalonamento de tensão-frequência (T-F) tem sido

a solução que obtém o melhor resultado, permitindo melhorar as métricas de eficiência energética de

forma automática e independente do tipo de aplicações a serem executadas.

As implementações atuais de escalonamento dinâmico de tensão e frequência (do inglês DVFS)

em GPUs são unidimensionais, ajustando a frequência dentro dos pares padrão de tensão-frequência.

No entanto, este ajuste é insuficiente, pois não garante o par T-F mais adequado à aplicação a ser

executada. Esta dissertação apresenta uma nova metodologia para caraterizar o impacto do DVFS

não convencional em GPUs, capaz de colmatar o carácter unidimensional das implementações actuais.

Para atingir este objetivo, a abordagem proposta define um espaço de parametrização que determina

a faixa de tensão tolerável para cada frequência. A mesma foi testada em duas GPUs da AMD com

os resultados a mostrarem que estes dispositivos, em particular, são ambos capazes de operar em

segurança com até menos 20% do valor padrão de tensão. Este espaço de parametrização definido

foi então usado pelo mecanismo de otimização T-F desenvolvido para selecionar automaticamente a

configuração de maior eficiência energética. Quando aplicado a aplicações de Aprendizagem Profunda

e, especificamente, Redes Neurais Convolucionais, o mecanismo de otimização proposto demonstra

ser capaz de melhorar a eficiência energética da GPU em até 44% sem qualquer deterioração relevante

da precisão do modelo de rede neural a ser treinado.

Palavras-chave: Unidade de Processamento Gráfico, Escalonamento Dinâmico de Tensão

e Frequência, Redução da Tensão, Mecanismo de Optimização, Aprendizagem Profunda, Redes Neu-

ronais Profundas.
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Abstract

Nowadays, Graphics Processing Units (GPUs) are the primary computational devices used to ac-

celerate highly parallel applications. However, this immense performance comes at the cost of high

energy consumption. Several solutions can be adopted to increase the energy-efficiency of these de-

vices. Though, Voltage-Frequency (V-F) scaling has been the one that achieves the best results, by

allowing to automatically improve this metric and independently of the workload. However, current im-

plementations of Dynamic Voltage and Frequency Scaling (DVFS) on GPUs are still one-dimensional,

by simply adjusting frequency while relying on default voltage settings. To overcome this limitation, this

dissertation introduces a new methodology to fully characterize the impact of non-conventional DVFS

on GPUs. To attain this objective, the proposed approach defines a Usable Execution Space (UES)

that determines the tolerable voltage range allowed by each frequency. The conducted experimental

evaluation, using two out-of-the-shelf AMD GPUs, demonstrated that these particular devices are able

to be safely undervolted by more than 20%. The devised UES is then used by a conceived V-F optimiza-

tion mechanism, which was created to automatically select the most energy-efficiency configuration.

When applied to Deep Learning applications and, specifically, Convolutional Neural Networks (CNNs),

the proposed optimization mechanism can improve the GPU energy efficiency by up to 44% without any

measured deterioration of the CNN model accuracy.

Keywords: Graphics Processing Unit, Dynamic Voltage and Frequency Scaling, Undervoltage,

Optimization Mechanism, Deep Learning, Deep Neural Networks.
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Chapter 1

Introduction

Graphical Processing Units (GPUs) were brought to life in the advent of computer graphics in the

hopes of improving the capabilities of 3D games. However, the increased parallel computing capabil-

ities exhibited by these devices made them highly appealing to running more general computational

demanding applications, coining the term GPGPU - General-Purpose Graphical Processing Units.

Along this path, the development of new architectural generations of GPU devices has traditionally

aimed at improving performance and throughput. However, having already reached the maximum sup-

ported power consumption and with device fabrication techniques being harder and harder to minimize,

extra performance gains need to come while keeping the pace for a greater GPU energy-efficiency.

Researchers have been looking for ways to decrease power consumption to improve energy effi-

ciency with some degree of success, with new architectural designs targeting, for example, operation

with lower precision encoding (reduced number of bits) to reduce the number of combinatorial logic.

Nevertheless, techniques such as Dynamic Voltage and Frequency Scaling (DVFS) are still the ones

that are having a more direct impact on the industry, by being widely available on current out-of-the-shelf

devices. These systems’ working principle is to carefully select from a list of voltage-frequency (V-F)

pairs, the one that should be used, in order to target the current GPU state. Since the dissipated power

is directly proportional to the applied frequency and to the square of the applied voltage, the variation of

these parameters directly and significantly impacts the devices’ power and energy consumption.

In theory, DVFS systems are able to find the V-F configuration that achieves better energy efficiency.

Nevertheless, practical implementations of such mechanisms seem to exhibit two flaws: i) they do not

consider the running application characteristics and ii) use pre-defined V-F pairs that are conservatively

selected by manufacturers. In particular, at each frequency level, the chosen voltage supply is set at

a level that leaves a significant voltage margin in relation to the necessary one. Such margin is put in

place to guarantee a safe operation under all conditions. However, recent studies prompt the idea that

such conservative voltage margin is leaving a significant energy-efficiency gain on the table [1].

Supported on this observation, it has been recognized that the correct utilization of non-conventional

V-F pairs may improve the energy-efficiency of already deployed GPUs.

One particular application domain that can significantly benefit from such energy-efficiency improve-

ments is Deep Learning, and more specifically, Deep Neural Networks (DNNs). These algorithms are

having a significant impact on industry and society by allowing for important breakthroughs in many

application domains, such as computer vision, speech recognition, natural language processing, drug
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discovery, genomics, etc [2]. However, DNNs are usually characterized by significant computational

burdens, particularly when considering the training of very deep and complex networks, dealing with

high dimensional data, such as images and videos. Another important characteristic of DNNs is their

tolerance to a certain degree of computation errors [3], without any significant change in the training and

inference results.

Therefore, the creation of a novel DVFS system that explores and selects non-conventional V-F pairs

by considering the specific target application characteristics can allow for a substantial decrease in the

energy consumed to train and deploy Deep Learning applications [4].

1.1 Objectives

To uncover the use of non-conventional V-F scaling, this thesis focuses on the following objectives:

• Access the viability of using non-conventional V-F pairs on regular GPUs.

• Characterize the behavior of GPU architectures to non-conventional V-F pairs.

• Develop a dynamic non-conventional V-F controlling and optimization mechanism that improves

the performance, energy consumption or energy-efficiency of GPUs.

• Safely apply non-conventional V-F scaling on Deep Learning applications, characterizing the be-

havior of the training procedure.

1.2 Main Contributions

The work conducted in the scope of this dissertation contributes to open the discussion of further

improving the current GPU DVFS systems, by exploring the conservative voltage guardband put in place

by device manufacturers. The developed work demonstrates that non-conventional voltage-frequency

(V-F) pairs are mostly allowed by out-of-the-shelf devices, leading to great energy-efficiency benefits

and, in some cases, even performance enhancements.

To demonstrate and validate the use of those new V-F configurations, a new methodology was de-

veloped to test each architectural component of the GPU, analyzing and evaluating its specific voltage

margin and characterizing their energy-performance behavior when subject to such configurations. The

methodology was tested in two different architectural generation devices, both of them exhibiting a high

tolerance to undervoltage.

Furthermore, to more easily benefit from the usable execution space that was defined by executing

the set of benchmarks that compose the formulated methodology, a new V-F optimization mechanism

was devised. The mechanism makes use of the native code repetition patterns, usually observed in

GPGPU applications, to improve the applied V-F pair iteratively, taking into account not only the GPU

power consumption, utilization and temperature (as it is done by current DVFS systems) but also the run-

ning application characteristics. With the use of such a conceived optimization mechanism, it is possible

to perform dynamic voltage and frequency scaling while taking into account each application’s intrinsic

behavior and benefiting from the energy-efficiency improvements granted by the non-conventional V-F

pairs.
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To evaluate the proposed methodology and optimization mechanism, it was applied to the training

procedure of deep learning applications, specifically the training of convolutional neural networks. The

conducted evaluation explored the voltage margins and behavior of the fundamental algorithms that

compose this type of operations, the distribution of the computational error that appears when using the

lowest allowed voltage by the architecture and finally, the energy-efficiency improvement that is achieved

by the V-F optimization mechanism when targeting the execution of this type of algorithms. In particular,

the description of the performed work targeting the training of neural networks helps to understand the

complete flow of actions that should be taken to take full advantage of exploring the conservative voltage

guardband put in place by device manufacturers, and with that, improve the energy-efficiency of current

out-of-the-shelf GPUs.

The main scientific contributions of this work have been published for communication in the following

conference:

• F. Mendes, P. Tómas and N. Roma, ”Exploiting non-conventional DVFS on GPUs: application to

Deep Learning”, IEEE 32nd International Symposium on Computer Architecture and High Perfor-

mance Computing (SBAC-PAD’2020), 2020.

1.3 Dissertation Outline

This dissertation is organized in 5 chapters and one appendix, with the following outline:

• Chapter 2 - Background: This chapter presents a summary of the current state-of-the-art related

to the subject in focus on this dissertation. First, it introduces an overview of general-purpose com-

puting on GPUs, providing a summary of their architecture and programming model. It presents

the key concepts that should be present when developing for this kind of devices and the standard

programming interfaces between the GPU and the host CPU. A bottom-up approach is also drawn

to present the fundamental concepts of frequency and voltage scaling on CMOS devices, and

how they translate to the current DVFS systems presented in out-of-the-shelf GPUs. It finalizes

by granting a sketch of how better exploring and going against the conventional voltage-frequency

scaling allows for better energy efficiency of GPUs, being that the stepping stone of this disserta-

tion.

• Chapter 3 - GPU architectural characterization to decoupled V-F: In this chapter, the developed

methodology to characterize the use of non-conventional V-F scaling is presented. The chapter

starts by exploring each developed stressing component benchmark’s motivation and objectives,

and it follows by testing the methodology in two different GPU architectures. The methodology is

used to: determine the minimum voltage allowed by each architectural component and evaluate

the performance, energy consumption and energy efficiency, when prompting non-conventional V-

F pairs on them. It finishes by experimentally testing the effects of temperature on the undervoltage

capabilities of the GPU architecture.

• Chapter 4 - V-F Optimization Mechanism: This chapter analyses and proposes a solution to

dynamically adjust the frequency and voltage using the newly tested non-conventional V-F pairs.

Programmers can execute their algorithms using this tool, while the most energy-efficient V-F
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configuration is being discovered, targeting the current GPU state and performance metrics, and

application output.

• Chapter 5 - Application to Deep Learning: In this chapter, the previous two chapters’ results

are combined and used to apply the developed methodology on a deep learning application. This

chapter has three objectives: showcase the practical advantages of extending the default voltage-

frequency scaling with non-conventional V-F pairs on a target application; evaluate the use of the

developed optimization mechanism, and, overall, the chapter indicates how a user should proceed

to safely and beneficially use the work developed in this dissertation.

• Chapter 6 - Conclusions: This final chapter presents the accomplished results from this work

and the possible research directions to take in future work.

• Appendix A: This appendix presents all the necessary steps and commands to control the rocm-

smi tool with the objective of setting the desired voltage-frequency pair on the target GPUs.
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Chapter 2

Background

This chapter provides an overview of modern GPU architecture and respective programming models

that allow the extensive use of these devices to execute more computationally intensive applications,

followed by an analysis of techniques to improve the energy efficiency of the same.

The following sections present a bottom-up sequence of background and related work that supports

this thesis — starting by the physical analysis of the digital circuits and the effects of V-F scaling and

temperature on them. It continues by presenting the most common procedure to improve GPUs en-

ergy efficiency (DVFS) and finishes by exploring the techniques that will allow for further improvements

to these device based on a complete decoupling between the applied voltage supply and operating

frequency.

The relevance of the presented work emerges from the reduced number of studies on the effects

of decoupled voltage scaling on GPUs, one of the objectives of this dissertation. The main reason is

probably mainly due to lack of support for independently controlling these parameters on NVIDIA GPUs

(until recently, the dominant player on the market [5, 6]) that is now allowed by the novel AMD software

stack used on this work.

2.1 General Purpose Computing on GPUs

A GPU is a highly parallel programmable processor, that favours the execution of the same instruction

on multiple data elements, belonging to the category of Single Instruction Multiple Threads - SIMT

processors. When referring to GPUs, it is still common to be talking about their graphics capabilities.

However, more and more programs are taking advantage of their highly parallel architecture to accelerate

general purpose applications, leading to the connotation of this device as a GPGPU - General Purpose

Graphical Processing Unit.

The development and deployment of GPGPU applications are only possible with the creation and

adoption of standardized programming models and APIs that allow for hardware abstraction. This sec-

tion provides a general overview of the GPU architecture, followed by the presentation of the most

common and used software tools available for GPGPU programming.
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2.1.1 General Overview of a GPU Architecture

The architecture of a modern GPU, depicted in figure 2.1, can be roughly divided into computation

and memory components. The computation part is usually composed of the vertex shader, the rendering

engine, and the RISC processors. The vertex shader and rendering engine are included on the graphics

pipeline and are not generally used on GPGPU applications. The RISC processors are responsible for

the GPU programmable calculations and depending on the manufacturer, they are denoted as streaming

multiprocessors (SM) in NVIDIA GPUs [7] or computing units (CU) in AMD GPUs [8].

(a) Chip block diagram, example with 4 Compute Engines (RISC multi-processors), each
with 16 NCU (Compute Units)

(b) NCU

Figure 2.1: AMD’s Graphics Core Next logical organization.

As it was referred before, one of the significant benefits of GPUs is, the ability to concurrently execute

multiple threads. To accomplish that, each SM or CU is made up of hundreds of execution units. How-

ever, to manipulate such number of threads, it is necessary to have a significantly large and fast memory

system, not only to save the context of each thread, but also to provide low-overhead context switching

between the different sets of threads being executed. In that sense, modern GPU architectures include

a large register file on each SM/CU (when compared to the number of registers presented in a CPU

core). For reference, in the AMD GNC architecture, each CU has 49,152 (32-bit) registers [9].

In terms of memory, both the AMD and the NVIDIA GPUs present a 3 level hierarchy system: a global

memory, accessible by all SM/CU (generally referred to as video memory); a shared memory associated

to each SM or CU, accessible by the threads running on that SM or CU; and a set of read-only caches

for constants and textures, specific to each execution unit.

A GPU device from AMD will be used to conduct the experimental part of this dissertation. For

that reason, the terminology used by AMD will be adopted herein. However, the presented work is

independent of the hardware and terminology itself, and could equally be applied to NVIDIA GPUs.
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2.1.2 GPU programming model

The development of CUDA [10] (by NVIDIA) and OpenCL [11] (by Khronos Group) were the driving

force to using GPUs in general programming. CUDA and OpenCL are both parallel computing plat-

forms and application programming interfaces (API) that allow developers to create GPU-accelerated

applications, splitting the computations between the CPU and GPU. The first versions of these frame-

works treated the GPU as an accelerating slave device, providing a set of directives that allow the CPU

(master device) to transfer data, synchronize and control the GPU. Though, to take full advantage of

the GPU architecture and create a true heterogeneous system, the CPU and GPU have to collaborate

more efficiently. The creation of the Heterogeneous System Architecture (HSA) [12] framework acts

on improving this problem by acting as a low-level intermediary API to provide improved coordination

and communication for heterogeneous computing systems. More recently, AMD introduced the Radeon

Open Computing platform (ROC) [13]. Like CUDA and OpenCL, ROC provides a set of tools that allow

developers to create heterogeneous applications. Being a newer software stack, already built on the

notions and added benefits of HSA runtime API, ROC allows the use of a wider set of programming

frameworks like OpenCL1, HCC2, and HIP3.

This programming model is rather similar across the different platforms, with developers traditionally

programming the GPUs using general-purpose languages like C, C++ and Fortran. More recently, the

manufacturers are also starting to provide direct access to the GPU through higher-level languages like

Python4, allowing for an easier development and adoption of GPUs as accelerating devices.

Overall, when executing a program on GPUs, using either of the previously mentioned platforms, a

kernel is invoked on the GPU, that will execute across several parallel threads. Following this work split,

the frameworks expose three levels of abstraction: threads, thread blocks and block grid. The number

of threads to be executed can be explicitly defined by the programmer, or implicitly set by the compiler.

The threads are grouped in thread blocks containing an amount of threads, and the thread blocks are in

turn arranged in a block grid. When the Kernel is executed, the scheduler maps each thread block onto

a CU. Due to this mapping, threads within a thread block are able to communicate over the CU shared

memory and their execution is synchronized through programable directives.

During the execution of each thread, an identifier presents the location of the running thread within

the thread blocks - ThreadIdx and within the block grid - BlockIdx. The thread block size can be

obtained with the BlockSize directive.

2.2 CMOS Circuit Characterization

For the last 40 years, CMOS (Complementary metal-oxide-semiconductor) has been the most used

technology in the creation of digital circuits and processors in general [14].

There are two defined logic levels in digital circuits: logic level 0 and 1, each represented by an

analog voltage range. To ensure its operations, the circuit requires a DC voltage value VDD. The

logic gates are excited through an input voltage Vi and an output voltage Vo, corresponding to the

logic level resulting from their logic function (see Figure 2.2(a)). As it is illustrated in Figure 2.2(b), the
1github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime
2github.com/RadeonOpenCompute/hcc
3github.com/ROCm-Developer-Tools/HIP
4developer.nvidia.com/how-to-cuda-python
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voltage range at the input of the logic gates is correctly interpreted if it falls inside a given range. Logic

level 0 corresponds to the interval between GND (0V ) to VIL, while logic level 1 corresponds to the

interval between VIH to VDD. In turn, the output is considered 0 if it goes from GND (0V ) to VOL and

logic level 1 from VOH to VDD. The limits of the input and output logic levels depend on the intrinsic

characteristics of the transistors, such as their dimensions and transconductance values. In addition

to the transistors characteristics and operating voltage, any digital circuit is also characterized by their

frequency of operation.

VDD

GND
(a)

NMH

NML

Transition Region

VOH

VOL

VIH

VIL

0

VDD

(b)

Figure 2.2: a) CMOS inverter. b) Noise margin definitions: NML = VIL− VOL and NMH = VOH − VIH .

The remaining of this section provides an introduction to the effects of voltage and frequency scaling

on the transistor and circuit level operation.

2.2.1 Propagation delay and circuit critical path

The propagation delay of a logic gate (e.g., inverter) corresponds to the time interval (calculated at

50% of low/high transition) between the application of an input signal and corresponding output switching,

as illustrated in Figure 2.3. Considering both transitions low to high and high to low, the logic gate

propagation time (tp) corresponds to the average value of the two propagation delays, as defined in

Equation 2.1.

tFalltRise

10%

90%

Figure 2.3: Logic gate propagation delay: tpHL - propagation delay high to low; tpLH - propagation delay
low to high.

tp = tpavg =
tpHL + tpLH

2
(2.1)
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This metric is related to the time that the logic gate takes to switch its output logic level (tFall for the

high to low transition and tRise for the low to high transition). This transition can be modeled as a first-

order RC circuit (see Figure 2.4) with the transient response following Equation 2.2, where τ corresponds

to the time constant. This time constant reflects the intrinsic characteristics of the transistors that make

up the logic gate, being τ = RC, where R represents the average output resistance of the transistor

when it is turned ’ON’ and C the output capacitance that the logic gate is driving.

VDD

VDD
2

tp0 t

Figure 2.4: First order RC circuit and its corresponding temporal response to step input.

Vo = VDD · (1− e−t/τ ) (2.2)

By solving Equation 2.2 for Vo = VDD

2 , it is observed that the propagation delay is a function of the

supplied voltage and τ (with τ = RC), as depicted in Equation 2.3.

tp = −ln
(
1− VDD

2 · VDD

)
· τ = −ln(0.5) · τ = ln(2) · τ (2.3)

From all the logic paths (sequence of logic gates) that connect any two registers, the one which

presents the largest sum of the propagation delay limits the overall maximum frequency that the CMOS

circuit can operate, establishing itself as the critical path of the circuit (see Figure 2.5). However, in the

particular case of a microprocessor circuit, depending on the operation (instruction) being performed

(and so, of the used architectural component), the circuit’s critical path can change.

Combinatorial Logic

Clk

Registers Registers

X Y

Figure 2.5: Critical path between two registers (red dashed line).

In this way, when scaling the circuit’s operating frequency, it is only possible to increase it until it

matches the inverse of the critical path propagation delay. When raising the frequency ahead of this

value, the critical path is violated, meaning that when the next clock cycle starts, the output of the

combinatorial logic may not be the correct one.
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2.2.2 Voltage guardband, PVT Variation and Aging

After the release of the digital circuit, silicon vendors often deal with variations of their devices’

specifications. On the design stage of the circuit, these variations need to be correctly predicted and

accounted for, guaranteeing the correct operation of the circuit throughout time and range of conditions

that the circuit will be exposed to.

Process, voltage and temperature (PVT) variation and aging impact the circuit in different manners

and the solution for all is to put in place a voltage guardband, as defined in Figure 2.6(a). This voltage

guardband increases the circuit nominal voltage from the best-case operating voltage selected from the

transistors and gates’ intrinsic characteristics. In Equation 2.3, the propagation delay is now obtained by

considering the ratio between the best-case operating voltage5. Hence, when the silicon vendor opts to

put in place a voltage guardband, increasing the supplied voltage (overvoltage), the propagation delay

will follow Equation 2.4, where VThreshold depends on the transistors (and so, it does not depend on the

supply voltage value) and VSupply V oltage is the supplier controlled parameter. Figure 2.6(b) illustrates

the logic gate step response for over and undervoltage. Increasing the supply voltage will make the

transistors switch faster, while decreasing it, reduces the switching pace.

tp = −ln
(
1− VThreshold

VSupply V oltage

)
· τ = ln

(
VSupply V oltage

VSupply V oltage − VThreshold

)
· τ (2.4)

Nominal
Voltage

Guardband

Best-Case
Voltage
Level

(a) Voltage guardband definition.

VSV overvoltage

VThreshold

tp default

0 t

VSV default

VSV undervoltage

tp undervoltage

tp overvoltage

(b) First order circuit step response when changing the supply
voltage (Vsv).

Figure 2.6: Voltage guardband ensures reliability by making the transistors switching faster.

Process variation and aging

Process variation and aging impact the circuit in different ways. Process variation is related to the

modern fabrication process of silicon. It results from imperfections in the lithography and dopant diffu-

sion, affecting the transistors’ dimensions (for example, length and oxide thickness). This dimensionality

change between the transistors can occur either intra-die, when devices from the same die present dif-

ferent features depending on their locations, inter-die, meaning that devices from one die can present

different traits from devices from another batch of dies. The process variation affects the speed of tran-

sistors and the overall circuit characteristics, by varying the device voltage threshold and speed [15, 16].

Such variations are inherent to the fabrication process. Even though silicon manufacturers try to reduce

5(Threshold voltage) and the considered supply voltage
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this impact, such variation will always occur as a static variation after the release of the chip to the

market.

Aging of the CMOS circuits is a result of ongoing chip temperature variation and supply voltage

change. The continuous variation of these two factors induces Bias Temperature Instability (BTI) and

Hot Carrier Injection (HCI). BTI causes threshold voltage shifts over long periods due to the presence of

voltage stress at the transistors’ gate. On the other side, HCI is caused by the acceleration of carriers

(electrons/holes) under lateral electric fields in the channel of MOS devices. The acceleration can get

up to the point where the carriers gain enough energy and momentum to cause damage, degrading

mobilities and again, changing the threshold voltages [17].

The occurrence of these phenomenons raises the possibility of the circuit not meet its original spec-

ifications. Hence, a circuit that is dimensioned without any headroom (not sufficiently large voltage

guardband) may not be able to cope with such a process variation - producing a not working circuit; or

stopping to work overtime due to aging.

Voltage variation

As it was previously observed, running the circuit at an increased voltage compared to the required

voltage at the target frequency for typical workloads results in a faster circuit. This increment in perfor-

mance allows for inserting an extra timing margin in each clock cycle, as described in Figure 2.7.

Cycle Time

Timming
Margin

(a) Static Margin

Reduced
Voltage
Margin

Nominal
Voltage
Margin

(b) Reduced Voltage Margin

Figure 2.7: Voltage guardband ensures operation reliability by effectively inserting some extra timing
margin.

This timing margin is of extreme importance to cope with voltage noise, the leading cause of voltage

variation during the circuit execution. Voltage noise is mainly induced by di/dt droop. This phenomenon

makes the actual measured voltage that is applied to the circuit components (as formulated in Equation

2.5), depend on the rate of change of the current being drawn.

Vactual = VDD − L ∗
di

dt
(2.5)

The runtime workload intensity variation induces the di/dt droop due to the rapid and significant

change in current demand from the various circuit functional blocks [16]. Thus, in the case of processors,

the workload type can directly impact voltage noise. As a result, a program that induces a bigger di/dt

droop will need to have a bigger voltage guardband.
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Temperature variation

Temperature variation occurs both due to changes on the environmental temperature, and due to

changes in the temperature that is dissipated as heat by the transistors on the circuit. The temperature

affects the transistors by changing the carriers’ mobility (µ[ cm
2

V ·s ]), and threshold voltage (Vt)[18].

The carriers’ mobility µ describes the drift velocity of a particle in an applied electric field, thus the

transistor’s capability to drive electric current. Usually, the carrier mobility of MOS transistors presents

a very complex temperature dependence. However, in general, the mobility is said to decrease with

temperature increase.

In the case of threshold voltage, its rate of change also follows the same principle of the carriers mo-

bility. However, it usually has a more straightforward dependency of decreasing linearly with temperature

increase.

The work of Freijado et al. [19] presents a model that tries to encompass all these variations and

test the impact that temperature has on the propagation delay. The designed model predicts that the

propagation delay increases linearly with the temperature increase, which would imply that the size of

the voltage guardband reduces when the temperature increases.

2.2.3 Power Consumption

On a CMOS circuit, the total consumed power is decomposed into the dynamic and static parts

PCMOS = Pdynamic + Pstatic. (2.6)

The dynamic power relates to the power that is consumed by the transistors flipping stages (inverting

the logic values), and corresponds to the power of charging and discharging the internal net capaci-

tances. This value is proportional to the frequency that this change occurs. Equation 2.7 represents the

general formulation of the dynamic power, where a represents the device utilization factor, C the total

capacitance of the circuit, V the circuit supply voltage, and f the frequency of operation [20].

Pdynamic = aCV 2f (2.7)

On the other hand, the static part of the power consumption comprehends three components:

Pleakage, Pshort−circuit and PDC [21]. The leakage power is independent of the transistors flip, and it

represents the flow of electrons between the transistors’ source, drain, and gate, known as leakage cur-

rent. The short-circuit power comes from the instantaneous short-circuit connection between the supply

voltage and the ground when the transistor flips. Finally, the Direct Current (DC) power corresponds to

the power needed for powering the circuit. Equation 2.8 represents the expression with all static power

consumption components.

Pstatic = Pleakage + Pshort−circuit + PDC (2.8)

Usually, the dynamic power dominates the total power consumption of a circuit. However, with

the current tendency to reduce the manufacturing size of transistors, the static power is becoming a

more significant part [22, 23]. Nevertheless, as a common reference, and due to the usually dominant
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weight of the dynamic power on the total power consumption, the power used by a CMOS circuit usually

changes linearly with the clock frequency and quadratically with the supplied voltage.

2.3 Dynamic Voltage and Frequency Scaling

The widespread use of GPUs in both supercomputers and personal computing machines comes at

the cost of a significant increase in power consumption. While a typical modern CPU consumes about

50 to 100W, it is common to see GPUs consuming between 200 and 300W of power. With these figures,

the use of energy efficiency techniques to try to reduce power consumption becomes a vital issue.

As stated in Section 2.2.3, the power consumption of a CMOS circuit increases linearly with the

operating frequency and quadratically with the supplied voltage. Thus, a direct manner of reducing

this figure is by directly acting on these two parameters. A common approach of achieving this is the

application of Dynamic Voltage and Frequency Scaling (DVFS), consisting on a power management

technique which performs ”on the fly” control of frequency and voltage. In particular,DVFS allows for

an energy efficiency improvement by matching voltage and frequency settings to the GPU utilization.

When the GPU is idle, the frequency is lowered, and when it is active, the frequency is increased. As

presented in the previous section, the frequency scaling also implies a consequent change in voltage,

to accommodate the fulfillment of the critical path timing constraints.

In general, the applied voltage level V is a function of the current operating frequency f , in the form of

V (f). However, by properly controlling the clock frequency, the required voltage level for stable operation

of the circuit can also be maintained or even reduced, leading to further power savings.

In general, modern GPU boards offer an independent control over two pairs of frequency and voltage.

Each pair (or domain) acts on a distinct part of the GPU, intending to maximize the performance or

reduce the power consumption. The first domain concerns the GPU core, acting on all SM/CUs, the

cache, and the interconnection fabric. The second affects the DRAM chips that compose the video

memory.

The clock frequency is an independently controlled (within the physical possibilities of the CMOS

manufacturing process) variable, and its change directly reflects on the performance that is achieved by

the GPU. An increase in the clock frequency of the core results in an improvement of the SM/CU exe-

cution speed, while the same change in the memory frequency will increase the DRAM I/O throughput

[21]. The voltage level of each domain is dependent on the clock frequency being used and it is usually

defined based on tests performed by the manufacturer to ensure the correct operation of the circuit,

independently of the workload.

The two major GPU silicon vendors, AMD and NVIDIA, adopted the concept of performance levels

on their products. Each performance level is a pair of frequency and voltage that can be applied to

each GPU DVFS domains. These vary from low power and performance levels to high power and per-

formance ones. The idea of having multiple performance levels is to allow the application to have the

best point of operation. In the case of the first GPU device (AMD Vega 10 Frontier Edition) that is going

to be used in the experimental phase of this dissertation, the GPU core has eight performance levels,

while the memory has only four. Table 2.1 shows the reference values (for the pairs of frequency and

voltage) for each of the core and memory performance levels. The frequency and voltage of higher per-

formance levels reflect the expected behaviour, with an increase of the supply voltage to accommodate
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the frequency boost.

Core Memory
Level Frequency [MHz] Voltage [mV] Level Frequency [MHz] Voltage [mV]

0 852 800 0 167 800
1 991 900 1 500 900
2 1138 950 2 800 950
3 1269 1000 3 945 1000
4 1348 1050
5 1440 1100
6 1528 1150
7 1600 1200

Table 2.1: GPU core and memory performance levels for the AMD Vega 10 Frontier Edition GPU.

Newer GPU DVFS systems, like the one used on the second GPU under test (AMD Radeon 5700

XT) improve the number of performance levels by allowing for a continuous use of all frequency values

within the valid range (versus discretizing the domain into a set number of performance levels). In this

case, there are three user-defined frequency-voltage pairs on which a quadratic regression is computed

(see Figure 2.8), creating a f(V ) function that for every frequency, gives the correspondent voltage

value.

Figure 2.8: GPU Core voltage frequency curve, red dots indicate the default user-defined voltage fre-
quency pair - AMD Radeon 5700 XT.

2.3.1 Control Mechanism

The correct choice of the most appropriate performance level for each GPU DVFS domain when

executing a given application is one of the topics that has deserved a special attention from both manu-

facturers and researchers, since the design of the DVFS controller has a significant impact on the GPU’s

performance and energy efficiency.

The first implementations of GPU DVFS controllers took a direct inspiration from the CPU DVFS con-

trollers and can be largely classified into interval-based, inter-task, and intra-task DVFS schemes [24].
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Interval-based

Interval-based algorithms rely on the periodical measurement of the device’s utilization, setting the

next frequency and voltage levels based on the average measurement of utilization. The utilization Ui

reflects the percentage of working time, wi, that was spent by the GPU over the last time frame TFi and

can be formulated using equation 2.9.

Ui =
wi
TFi

(2.9)

By applying either a arithmetic, a geometric, a weighted average, or even a more complex metric

over the last n measurements, the next utilization Ui+1 is predicted. If the predicted value surpasses

pre-determined upper or lower thresholds, the frequency is adjusted up or down accordingly [25]. A

governor is a set of parameters (such as frequency and voltage tables), thresholds and a utilization

prediction algorithm that controls how the interval-based DVFS works. By choosing a different governor,

the DVFS system can react differently to the same workload. Figure 2.9 schematizes the periodic

procedure executed by the DVFS system [25].

Start Take utilization
measurement

No

Time since last
prediction >= TF

Ui+1 PredicitonYes

No

Yes

Ui+1 > upper
threshold

No

YesUi+1 < lower
threshold Decrease Frequency

Increase Frequency

End

Figure 2.9: Interval-based DVFS procedure.

Inter/Intra task-based

The Inter and Intra task-based DVFS algorithms analyze the program source code, as well as some

past runs profiling results to determine the optimal frequency/voltage for each task. This type of algo-

rithm is composed of an intra-task and an inter-task analysis [26]. The intra-task part decomposes the

process execution into the on-chip computation and off-chip access latencies. Based on the results, the

optimal GPU core and memory frequencies are determined accordingly to the ratio between the two

types of execution. Inter-task mechanisms utilize the intra-task results, assigning a signature to each

type of task/process. By analyzing, in run-time, the GPU components’ utilization, and using a lookup

table that stores the signatures, the optimal frequency/voltage is selected for the sequence of tasks to

be executed.

In general, the challenges of creating a better GPU DVFS mechanism relates to three factors: GPU

power management, DVFS performance and power estimation tools and continuous changing architec-
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ture. The current GPU devices deliver minimal and simplified power management mechanism, solely

relying on controlling the device power cap. The continuous architectural changes introduced on each

GPU generation does not allow for the creation and maturation of accurate quantitative GPU DVFS

performance and power estimation tools. And again, the complete redo of the architecture on each

generation also makes the energy efficiency strategies applied to one architecture design have different

outcomes on the next one [21]. The observed results show that strategies like scaling up the processor

frequency, race-to-idle [27] or ”racing” [28], when a task is launched in the pursuit of finishing it as fast

as possible and return to an idle state, prof to increase the energy efficiency of CPUs. However, that

assumption not always results in the same outcome for GPUs [28].

AMD/NVIDIA DVFS Mechanism Example

The GPU DVFS control mechanism that is used nowadays by both AMD and NVIDIA, schematized

in figure 2.10, is primarily an interval-based one. In particular, the most recent AMD GPU DVFS mech-

anism is called Adaptive Frequency and Voltage Scaling (AFVS) [29]. It takes into account the voltage

levels across the different parts of the GPU, the die temperature, the desired frequency and the total

power consumption. In order to maintain the total power consumption within the required power and tem-

perature envelope. Upon launching a new task and within a set power target, the GPU tries to achieve

the highest possible frequency (or highest performance level). For that frequency configuration, it also

adjusts the voltage level to the one required to ensure the correct operation. Naturally, with the high-

est performance level, power and temperature will increase. When one of these parameters achieves

the limit, the GPU decreases the frequency (or selecting a more energy-saving performance level) to

maintain itself within the power and temperature target.

Figure 2.10: AMD/NVIDIA DVFS control mechanism.

The major drawback of current GPU DVFS implementations is not taking into account the type of

tasks that the GPU is executing. The dominant control mechanism still considers the GPU as a black

box and controls its DVFS settings by only looking at outside parameters. Even though such a black-

box approach enables significant improvements in current hardware, it lacks the optimization of the

frequency/voltage to the type of workload. For instance, a given application can be either compute-bound

or memory-bound, depending on if the time that it takes to perform the task is limited by the processor

performance or by the memory bandwidth and latency. This binary classification of applications also

depends on the frequency of the core and memory. The same application can be compute-bounded at
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a low core frequency but be memory-bounded at a higher one [30] (the bottleneck switches from the

processing elements to the memory). In the case of a compute-bounded application, the limitation can

be imposed by different components of the processor architecture, depend on the type of data (integer

or floats) and on the intended precision (size of the operands). If one compares the computation with

the same type of operands, but with different precision (for instance, 16 vs. 32 bits), even though the

GPU uses the same arithmetic unit, the critical path for 32 bits operands is of increased length. Hence,

the maximum delay between the input and the operations output increases with the operands’ precision.

Since no information about the application is provided to the DVFS controller, no adaptation of the V-F

settings can be employed. Considering that the manufacturers do not usually tune their devices to the

minimum voltage level (to accommodate for manufacturing imprecisions and to leave a safe guardband),

there is some space to reduce the operating voltage of the circuits, leading to significant power savings.

Overall, the minimum operating voltage of each performance level is set at a high enough level to

ensure the correct operation of the GPU, independently of the type of computations/workload. Never-

theless, it is possible to further fine-tune the voltage and frequency configuration if the type of task being

executed is known at run-time.Furthermore, a significant limitation of the voltage-frequency control sys-

tem is the time it takes to change and stabilize the intended V-F pair. On the case on the AMD Vega

10 Frontier Edition, the mechanism takes approximately 200-500 ms to change between performance

levels [29].

2.3.2 GPU DVFS Characterization

To improve the performance and energy efficiency of a GPU, it is important to characterize and

analyze the effects of applying DVFS techniques on its operation, with a special emphasis in what

concerns the impact of the different parameters on different workload scenarios.

A complete GPU DVFS characterization is explored in the literature using two methodologies. The

first refers to experimental studies, where researchers use real GPUs to perform voltage and frequency

scaling. However, due to past dominance of NVIDIA over AMD [5, 6] and the fact that this manufacturer

only offers limited support for independent voltage scaling tools, the majority of the work act solely on

frequency scaling. The second approach uses simulators, like GPGPU-Sim6 and GPUWattch7 [31], to

simulate various scaling approaches, like GPU core number scaling and per-core DVFS [21]. The benefit

of using simulators over real hardware comes on the increased flexibility, enabling the experimentation

of scenarios not supported by the frequency/voltage scaling tools provided by the manufacturers. In both

methodologies, the studies act on the impact on performance, energy consumption and overall energy

efficiency.

The following subsections present a brief overview of some of these works.

Experimental Approach

Jiao et al. [32] scaled the GPU core and memory frequencies of an NVIDIA Tesla GTX 280 GPU

using three types of workload: a compute-bounded dense matrix multiplication application; a memory

bounded application that performs a dense matrix transpose; and a mixed workload, executing a Fast

6http://www.gpgpu-sim.org/
7http://www.gpgpu-sim.org/gpuwattch/
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Fourier Transform (FFT) computation. The experimental study showed that for the same core-memory

frequency settings, the three applications showed different performance and energy efficiency curves.

While a compute bounded application showed to be insensitive to memory frequency scaling, the mem-

ory bounded application takes advantage of high memory frequency and low core frequency. At last, the

mixed workload FFT application profits from both high core and memory frequency. In general, it was

also shown that energy efficiency could be determined by the instructions per cycle (IPC) metric and by

the global ratio of memory transactions by computation transactions.

Ge et al. [33] explored dense matrix multiplication kernel executions in more detail using an NVIDIA

Kepler K20c GPU. The conducted work revealed that for this type of kernel (compute-bounded), the

GPU’s power and achievable performance is linear to the GPU core frequency and that the total energy

consumption had no relation to frequency scaling. In all the used application tests, the energy efficiency

has a linear relation with the GPU frequency, with the highest energy efficiency being achieved when

the highest clock frequency was employed.

Abe et al. [34] introduced a global scaling procedure that combines the GPU core and memory fre-

quency with the host CPU frequency, in order to minimize the energy consumption. The first experiment

tried to optimize the computation of dense matrix multiplication with different matrix sizes. By using

this global scheme on a small matrix leads to a 28% energy saving, when using low GPU memory fre-

quency and high GPU core frequency. The same procedure was then enlarged to a more diverse set of

33 benchmarks, where all the possible combinations of a low, medium, and high GPU core and memory

frequencies were tested to find the optimal working settings. It was found that energy consumption can

be reduced as much as 75% with a performance loss of 30% when the best settings were used.

Mei et al. [35] conducted a more general experimentation using 37 GPU benchmarks. In this work,

it was possible to observe that the effect of GPU DVFS depends on the application characteristics. In

all situations, the fine-tuning of DVFS per application (finding the lowest voltage level for the desired

running frequency) conveyed an energy-saving of 20%, on average, with only a 4% performance loss.

More recently, Mei et al., expanded the previous work to analyze the relation between energy consump-

tion and dynamic frequency scaling settings [21]. For the Rodinia benchmark [36], it was found that

some benchmarks increase the energy consumption linearly with frequency scaling while others are

insensitive to the change of this parameter. In the particular case of GPU memory frequency scaling,

the work revealed that underclocking this component can result in a 30% energy decrease if the running

application is not memory bounded. For the case of applications whose performance depends on the

memory, decreasing its frequency can lead up to 54% energy increase, mostly due to the increased ex-

ecution time. The tested set of applications showed that overclocking the memory results in diminishing

the execution time with reduced overall energy consumption (the memory energy consumption increase

overshadows the small reduction in computation time).

Overall, the relation between the DVFS settings and the resulting energy consumption depends

heavily on the application type. One can conclude that a simple linear model (normally used by the

GPU manufacturers) for DVFS settings is often inadequate to achieve the best performance or energy

consumption/efficiency.
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Simulation Approach

As it was previously referred, the characterization of the application of DVFS techniques on GPUs

with simulation approaches is usually done by using software tools like GPGPU-Sim8 and GPUWattch9 [31].

GPGPU-Sim is a simulator of a GPU architecture running CUDA and OpenCL workloads. GPUWattch is

an energy model that predicts energy consumption based on the number of computations and memory

access that GPGPU-Sim simulates. Together, both programs can be used to accurately model current

and novel GPU architectures and DVFS controllers.

Leng et al. [31], the developers of GPUWattch, simulated the execution of compute and memory-

bounded kernels in three scenarios: no DVFS and using a custom off-chip and on-chip DVFS. The

custom DVFS algorithms monitor the average number of stall cycles caused by memory operations.

When the number increases, the controller switches to a slower performance state of the core. Contrarily,

when the number of stall cycles reduces, the controller places the GPU in a higher performance level.

The difference between the on-chip and off-chip DVFS techniques is the time that it takes to respond to

the variation of the number of stall cycles. While the on-chip can switch the performance level in 500

clock cycles, the off-chip takes 10000 cycles. The experiments show that using the off-chip DVFS versus

no DVFS results in 13.2% of energy savings (on average) while using the on-chip DVFS yield a 14.4%

energy saving.

Cha et al. [37] used GPGPU-Sim to create a GPU core space-multitasking simulator, where per-

kernel dynamic frequency scaling (acting on the computing unit level) settings can be applied in con-

current kernel execution. They used Rodinia suite [36], Parboil suite [38], and Polybench suite [39] of

benchmarks and combine the execution of different kernels, creating pairs of two compute-bounded

(Com + Com) kernels, one compute-bounded plus one memory-bounded kernel (Com + Mem) and two

memory-bounded kernels (Mem + Mem). The work evaluated the performance of the GPU by measur-

ing the number of executed instructions per second. It was shown that for Com + Com concurrent kernel

execution, the performance is lcore frequency of both kernels results in a 20.4% performance increase,

while a 20% decrease results in a 19.3% decrease in performance. For (Mem + Mem) concurrent kernel

execution, it was observed that the performance did not change significantly with the changes on the

core frequency. The more interesting case is where mixed (Com + Mem) type kernels are concurrently

executing. In this case, a per-kernel DVFS can overclock the CU of the Com kernel while underclocking

the ones running the Mem kernel. In this setup, the highest performance is achieved for the Com kernel,

and the energy (even though it was not the objective of the work) is minimized.

2.3.3 DVFS Optimization

As induced by the works presented in the previous section, by correlating the DVFS parameters

with the application characteristics, it is possible to improve the performance and reduce the energy

consumption of GPU accelerated programs. Under this assumption, the investigation on new DVFS

mechanisms currently acts on two fronts: enabling a finer-grained DVFS control, with the creation of

more clock/voltage domains within each GPU component; and creating novel DVFS control mechanisms,

searching for more sophisticated and aware DVFS systems to better control the voltage and frequency

8http://www.gpgpu-sim.org/
9http://www.gpgpu-sim.org/gpuwattch/
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parameters depending on the workload type. This section provides an overview of the state of the art

on both development fronts. However, the second is of increased relevance to the context of the present

dissertation.

Increased number of DVFS domains

Sethia et al. [40] designed Equalizer, a low overhead hardware runtime system, able to dynamically

perform the monitorization and management of GPU resources and kernel requirements. This mecha-

nism is placed in the instruction decoder pipeline attached to the kernel scheduler (scoreboard control

mechanism that indicates which kernel should be run and where). By controlling the on-chip concur-

rency, together with the core and memory frequency, they can create two running modes (energy and

performance modes) based on four counter utilization values (number of active and waiting threads,

and number of ALU and memory instructions). In energy mode, it achieves 15% savings of energy

consumption, while in performance mode, it can increase the performance by 22%.

In the work of Cha et al. [37], presented earlier, it is discussed how the application of DVFS at the CU

level improves the performance and the energy consumption of the GPU. By using the GPGPUSim GPU

simulator, they created a multi clock generator able to provide either a fast, a regular and a slow clock

setup to each CU at demand. By reserving a register on each CU, the compiler will write the information

regarding the most appropriate clock frequency. Each CU will inform the multi clock generator of which

of the three clocks should be active. This approach showed the benefits of creating further specialized

clock zones, enabling a finer grain of control over frequency and voltage. In the experimental work

conducted by Cha, the finer-grained DVFS system was able to accelerate the compute-bounded kernels

while still providing the more energy efficient frequency for the memory-bounded ones.

Optimal frequency search and optimization

Thomas et al. [41] proposed an Application-aware Scalable Architecture (ApSA) for GPGPU appli-

cations. ApSA is a three-stage runtime hardware profiling and scheduler mechanism able to adjust the

operation of the GPUs core depending on the application’s category under execution. In the first and

second stages (profiling and decision-making), ApSA classifies applications as of type-I or type-II. An

application is classified as type-I if it requires more processing cores to increase the performance and

type-II if it needs more bandwidth from the memory system to run faster. According to this classification,

on stage three (action) of this mechanism, the application is run on all available CU if it is type-I. If it

is of type-II, the proposed mechanism only indicates that half of the available threads should run the

application. At the same time, the frequency controller scales down the core and scales up the memory

frequency, increasing the GPU’s energy efficiency. By running the ApSA mechanism, a profiling over-

head of 1.6% for type-I applications and 1.15% for type-II is introduced. Nevertheless, a reduction of

20.08% of power is achieved by using the ApSA mechanism.

Akiki et al. [42] proposes a run-time gradient descent (GD) optimal frequency search algorithm. This

mechanism relies on multiple executions of the target application. In each iteration, an exploration of the

optimal frequency is made. By indicating a given target metric, such as performance or Energy-Delay

Product

EDP = energy ∗ computation time, (2.10)
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it is possible to validate if the new frequency is better than the earlier one. By running this procedure

alongside a set of benchmarks, with EDP selected as the target metric, it was achieved a reduction of

15% on energy consumption.

Huang et al. [43] introduced an novel proportional-integral-derivative neural network (PIDNN) fre-

quency controller. This controller uses gradient descent to find the most appropriate frequency to be

applied to the GPU core, memory and interconnect network to reduce energy consumption. The de-

signed neural network has as input the current frequency of each GPU component, the number of

kernels to be dispatched, the interconnect message queue size, and the number of caches misses. The

hidden layers of the neural network represent the proportional-integral-derivative controllers, and the

output layer corresponds to the new frequency to be set on the core, memory and interconnect. After

the model is trained (and depending on the GPU model), the novel DVFS controller can reduce energy

consumption between 4.39% and 18.67% on the tested benchmarks.

2.3.4 Decoupled V-F - Non-conventional DVFS optimization

The presented state of the art on DVFS exploration and characterization methodologies explored

the benefits of using (mainly) frequency scaling to optimize the performance and reduce the power

consumption on GPUs. However, the significant frequency and voltage guardbands that are usually

adopted by manufacturers to ensure the correct operation of the devices across all possible working

conditions, appear to be an extra optimization space waiting to be explored. More recent studies have

been exploring this possibility, by working outside of the default V-F pairs. In this case, instead of just

optimizing the frequency and relying on the default voltage values to perform DVFS, the studies also

explore voltage scaling beyond the conventional DVFS, limits by trying to optimize both parameters for

the running application.

This approach can enable a more significant energy efficiency degree of optimization, by allowing

the GPU to be run at higher frequencies with reduced energy consumption. The studies presented in

this section show that working in this unexplored space can be profitable when certain conditions are

present. Due to the voltage reduction, the voltage guardband will be decreased. However, this voltage

reduction makes the transistors slower, causing the GPU to be more prone to PVT variations.

Voltage guardband size estimation

To beneficially use voltage scaling outside conventional DVFS limits, it is necessary to understand

how the size of the voltage guards and the minimum operating voltage (Vmin) relate to the different types

of applications. The work of Leng et al. [1] analyzes the voltage guardband of different applications and

creates a statistical analysis procedure to predict the Vmin (the best case voltage level, as defined in

Figure 2.6(a)) depending on the collected performance counters. For the presented voltage guardband

analysis, Leng et al. used 57 representative programs run on four different GPUs of two different ar-

chitectures. The testing procedure consists of running each program 1000 times. After which a 12mV

undervoltage is performed on the GPU core if every run is successful, repeating the procedure until

a fault occurs. The faults can be of two types: runtime error, such as segmentation fault, silent data

corruption or OS crash, and incorrect output (the results of the undervolt run being different from the run

with default voltage).
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Leng also tested the influence of process variation by running the benchmarks on multiple GPUs of

the same model, achieving a maximum variability of 0.07V for the same benchmarks. The measured

differences for process variation have a relatively low and uniform impact across all tested programs.

This result indicates that this factor does not have a sufficiently high impact to be the leading root cause

determining the Vmin and guardband size.

By running the benchmarks mentioned above at two distinct temperatures (40oC and 70oC), Leng

also tested the influence of temperature on Vmin. The temperature change only caused a voltage guard-

band size variation of 0.02V among the two temperatures, allowing to conclude that there is no practical

effect of temperature variation between these two temperatures.

Hence, the measured differences for process and temperature variation seem to have a relatively

low and uniform impact across all tested programs. This result seems to indicate that these two factors

do not have a sufficiently high impact to be the leading root cause determining the Vmin and guardband

size. The variability of aging was not possible to measure directly. However, it is plausible to assume

that insignificant this effect should produce a similar contribution to process and temperature variation

[1].

Overall, since the process and temperature variation (and device aging) do not have a substantial

impact on the variability of Vmin, by themselves, voltage noise appears to be the leading cause of this

variation.

Following the work of Leng, Papadimitriou et. al [44] modeled the GPU voltage guardband in more

detail using GPUVolt [45]. This modeling framework simulates the voltage noise behavior by calcu-

lating the time domain response of the power (voltage) delivery. Using GPUVolt in combination with

GPUWattch to compute the power consumption, the author was able to determine that voltage droops

can be originated due to inner and inter-core interference. In the single-core analysis, each component

was evaluated to check their contribution to the voltage droop. The obtained results point out that the

register file within each SM/CU is responsible for up to 70% of the occurrence of droops due to their high

power consumption and high access rate. In fact, the inter-core interference exists due to the increased

silicon area to accommodate the high core count of modern GPUs. The high core count can induce

multiple high power consumption zones separated by inactive cores, inducing both fast-occurring first-

order droops localized at small clusters of neighboring cores and slow-occurring chip-wide second-order

droops. Going a step further, Papadimitriou relates the occurrence of these two phenomena with the

type of running code. Inner-core voltage droops are mostly related to implicit synchronization mecha-

nisms associated with SIMT, such as cache miss and thread block launch; while inter-core are mostly

related to the launch of entirely new kernels.

Leng et al. [1] and Nakhaeea et al. [46] propose methods to determine the Vmin parameter with differ-

ent objectives. While Leng aspires to reduce the energy consumption, Nakhaeea expects to improve the

lifetime of processors. These two examples are only a few of the possible benefits that the exploration

of the voltage scaling brings. To model Vmin, Leng used performance counter measurements to train

an Artificial Neural Network () that predicts the amount of possible undervolt. The Root Means Square

Error (RMSE) between the model prediction and the measured result is 0.5%, with the maximum over

and underprediction error of 3% and 2%, respectively. Moreover, the trained ANN can correctly model

the variation of Vmin with the type of workload.

In general, a good model of the minimum operating voltage should be able to not only correctly predict
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Vmin across a significant large set of applications, but also minimize the under and overprediction of this

value. Overpredicting the Vmin range will most likely lead to the occurrence of program faults while

underpredicting this voltage range may result in not adequately exploring the possible voltage values.

GPU undervoltage behaviour

The study of Tan et al. [47] explored the effects of using low supply voltage on the GPU register file.

They supported this research by demonstrating that this component is one of the most affected and one

of the first provoking program faults when not enough voltage is provided. Under this premise, Tan tested

the minimum required voltage that guarantees that a write and a subsequent read of a register produces

the same result. Due to process variation, this value can significantly differ from register to register. With

this information, the author created an architectural solution that can analyze, for the runtime voltage

level, which registers can be used and, by taking advantage of dead-registers (registers that contain

useless data) the solution can forward the data from a faulty register to a working one.

The considered problem on the register file when decreasing the supply voltage is similar to the

increased probability of a clock cycle ending without the critical path’s fulfillment. In such situations, the

processing elements of the GPU can misbehave and produce faulty computational results.

To conclude, it is generally necessary to estimate Vmin to predict the size of the voltage guardband

for the running application, and to understand the degree of computational errors that can emerge when

taking advantage of non-conventional V-F pairs.

2.4 Undervoltage and Imprecision tolerant applications

Another interesting perspective is observed in certain applications that are herein referred to as

Imprecision Tolerant applications. For these applications, computation errors can be propagated to

subsequent logic stages with the expectation that the algorithm itself can recover from it [46]. Hardware

designers can exploit these capabilities to reduce power consumption in two ways: designing hardware

with lower precision encoding (reduced number of bits, like Google’s TPU); minimizing the amount of

combinatorial logic; or running traditional hardware (GPUs) in setups where the effort of reducing power

consumption, may introduce a degree of imprecision.

Nowadays, a typical application that is taking, significant advantages of GPU acceleration is Deep

Learning (DL). One of the most important characteristics of this type of algorithms is their imprecision

tolerance. The computation of a deep learning application is an iterative and convergence process, and

by the natural adaption of the neural networks learning parameters in runtime, the occurrence of small

computation errors do not affect the end prediction of the algorithm [48].

Tang et al. [4] studied the impact of DVFS parameters on the energy and performance of DL appli-

cations. Even though the considered DVFS exploration only used the default range of frequency and

voltage scaling, it was possible to either improve the performance by up to 33%, or reduce the energy

consumption by 23.1%. However, this work applied the same pair of frequency and voltage throughout

the complete training or inference session. Moreover, the authors point out that the different layers that

compose a neural network can have different voltage and frequency optimization points. Furthermore,

by using the inherent resilience of neural networks, it is expected that even better working parameters
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outside of the conventional DVFS range can be found.

2.5 Summary

The present chapter introduces the fundamental concepts in order to use non-conventional voltage-

frequency pairs on regular GPUs. It starts by providing an overview of current GPU architecture and

programming model and establishing the relation between the executing kernel and the stress over the

different GPU components. It follows by introducing the fundamental notions of CMOS circuits when

dealing with frequency and voltage scaling, exacerbating the importance of choosing the most appropri-

ate supply voltage to guarantee circuit stability and protection to variations while trying to achieve the

best energy-efficiency possible.

Following the bottom-up approach, the chapter builds on the CMOS circuit characterization to intro-

duce the power management technique and mechanism DVFS. This mechanism has the objective of

selecting the most appropriate V-F pairs according to the current GPU state. However, the literature

considers that current approaches have two problems. First, they are conservative when scaling the

voltage according to the frequency, leaving a substantial guardband that reduces the energy-efficiency

of the devices and second, it does not take into account the executing application, neither their current

state nor the GPU circumstance.

Grounded with these problems, the following chapters will try to improve the current state of the art

by proposing a methodology to explore the voltage guardband and dynamically tune the voltage and

frequency to the application being executed.
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Chapter 3

GPU architectural characterization to

decoupled V-F

The first objective of this thesis is to provide a methodology to uncover the use of non-conventional

voltage-frequency pairs on regularly deployed GPUs to improve their energy efficiency. This chapter

introduces the developed methodology used to assess the usability and benefits of non-default voltage

values on top of the traditional device frequency scaling.

The developed methodology allows for:

• The determination of which GPU components establish the voltage guardband size;

• The identification of the architectural component responsible for the wrong application output (com-

putational error or memory corruption);

• The determination of the relation between the application of non-conventional V-F scaling on both

DVFS domains and the resulting performance, power and energy consumption, as well as energy

efficiency.

By following the workflow depicted in Figure 3.1, the chapter introduces a set of benchmarks that

stress each individual GPU DVFS domain and component to find Vmin (see Section 3.1), the frequency-

dependent minimum operating voltage that (still) leads to correct GPU operation. It continues by pre-

senting the experimental setup and testing procedure on two different GPU architectures, the AMD

Vega 10 Frontier Edition and AMD Radeon 5700 XT (see Section 3.2). The establishment of a us-

able voltage range across the frequency spectrum (presented in Section 3.3) allows for the creation a

voltage-frequency exploration and usable space (top right chart of Figure 3.1). The chapter finishes

with Section 3.4, with an evaluation of the performance, energy consumption and Energy Delay Product

(EDP), for the given benchmarks when subject to non-conventional V-F scaling (bottom right chart of

Figure 3.1). Even though the delay of a CMOS circuit is inversely proportional to the supply voltage

VDD, the dynamic power is proportional to the square of VDD (and so, energy consumption and EDP will

be directly proportional to VDD), computing the EDP brings the additional benefit of directly analyzing

the effect of voltage change in the energy efficiency of the device.
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void kernelALU(int *in) {

    for(int i=0; i < N; i++)

        in[i] += i*C+b;

}

void kernelSM(*A, *B) {

    shared *sm;

    sm[a] += A[a] + B[a];

}

void kernelBranch() {

    if(x > A) {return b}

    else {return a}

}

Generate
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Execute
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(...)
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Figure 3.1: Overview of the methodology and its objective outputs.

3.1 Characterization Benchmarks

The devised set of benchmarks, presented in Table 3.1 and made publicly available as open-source1,

individually characterize the different components of the GPU architecture when subjected to the two

DVFS domains: core and global memory. The tested architectural components are DRAM, Shared

Memory, Cache L2 and ALU. In more detail, the memory experiments cover the reading and writing

operations, as well as the prolonged effects of undervoltage on memory retention, while the ALU tests

include the Multiply and Accumulate (MAC) and non-linear operations, as well as the impact of branches.

Overall, the developed benchmarks were crafted not only with the intention of stressing the individual

components, but doing so in a way that helps to answer the questions presented at the beginning of

this chapter. Additionally, a coarser and more representative kernel that stresses multiple architecture

elements in many GPGPU applications - the reduction - is also evaluated.

Table 3.1: Devised set of kernels to characterize GPU to Non-Conventional DVFS

Micro-kernels Data Type Objective
DRAM FP32, INT32 Minimum Read & Write voltage, bit-flip, data-corruption

Effect of memory to compute bounded kernel on Core DVFS

Cache L2 INT32 Minimum Read & Write voltage, data-corruption

Shared Memory INT32 Minimum Read & Write voltage, data-corruption

ALU FP64/32/16, INT64/32/16/8 Computation errors due to timing violations

SFU FP64/32/16 Computation errors due to timing violations

Branch Minimum voltage for correct scheduling operation

Mix (reduction) FP64/32/16 Simultaneous impact of stressing multiple GPU components

Of the listed benchmarks, the placeholder DATA TYPE is used to represent the different tested data

types. By following Table 3.1, this generic keyword is replaced by a standard integer and half, single

1github.com/hpc-ulisboa/nonconventional-dvfs
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and double precision data types, depending on the benchmark. The objective is to assess the effect of

changing the type of operands and resulting effect on the computation precision on the critical path.

To guarantee that no compiler optimizations are performed on the tested variables, the keyword

volatile is used. This keyword informs the compiler to not optimize the current variable, guaranteeing

that the way that the code is executed, does not change because of the compiler.

DRAM

The benchmark on Listing 3.1 was designed (and validated through GPU counters) to determine the

impact of V-F scaling on the GPU DRAM when executing a compute-bounded kernel.

In the presented kernel, each thread is responsible for accessing the global memory and retriev-

ing two values. The accesses are sequential between threads to guarantee the maximum memory

throughput and no accessing hazards. These two values are summed and placed on an output vector.

A constant value, C determines the distance between accesses, and its value is sufficiently large to

guarantee that the new data to be fetched is not present on the local caches. For each data fetch, the

defined OPS value controls the number of arithmetic operations to be performed before the data is written

back on the DRAM. A lower OPS value decreases the time between memory access, resulting in a more

memory intensive kernel, that depending on the global memory bandwidth and throughput, can become

memory-bounded. On the other hand, a higher OPS value results in the memory accesses to be more

spaced in time, leading to a less memory intensive kernel and, eventually, to a compute bounded kernel.

The DRAM DVFS domain is responsible for controlling the voltage and frequency of the GPU global

memory. This DVFS domain affects the memory throughput both on the reading and writing operations.

With the characterization of this DVFS domain, it is possible to judge the weight of the global memory

on the overall power and energy consumption and the impact of DRAM performance when executing

a more memory-bounded kernel. On the other hand, by assessing the GPU performance and energy

consumption, with the same kernel, while acting on the core DVFS domain, it provides an understanding

of how to best tune the core when the performance bottleneck is not within it.

void DRAMcode(DATA_TYPE *IN0 , DATA_TYPE *IN1 , DATA_TYPE *OUT) {

const int ite = (blockIdx.x * THREADS + threadIdx.x) % MEM_BLOCK;

volatile register DATA_TYPE r0;

#pragma unroll

for (int i = 0; i < N; i++) {

r0= IN0[i * C + ite] + IN1[i * C + ite];

#pragma unroll

for(int j = 0; j < OPS; j++)

asm volatile ("");

OUT[threadId] = r0;

}

}

Listing 3.1: DRAM Benchmark Code

Listing 3.2 renders a benchmark that was specifically designed to evaluate the occurrence of the

phenomenon called bit-flip and the preservation of the data in memory when exposed to undervoltage.

A bit-flip is an unintentional state switch (from 0 to 1, or vice versa) of any individual bit stored on a

DRAM or other kinds of volatile memories. The work of Kim [49] exposed the existence of bit-flipping on

CPU DRAM, induced by the continuous activation of a DRAM row that corrupts the data in near-by rows.
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The work was of such significant importance that the benchmark called rowhammer2 to test this exact

problem started to be of severe importance to guarantee data integrity in novel systems. The benchmark

on Listing 3.2 is a GPU implementation of rowhammer that is going to be used to assess if undervolting

the GPU can increase the possibility of such problem.

void DRAMstresser(DATA_TYPE *IN, DATA_TYPE *OUT) {

const int ite = threadIdx.x;

volatile register DATA_TYPE r0;

// Initiate output memory

OUT[ite] = IN[ite];

OUT[ite + THREADS * BLOCKS] = IN[ite + THREADS * BLOCKS ];

for (int i = 0; i < N; i++) {

r0 = IN[ite];

#pragma unroll

for(int j = 0; j < OPS; j++)

asm volatile ("");

OUT[ite] = r0;

}

}

Listing 3.2: DRAM Bit-Flip Stress Test Code - rowhammer inspired benchmark

For the memory tests (DRAM, Cache and Shared Memory), only the integer data type was consid-

ered, since the effects on memory are the same for floating-point operations and it is easier to identify

data corruption with integer data types.

Cache

As previously stated, even though the caches are part of the memory subsystem, they are under

the core DVFS domain. The devised benchmark, presented on Listing 3.3, follows a similar stressing

pattern to Listing 3.1. However, with the addition of the external k loop, the access pattern is repeated,

and so, after the first execution, the data will be available on one of the two levels of cache. Hence,

this kernel is then able to test both the state machine responsible for establishing the communication

between the cache and the DRAM and the cache itself (results verified with GPU counters).

For this benchmark, the number of issued requests to the cache and to the DRAM-cache controller

stays the same independently of the OPS value. However, the frequency of those requests is inversely

proportional to OPS.

Shared Memory

The proposed benchmark to characterize the Shared Memory is presented in Listing 3.4. This com-

ponent is shared between threads in the same CU/SM and is used to ensure the communication be-

tween the different executing threads. As so, the developed benchmark uses this component to move

data around. Similarly to the DRAM and cache kernels, the OPS variable controls the time distance

between memory requests, allowing to control the level of stress over this component and while as-

sessing its behaviour. To guarantee a correct and repeatable execution, the synchronization directive

syncthreads() is used to synchronize all the threads that use the same shared memory.

2github.com/google/rowhammer-test
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void CacheL2code(DATA_TYPE *IN, *OUT) {

const int ite = blockIdx * THREADS + threadIdx;

volatile DATA_TYPE r0;

for (k=0; k<N; k++) {

#pragma unroll

for(j=0; j<COMP_ITE; j++) {

r0= IN[ite];

#pragma unroll

for(m=0; m<OPS; m++)

asm volatile ("");

OUT[ite] = r0;

}

}

}

Listing 3.3: CacheL2 Benchmark Code

void SharedMemorycode(DATA_TYPE *IN , DATA_TYPE *OUT) {

__shared__ DATA_TYPE shared[THREADS ];

const int ite = blockIdx * THREADS + threadIdx;

const int t = threadIdx.x;

const int tr = THREADS - t - 1;

volatile register DATA_TYPE r0 = IN[ite];

for (int i = 0; i < N; i += UNROLL_ITE) {

#pragma unroll

for(int j = 0; j < UNROLL_ITE; j++)

shared[t] = r0;

__syncthreads ();

for(int k = 0; k < OPS; k++)

asm volatile ("");

r0 = shared[tr];

__syncthreads ();

}

OUT[ite] = r0;

}

Listing 3.4: Shared Memory Benchmark code

Arithmetic and Logic Unit (ALU)

The arithmetic and logic unit (ALU) is responsible for performing all the GPU computations. Being

the component that performs such a different number of operations, a set of benchmarks was devised to

stress this component in different ways. Overall, the focus of testing this component was on the under-

standing the degree of computational errors that may occur when overly undervoltage is applied, these

resulting from timing violations across the critical path. Of significant importance when investigating

the timing faults on the critical path is to test the influence of data dependencies in the code, as these

may influence how the warps scheduler orders the threads for execution on the CU/SMs. The devised

benchmarks that test the ALU were designed to use all the available threads on the GPU.

In Listing 3.5, a greater emphasis was devoted to the MAC operation due to its prevalence in the

Deep Learning (DL) domain. To test the influence of data dependencies on the application, and so the

way the scheduler handles the execution of the different threads, a value between 0 and 5 is assigned

to variable d . When d = 0, no dependencies exist in the code. The setup with d = 1 represents the

worst-case scenario, since it introduces Read-after-Write (RaW) dependencies between all operations.

This particular dependency setup was emphasized in the presented study, due to the prevalence of such

type of data dependencies in kernels executed by DL workloads. On the other hand, the setup with d = 3

was considered a general case, where some dependencies still exist in the code, but the scheduler can
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mask some of them.

void MACcode(DATA_TYPE *IN, DATA_TYPE *OUT) {

const int ite = (blockIdx * THREADS + threadIdx) * 4;

volatile DATA_TYPE r0, r1 , r2 , r3, r4, r5;

r0=IN[ite]; r1=IN[ite +1]; r2=IN[ite +2];

r3=IN[ite +3]; r4=IN[ite]; r5=IN[ite +1];

for(j=0; j<COMP_ITE; j++) {

r0 += r0 * r{0-d};

r1 += r1 * r{1-d};

r2 += r2 * r{2-d};

r3 += r3 * r{3-d};

r4 += r4 * r{4-d};

r5 += r5 * r{5-d};

}

OUT[ite/4] = r0;

}

Listing 3.5: MAC Benchmark Code

Non-Linear Operations

Besides the MAC operation, the ALU also computes a set of non-linear functions, including exponen-

tial, logarithmic and trigonometric operations. For such purpose, it uses the special function unit (SFU).

The devised benchmark presented in Listing 3.6 tests those operations to find if the undervoltage mech-

anism, when in use, introduces some modifications in the critical path and so, negatively influences the

guardband size.

void NonLinearcode(DATA_TYPE *IN , DATA_TYPE *OUT) {

const int ite = (blockIdx * THREADS + threadIdx) * 4;

volatile DATA_TYPE r0, r1 , r2 , r3;

r0=IN[ite]; r1=IN[ite +1]; r2=IN[ite +2]; r3=IN[ite +3];

for(j=0; j < N; j+= UNROLL_ITE) {

#pragma_unroll

for(j=0; j < UNROLL_ITE; j++) {

r0 = exp(r2);

r1 = cos(r3);

r2 = log(r0);

r3 = sin(r1);

}

}

OUT[ite/4] = r0;

}

Listing 3.6: Non-linear Operations Benchmark Code

Branches

Listing 3.7 renders the devised benchmark to tests the influence on the execution of branches on a

kernel. SIMT processors do not favor the existence of branches on code, since it prevents the simulta-

neous execution of all threads. The scheduler’s job is to organize the running threads in wavefronts to

be simultaneously executed depending on the execution path dictated by the branches on the kernel. An
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increased number of branches makes the job of the scheduler more difficult. So, the developed bench-

mark analyses the influence of reducing the supply voltage on the scheduler operation. On Listing 3.7,

the #define BRANCHES directive sets the desired number of branches to test between 1, 2, 4 and 8.

#define BRANCHES VALUE

void Branchescode(DATA_TYPE *IN, *OUT) {

const int ite = (blockIdx * THREADS + threadIdx ;= % MEM_BLOCK;

const int branch = ite % BRANCHES;

volatile register DATA_TYPE r0, r1, r2 , r3;

for (int i = 0; i < N; i++) {

if(branch == 0) r0 = IN[ite];

#if BRANCHES >= 4

else if(branch == 1) r1 = IN[ite];

else if(branch == 2) r2 = IN[ite];

#elif BRANCHES == 8

else if(branch == 3) r3 = IN[ite];

else if(branch == 4) r0 = IN[ite];

else if(branch == 5) r1 = IN[ite];

else if(branch == 6) r2 = IN[ite];

#elif BRANCHES >= 2

else {r3 = IN[ite ];}

#endif

OUT[ite] = r0;

}

}

Listing 3.7: Branches Benchmark Code

Reduction

The reduction benchmark, presented in Listing 3.8 performs the reduction of a N -sized vector to

N/blockDim elements, by performing an element-wise sum. The tested implementation of this operation

is considered the one that achieves the highest performance, and so, it is the most widely used. It makes

use of the shared memory to enable inter-thread communication and improve performance. Hence, this

benchmark stresses all elements of the architecture (DRAM, Cache, shared memory and ALU) and

allows to assess a more complex use-case, where a single kernel stresses multiple architectural units.

This kernel’s objective is to test if this component is responsible for the observed behavior when

applying the undervoltage mechanism, or if higher-order interdependencies exist between the stressed

units.
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void Reduction(DATA_TYPE * idata , DATA_TYPE * odata ){

__shared__ DATA_TYPE s[THREADS ];

unsigned int i, k, t = threadIdx;

unsigned int index = blockIdx * blockDim * N + threadIdx;

// cooperative load from global to shared memory

s[t] = 0;

for (i=0; i< 4; i++, index += blockDim.x)

s[t] += idata[index];

__syncthreads ();

// do reduction in shared memory

if(t < 64) {

s[t] += s[t+64];

__syncthreads ();

}

if(tid <32){

s[t] += s[t+32]; s[t] += s[t+16];

s[t] += s[t+8]; s[t] += s[t+4];

s[t] += s[t+2]; s[t] += s[t+1];

}

// write result for this block to global mem

if(t == 0) odata[blockIdx.x] = s[0];

}

Listing 3.8: Reduction Kernel Code

3.2 Experimental Setup and Methodology

The devised benchmarks were applied to characterize two GPUs with different architectures: the

AMD Vega 10 Frontier Edition and the AMD Radeon 5700 XT, whose specifications are presented in

Table 3.2.

Table 3.2: Considered GPUs in the conducted experimental characterization.

Model Unit Vega 10 Radeon 5700 XT
Architecture GNC5 RDNA
CUs 64 40
DRAM size [GB] 16 8
Default Power Cap [W] 220 190
Core frequency range [MHz] [852 - 1980] [800 - 2050]
Core voltage range [mV] [900 - 1200] [750 - 1200]
DRAM frequency range [MHz] [500 - 1200] Fixed at 1000
DRAM voltage range [mV] [800 - 1200] Fixed at 1000

Default Frequency-Voltage (F-V) setups
Core F-V [MHz ; mV] [995;900, 1140;950, 1350;1050, [1200;950, 1400;1000, 1600;1050,

1440;1100, 1530;1150, 1600;1200] 1800;1100, 2000;1200]
DRAM F-V [MHz ; mV] [500;900, 800;950, 950;1000] [1000;1000]

As it was described in Section 2.3, the DVFS system automatically selects, according to the GPU

workload, power and temperature, a voltage-frequency pair from the ones presented in Table 2.1. How-

ever, through the use of the GPU vendor ROCm System Management Interface (rocm-smi3) tool, it is

possible to independently control the frequency and voltage values of the performance levels. The fol-

lowing section presents the capabilities of the software tool and testing methodology. Annex A provides

a more comprehensive description of how rocm-smi is used to set the target voltage frequency pair.

3github.com/RadeonOpenCompute/ROC-smi
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Finally, to ensure that the GPU power cap does not block any of the intended configurations, its value is

changed to match each GPU thermal design cap (220W to 300W for the Vega 10 and 190W to 285W on

the Radeon 5700 XT). The GPUs under test are installed on a machine equipped with an Intel i7 4770K

CPU, with 32 GB of main memory.

3.2.1 Voltage and Frequency control API

The ROCm System Management Interface (rocm-smi)4 is a user-friendly command-line application

for manipulating the Radeon Open Compute Kernel (ROCk). This tool makes it possible to know and

control the state of the GPU devices present in the system.

• GPU utilization: Retrieves the current utilization rates corresponding to the device’s major sub-

systems, one value for the processing core and other for the main device memory. The rate is

computed over a specific time interval set on the device driver. The processing core utilization

reflects the percentage of time that the GPU core was being used to perform computations. In

contrast, the main device memory utilization reflects the percentage of time the memory was be-

ing read or written.

• GPU power: Retrieves the average power used by the device. Similarly to the utilization rate, the

average power is computed over a defined time interval, during which a number of power samples

are taken.

• Clock rate and voltage level: Retrieves both the current clock frequency and device voltage

level. Of significant importance is the fact that the retrieved voltage corresponds to the maximum

measured value between the GPU core and the main device memory voltage. Current versions of

AMD GPUs do not allow for querying the specific voltage value of the different DVFS domains.

The tool also displays the performance level tables for the Core and DRAM DVFS domains.

The rocm-smi interface also allows querying the device temperature, the current fan speed, and the

selected performance level.

rocm-smi also provides a mechanism to control and change some of the device parameters:

• Set performance profile: Allows the user enable/disable the automatic DVFS system. When

disabled, the GPU adopts the user-defined voltage and frequency pair.

• Set clock rate and voltage level: Set the clock frequency and the voltage level of any of the

performance levels of both the GPU core and memory.

• Reset clock rate and voltage level: Resets the clock rates and voltage levels to the default

values.

Additionally, the interface allows the user to manually set the fan speed that is required to guarantee

the same temperature level for all executed tests.

The versatility and ability to independently control the clock rate and voltage level of the device,

enabled by rocm-smi, was the defining factor for choosing an AMD GPU over the more popular NVIDIA

options.
4github.com/RadeonOpenCompute/ROC-smi
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3.2.2 Testing procedure

The default frequencies of the GPU Core and DRAM domains, presented in Table 3.2, were selected

as the starting point for the proposed non-conventional DVFS. For each frequency, the devised exper-

iment started at the maximum voltage (1200mV ) and a gradual undervoltage of the GPU V-F domain

under test was applied with 50mV steps. For each step, the benchmarks were executed ten times to

obtain the median value of the execution time and energy consumption.

All the tests were performed using randomly generated inputs to avoid any bias incurred by the

considered data values. Integer values were obtained from a normal distribution across their complete

32-bits range, while floating-point operands were generated using a uniform distribution in the interval

[0.1 ; 1]. The choice for limiting the floating-point range to an interval with a maximum value inferior to

one ensures that operations are never applied to numbers with a significantly different exponent value,

thus avoiding rounding errors that would conduct to the discard of the operator with the lowest absolute

value.

While performing the undervoltage, the GPU goes through three distinct stages. At the first stage

(working), the GPU works regularly, and no changes are detected in the application output. Then, by

continuing the GPU voltage reduction, some computational errors are introduced and some application

outputs change when compared with the default voltage setup (the output comparison between con-

ventional and non-conventional execution is performed on the CPU). For the integer experimentation, a

computational error is asserted if the output value differs from the default run; for the floating-point op-

eration, the relative error between the default and non-conventional run is computed for each individual

result. When the relative difference between the above is greater than 10−4, it is said that the result has

computational errors. By reducing the GPU voltage beyond this stage, the GPU enters into the crash

state, becoming unusable.

To accurately determine the areas of interest (i.e., when only infrequent computation errors occur)

and to determine the crash point, the undervoltage step was reduced to 10mV . Furthermore, when

dealing with the DRAM V-F domain, the Core V-F domain was set to its default values; during the

characterization of the Core V-F domain, the highest frequency and default voltage of the DRAM domain

was selected.

The GPU power consumption was measured using gpowerSAMPLER5 [50], at every millisecond. At

the end of the execution, the energy is computed as the integral of all the taken measurements.

3.3 Limiting components to the voltage exploration space

The execution of the different benchmarks while controlling the V-F values provided usable infor-

mation about the voltage guardband each component has. More specifically, it allowed to explore and

quantify how far it is possible to decrease the operating voltage from each default frequency level while

measuring the impact on the application output and working capabilities of the GPU device.

This section presents the voltage margin results for every architectural component of the Vega 10

and Radeon 5700 XT GPUs. The Radeon 5700 XT only has the Core DVFS domain, so the results of

the DRAM DVFS domain were only obtained on the Vega 10 GPU.

5github.com/hpc-ulisboa/gpowerSAMPLER
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For the Core domain, only the frequencies above and equal to 1440MHz (for the Vega 10) and

1600MHz (for the Radeon 5700 XT) are shown in order to reduce the charts size. For all frequencies

below, it was found that the GPU could be run at any voltage from the default to the minimum (900mV

for the Vega 10 and 750mV for the Radeon 5700 XT).

3.3.1 DRAM

Figure 3.2 illustrates the usable voltage range of the DRAM domain on the Vega 10 GPU. Across the

complete and tested frequency range, it is possible to undervolt the memory to 800mV , independently

of the value of OPS parameter (varying between 0 and 50 operations - see Listings 3.1). The conducted

experiment shows that no computation error or crashes happen for the default frequencies within the

complete voltage range. The kernel runs successfully, with no perceptible change in the output.
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Figure 3.2: Vega 10 - DRAM domain - Usable voltage for each frequency configuration.

The result and the conclusion derived from the previous experiment was further verified with the

execution of the kernel of Listing 3.2. It is of extreme importance to validate if the use of lower voltage

values induces data corruption on two edge cases: extreme use of part of the DRAM and prolonged

data storage. That said, the kernel was executed, and after time intervals of 1, 2, 5, 10, 30 minutes and

1, 2, 4 and 8 hours, the output data was retrieved and compared to the original set. Again, no perceptible

change in the output was detected, further validating the previous result and assessing that the DRAM

can be successfully used with lower voltage levels.

3.3.2 Cache

Figure 3.3 presents the usable voltage interval at different frequency setups for both GPUs. For

the Vega 10 GPU, no computation errors or crashes were observed at frequencies below 1530 MHz.

The GPU operates correctly works at the lowest voltage across all the tested frequencies. Only for

frequencies higher than 1530MHz the undervoltage resulted in the program crash. A critical observation

is that no computation errors occur, meaning that this architectural component either works normally

or makes the GPU crash. This phenomenon is of significant importance to identify the root cause

of failures: whenever it is observed a GPU crash without prior computation errors, this may be the

preeminent component causing it. Furthermore, an increase of the OPS parameter allows for a higher

amount of undervolt. Since this change only affects the stress over the DRAM-Cache controller (the

number of cache accesses and hit-rate maintains the same), it can be concluded that it is the Cache-

DRAM controller that limits the undervoltage range and not the memory elements of the cache.
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For the Radeon 5700 XT a similar behaviour is observed. For frequencies below 1600 MHz, it is

possible to use the GPU at the lowest voltage without any computation errors or crashes being observed.

For higher frequencies, when the voltage is reduced the most, the GPU can crash. Increasing the value

of the OPS parameter (decreasing Cache stress) increases the undervoltage capabilities.
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Figure 3.3: Core domain - Cache L2 - Usable voltage for each frequency configuration with varying
cache stress (OPS value).

3.3.3 Shared Memory

The obtained voltage guardband results for the Shared Memory are presented in Figure 3.4. Similarly

with the Vega 10 Cache results, the benchmark’s output was not affected by the applied undervoltage,

for frequencies below 1530MHz, with the GPU operating correctly in the complete voltage range. For

the frequencies above and equal to 1530MHz, both computation errors and crashes occur. With the

increase of the OPS parameter, from 0 to 10, it is observable that the GPU starts allowing an increase of

10mV of undervoltage. This phenomenon indicates (and was also confirmed with GPU counters) that

with the reduction of the shared memory stress, the limiting factor to Vmin switches from the shared

memory to the ALU (result confirmed ahead). The conclusion was further validated for the test at

1600MHz, where increasing OPS to 40 makes the GPU start crashing, meaning that the ALU is now the

limiting factor.

For the Radeon 5700 XT, a similar behavior is found. However, even at the test with OPS=40 the

limiting factor is still the Shared Memory. This is mainly due to a reduced memory interface and to

a lower maximum memory bandwidth of the Radeon 5700 XT (256-bit and 448GB/s), contrasting to

2048-bit and 484GB/s of the Vega 10 GPU.

3.3.4 Arithmetic and Logic Unit

Figure 3.5 represents the usable undervoltage range for the ALU benchmark. This benchmark was

executed either for integer and for the several different floating-point precisions available on each GPU.

On the Vega 10 GPU, and in all considered scenarios using an operating frequency below 1440 MHz,

the benchmark was successfully run for all voltage values. For higher frequencies, it is observed that

some computation errors start appearing after a certain amount of undervoltage. In particular, the

GPU crashes if a further undervoltage level is applied. It is also observable that the voltage margin
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Figure 3.4: Core domain - Shared Memory - Usable voltage range for each frequency configuration with
varying shared memory stress (OPS parameter).

increases with the operating frequency, from around 170mV for 1440 MHz to around 210mV for 1600 MHz

(values for single-precision floating-point). On the Radeon 5700 XT GPU, the ALU benchmark works

correctly independently of the applied voltage, for frequencies below 1600 MHz. At higher frequencies,

and similarly to what happens with the Vega 10, a computation error margin exists when undervolting,

before the occurrence of crashes. Overall, the Radeon 5700 XT GPU allows more than 200mV of safe

undervoltage across the complete frequency spectrum.

In general, it was observed that the operands that are ”easier” to compute (namely the integer and

half-precision) allow the highest amount of undervoltage, not being the computation of those the limiting

factor of the ALU. In fact, it was expected that when comparing floating-point single precision with double

precision, the second would have a worse undervolting capabilities, due to having the double amount

of bits to compute. However, the opposite relation was observed, with double-precision allowing for an

extra 10 to 20mV of undervoltage (when comparing the crash point). This leads us to conclude that

single and double floating-point computation is not performed in the same way. In fact, although most

RISC microprocessors are pipelined, the way the pipeline stages are divided is not the same. It is

reasonable to expect that the double-precision computation is split among more clock cycles than the

single precision, allowing for an extra relaxation of the timing constraints on that data path.

The dependencies effect also varied from integer to floating-point operation. In the first case, the

code’s dependencies do not affect the size of the voltage margin. In the second case, the existence of

dependencies in the code reduces the voltage margin’s size. In general, when compared with the setup

with no dependencies (d=0), the undervoltage range of the benchmark configuration that represent the

general case (d=3 - see Listings 3.5) is reduced by 10mV.

3.3.5 Non-linear Operations

The special function unit (SFU) was also tested for floating-point operation of single and double-

precision, with the results being presented in Figure 3.6. Similarly with the results of the MAC operation,

double precision allows a further 10 to 20mV of valid undervoltage, when compared to single precision.

Overall, this unit’s voltage guardband is similar to the one of the ALU on the MAC operation.
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Figure 3.5: Core domain - ALU-MAC - Usable voltage margins for the different data types and operand’s
precision.
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3.3.6 Branches

Figure 3.7 presents the results of the branches test. As it can be observed, the number of branches

on the kernel did not affect the voltage guardband’s size, with all configurations (for each operating

frequency) allowing the same degree of undervoltage. Hence, the obtained result allowed the conclusion

that branch miss-prediction does not negatively impact Vmin. It is expected that, independently of the

number of branches that a kernel has, the limiting factor to Vmin is the type of operations being executed,

leading to computational errors and eventually to GPU crash as determined by the other experiments.

(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.7: Core domain - Branches - Usable voltage for each frequency configuration with varying
number of branches per iteration.

3.3.7 Reduction

Figure 3.8 presents the usable voltage range for the reduction benchmark. As can be seen, due to

the high pressure exercised on the cache by this benchmark, the minimum usable voltage coincides with

the one already measured for the Cache benchmark. The ALU benchmark can explain the several data

types range of compute errors and Vmin value differences, with double-precision floating-point having a

bigger margin of computational errors (on the Radeon 5700 XT) and overall reduced voltage guardband

at the higher frequencies on both GPUs.
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Figure 3.8: Core domain - Reduction benchmark - Usable voltage for each frequency configuration with
varying operand type: Int - 32-bit Integer, SP - Single Precision Floating-Point, DP - Double Precision
Floating-Point.
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3.3.8 General Comments and Remarks

Figure 3.9 presents a comprehensive comparison of the valid voltage ranges for all the considered

architectural components of both GPUs. The general observation is that the CacheL2 and the ALU are

the two components that tend to compromise the undervoltage capabilities. CacheL2 affects the kernels

that are more memory intensive, while the ALU limits those that are more compute-intensive, either with

linear or special non-linear operations.

In more detail, the results of both benchmarks that test the ALU are similar. This allows concluding

one of two things, either there are two similar critical paths (in terms of timing constraints) on both the

linear and non-linear data paths, or the critical path is at the beginning of the ALU where the operands

are forward to the appropriate computational unit. Although it is not possible to assess which preposition

is the correct one, the second explanation tends to be more credible.

In general, even though two completely different GPU architectures are under test, the general be-

havior of both is similar. At the lower frequencies available, the minimum voltage can be safely applied

without the existence of computation errors or crashes. The utilization of undervoltage for higher fre-

quencies will depend on which components the application being executed stresses the most. Across

all frequencies, both GPUs allow for more than 20% of safe undervoltage, being a considerable amount

to be explored in the following section.
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3.4 Effect of a decoupled V-F scaling on performance and energy

consumption

As it was observed in the previous section, the GPU behavior to V-F scaling depends on the stressed

components. Having explored and established the usable V-F pairs, this section presents the energy-

performance charts and the EDP heat-maps for each of the tested benchmarks. In particular, this

section’s results indicate the maximum attainable improvement on each component and acts as a target

optimization for subsequent analysis using complete applications.

For an easier understanding of the obtained results, the following charts only represent the data-

points that correspond to voltages equal-to and lower-than the default voltage of each frequency level (no

interesting data is found at higher voltage levels), with each data point representing a 50mV undervoltage

in relation to the previous one. Furthermore, the presented performance, energy consumption, and

energy-delay product charts are normalized to the results achieved with the highest core frequency and

default voltage ( Vega 10 - {1600 MHz; 1.2V} and Radeon 5700 XT - {2000 MHz; 1.2V}). As such, a

smaller number indicates an improvement in relation to that configuration.

3.4.1 DRAM

Figure 3.10 illustrates the normalized performance and energy consumption of the conceived DRAM

benchmark (see Listings 3.1) when varying the OPS parameter between 0 and 50 operations for the

DRAM DVFS domain, normalized to the highest DRAM DVFS V-F configuration - {950MHz, 1V}.

This experiment shows that, for all OPS values (0 to 50), the highest DRAM frequency delivers not

only the best performance but also the lowest energy consumption. Moreover, undervolting the DRAM

at that frequency did not result in a relevant reduction in the total GPU energy consumption, leading to

the conclusion that the weight of DRAM in the GPU energy consumption is not significant in relation

to the Core energy consumption. In accordance, the highest DRAM frequency will be hence-forwardly

considered, guaranteeing the maximum performance and leaving the voltage control for the automatic

DVFS system.

undervolt

undervolt

undervolt

undervolt

0op

0op

25op

10op

10op

@MEM = { 950MHz, 1V }
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50
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H
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remaining
points

Figure 3.10: Vega 10 - DRAM domain - DRAM benchmark - Normalized energy consumption and ex-
ecution time. Each connected data point represents a 50mV undervoltage in relation to the previous
one.
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A collateral experiment was also conducted to evaluate any possible cross-relation between the

applied V-F setup at the Core domain when executing the DRAM benchmark with a variable amount

of stress in memory bounded kernels. Figure 3.11 illustrates the normalized performance and energy

consumption, with varying OPS parameter between 0 and 50 operations (see Listings 3.1). For this

benchmark, it is not relevant to determine the minimum usable voltage, since that value will be defined

by the type of operations being performed on the Core. The objective is to determine the configuration

that offers the best energy efficiency for kernels that are memory bounded.

The experiment shows that for memory bounded kernels (OPS values 0 and 10), performing frequency

scaling at the core domain does not change the computation time. However, it significantly impacts the

energy consumption (going from the highest frequency to the lowest yields a 54.2% reduction on energy

consumption). For the case of a kernel that is not memory bounded (OPS = 25), the benefit of exploring

non-conventional V-F pairs becomes clear. However, as stated, the optimization of the V-F pairs for

compute bounded kernels depends on the type of operations being performed in the ALU, analyzed in

the following sections.
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@CORE = { 1600MHz, 1.2V }

Figure 3.11: Vega 10 - Core domain - DRAM - Normalized energy consumption and execution time. The
dashed line connects the default V-F configurations and each connected data point represents a 50mV
undervoltage in relation to the previous one.

3.4.2 Cache and Shared Memory

Figure 3.12 and 3.14 presents the normalized energy consumption and execution time for different

V-F setups for the cache and shared memory benchmarks, respectively. Acting on core domain, the

normalization of the present and all subsequent benchmark is done to the highest V-F configuration

available:Vega 10 - {1600 MHz; 1.2V} and Radeon 5700 XT - {2000 MHz; 1.2V}.

In what concerns the energy and performance variations, it was observed that performing the con-

ventional voltage-frequency scaling (using the default voltage by for each frequency value - points con-

nected by the dashed line) provides an energy consumption as high as 46% for Vega 10 GPU and 30%

for Radeon 5700 XT GPU. However, this also introduces a performance degradation of 61% on both

GPUs.

As it was refered before, the advantage of performing non-conventional DVFS becomes apparent by

allowing for energy reduction without any performance degradation. For example, the Vega 10 running at
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{1600MHz ; 1V} allows an energy reduction of 36% while still being a peak performance. In the Radeon

5700 XT case, the use of non-conventional V-F pairs yields a minimum energy consumption that is

even lower than the most energy-saving default V-F configuration, with the configuration of {1800MHz ;

0.8V} achieving an energy consumption reduction of 41% with only a 10% performance downgrade. This

energy consumption reduction is twice as big as the one achieved at the most energy-saving default V-F

configuration. The results of the shared memory are similar.
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(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.12: Core domain - Cache L2 - Normalized energy and performance variations with OPS=0. The
dashed line connects the default F-V configurations.

Figure 3.13 and 3.15 presents the obtained EDP for the Cache and shared memory benchmarks.

These components favor the utilization of minimum voltages to achieve an EDP improvement of over

40%. Comparing the non-conventional V-F results to the default ones, and taking into account the

results of the previous section, using the proposed configurations improves performance and energy-

consumption, and so energy efficiency without any inconvenient.

Underlined results correspond to default V-F pairs.

(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.13: Core domain - Cache L2 - Obtained normalized Energy-Delay Product (EDP) with OPS=0.

3.4.3 Arithmetic and Logic Unit

Figure 3.16 represents the normalized (to the highest core domain V-F configuration) energy con-

sumption and execution time of the MAC benchmark for different V-F pairs. In the figures that follow, it

was chosen to represent the result of the single-precision floating-point data-type, since it is the most

used. However, the results for the remaining data types are similar.

An interesting phenomenon is observed in the energy-execution time plot for the highest frequencies

of both GPUs. Performing undervoltage not only reduces energy consumption (as expected), but it

also allows for faster execution time. An explanation can be found by analyzing the power consumption
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(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.14: Core domain - Shared Memory - Normalized energy consumption and execution time. The
dashed line connects the default F-V configurations and each connected data point represents a 50mV
undervoltage in relation to the previous one.

Underlined results correspond to default V-F pairs.

(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.15: Core domain - Shared Memory - Obtained normalized Energy-Delay Product (EDP) with
OPS=0.

during the benchmark execution. For the default voltage, the power surpasses the power cap, which

activates the GPU protection mechanisms, halting the execution until the power is reduced. By applying

an undervoltage, the power significantly decreases (as PStatic ∝ V and PDynamic ∝ V 2, see [50]) and

allows a sustained maintenance of the desire DVFS configuration.
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(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.16: Core domain - ALU-MAC - Normalized energy and performance chart for the benchmark
setup with different values of d for single precision floating-point (see Listing 3.5). The dashed lines
connect the results for default F-V configurations.

Finally, Figure 3.17 presents the obtained EDP chart for single-precision floating-point data-type. The

Vega 10 GPU favors higher frequencies to achieve the best energy efficiency, while the Radeon 5700

XT achieves better results at the frequencies where it is possible to undervolt the most.
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d=1 d=3

Underlined results correspond to default V-F pairs.

(a) Vega 10.

(b) Radeon 5700 XT.

Figure 3.17: Core domain - ALU-MAC - Obtained normalized Energy-Delay Product (EDP) for d=1, 3.

3.4.4 Non-linear Operations

Figure 3.18 showcases the normalized energy consumption and execution time for different V-F pairs

for the single-precision floating-point SFU benchmark. In this case, the GPU behavior differs on the two

architectures. Vega 10 displays a similar behavior, to Cache and Shared Memory benchmarks, with the

applied undervoltage not affecting the performance. On the other hand, the Radeon 5700 XT behavior to

non-conventional V-F is more similar to the MAC benchmark. At the two highest frequencies, performing

undervoltage has a more significant benefit on performance than on energy.

Overall, the degree of energy savings that is achieved goes in line with the previous results.
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(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.18: Core domain - Special Function Unit - Normalized energy and performance for single-
precision floating-point data type. The dashed lines connect the results for default F-V configurations.

Figure 3.19 represents the obtained EDP heat-map, where it can be seen that the best energy

efficiency is achieved with the highest amount of undervoltage, with this unit favoring lower frequencies

on both GPUs.
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Underlined results correspond to default V-F pairs.

(a) Vega 10. (b) Radeon 5700 XT.

Figure 3.19: Core domain - Special Function Unit - Obtained Energy-Delay Product (EDP) for single-
precision floating-point data type.

3.5 Temperature Model

The ALU and Cache L2 benchmarks were tested at a set temperature of 45oC, by fixing the GPU

fan to 100% and waiting for the temperature to stabilize between runs. This temperature was chosen

by observing that the GPU’s temperature, while executing short benchmarks, stabilized around that

temperature. However, during the execution of longer applications or when changing environmental

conditions, the device can become hotter. The described work of Leng et al. [1] pointed out that only a

small variation on Vmin is observed due to temperature variations. However, the performed experiments

only cover temperatures up to 70oC, easily surpassed by the GPU underuse.

To access the undervoltage capabilities in a broader range of temperatures, the benchmarks were

continuously executed on both GPUs, by varying the GPU fan speed, and the output of the execution

was analyzed. Varying the frequency did not change the temperature behavior, so the results of all

executions were combined in Figure 3.20, where only the results corresponding to voltage variations

were represented.

Temperature ModelWorking Computation Error Crash

Figure 3.20: Undervoltage capabilities with changing temperature condition and defined temperature
model.
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Hence, changing the amount of undervolt or fan speed resulted in the three different output scenarios.

Working - the benchmark’s output was correct and was the same as when running with conventional V-

F pairs. Computation Errors - the benchmark’s output was not correct. However, the GPU was still

working and responding to the kernel commands. Crash - the GPU stop working and responding to the

commands of the application.

Overall, the undervoltage capabilities stay relatively the same until the 70oC to 75oC temperature,

with the highest undervoltage capabilities being achieved at the 55oC mark. After the 75oC mark, and

following Freijado’s work [19], the carriers’ mobility decreases and starts limiting the undervolting capa-

bilities of the CMOS circuit. This result leads to the creation of a simple temperature model that limits

the undervoltage potential for temperatures above 70oC, as indicated in Figure 3.20. This model acts as

a fail-safe that guarantees that the non-conventional V-F exploration performed at 45oC (as described

until now) can be safely used across the complete temperature spectrum. The final user will have to limit

the percentage of undervoltage according to this model, depending on the current GPU temperature.

By doing so, it guarantees that setting a safe non-conventional V-F pair will not cause a GPU crash with

temperature rise.

3.6 Summary

The work presented in this chapter has three distinct objectives: 1) it acts as a feasibility assess-

ment, allowing us to understand, measure and evaluate the degree of undervoltage that current GPU

architectures allow; 2) it characterizes the optimization space that one should consider to achieve the

best energy-efficiency out of the devices; and 3), it works as a target energy-efficiency optimization

benchmark to measure against non-conventional V-F pairs in complete applications.

After analyzing both DVFS domains, the characterization of the Vega 10 GPU showed that the DRAM

domain does not benefit from either non-conventional V-F pairs or even solely frequency scaling. AMD

should have made the same conclusion since the next generation card (Radeon 5700 XT) omitted this

DVFS domain.

The following chapters will focus on improving the device energy efficiency by controlling the Core

DVFS domain. On this domain, it was found that both GPUs significantly benefit from non-conventional

V-F pairs, by allowing an increase of the energy efficiency at lower operating frequencies while having

(and even surpassing) the performance corresponding to the traditional highest frequency and voltage

configurations.
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Chapter 4

Decoupled V-F Optimization

Mechanism

The preliminary results that were presented in the previous chapter denote the idea that energy-

efficiency (in particular, the EDP metric) of an out-of-the-shelf GPU can be significantly improved if a

specific non-conventional V-F pair is applied on the Core DVFS domain.

However, the preliminary experiments that were conducted in the previous chapter, did not include

any adaptation of the frequency and voltage scaling in a dynamic way, being one of this dissertation’s

objectives. To address this dynamic tuning of frequency and voltage, while using the increased explo-

ration space of the operation conditions (and taking into account that it is necessary to guarantee a

safe GPU operation), two approaches are now envisioned: creating a forecasting model, or creating an

online optimization mechanism.

The forecasting model would predict the most appropriate V-F pair based on the application executing

code (static analysis of the Assembly code) and performance counters (run-time trace of the application

being executed). This option would have the benefit of allowing the complete execution of the target

application under the best possible configuration. However, such a forecasting model would also have

to take into consideration the GPU temperature, utilization (the target application being executed by

itself or concurrently with others) and more importantly, it would be very tied to a specific GPU model.

Consequently, this option would become rather complex and not easily scalable between different GPUs.

On the other hand, an online iterative optimization mechanism could target the native code repetition

patterns usually observed in GPGPU applications. For these applications, the best overall configuration

is the best V-F pair for each algorithm’s step, so by intelligently exploring a V-F configuration in each

iteration of the user application, it is possible to find the best V-F pair for the running algorithm. This

approach brings the added advantage of optimizing not only the GPU pre-execution state, account-

ing for the aging and all PVT variations, but it also reacts to the on-execution state, changing the V-F

configuration in accordance with device temperature and utilization.

Due to the added benefits of targeting the current GPU state, the second approach, consisting on the

creation of an online V-F optimization mechanism, was followed. Accordingly, this chapter is divided into

three sections with the following outline: Section 4.1 presents a description of the developed optimization

mechanism; Section 4.2 describes the interfaces and other programs that were used to develop the
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devised mechanism. Finally, Section 4.3 presents a description of the implemented functions and how

they should be integrated in the user application.

4.1 Decoupled V-F Optimization Mechanism description

The envisioned V-F optimization mechanism aims to search and find the optimal V-F configura-

tion to the running GPGPU application and current GPU state, optimizing it for performance, energy

consumption or energy-efficiency (EDP). As it was described in the previous chapter, this optimal V-F

configuration depends on the type of computations being performed, the GPU temperature, utilization,

PVT variations and aging, and it is obtained by searching over an exploration space based on the set of

observations that were obtained from the set of experiments covered on chapter 3.

An essential consideration that must be taken into account when designing the optimization mecha-

nism is the time that the regular GPUs voltage-frequency controllers take to change these parameters.

As described in Chapter 2, the controllers equipping out-of-the-shelf devices take between 200 to 500

ms to change and set the new V-F pair, making them unsuitable for continuously adapting to each oper-

ation executed on the device. Instead, it is necessary to group a collection of operations (as described,

a complete iteration of the user application) and find the most suitable V-F configuration for that set. In

particular, it is necessary to allow a portion of time between the V-F changes in order to guarantee that

the control mechanism has time to perform the change and stabilize both the frequency and the voltage

before continuing to execute the computation.

As it was previously referred, at the time of this dissertation, only AMD provides the necessary tools

to independently control voltage and frequency, being that a requirement that is out of our control when

designing this tool. However, if other manufacturers develop command-line applications that provide the

same degree of control, this optimization mechanism can easily be ported to accommodate the same.

4.1.1 Architecture and Execution Overview

The devised V-F optimization mechanism follows the block diagram of Figure 4.1, consisting of a two-

phase process. In the first phase, data about the GPU DVFS system is gathered and application baseline

metrics are taken. In the second phase, the user application algorithm is executed while searching for the

best V-F pair. When the best V-F configuration is found, the devised optimization mechanism continues

to monitor the user application to guarantee a safe operation, reacting to eventual GPU state changes

(for example, changing temperature).

On this context, and depending on the considered optimization metric, the best V-F configuration is

the one that achieves the highest performance, lowest energy consumption, or higher energy efficiency

for the running application. Taking into account the main objective of this dissertation, the chosen and

exemplified metric from now on is energy efficiency, evaluated using the EDP metric as described in

Equation 2.10.

The following sections describe the operation of each stage of the devised optimization algorithm.
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Application Iterations
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Optimization Algorithm Execution
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Optimization 
Mechanism

User Application
Execution

Iteration 1
Iteration 

2 to (2 + Space Exploration Steps)

Iteration 
(2 + Space Exploration Steps) to

defined number of 
user application iterations

time

Figure 4.1: V-F Optimization Mechanism Block Diagram.

Analysis of user input and test DVFS information

The proposed procedure starts by receiving the user input that summarizes the characterization re-

sults obtained in Chapter 3. The summary includes the tested Core DVFS frequencies and allowed

voltage range for each frequency that guaranteed a correct operation in all tested benchmarks. Fig-

ure 4.2 shows an example input to the mechanism and their corresponding usable execution space.

There, the user should indicate the tested frequencies and corresponding Vmax and Vmin. After that,

information about the current GPU device DVFS system is gathered and compared to the user input,

guaranteeing the validity of the proposed usable execution space, which will be explored by the opti-

mization mechanism.

[Frequencies] 990 1140 1270 1350 1440 1530 1600

[Vmax] 900 950 1000 1050 1100 1150 1200

[Vmin] 900 900 900 950 975 1000 1075

Figure 4.2: User provided input example for the optimization mechanism (left) and correspondent usable
execution space chart (rigth). Black-shaded regions represent unusable operation points (GPU crash),
while green shaded regions represent tested DVFS operating points.

Establishment of baseline measurement

In this stage, a single step of the user application is executed with the highest frequency-voltage pair

that was identified on the previous step, while the execution time and energy consumption are measured

to compute the baseline EDP value. All the following measurements are normalized to this first result, in

order to compare the results at different V-F configurations.
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Optimization Algorithm Execution

In general, each stage of the Optimization Algorithm Execution phase (Space Exploration and Fine-

Tuning) follows the flowchart presented in Figure 4.3. This has three distinct steps, denoted as Appli-

cation execution and metrics, V-F control and Online monitorization. The first and last steps are the

same for the two stages of the Optimization Algorithm Execution. However, the second V-F control step,

varies between the Space Exploration and Fine-Tuning stages, as described ahead in V-F control during

Space Exploration stage and V-F control during Fine-Tuning stage.

start

Start Performance 
and Energy 

measurements

Execute one 
User Application

iteration

End Performance 
and Energy 

measurements

Compute EDP

get device
temperature

apply temperature 
model

get user 
application output

analyze application
output

apply Probabilistic
Technique

generate new
Voltage-Frequency

pair end

Online monitorization

Application execution and metrics

V-F control

Yes

Noanalyze
application

output?

Figure 4.3: Flowchart of each iteration of the Optimization Algorithm Execution.

The following subsections describe the operation of each step of the optimization algorithm execution

stage.

Application execution and metrics

On the Application execution and metrics step, an iteration of the user application is executed, and
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the performance and energy consumption is evaluated to compute the optimization metric EDP.

V-F control

This step aims to analyze the considered optimization metric, EDP value, and, according to a proba-

bilistic technique, accept or reject the tested V-F configuration to generate a new V-F pair.

As previously stated, the devised V-F Optimization Mechanism works by iteratively exploring the

usable execution space V-F configurations, while measuring the resulting EDP value for each of them.

Hence, the challenge here is to find the most suitable configuration (corresponding to the V-F pair that

minimizes the target metric) without testing every possible configuration, as performed on Chapter 3. A

panoply of algorithms could be employed to decide which configurations to test, while searching for the

global minimum of the EDP (f, V ) function. The selection of such probabilistic technique considered

the use of the mathematical optimization technique of Hill Climbing [51] or the metaheuristic algorithm

of Simulated Annealing [52] (depending on the Optimization Algorithm Execution stage), supported on

the first by improving its ability to escape local minimums, and so improving the chances of finding an

approximate global optimum in a fixed amount of iterations.

In more detail, if the achieved EDP value is smaller than the current baseline after the Application

execution and metrics stage, the current V-F configuration is stored alongside the corresponding EDP

value as the current V-F pair baseline and it is inserted on a list of best configurations. Then, based

on the current V-F pair baseline, the new V-F configuration is generated using the algorithms depicted

ahead.

V-F control during Space Exploration stage

As the name implies, this step objective is to explore the usable execution space, finding a V-F

configuration that achieves a good approximation of min(EDP (f, V )) in a reduced number of iterations.

To tackle this problem, the Simulated Annealing algorithm was applied as the adopted Probabilistic

Technique (see Figure 4.3) of this stage. Since it is impossible to guarantee that EDP (f, V ) does

not contain any local minimums (without any prior knowledge), it is preferable to use an algorithm that

reduces the chance of those impacting the final chosen V-F configuration. In practice, this is reflected by

the algorithm allowing for some tested V-F pairs that did not achieve the best EDP value, to be accepted

and stored as V-F pair baseline and so, escaping from a possible local minimum. Based on the current

V-F pair baseline, the new V-F configuration is randomly generated according to Algorithm 1 followed by

Algorithm 2.

If no better configuration is found after N execution steps (or the predefined Space Exploration

Steps have all been tested) the Space Exploration phase is ended, and the list of best configurations is

analyzed, with the V-F configuration that achieved the best EDP acting as a baseline for the Fine-Tuning

phase.

V-F control during Fine-Tuning stage

After the execution of the Space Exploration stage, a quasi-optimal configuration is found. Consid-

ering that the current V-F pair baseline is near the global minimum of EDP (f, V ), this second stage is

responsible for fine-tuning the V-F pair to achieve the actual global minimum. For such purpose, it per-

forms the Hill Climbing algorithm around the baseline configuration, only accepting V-F pairs that achieve
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Algorithm 1 Space Exploration - Generate new frequency.
Input: baseline frequency: current baseline frequency
Input: default frequencies: list of available default frequencies
Output: new frequency: new random generated frequency
baseline frequency index← get baseline frequency index on default frequencies list
frequency step←choose random number from {−1, 0, 1}
new frequency index← baseline frequency index+ frequency step
if new frequency index < 0 then
new frequency index← 0

else if new frequency index > length(default frequencies) −1 then
new frequency index← length(default frequencies) −1

end if
new frequency ← default frequencies[new frequency index]

Algorithm 2 Space Exploration - Generate new voltage.
Input: baseline voltage: current baseline voltage
Input: new frequency: new random generated frequency
Input: UES(f): usable exploration space, provides the maximum and minimum voltage for a given

frequency
Output: new voltage: new random generated voltage
voltage step←choose random number from {−50,−25, 0, 25, 50}
new voltage← baseline voltage+ voltage step
if new voltage < UES(new frequency)[minimum] then
new voltage← minimum voltage of usable execution space for new frequency

else if new voltage < UES(new frequency)[maximum] then
new voltage← maximum voltage of usable execution space for new frequency

end if

a better EDP value. The optimal configuration may be found between two default frequencies and at a

voltage level that required to discretize the voltage range more finely. For that purpose, Algorithms 3 and

4 are used, discretizing both variables in 10 MHz and 10 mV steps.

Algorithm 3 Fine-tuning - Generate new frequency.
Input: baseline frequency: current baseline frequency
Input: default frequency range: minimum and maximum available frequencies
Output: new frequency: new random generated frequency
frequency step←choose random number from {−10, 0, 10}
new frequency ← baseline frequency + frequency step
if new frequency < default frequency range[minimum] then
new frequency ← default frequency range[minimum]

else if new frequency > default frequency range[maximum] then
new frequency ← default frequencyrange[maximum]

end if

Online monitorization

The Online monitorization step introduces two other inputs to the optimization mechanism: the device

temperature and (optionally) the application output. As it was referred to in Chapter 3, these two new

metrics impact the amount of undervoltage that is allowed, by changing the voltage defined by the V-F

control phase.

In the event that a representative variable can be obtained at the application output that identifies

its validity (for example, a floating-point number which is tested to see if it deviates from the correct
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Algorithm 4 Fine-tuning - Generate new voltage.
Input: baseline voltage: current baseline voltage
Input: new frequency: new random generated frequency
Input: UES(f): usable exploration space, provides the maximum and minimum voltage for a given

frequency
Output: new voltage: new random generated voltage
voltage step←choose random number from {−10, 0, 10}
new voltage← baseline voltage+ voltage step
pair default frequencies← compute pair of frequencies around new frequency
minimum voltage(f)← compute a linear interpolation between
UES(pair default frequencies[inferior])[minimum] and
UES(pair default frequencies[inferior])[minimum]

maximum voltage(f)← compute a linear interpolation between
UES(pair default frequencies[inferior])[maximum] and
UES(pair default frequencies[inferior])[maximum]

if new voltage < minimum voltage(new frequency) then
new voltage← minimum voltage(new frequency)

else if new voltage < maximum voltage(new frequency) then
new voltage← maximum voltage(new frequency)

end if

value or becomes Not a Number - NaN), it is possible to include such analysis metric to be executed

in each iteration of the user application, or at every x number of iterations. In this situation, where it

is possible to validate the application output, the new V-F configuration is provided to that procedure

(Analyze Application Output), which analyzes the user application iteration output and concludes about

its validity. If the output is evaluated as invalid, this procedure increases the voltage by 10mV (decreasing

the amount of undervoltage). Finally, the chosen frequency is given to the Temperature Model, depicted

in Section 3.5, which reduces the amount of undervoltage when the device temperature surpasses the

70oC. At the end of these two procedures, the new V-F pair is generated and applied on the GPU in

order to proceed with the algorithm execution.

It should be noted that the analysis of the application output acts as a fail-safe, and it is not mandatory

in the execution of the optimization mechanism since the correct use of the methodology introduced in

Chapter 3 already guarantees the correct GPU voltage operation limits.

4.2 Optimization Mechanism Implementation

The devised V-F optimization mechanism was developed in Python and acts as a wrapper using a

set of functions that allow the user to implement and integrate the mechanism around its application.

The decision for this programming language was purely out of convenience for the language used by the

deep learning tested and optimized in Chapter 5. Ideally, the same procedures may and should be imple-

mented on the target application’s programming language to improve and facilitate the communication

of the measurements between the different blocks that implement the optimization mechanism.

Figure 4.4 presents a layer diagram of the developed optimization mechanism, illustrating the main

APIs that were used by the tool to communicate with the GPU device. The blocks coloured in blue rep-

resent the developed parts of the optimization mechanism developed in the context of this dissertation.

These act in conjunction to control the voltage-frequency pair that is applied on the DVFS Core domain,

according to the user application output and device target energy consumption and performance profile.
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Following the description provided in Annex A, the V-F Controller block controls the rocm-smi tool to

select the desired V-F pair. The Optimization Algorithm block implements the previous section’s func-

tionality, which, according to the current performance and energy measurements, selects the V-F pair to

be applied. The Python Wrapper controls the different blocks and the user application. Section 4.3 pro-

vides the definition and functionality of each of the functions provided through the wrapper. The blocks

colored in orange represent the two software provided by AMD that allows for user control of the GPU

and DVFS system. The first is the ROCk kernel, that is the first layer of software control and talks di-

rectly with the GPU hardware, and the second is rocm-smi (software previously presented in Chapter 2)

that allows control over the DVFS system and retrieve current GPU power consumption and utilization.

Finally, the block represented in green, gpowerSAMPLER is open-source software that utilizes either

AMD and NVIDIA kernel API to compute GPU power and energy consumption.

The user invokes the appropriate developed functions (more details provided on Section 4.3) that

communicate with the gpowerSAMPLER (energy measuring) tool, rocm-smi and ROCk (voltage and

frequency control interface) APIs to retrieve and control the related parameters to the GPU device.

Figure 4.4: Layer diagram of the developed V-F Optimization Mechanism. The blocks colored in blue
represent the developed parts of the optimization mechanism developed in the context of this disserta-
tion.

4.3 Library description

This section describes how users should include the V-F optimization mechanism on their GPGPU

applications. As indicated, the wrapper that provides all the functions to enable this mechanism was

developed in Python. However, the description of the functions provided ahead should allow for porting

the same for others programming languages.

def initOptimizationMechanism(pathToCharacterizationResults):

Analyzes the user-provided Usable Execution Space file and queries the device DVFS control inter-
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face (rocm-smi on the current implementation) to guarantee that the indicated frequency and voltage

ranges are allowed by the target device.

def initMesurements():

Initiates the execution time and energy consumption measurement (gpowerSAMPLER on the current

implementation).

def computeMesurements(baseline=None):

Indicates to end of the execution time and energy consumption measurement (gpowerSAMPLER on

the current implementation) and returns both results. If the argument baseline, containing the baseline

performance and energy measurement values, is provided, the output is normalized to each baseline

value.

def analiseOutput(output):

A method that should be implemented by the developer that analyzes the user application output to

determine its validity. The function returns a boolean indicating the ser application output validity.

def optimizationMechanismSpaceExploration(measurements, optimizationMetric=”EDP”, out-

putValid=None):

Analyzes application measurements and apply the new V-F configuration. The function receives

the performance and energy measurements, the optimization metric and the results of the application

output validity and implements the Simulated Annealing algorithm to accept or reject the tested V-F pair

in accordance with the current V-F pair baseline. If the configuration is accepted, the current V-F pair

baseline becomes the tested V-F pair. The method returns if the tested pair was accepted or not. It also

implements the Online Monitorization phase.

def optimizationMechanismFinetuning(measurements, optimizationMetric=”EDP”, outputValid=None):

Similar to the previous function, however it implements the Hill-Climbing algorithm as Probabilistic

Technique.

Listing 4.1 provides an example of the order and place where each function call should be performed

and where the user should insert its application code.

initOptimizationMechanism(pathToCharacterizationResults)

... initiate user application ...

initMesurements()

... execute baseline execution ...

baselineMeasurements = computeMesurements()

rejected = 0

executedIterations = 0

for epoch in range(space_exploration_epochs ):

initMesurements()

... code of application step ...

measurements = computeMesurements(baselineMeasurements)

... other necessary user application iteration operations that do not account

for the user algorithm execution ...

outputValid = analiseOutput(output)

# analyses the measurements , application output , temperature

# generates and applies new V-F configuration

accepted = optimizationMechanismSpaceExploration(measurements, outputValid)

executedIterations += 1
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if accepted == False:

rejected += 1

if rejected == 5:

break

for epoch in range(total_number_of_epochs - executedIterations ):

initMesurements()

... code of application step ...

measurements = computeMesurements(baselineMeasurements)

... other necessary user application iteration operations that do not account

for the user algorithm execution ...

outputValid = analiseOutput(output)

# analyses the measurements , application output , temperature

# generates and applies new V-F configuration

optimizationMechanismFinetuning(measurements, outputValid)

Listing 4.1: Usage example of the V-F Optimization Mechanism Library. Blue statements represents the

added programming elements for the mechanism

4.4 Summary

The development of the V-F Optimization Mechanism that was described in this chapter fulfills the

objective of having a concrete application to enable a non-conventional DVFS system. The devised

mechanism uses the previous chapter’s experimental results to provide the user with convenient models

that support the uncover V-F pairs to extract better energy-efficiency of their devices, without having any

detailed knowledge of the GPU architecture.

The following chapter demonstrates and evaluates the application of both the characterization and

optimization mechanisms to improve the energy-efficiency of the Vega 10 GPU when running deep

learning applications.
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Chapter 5

Application to Deep Learning

Nowadays, Deep Learning algorithms are the most common applications being executed on GPUs.

In addition to it, from the set of applications that are known to be imprecision tolerant, deep learning al-

gorithms stand out as one of the most prominent ones. These two characteristics make Deep Learning

the perfect candidate to be the target application to apply the current findings of the previous chapter.

This chapter starts by providing a brief overview about deep learning applications, presenting the con-

cept of deep neural networks (DNN), how the training of these algorithms is performed and how they are

implemented using high-level libraries.

The chapter continues by applying non-conventional V-F scaling to the most energy consumption

layers of a Convolutional Neural Network (CNN) [53]. Finally, the devised V-F Optimization Mechanism,

described in Chapter 4, is applied to the training process of a CNN, allowing the reduction of the con-

sumed energy and massive a improvement on energy efficiency of GPUs running this kind of algorithm.

5.1 Deep Learning Overview

In the last few years, Deep Learning (DL), and more particularly Deep Neural Networks (DNN),

have had a significant impact in industry and society, by allowing for important breakthroughs in many

application domains, such as computer vision, speech recognition, natural language processing, drug

discovery, genomics, and others [2].

Deep Learning is a subset of the larger family of Machine Learning methods, also known as deep

structured learning or hierarchical learning. This type of algorithms can be utilized for supervised, semi-

supervised, and unsupervised learning [54, 55]. Different Deep Learning architectures are being devel-

oped, such as convolutional neural networks (CNN), recurrent neural networks (RNN), and unsupervised

pre-trained networks (UPT), targeting different objectives and being able to analyze and learn from the

data in different ways. The general trend over the years is to increase the number of trainable param-

eters, usually denoted as weights of the network, to achieve better results. Such an increase in the

tunable parameters not only demands an improvement in the device’s memory - to accommodate the

increased size of the model; in the device’s performance - to be able to train and use the model in usable

time; and more importantly, energy efficiency - to allow a sustained increase of the number of devices in

supercomputers and to be able to run the algorithms in portable computing devices.
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5.1.1 Deep Neural Networks

The central element of a deep neural network (DNN) is the artificial neuron. This element can be

mathematically modeled by a set of multiplications and summations, as shown in Equation 5.1, where

Wi represents the weight and b is the bias applied on each artificial neuron.

Y =

n∑
i=1

WiXi + b (5.1)

One of the most significant benefits of deep neural networks is their ability to capture non-linear

relationships between the input parameters. For such purpose, an activation function is usually attached

to each neuron, helping him to handle scenarios where problems are not linearly separated [56]. The

most common non-linear activation functions are hyperbolic tangent (tanh) [57], Rectified Linear Unit

(ReLU) [57] and sigmoid [57]. Hence, the prevailing deep neural network architecture is the combination

of the linear transformations performed by the neurons plus the non-linear activation functions.

A neural network is an arrangement of neurons and activation functions in several layers. Each layer

is responsible for applying a series of transformations to the data according to the weight and bias stored

in each artificial neuron. As represented in Figure 5.1, a DNN is composed of at least three layers, the

input layer, with a number of neurons equal to the input size, at least one hidden layer, being this the

distinguishing characteristics of a DNN, and an output layer with the number of neurons equal to the

output size. The possible different organization of the layers in size, type of operation and number of

connections of layers defines the type and architecture of the DNN.

Figure 5.1: Model of fully-connected (feed-forward) DNN

5.1.2 DNN Architectures

Current DNN architectures are grouped into three types of architecture, depending on the fundamen-

tal primitive operation being performed. These are Convolutional Neural Networks (CNN), Recurrent

Neural Networks (RNN) and Unsupervised Pretrained Networks (UPT).

Convolutional Neural Networks (CNN)

Convolutional Neural Networks are usually used to extract features from data via the convolution

operation, being mainly used for image and object recognition and sound analysis. This type of archi-

tecture excels when there is some structure in the input data, that is, the data contains sets of specific

patterns, organized in a spatial manner, that the neural network can learn to recognize.
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The CNN architecture generally follows the following pattern: input layer, feature-extraction layers

and classification layer. The input layer receives a form of three-dimensional data, usually an image with

a specific height and width and a depth value (representing color or intensity). The feature extraction

layers perform higher-order features extract from the input, generally by performing patterns of convo-

lution layers and pooling layers. Finally, the classification layer is a vector of size N, where each output

represents a score of prediction confidence for the input to be of a given output class.

Three common datasets that are often used to compare and analyse the CNN performance are

MNIST [58], CIFAR 10 [59] and ImageNet [60], each with increased input complexity, number of output

classes and overall dataset size. MNIST consists of 70 000 images of handwritten digits 0 to 9, CIFAR10

consists of 60 000 organized images of 10 object and animal classes, and ImageNet is a collection of

14 million images of 20 thousand different classes.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks have the added capability of sending information over time-steps. This

characteristic allows this type of architecture to have parallel and sequential data modeling, not only

recognizing features from each input but also allowing for the extraction of features from the sequences

of inputs, modeling the time dimension.

RNNs are often used to model time-series, language, audio, and text since this type of data is

inherently ordered and context-sensitive. RNNs contain feedback loops between the layers, allowing

each layer to have insights about what happened before. The prediction model follows the general

format presented in Equation 5.2, where the current timestamp model output y(t) is a function f of the

previous models output y(t−1) and current model input x(t), in addition to a bias factor θ. The equation

reflects the influence of previous inputs for each output.

y(t) = f(y(t−1), x(t), θ) (5.2)

The component responsible for the feature extraction characteristic of RNN models is the LSTM -

Long Short Term Memory. This type of layer has three gates - input, output and forget gates. The

content of each LSTM is mainly defined by the input and forget gates; any change on these elements

reflects on the value stored at the memory cell. If both gates are closed, the memory content remains

unmodified between the current time-step and the following. Hence, the LSTM structure allows for

information to be retained/forgotten on the memory cell across different time-steps.

Unsupervised Pre-trained Networks (UPN)

Unsupervised Pretrained Networks is a category of DNN architectures that encompasses network

structures such as autoencoders and generative adversarial networks (GANs). This class of DNN archi-

tecture contrasts with the previous ones by learning in an unsupervised manner, meaning that the input

data given to the network is not previously labeled. This introduces an extra degree of learning freedom

by allowing the network to identify and recognize patterns that distinguish the output classes the most.

Autoencoders are used to efficiently learn data codings and can be applied for dimensionality re-

duction or augmentation. Autoencoders provide a reduction of noise present in a signal or to perform a
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resolution increase on an image. GANs can be used to perform sound and video synthesis from images

or text using two neural networks in parallel - a discriminator and a generative network. First, the gener-

ative network creates a synthesized output from the given input. Then, the discriminator network tries to

classify the input as real or synthesized, providing the classification to the generative network. With this

data loop, the generative network updates their weights to fit best what is described as real data.

5.1.3 Training and Inference

The mathematical description of the DNN training process, represented in Equation 5.3, is equivalent

to treating the network as a loss function L, where inputs X, outputs Y and the network’s weights W and

bias b are function arguments. The training session’s objective is to optimize the in-network parameters

W (weights) and b (bias) to minimize the overall loss [61].

(W, b) = argmin
W

L(X,Y,W, b) (5.3)

The DNN training is an iterative process, where at the end of each iteration, a loss value is computed,

and the set of in-network parameters is updated. This loss value represents how well are the input

parameters being modeled by the network. As the number of training iterations increases, the loss value

reduces and converges to a minimum, at which the model prediction accuracy will be at its maximum.

At this point, the training session can be stopped.

The most common method for the parameters update is the Stochastic Gradient Descent (SGD)

algorithm (see Equation 5.4), an iterative algorithm that, after processing mini-batches of the training

data, computes new weights and bias for each neuron [62].

Wi+1 ←−Wi − α
m∑
n=1

∂L

∂Wi
(5.4)

In Equation 5.4, m represents the number of mini-batches to run, Wi is the current parameter, Wi+1

is the update parameter, α is the learning rate and ∂L
∂Wi

is the partial derivative of the loss function L

in order to the parameters. This last equation is obtained by applying the derivative chain rule in a

backward-cascade fashion with respect to inputs, outputs, and parameters of each DNN layer.

Each iteration of the training process is composed of a forward and backward data propagation. On

the forward propagation, the loss function for the current in-network parameters is evaluated, comput-

ing the loss value. By performing the backward propagation, the partial derivative ∂L
∂Wi

of each of the

parameters is obtained to apply the DNN algorithm .

Hence, the inference (or prediction) process corresponds to the execution of a forward propagation,

with the intended input, on a previously trained neural network. At the output layer, a set of values (or

probabilities) is computed, corresponding to the model’s prediction to the given inputs.

5.1.4 High-Level Libraries and Software Frameworks

The popularization of GPUs as the defacto DNNs execution device results in the availability of high-

level libraries and frameworks from device manufacturers and other software houses. The available

GPU libraries implement the underlying mathematical operations performed during the DNNs, while the
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frameworks operate on the execution of DNNs by masking the complexity of creating, training and using

these models [63].

The most used libraries are cuBLAS1 and cuDNN2, by NVIDIA and rocBLAS3 and MIOpen4, by

AMD, which implements the most optimized versions of matrix multiplication, convolution, and other

mathematical operations to be used on the DNN models. In what concerns the frameworks, TensorFlow5

and PyTorch6 are open-source frameworks developed by Google and Facebook, respectively, that allow

an easy implementation of the models in GPUs.

5.2 DNN Performance and Energy Efficiency Improvement

DNNs are usually characterized by significant computational burdens, particularly when considering

the training of very deep and complex networks that deal with high dimensional data, such as images and

videos. For such purpose, researchers (and data scientists, in general) often rely on accelerators, such

as GPUs, to cope with the associated computational burden and reduce the training time. As a result,

GPUs are now commonly deployed on most supercomputers, data centers and other computational

infrastructures related to the development of artificial intelligence algorithms.

Additionally, several software frameworks, algorithms and techniques have been proposed to man-

age and optimize the execution of DNNs on GPUs (e.g., Mittal [64]). However, most optimization tech-

niques neglect the training phase’s energy impact, usually resulting in considerable costs.

To overcome this problem, researchers have also explored other solutions that allow mitigating the

energy impact of neural network training. One particular and common approach relies on the use of

low-precision arithmetic (e.g., Nabavinejad [65]), eventually trading network accuracy with increased

processing performance and lower energy consumption.

Researchers have also looked at alternative approaches, such as exploiting DVFS on both the in-

ference and training phases. In fact, by carefully selecting the used voltage-frequency (V-F) levels,

significant energy savings can be obtained, although depending on the considered DNN architecture

and computing device [4]. This is achieved by a careful balance between the performance and power

consumption of the different GPU components (particularly the core and global memory) to minimize the

stalls in the compute cores. In fact, not only can DVFS be used to decrease the power consumption, but

it can also boost the system performance [4], by increasing the voltage and frequency levels (as long as

the GPU total power envelope and thermal limits are not surpassed).

Hence, supported on the performed GPU characterization to non-conventional V-F pairs, this work

continues by exploring the impact of these configurations on CNN layers, considering both the training

and inference phases.

1developer.nvidia.com/cublas
2developer.nvidia.com/cudnn
3github.com/ROCmSoftwarePlatform/rocBLAS
4github.com/ROCmSoftwarePlatform/MIOpen
5tensorflow.org/
6pytorch.org/
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5.3 Non-conventional V-F on CNNs

As it was referred in Section 2.4, Tang [4] has recently studied the impact of frequency scaling on

the performance and energy consumption of DNNs executed in GPUs. By extending this study with the

capability to also apply undervoltage techniques, a broader range of DVFS configurations are herein

envisaged to provide even greater benefits.

Another important characteristic of DNNs is their tolerance to a certain degree of computation errors

[3], without any significant change in the training and inference results. Consequently, it is important

to complement the characterization that was performed in Chapter 3 with the voltage scaling effects in

DNN training and inference phases and, in particular, with its influence on the computation errors that

might occur when exploring the existing voltage margins.

As discussed before, at the particular case of the CNN, its feature extraction ability is mostly sup-

ported by the convolution operator. Nonetheless, CNN also includes other types of layers, such as

fully connected and pooling layers. However, the convolution and fully connected layers take up to 97%

of the GPU energy consumption [53], which makes them particularly suited to exploit energy-saving

mechanisms.

Hence, to apply and assess non-conventional V-F pairs on the execution of CNNs, the high-level deep

learning framework PyTorch and the default mathematical libraries (rocBLAS and MIOpen) provided by

the considered GPU manufacturer (AMD) were extensively evaluated on the Vega 10 GPU. This section

reports the main achieved conclusions for the convolution operator and fully connected layers.

5.3.1 Convolution Layer

The AMD MIOpen library provides multiple convolution implementations, being the Direct, GEMM

and Winograd [66] the ones that are more often used. At the beginning of the execution, this library per-

forms one convolution operation with each of the algorithms that are able to solve the required operation.

Then, the algorithm that takes the shortest execution time is chosen and used to perform the remain-

ing convolutions of the current layer. The convolution layer is defined by the parameters presented in

Table 5.1.

Parameter Description
W, H Input Width, Height

N Mini-batch Size
C, K Number of features, kernels
R, S Kernel Width,Height

Pad W, Pad H Padding Width, Height
Str W, Str H Stride Width, Height

Table 5.1: Convolution Parameters.

At this respect, a relevant question that may be raised is about the existance of a convolution algo-

rithm that is more energy-efficient than the others. Such question is of particular interest for this work. If

such possibility is there, it can be exploited by using one of the input parameters of the convolution API

that allows the algorithm selection, disabling the automatic algorithm selection procedure. To answer to

such question, the execution time, and energy and power consumption of all algorithms were measured
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while executing 100 different convolutions layer configurations from the DeepBench benchmark7, with

each algorithm being executed ten times with the median results being taken. The obtained results

showed that the algorithm that achieved the shortest execution time in all cases also achieved the best

energy consumption. By looking at the power consumption across the different algorithms, the result

showed that it was similar in all cases. Two other important results were that no algorithm proved to

be the fastest for all or for any subset of configurations and that not all convolution layer configurations

are able to be solved by all the different algorithms available in the library. As previously explained, the

library executes one convolution using each available algorithm to determine which are able to solve

it to compare the execution time between the different alternatives, choosing the one with the shorter

execution time. Even though this technique appears simplistic and with space to be further optimized,

the results show that, in reality, that is not the case. Measuring the execution time at the beginning of

the execution for all possible execution alternatives optimizes both the performance as well as energy

consumption since power consumption is similar between all the different convolution algorithms. This

technique also brings the benefit of optimizing the execution to the current GPU state and utilization,

which is one of the premisses of the presented work.

To conduct this convolution analysis, a set of 20 distinct convolution layer configurations was selected

from the DeepBench benchmark to understand how each algorithm is affected by the V-F configuration,

both in its inference and training phases.

Layer Guardband and Characterization

Figure 5.2 presents the set of valid voltage ranges that were obtained for the inference and training

phases of the convolution layer. By comparing these results with those obtained in the individual compo-

nent characterization, it can be observed that some computation errors (and even some GPU crashes)

were detected at lower frequencies. In fact, since this operation is more complex and requires the uti-

lization of multiple architectural components, the undervoltage limit is more likely to be violated by the

voltage drops induced by the activation and deactivation of the GPU architectural components [16]. This

phenomenon will make certain parts of the GPU not to work properly (even momentarily), producing an

increased rate of computation errors and an increased crash threshold voltage.

Frequency 
[MHz]

Figure 5.2: Core Domain - Convolution Layer - Usable voltage range.

7github.com/baidu-research/DeepBench
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When comparing the three convolution algorithms, it is observed that the Direct algorithm allows for

the greatest amount of undervoltage, followed by GEMM and Winograd. The Direct algorithm is the

simpler of the three, with no data transformation and movement being necessary for its execution. In

contrast, GEMM and Winograd need some data pre-processing before the convolution is performed.

This extra step relies on the activation of more GPU components, making these algorithms more prone

to induce voltage drops.

When comparing the training and inference phases, it is observed that they present similar under-

voltage capabilities (for all algorithms), with the crash point diverging only around 10mV. However, the

training algorithm is more prone to the introduction of computation errors, starting to be observed at a

lower degree of undervoltage when compared to the inference.

Figures 5.3 and 5.4 illustrates the impact of non-conventional V-F on energy consumption, execution

time and EDP. When working with the default voltage level of each frequency (dashed lines), the Direct

and GEMM algorithms exhibit a valley in their performance chart, with the frequency of 1530 MHz pro-

viding the best performance. In contrast, the Winograd achieves its best performance with the lowest

frequencies. Upon the introduction of independent voltage scaling, it is possible to improve the execution

time and energy consumption (in comparison with the default voltage) by 8% and 23%, 19% and 8%, and

14% and 24% for the Direct, GEMM and Winograd algorithms, respectively.
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Figure 5.3: Core domain - Convolution Layer normalized energy and performance chart to non-
conventional V-F configurations.
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The EDP charts, depicted in Figure 5.4, indicate that the most energy-efficient configuration for the

three algorithms is at the lowest frequencies and maximum undervoltage possible. At these configura-

tions, although the execution time is reduced by 16% (for the Direct and GEMM algorithms), it is still

possible to achieve a reduction in energy consumption of up to 46%. The use of the most efficient con-

figuration for the Winograd algorithm improves both the execution time and the energy by 15% and 32%,

respectively.
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Underlined results correspond to default V-F pairs.

Figure 5.4: Core Domain - Convolution Layer - Obtained normalized Energy-Delay Product heat-map
for the three algorithms.

5.3.2 Fully-Connected Layer

The RocBlas library provides a single API for matrix multiplication, the underlying mathematical op-

eration of the fully connected layer. By analyzing the performance counters and the kernels invoked by

the library, it is possible to understand that multiplication is performed in one of two ways, depending on

the size of the matrices. According to the work of Nabavinejad [67], small matrices are first loaded to

Cache, and all the operations are performed with the data in this memory component, making the opera-

tion compute bounded. For large matrices, the matrix multiplication is split, performing the multiplication

in a tilling fashion. In this way, submatrices are first loaded to the local caches, and the corresponding

submatrices of the results are produced. When the submatrix is consumed, another pair is loaded,

and the process repeats until the full computation is performed. The threshold size of the submatrices

corresponds to the size of the L1 Cache.

Layer Characterization

Non-conventional V-F impact the two implementations of the matrix multiplication in different ways.

For the small matrices variant, since all the necessary data is already available on the local caches

before the computations start, it is the ALU that will limit the undervoltage. Consequently, it is expected

that a valley-like shape is observable in the performance chart after the application of frequency scaling
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(see section 3.4.3). On the other hand, for large matrix sizes, the cache will be stressed the most, with

constant requests on the DRAM-Cache controller limiting the undervoltage. Consequently, the results

will be similar to those that were observed in section 3.3.2 and 3.4.2. Figure 5.5 illustrates the results of

the conducted experiment procedure and confirms the prediction: for small matrix sizes, it is possible to

perform a higher degree of undervoltage.

Frequency 
[MHz]

[a]
[b]
[c]

Figure 5.5: Core Domain - Fully-Connected Layer - Usable GPU core voltage range. [a], [b] and [c]
values represent matrix sizes (example Aa×b ·Bb×c).

From the observation of the results presented in Figures 5.6 and 5.7 it is possible to conclude that an

improvement in the execution time and energy consumption can be achieved for both types of computa-

tions. The EDP chart indicates the same energy efficiency configuration for both cases, which results in

an average reduction of 52% in energy consumption and 8% of improvement of the execution time.
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Figure 5.6: Core Domain - Fully-Connected Layer normalized energy and performance chart to non-
conventional V-F configurations..

5.3.3 Error Analysis

To evaluate the occurrence of computation errors due to the utilization of non-conventional V-F scal-

ing, each benchmark was executed with the default ”automatic” parameterization and with the conven-
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Underlined results correspond to default V-F pairs.

Figure 5.7: Core Domain - Fully-Connected Layer - Obtained normalized Energy-Delay Product heat-
map.

tional V-F pair under testing with the same input data. A warmup kernel was also executed before each

of these two runs, to fill the cache with random data.

For the error analysis of the CNN layers, a different error metric was adopted due to the utilization of

software libraries (versus custom kernels) operating over floating-point numbers (as before, generated

from an uniform distribution in the interval [0.1 ; 1] to ensure that operations are never applied to num-

bers with significantly different exponent values). These libraries can launch the kernels in a different

order, changing the order of operations, with a possible impact in the final result. In fact, by conducting

experiments on the default voltage, it was observed that the kernel execution order resulted in a relative

output difference not greater than 10−6. In accordance, a computation error was asserted whenever the

relative difference in each position of the output vectors was greater than or equal to 10−5.

Convolution Layer

Figure 5.8 depicts the distribution of the output results of the convolution layer for the three considered

convolution algorithms (at both inference and training phases) for the minimum usable voltage values

(i.e., before GPU crash) across all considered core frequency values. The obtained results emphasize

the little effect of the applied undervoltage on the computed values. Most of the output results are still

almost entirely accurate, and only a small portion of the results present deviations. In fact, it should be

emphasized that not only is the fraction of non-accurate results very small, but the normalized relative

error of those non-accurate results has a shallow magnitude. A particular observation is worth noting

about the results of the inference phase with the GEMM algorithm. Although the amount of non-accurate

results is greater than in the other configurations, the normalized relative error’s magnitude is much

smaller.

Fully Connected Layer

Figure 5.9 represents the same error evaluation for the Fully Connected Layer, for both small and

large matrices. Even at these extreme configurations, it is observed that most results are still computed

with full accuracy (98% of the cases), with a normalized relative error as low as 1.37 × 10−3 (on the

remaining 2% of the cases).

Hence, the obtained results demonstrate that the amount of error introduced by these lowest voltages

before crash conditions, on the two most important layers, are cooped with both DNN training and

inference, demonstrating the ample viability of this approach.

69



Figure 5.8: Convolution Layer - Average percentage of accurate results and relative error distribution of
non-accurate outputs for the minimum usable core voltage across all considered core frequency values.

Figure 5.9: Fully Connected Layer- Average percentage of accurate results and relative error distribution
of non-accurate outputs for the minimum usable core voltage across all considered core frequency
values.

5.4 CNN training and inference with non-conventional V-F

The preliminary assessment of the main CNN primitives, presented in the previous sections, exhibits

the same behavior of the primitive operations analysis, performed in Chapter 3. From the obtained

results, it can be concluded that it is possible to safely undervolt the GPU of the two main CNN primitives

without compromising the accuracy and with relevant energy and performance gains. In accordance, the

logical next step is to adapt the optimization mechanism described in Chapter 4 to the training procedure

of complete state-of-the-art CNNs.

This section starts by presenting the usability of non-conventional V-F on the complete training of

CNNs, followed by a description of how the optimization mechanism was adapted to achieve the same

energy efficiency gains automatically.

5.4.1 Feasibility Assessment

The results that were obtained in the previous section evidence that the small number and relative

amount of computation errors introduced by these near threshold conditions is well cooped with the

operations that are conducted in DNN layers. However, the same evaluation urged to be done for the

whole network.

Following the same methodology as before, an exploration of decoupled frequency and voltage vari-

ations was performed for the training + inference and inference phase of four complete well-know CNN

models. The tested models are LeNet [68], VGG11 [69], AlexNet [70] and WideResNet [71], correspond-

ing to increasing model sizes, complexity, and characteristics. This feasibility assessment will prove that

the considered voltage and frequency scaling is allowed by the algorithms under execution, both with
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negligent impacts on the models’ final training accuracy and with considerable energy-efficiency im-

provements. To guarantee that the changing V-F is the only source of the observed variation, in all tests,

the networks’ weights are initialized with the same value.

Training and Inference

Table 5.2 presents the median classification accuracy over ten training runs of the considered net-

works after applying four different undervoltage levels. The obtained results demonstrate that, when

compared with the default setup (i.e., undervolt = 0), the introduced computation errors do not induce

any significant change in the network’s final training accuracy. In more detail, Figure 5.10, presents the

behavior of the loss and model accuracy of each network, measured on the test set over the training

session on all the tested V-F pairs. It is possible to observe that the two metrics’ progress is, within small

variations, the same for all tested V-F configurations.

Amount of undervolt [mV] AlexNet [%] LeNet [%] VGG11 [%] WideResNet [%]
0 76.59 59.84 86.14 80.32

50 76.48 60.08 86.14 80.39
100 76.60 59.94 86.04 80.23
150 76.61 60.12 86.39 80.08

Number of trained epochs 50 100 30 30

Table 5.2: Comparing CNN training test set accuracy with the application of different undervoltage levels.

Figures 5.11 and 5.12 depict the energy performance charts and EDP results for the conducted V-

F exploration. Of significant importance is the comparison of the automatic DVFS system versus the

non-conventional V-F configurations, represented as a black dot Figure 5.11. For this configuration, the

training procedure was executed, while allowing the DVFS system to vary the current V-F pair and adjust

all parameters automatically. In neither of the four tested models, the automatic system can achieve the

best performance or energy consumption, demonstrating the analysis provided in Chapter 2, that the

automatic DVFS systems of GPUs are not able to take full advantage of the hardware.

In particular, the default V-F pairs are able to produce either the lowest energy consumption or the

highest performance. The main benefit of exploring non-conventional V-F is allowing for higher or even

the highest frequency (maximizing performance) while having similar energy consumption to using the

lower frequency/energy savings performance levels. Overall, these new configurations decrease the

EDP of the training sessions the most, as depicted in Figure 5.12.

Table 5.3 emphasizes and summarizes the main achievements when running the CNN training under

non-conventional V-F. It compares the CNN execution at the default V-F setup, with the results obtained

with frequency scaling using the default voltage values to non-conventional V-F. It considers two con-

figurations: (i) at the highest frequency, and (ii) at minimum EDP. As it can be observed, by exploring

non-conventional V-F, it is possible to significantly improve all three metrics (energy, training time, and

EDP) without compromising the resulting accuracy of the whole CNN.

Inference

The inference of the same CNN models was also tested independently. This test tries to understand

if the same V-F configuration should be used for the algorithm’s inference part. Figure 5.13 exhibits
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Applied V-F pair

Figure 5.10: Core domain - CNN models - superposition of all V-F configuration test set loss and model
accuracy.

the EDP values for the V-F exploration of the four CNN models. By comparing the EDP heat-maps

of the training + inference (Figure 5.12) versus the heat-maps of the inference (Figure 5.13), it was

observed that the configuration that minimizes the EDP, and so, maximizes the energy-efficiency, only

matches on the VGG11 model. However, it should be noted that the same model’s heat-maps present an

approximate distribution, with the global minimum being around the same V-F configurations for training

and inference.

5.4.2 Optimization algorithm adaptation to CNN training

To benefit from automatically adjusting the V-F configuration to CNN training, the developed V-F

optimization mechanism, presented in the previous Chapter, was applied to the training procedure.

As the block diagram of Figure 4.1 presents, the V-F optimization mechanism is composed of three

stages, Analysis of user input and test DVFS information, Establishment of baseline measurement and

Optimization Algorithm Execution. The present subsection indicates how each stage was adapted to

the CNN training procedure and, in specific, in which way the Online Monitorization is performed on this
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Default DVFS

Figure 5.11: Core domain - CNN models - Normalized energy consumption and execution time for
training + inference. The dashed line connects the default V-F pairs, and the diagonal striped pattern
indicates the plateau of minimum energy consumption.

Underlined results correspond to default V-F pairs.

Figure 5.12: Core domain - CNN models - Obtained normalized Energy-Delay Product (EDP) for training
+ inference.

application. It is first described the last stage of the Optimization Algorithm Execution - Optimization

Algorithm Execution, because the way it is implemented conditioned how the two other stages were

adapted to this application. Similarly to the example given in Chapter 4, the chosen optimization metric

was the energy-efficiency computed as the EDP.
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Improvement vs default V-F
Metric Selected configuration AlexNet LeNet VGG11 WideResNet
Energy At highest frequency 24% 20% 22% 23%

At best EDP 38% 38% 33% 38%
Training time At highest frequency 1% 2% 0% 6%

At best EDP 3% -3% -2% 0%
EDP At highest frequency 21% 22% 22% 23%

At best EDP 38% 41% 32% 36%
Improvement vs F scaling with default V-F pairs

Energy At best EDP -2% 0% -1% -2%
Training time At best EDP 8% 0% 6% 10%
EDP At best EDP 3% 0% 3% 6%

a positive value indicates an improvement vs the default V-F configuration of the GPU.

Table 5.3: Evaluation of performance, energy, and EDP when applying non-conventional DVFS in the
training of neural networks.

Figure 5.13: Core domain - CNN models - Obtained normalized Energy-Delay Product (EDP) for infer-
ence phase.

Optimization Algorithm Execution

Chapter 4 described that on the Optimization Algorithm Execution phase of the V-F Optimization

Mechanism, the user application is executed on both stages of that phase. In this case, the total number

of training epochs would be split by the Space Exploration and Fine-tuning stages. However, it was

observed that the inference EDP heat-map (see Figure 5.13) presents a similar shape to the training

+ inference EDP heat-map (see Figure 5.12), with both having the min(EDP ) at the same or near

the same V-F pair. Nonetheless, executing one inference epoch is significantly faster than running one

training + inference epoch. This observation presented the idea of instead of executing the CNN training

procedure in the two Optimization Algorithm Execution stages, execute instead just the inference on

the Space Exploration phase. With this change, at the cost of introducing an overhead to the training

procedure since for the first Space Exploration Steps, the CNN model is not being trained, it is possible

to complete this stage faster than running the training + inference in each epoch. Considering that it is

on the Space Exploration stage that the less energy-efficient configurations are tested, it is possible to
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spend less time testing them and so, reduce the total energy consumption to complete this stage. By

doing so, the training procedure of the CNN model starts with a configuration that is better suited for it,

with improved energy-efficiency.

Figure 5.14 graphically exemplifies the power consumption overtime of the first ten training epochs

of a CNN model to compare the proposed implementation versus the one where the training procedure

is executed on both stages of the Optimization Algorithm Execution. Rendered in green is the case that

was implemented, where ten Space Exploration Steps are performed executing just the inference, and

after it, on the Fine Tuning stage, the CNN training procedure starts. Represented in orange is the case

where the CNN training procedure starts at the Space Exploration stage, executing in each epoch one

training + inference pass. The figure exemplifies that at the end of the Space Exploration stage, the

same power consumption and execution time (length of the epoch 9 in orange and epoch 0 in green) is

achieved to execute a training + inference epoch, so the correspondent EDP value is the same in both

cases. Overall, this chart graphically represents the results obtained when adapting the devised V-F

Optimization Mechanism to the training procedure of CNN models. The introduced overhead created by

not starting the CNN training procedure at the beginning of the Optimization Algorithm Execution phase

is offset for more quickly finding a more energy-efficient V-F configuration running just the inference of

the CNN model.
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Figure 5.14: Graphical representation of the power consumption overtime of the first ten training epochs
of a CNN model (numbers 0 to 9 represent the execution of training epochs). The orange line represents
the case where the training procedure is started at the Space Exploration stage, and the green line
represents the case where the training procedure is only started on the Fine-Tuning stage.

Analysis of user input and test DVFS information

To set the usable execution space for the CNN training and execution, both the results of the GPU

characterization (presented in Chapter 3) and the specific results of the preliminary assessment per-

formed in this chapter (see Section 5.3) were used. Figure 5.15 presents the usable execution space for

the Vega 10 GPU, optimized for CNN training and execution.

For the first stage of the Optimization Algorithm Execution (Space Exploration), only the green bars

that correspond to tested frequencies are considered. However, for the second stage of the Optimization

Algorithm Execution (Fine-Tuning), the area between the dashed lines, corresponding to the linear re-

gression between the margins of two adjacent frequencies, is also regarded as valid V-F configurations.
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Figure 5.15: Usable Execution Space for the Vega 10 GPU.

Establishment of baseline measurement

In accordance with the adaptation of the V-F Optimization Mechanism to the CNN training procedure

described above, two individualized baseline measurements are taken, the first covering one inference

epoch and the second containing one training + inference epoch. The inference baseline is used on

the Space Exploration stage, whereas the training + inference baseline is used for the Fine Tuning

stage. To execute with the baseline measurements, the GPU was set to the highest V-F configuration

{1600MHz; 1.2V}, and the execution time and energy consumption were measured, computing the EDP

by multiplying both results.

Online Monitorization

The considered output validity metrics adopted in the optimization mechanism are the loss function

value and the network weights’ value. If any of these values becomes not a number (NaN), the output

is considered invalid. NaN’s appearance in these two values is attributed to computational errors that

may occur when the used voltage is near Vmin. To mitigate or at least reduce the computaional error,

the voltage value is increased by 10 mV, decreasing the amount of applied undervoltage.

5.4.3 Experimental Results

Four different CNN architectures were considered in this evaluation of the proposed V-F Optimization

Mechanism, with each model being executed 10 times. The total number of training epochs was the

same as the one presented in Table 5.2.

To determine a reasonable number of Space Exploration Epochs that guarantees that this stage

is able to find a good approximation of the V-F configuration that achieves the global energy efficiency

minimum, the Space Exploration stage was independently executed on the WideResNet model 50 times.

On this evaluation, no limit was set on the number of Space Exploration Epochs, since the objective was

to analyze how many epochs are necessary to achieve the intended result. It was found that, on average,

on the twelfth epoch of Space Exploration, the best EDP value is achieved. For such purpose, it was

allowed a maximum of 20 Space Exploration Epochs when testing the V-F Optimization Mechanism on

all the four CNN models, allowing some extra epochs to guarantee that for other models the result is

also achieved.
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Figure 5.16 presents an example of the V-F configuration and resulting normalized EDP value when

applied to the WideResNet model.
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Figure 5.16: WideResNet Space Exploration example - normalized EDP values for 20 epochs. Initial
value is 1600MHz and 1.2V.

At the end of the Space Exploration stage, performed with just an inference epoch, the V-F configu-

ration that achieved the lowest EDP value is passed to the Fine-Tuning stage, where the CNN training

process is executed.

Overall, the devised V-F Optimization Mechanism fulfilled its purpose and was able to deliver the

same degree of energy-efficiency improvement that was achieved in Section 5.4.1 without having to

previously test every possible V-F configuration to find the most suitable one.

Figure 5.17 presents and compares the resulting median EDP achieved over the 10 runs of i) the

default automatic DVFS system of the Vega 10 GPU - represented in blue; ii) the best V-F configura-

tion found on the feasibility assessment with manual exploration (brute-force) - represented in orange;

iii) training with the V-F Optimization Mechanism (that encompasses the overhead of only starting the

CNN training procedure on the Fine Tuning stage) - represented in green, and iv) the best configura-

tion achievable (attained by performing a new training session with the final configuration chosen by

the devised V-F Optimization Mechanism) - represented in grey, all results are normalized to the result

achieved by the default automatic DVFS system. As it can be observed, training with the developed

mechanism yields a reduction of the EDP of 27% to 42% over the default DVFS system. On the LeNet

and AlexNet models, the developed mechanism (with its optimization overhead) is even able to improve

on the best configuration found in Section 5.4.1, achieving 42% (against the 41% of the feasibility as-

sessment) for the LeNet and 41% (versus the 37% of the feasibility assessment) of improvement for

the AlexNet against the DVFS system included on the Vega 10 GPU. This is due to the finer-tuning of

frequency and voltage performed by the optimization mechanism, testing and using V-F pairs between

the ones pairs evaluated on Section 5.4.1. For the other two CNN models, the mechanism only falls less

than 5% short compared to the results of the feasibility assessment. Nonetheless, the devised system

still greatly improves the EDP value on 22% for the VGG11 model and 31% for the WideResNet model,

when compared to the default result and is able to achieve this EDP optimization without any prior test-

ing of the CNN model and while performing the final training procedure. Looking at the result indicated
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in grey, that establishes itself as the best possible one for the target model on the Vega 10 GPU.

Figure 5.17: Median normalized EDP of default DVFS vs training CNN with V-F optimization model.

Table 5.4 indicates the correspondent V-F configuration at the end of each algorithm execution stage,

on the run correspondent to the results of Figure 5.17. The resulting V-F configuration selected by the

Space Exploration stage corresponds, as expected, to a good approximation to the best possible V-F

pair, as it is possible to conclude by observing the EDP heat-map of Figure 5.12. The selected V-F

pair at the end of the Fine Tuning stage is, in all four cases, in-between the ones that were tested on

the feasibility assessment, both in terms of frequency and voltage. This result demonstrates that it is

beneficial to finely discretize and tune both these control parameters to the target application, to achieve

the optimal energy-efficiency out of the out-of-the-shelf GPUs, as this thesis wanted to demonstrate.

Model LeNet VGG11 AlexNet WideResNet
Space Exploration [1140MHz; 0.95V] [1440MHz; 1.0V] [1350MHz; 0.95V] [1350MHz; 0.9V]
Fine-Tuning [1230MHz; 0.95V] [1370MHz; 0.97V] [1410MHz; 0.98V] [1500MHz; 0.99V]

Table 5.4: Mode of selected V-F configurations at the end of each optimization stage.

5.5 Summary

Deep learning and, more specifically, deep neural networks, are a prominent type of algorithm being

executed on GPUs nowadays. These types of algorithms use special mathematical operations (like the

convolution) to be able to extract features from the input data. The execution (inference) of these algo-

rithms and, more importantly, the training session can significantly benefit if the GPU energy-efficiency

is optimized.

This chapter combines all the previous knowledge acquired and presented in the previous chapter of

the dissertation. It sets the usable execution space of the convolutional neural networks and it adapts the

V-F Optimization Mechanism to the training of this algorithm with excellent results. By characterizing the

target GPU to the target application, it was concluded that the energy efficiency of the training session
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could be significantly improved, with an EDP reduction of 27% to 42%, depending on the CNN model,

over the default DVFS system.
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Chapter 6

Conclusions

The main question that steered this master thesis’s development was ”How can we improve the

energy-efficiency of already deployed GPUs?”. This question guided all possible solutions to creating

and improving the software stack that controls these devices, considering that introducing or modifying

already deployed hardware is generally not possible.

The current literature on this topic presents a panoply of strategies to achieve this objective, ranging

from improving the device execution units utilization, optimizing the number of threads per block, or

performing the computations with reduced precision operands, to tuning the applied voltage-frequency

levels to the current GPU state and running application. The followed path was to further investigate

this last option, targeting the improvement of current implementations of GPUs DVFS systems. In fact,

enhancing the DVFS systems allows to benefit a broader range of both devices and applications, since

the improvement does not come from optimizing the application to the target hardware, but instead, from

better matching the hardware to the running application.

At this point, the state of the art implementations of DVFS systems make use of many techniques

to choose the most appropriate default V-F pair for the current device state. However, one could go

one step back and argue that the manufacturer’s chosen V-F configurations do not allow for extract-

ing the best energy-efficiency of GPUs. Having this premise in mind, the first developed task devised

a methodology to analyze the non-conventional V-F configuration’s impact on the different architectural

components and DVFS domains. The methodology was tested on two architectural different AMD GPUs

with great success. Both devices allow for up to 21% voltage reduction, depending on the tested fre-

quency and stressed component. Hence, by running all the benchmarks that compose the methodology

was possible to define an usable execution space, consisting of a new set of V-F pairs that, even though

they are not the default ones, they do not compromise the GPU architecture. Moreover, the use of those

non-conventional V-F configurations allowed for a decreasing the device’s energy consumption of up to

40% without (in some cases, it can even improve) penalizing the performance. This also resulted in

energy-efficiency gains, measured through the EDP metric, of up to 43%.

After demonstrating that such configurations are so beneficial, the next step was to create a V-

F optimization mechanism that explores all those new V-F pairs and, without testing all of them, find

and set the most appropriate one for the running application and current GPU state. This iterative

optimization mechanism takes advantage of the natural code repetition pattern found in most GPGPU

applications to be continually monitoring, adjusting and selecting the fittest V-F configuration.
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Deep learning applications, and more specifically, convolutional neural networks (CNNs), were cho-

sen as a target application to demonstrate the added benefits of defining a usable execution space

that comprises non-conventional V-F pairs, with the devised iterative V-F optimization mechanism. This

application was first demonstrated with the execution of the two most energy-consuming CNN layers,

to assess the validity of non-conventional V-F pairs in concrete applications. Naturally, this algorithms’

usable execution space corresponds to the one exhibited by the component that they stress the most.

Second, the computational errors that emerge when running at the minimum allowed voltage, Vmin, were

studied by comparing the layer output when running conventional V-F pairs versus the non-conventional

ones. It was observed that the single output maximum relative error did not exceed 0.14% and that,

even in these circumstances, up to 99.99% of the results are shown to be accurate. Finally, the training

procedure of four CNN models were executed while exploring the usable execution space, observing no

relevant effect on the final testing accuracy being measured when undervolting the GPU core. Moreover,

it was observed that using the novel V-F pairs yields an EDP improvement of up to 44% over the regular

automatic DVFS system of the Vega 10 GPU. With the adaptation of the V-F mechanism to the training

procedure of the CNN, the discovery of the configuration that achieves the best energy efficiency is

performed automatically.

The adoption of the devised automatic optimization mechanism, which builds on the benefits of using

non-conventional V-F pairs, is this dissertation answer to the objective of improving the energy-efficiency

of already deployed GPUs.

6.1 Future Work

Two significant advancements to the state of the art are put forward by this thesis, contributing posi-

tively to increase the energy-efficiency of GPUs. However, the devised methodologies still have room to

be further explored.

AMD is currently the only manufacturer allowing, through their software stack (ROCm and rocm-

smi), independent control over the voltage and frequency pairs used by the DVFS system. However,

this manufacturer is currently not the leading player in the GPU space. As such, the demonstration of

non-conventional V-F scaling cannot be done on the most used and fastest devices available. Other

manufacturers (mainly, the leading GPU manufacturer NVIDIA) must provide similar software tools to

allow researchers to continue to explore and create novel solutions. In addition to making these tools

available, manufacturers could develop a control API that allows developers to hint their DVFS system

(through CUDA, HIP or OpenCL directives) with information regarding application characteristics or the

target optimization metric. The manufacturer developed DVFS system would then use that new informa-

tion to better optimize the V-F pairs values and the selection criteria for the same.

The proposed methodology to characterize the architecture to non-conventional V-F scaling could be

further expanded by going one step below and one step above. Going one step below, other new ker-

nels to characterize the architecture in more detail could be added to the methodology. These would use

Assembly calls to determine which operations inside each architectural component are actually limiting

the usable exploration space. Going one step above, the exploration of the V-F configurations for each

benchmark could be done more intelligently, by creating an algorithm that would indicate which configu-

rations to test (in the current implementation, it is necessary to examine all possible configurations).
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The devised V-F execution mechanism already considers the application performance and energy-

consuming characteristics to choose the most appropriate V-F pair. However, the generation of the V-F

pair to be tested is randomly determined. By monitoring each iteration of the user application’s perfor-

mance counters, such information could be used to guide the generation of the new V-F configuration.

To allow that, a model that relates the performance counters results with the observed performance

and energy-consuming behavior to non-conventional V-F scaling needed to be added to the current

optimization mechanism.
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Appendix A

How to control and set the desired V-F

pair with rocm-smi

As introduced in this dissertation, the independent control of frequency and voltage is not widely

available, and only recently, AMD allows it through their ROCm software stack, more specifically through

rocm-smi - ROCm system management interface. However, even the most recent version of this tool

(presented on ROCm 3.8) does not provide an easy and utterly understandable way of setting the

desired frequency and voltage pair. This appendix intends to describe how to command the rocm-smi

tool to control and set the desired V-F pair in the two tested GPUs, AMD Vega 10 Frontier Edition and

AMD Radeon 5700 XT.

As described in Chapter 2, rocm-smi is a Linux command line application. When launch, it prompts

the interface exhibited in Figure A.1 where it is possible to check the device temperature, average device

power, core domain clock - sclk, DVFS domain clock - mclk, percentage of fan speed, perf - indicating

current DVFS setting as automatic or manual, current device power cap and finally, DRAM and Core

utilization.

Figure A.1: Rocm-smi interface.

The V-F settings’ control depends on the current device underuse due to different implementations of

their DVFS system. However, perf configuration and device power cap have to be changed regardless

of the implementation of the DVFS system.

The following enumeration describes the steps to be made regardless of the implementation of the

DVFS system, stressing the reasons for the same. The following sections detail the working and tuning

of the V-F pair for each of the tested GPUs.

1. Change device performance level: Disable automatic DVFS system.

rocm-smi --setperflevel manual
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2. Get device maximum power cap: Get maximum allowed power consumption (PowerCap) al-

lowed by the device.

rocm-smi --showmaxpower

3. Change device power cap: Change the current device maximum power consumption to the value

obtained on the previvous command.

rocm-smi --setpoweroverdrive X --autorespond yes

It is necessary to change the default PowerCap value to fully unlock manual tuning of the DVFS

system. If not changed, the device will not allow sustained configuration of the highest frequency and

voltage levels.

A.1 AMD Vega 10 Frontier Edition

The Vega 10 GPU presents the concept of discrete performance levels, containing eight possible

configurations for the core DVFS domain. When editing the frequency and voltage values of each

performance level, three rules must be followed. If that is not the case, even though the system accepts

the configuration, the perf configuration (performance level) switches to automatic. The rules are

1. the desired frequency and voltage values must be within the valid ranges for the target device;

2. the desired frequency and voltage values cannot have the same value as the default for the given

performance level;

3. the selected frequency and voltage values of the performance level i need to be at least 1 unit

(1 MHz or 1 mV) above the performance level i− 1 and one unit below the performance level i+1.

To guarantee that the desired V-F pair is selected, it is necessary to write on performance level 0 to

6 V-F pairs below all configurations that will be used and apply on the performance level 7 the desired

V-F pair. In this way, even some automatic control systems that may remain active are forced to select

the wanted configuration. Table A.1 presents the pre-defined voltage values for the performance levels.

Level Frequency [MHz] Voltage [mV]
0 853 801
1 860 810
2 870 820
3 880 830
4 890 840
5 900 850
6 910 860
7 Desired Frequency Desired Voltage

Table A.1: Vega 10 GPU core performance levels general configuration.

The following enumeration indicates the rocm-smi commands that should be executed to select the

desired voltage-frequency configuration.

4. Change performance levels 0 to 6 to pre defined values:

rocm-smi --setslevel 0 853 801 --autorespond yes
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rocm-smi --setslevel 1 860 810 --autorespond yes

rocm-smi --setslevel 2 870 820 --autorespond yes

rocm-smi --setslevel 3 880 830 --autorespond yes

rocm-smi --setslevel 4 890 840 --autorespond yes

rocm-smi --setslevel 5 900 850 --autorespond yes

rocm-smi --setslevel 6 910 860 --autorespond yes

5. Change performance levels 7 to desired values:

rocm-smi --setslevel 7 $frequency $voltage --autorespond yes

6. Select core performance level 7:

rocm-smi --setsclk 7 --autorespond yes

7. Confirm the current voltage level: To note that this command shows the voltage value that

corresponds tomax(VCore, VDRAM ), so, if a voltage value is selected on the core domain is smaller

than the current applied on the DRAM domain, the tool will report the voltage value of the DRAM

domain.

rocm-smi --showvoltage

A.2 AMD Radeon 5700 XT

The Radeon 5700 XT DVFS system does not present the concept of performance levels. Instead,

three V-F pairs indicated, and a quadratic regression is made to create the function V (f) (chart pre-

sented in Chapter 2 Figure 2.8). Similarly to the Vega 10 GPU, the three V-F pairs also need to respect

the three indicated rules.

Minimum Frequency Maximum Frequency

Figure A.2: Change in voltage curve to select a given V-F pair.

Overall, to be able to select and apply a specific V-F pair, the rocm-smi interface presents one other

command that indicates to the DVFS system, which is the minimum and maximum frequency that should

be used. Taking advantage of that interface, the devised method to select a given frequency is presented
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in Figure A.2, where the first V-F pair is not changed, and the remaining two are set following Table A.2.

The value of +10 is the pre-defined allowed variation of the parameters and was decided taking into

account the range of frequency and voltage values.

V-F pair number Frequency [MHz] Voltage [mV]
0 800 850
1 Desired Frequency Desired Voltage

2 Desired Frequency + 10 Desired Voltage + 10

Table A.2: Radeon 5700 XT GPU core V-F pairs general configuration.

The following enumeration indicates the rocm-smi commands that should be executed to select the

desired voltage-frequency configuration.

4. Change the V-F pair values:

rocm-smi --setvc 0 800 850 --autorespond yes

rocm-smi --setvc 1 $frequency $voltage --autorespond yes

rocm-smi --setvc 2 ${frequency + 10} ${voltage + 10} --autorespond yes

5. Change allowed frequency range limits:

rocm-smi --setsrange 0 $frequency --autorespond yes

rocm-smi --setsrange 1 ${frequency + 10} --autorespond yes

6. Confirm the current voltage level: To note that this command shows the voltage value that

corresponds tomax(VCore, VDRAM ), so, if a voltage value is selected on the core domain is smaller

than the current applied on the DRAM domain, the tool will report the voltage value of the DRAM

domain.

rocm-smi --showvoltage
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