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Abstract—The use of Graphics Processing Units (GPUs) to
accelerate Deep Neural Networks (DNNs) training and inference
is already widely adopted, allowing for a significant increase in
the performance of these applications. However, this increase in
performance comes at the cost of a consequent increase in energy
consumption. While several solutions have been proposed to
perform Voltage-Frequency (V-F) scaling on GPUs, these are still
one-dimensional, by simply adjusting frequency while relying on
default voltage settings. To overcome this, this paper introduces a
methodology to fully characterize the impact of non-conventional
Dynamic Voltage and Frequency Scaling (DVFS) in GPUs. The
proposed approach was applied to an AMD Vega 10 Frontier
Edition GPU. When applying this non-conventional DVFS scheme
to DNNs, the obtained results show that it is possible to safely
decrease the GPU voltage, allowing for a significant reduction
of the energy consumption (up to 38%) and the Energy-Delay
Product (EDP) (up to 41%) on the training of CNN models, with
no degradation of the networks accuracy.

Index Terms—GPU, DVFS, Undervoltage

I. INTRODUCTION

In the last few years, Deep Neural Networks (DNNs) have
had a significant impact in industry and society, by allowing
for important breakthroughs in many application domains,
such as computer vision, speech recognition, natural language
processing, drug discovery, genomics, etc [1].

However, DNNs are usually characterized by significant
computational burdens, particularly when considering the
training of very deep and complex networks, and/or when
dealing with high dimensional data, such as images and videos.
For such purpose, researchers (and data scientists, in general)
often rely on accelerators, such as Graphics Processing Units
(GPUs), to cope with the associated computational burden and
reduce the training time. As a result, GPUs are now commonly
deployed on most supercomputers, data centers and other
computational infrastructures related with the development of
artificial intelligence algorithms.

Additionally, several software frameworks, algorithms and
techniques have been proposed to manage and optimize the
execution of DNNs on GPUs (e.g., Mittal [2]). However,
most optimization techniques neglect the energy impact of the
training phase, usually resulting in considerable costs.

To overcome this problem, researchers have also explored
other solutions that allow mitigating the energy impact of
neural network training. One particular and common approach
relies on the use of low-precision arithmetic (e.g., Nabavine-
jad [3]), eventually trading network accuracy with increased
processing performance and lower energy consumption.

Researchers have also looked at alternative approaches,
such as by exploiting Dynamic Voltage and Frequency Scal-
ing (DVFS) on both the inference and training phases. In
fact, by carefully selecting the used voltage-frequency (V-F)
levels, significant energy savings can be obtained, although
depending on the considered DNN architecture and computing
device [4]. This is achieved through a careful balance between
the performance and power consumption of the different GPU
components (particularly the core and global memory) such
as to minimize stalls in the compute cores. In fact, not only
can DVFS be used to decrease the power consumption, but it
can also boost the system performance [4], by increasing the
voltage and frequency levels (as long as the GPU total power
envelope and thermal limits are not surpassed).

Nevertheless, most state-of-the-art works only consider
tightly coupled V-F levels, often predefined by GPU manu-
facturers and neglecting the voltage margin that is usually in-
troduced to guarantee fail-safe designs, as well as its variation
with the kernel instruction sequence and the corresponding use
of specific GPU components. Supported on this observation,
this work starts by investigating such margins, by relying on
a set of carefully crafted micro-benchmarks. Then we apply
V-F scaling for the training and inference of state-of-the-
art networks and conclude that significant energy and EDP
savings can be attained by working at near-threshold voltage.

In accordance, the main contributions of this work are:
• Proposal of a new methodology and synthetic benchmark

suit to fully characterize the impact of V-F scaling on
modern GPU architectures;

• When applied to an AMD Vega 10 Frontier Edition,
we show that it can be safely undervoltage (from the
default setup), with the DRAM-Cache controller and
the Arithmetic and Logic Unit (ALU) being the most
sensitive components to voltage drops.

• Demonstration that non-conventional DVFS results in
significant energy savings, and also on performance gains,
as a side effect of the observed power savings.

• Evaluation of the computation errors due to undervolt-
age, showing that it can be safely applied to both the
training and inference of DNNs without compromising
the networks accuracy.

II. RELATED WORK

Several authors have already exploited DVFS to reduce the
GPU power consumption and attain energy savings. Different



approaches have been used, most commonly by relying on
performance, power or energy consumption models (e.g.,
Guerreiro [5]–[7], Wang [8] and Fan [9], [10]). However, other
alternative approaches have also been studied, such as standard
machine learning techniques to predict when and how to adopt
frequency scaling (e.g., the work of Guerreiro [11]).

Nevertheless, most of these solutions rely on tightly coupled
voltage-frequency (V-F) levels, where the voltage level is
predefined by the GPU manufacturer and it is based on the
device working operating frequency, with an extra voltage
guardband to take into account process and aging variations.

Nonetheless, some other works have already considered the
investigation on how to minimize the voltage guardband to
improve energy efficiency. Kalogirou et al. [12] explore such a
concept to reduce the CPU consumption on cloud data centers.
Papadimitriou et al. [13] comprehensively characterized the
voltage guardbands in different ARM processors to predict
the minimum working voltage using performance counters.
Nakhaee et al., [14] exploit the properties of error resilient
applications to operate CPUs with negative guardbands, i.e.
with timing violations that introduce insignificant errors in
the application results. However, although unveiling important
results, these works are not directly applicable to GPUs.

On the other hand, Leng et al. [15] studied the undervoltage
effect in NVIDIA GPUs to conclude that there exists a
significant voltage guardband that is dependent on application
kernels and that can result in up to 25% energy savings if
reduced to a minimum. Similarly, Thomas et al. [16] studied
the joint effect of process variations and voltage noise on GPU
architectures, and developed a solution to dynamically reduce
the voltage margins, achieving 15% energy savings. Similarly,
Tan et al. [17] investigated the impact of reducing the voltage
guardband at the register file and developed a solution to make
the computation viable with unreliable register files in a low
voltage operation. However, these works did not consider the
impact of DVFS, as it will be addressed in this paper.

In contrast, a more ambitious exploitation of voltage and
frequency scaling is envisaged in this paper. Contrarily to
a strict application of conventional DVFS techniques, the
research that is herein presented considers a complete de-
tachment of the voltage and frequency setups, in order to
identify the most energy efficient operation in each application.
To attain this objective, a comprehensive characterization of
the several GPU components will be undertaken (namely the
memories and execution units), by defining a convenient set of
benchmarks that will allow an individual characterization of
each component. The gathered information will then support
the definition of non-conventional DVFS mechanisms that will
allow a wholly decoupled scaling of the GPU voltage and
frequency. A final case study will be presented, by applying
these contributions to the optimization of a set of DNNs.

III. ARCHITECTURE CHARACTERIZATION WITH
INDEPENDENT VOLTAGE AND FREQUENCY SCALING

To evaluate and characterize the GPU architecture when
subjected to non-conventional DVFS, a set of kernels were

TABLE I
DEVISED SET OF KERNELS TO CHARACTERIZE GPU TO

NON-CONVENTIONAL DVFS

Micro-kernels Data Type Objective
DRAM FP32, INT32 Minimum Read & Write voltage, bit-flip, data-

corruption

Cache L2 INT32 Minimum Read & Write voltage, data-corruption

Shared Memory INT32 Minimum Read & Write voltage, data-corruption

ALU FP64/32/16,
INT64/32/16/8

Computation errors due to timing violations

SFU FP64/32/16 Computation errors due to timing violations

Branch Minimum voltage for correct schedualing operation

Mix (reduction) FP64/32/16 Evaluates the simultaneous impact of stressing mul-
tiple GPU components

devised to evaluate the impact undervolting on the different
GPU components. This allows determining the frequency-
dependent minimum operating voltage that (still) leads to
correct GPU operation (Vmin) and to understand the impact
of independent voltage scaling on performance and energy
consumption. The kernels, presented in Table I, are described
next, and are available as open-source1.

A. Characterization benchmarks

The devised benchmarks individually characterize the dif-
ferent components of the two GPU DVFS domains (core
and global memory): DRAM, Shared Memory, Cache L2,
and ALU. The ALU experiments cover both Multiply and
Accumulate (MAC) and non-linear operations, as well as the
impact of branches. Every benchmark was tested for multiple
data types, by replacing a DATA_TYPE placeholder with
standard integer, single and double precision types. However,
due to space limitations, only the results that reveal a greater
sensitivity to Vmin will be herein reported, corresponding to
DRAM, Cache and MAC.

Finally, it will be also evaluated a coarser and more repre-
sentative kernel in many GPGPU applications - the reduction -
which simultaneously stresses multiple architecture elements.

1) DRAM: This benchmark was devised (and validated
through GPU counters) to determine the impact of memory
under-clocking, by continuously fetching data from the DRAM
(see Listing 1). For each data fetch, OPS controls the number
of arithmetic operations to be performed before the data is
placed on the DRAM again. A lower OPS value results in
a more memory intensive kernel, eventually leading to a
memory bound kernel. In contrast, a higher OPS results in a
less memory intensive kernel and, since the memory accesses
become more spaced in time, eventually results in a compute
bounded kernel.

2) Cache: The core DVFS domain controls both the global
L2 cache and the local L1 caches. The devised benchmark
(see Listing 2) is very similar to Listing 1. However, it
acts on the L2 cache and on the state machine responsible
for communicating with the DRAM. The number of issued
requests to the cache and to the DRAM-cache controller is the
same independently of the OPS value. However, the amount of

1https://github.com/hpc-ulisboa/nonconventional-dvfs



void DRAMcode(DATA_TYPE *IN0,*IN1,*OUT) {
const int ite = (blockIdx.x * THREADS +

threadIdx.x) % MEM_BLOCK;
volatile DATA_TYPE r0;

for (int i = 0; i < N; i++) {
r0= IN0[i * C + ite] + IN1[i * C + ite];
#pragma unroll
for(int j = 0; j < OPS; j++)

r0 += r0 * r0;
OUT[threadId] = r0;

}
}

Listing 1. DRAM Benchmark Code

void CacheL2code(DATA_TYPE *IN, *OUT) {
const int ite = blockIdx * THREADS + threadIdx;
volatile DATA_TYPE r0;

for (k=0; k<N; k++)
for(j=0; j<COMP_ITE; j++) {

r0= IN[ite];
#pragma unroll
for(m=0; m<OPS; m++)

r0 += r0;
OUT[ite] = r0;

}
}

Listing 2. CacheL2 Benchmark Code

time between requests changes with OPS. As in the previous
case, the benchmark was validated through GPU counters.

3) MAC: Listing 3 presents the devised benchmark to
stress the ALU. A greater emphasis was devoted to the MAC
operation, due to its prevalence in the Deep Learning (DL)
domain. It is expected that some computational errors may
occur when overly undervoltage is applied to this component,
due to timing violations across the critical path. Another factor
under test is the influence of dependencies in the code, as these
may influence how the warps scheduler orders the threads
for execution on the CUs. Since DL workloads are usually
characterized by massive levels of parallelism, which translates
to a high number of warps per block, the benchmark was
devised to mimic this situation. The benchmark can be also
used to study the influence of different dependencies that can
exist in the application, by assigning a value between 0 and 5
to variable d. When d=0, no dependencies exist in the code.
The setup with d=1 represents the worst-case scenario, since
introduces Read-after-Write (RaW) dependencies between all
operations. This particular dependency setup was emphasized
in the presented study, due to the variability of kernels exe-
cuted by DL workloads. On the other hand, the setup with d=3
was considered a general case, where some dependencies still
exist in the code, but the scheduler can mask some of them.

4) Reduction: The reduction benchmark (Listing 4)
reduces the length of a N -sized vector to N/blockDim, by
performing an element wise sum. It makes use of the shared
memory to enable inter-thread communication and improve
performance. Hence, this benchmark stresses all elements of
the architecture (DRAM, Cache, shared memory and ALU)
and allows to assess a more complex use-case, where a single
kernel stresses multiple architectural units.

void ALUcode(DATA_TYPE *IN, *OUT) {
const int ite = (blockIdx*THREADS+threadIdx)*4;

volatile DATA_TYPE r0, r1, r2, r3, r4, r5;
r0=IN[ite]; r1=IN[ite+1]; r2=IN[ite+2];
r3=IN[ite+3]; r4=IN[ite]; r5=IN[ite+1];

for(j=0; j<COMP_ITE; j++) {
r0 += r0 * r{0-d}; r1 += r1 * r{1-d};
r2 += r2 * r{2-d}; r3 += r3 * r{3-d};
r4 += r4 * r{4-d}; r5 += r5 * r{5-d};

}
OUT[ite/4] = r0;

}

Listing 3. ALU Benchmark Code

void Reduction(DATA_TYPE* idata, T* odata){
__shared__ DATA_TYPE s[THREADS];
unsigned int i, k, t = threadIdx;
unsigned int index = blockIdx*blockDim*N

+ threadIdx;

// cooperative load from global to shared memory
s[t] = 0;
for (i=0; i< 4; i++, index += blockDim.x)

s[t] += idata[index];
__syncthreads();

// do reduction in shared memory
if(t < 64) {

s[t] += s[t+64]; __syncthreads(); }

if(tid <32){
s[t] += s[t+32]; s[t] += s[t+16];
s[t] += s[t+8]; s[t] += s[t+4];
s[t] += s[t+2]; s[t] += s[t+1];

}

// write result for this block to global mem
if(t == 0) odata[blockIdx.x] = s[0];

}

Listing 4. Reduction Kernel Code

B. Non-Conventional DVFS Experimental Setup

The devised benchmarks were applied to characterize an
AMD Vega 10 Frontier Edition GPU, whose specifications are
presented in Table II. Despite some preconfigured Frequency-
Voltage (F-V) setups, the GPU vendor rocm-smi2 tool allows
for an independent control over frequency and voltage. To
allow a greater evaluation range, the GPU power cap was
changed from the default 220W to 300W (matching the
GPU thermal design). This GPU was installed on a machine
equipped with an Intel i7 4770K CPU, with 32 GB of main
memory.

The default frequencies of the GPU Core and DRAM
domains, presented in Table II, were selected as the starting
point for the non-conventional DVFS. For each frequency, the
devised experiment started at the maximum voltage (1200mV )
and a gradual undervoltage of the GPU V-F domain under test
was applied with 50mV steps. For each step, the benchmarks
were executed ten times to obtain the median value of the
execution time and energy consumption.

2github.com/RadeonOpenCompute/ROC-smi



TABLE II
AMD VEGA 10 FRONTIER EDITION SPECIFICATIONS.

Architecture GNC5
CUs & DRAM size 64 & 16 GB
Core voltage range [mV] [900 - 1200]
DRAM voltage range [mV] [800 - 1200]

Default Frequency-Voltage (F-V) setups
Core F-V [MHz ; mV] [995;900, 1140;950, 1350;1050,

1440;1100, 1530;1150, 1600;1200]
DRAM F-V [MHz ; mV] [500;900, 800;950, 950;1000]

To avoid any bias incurred by the considered data values,
all the tests were performed using randomly generated inputs.
Integer values were obtained from a normal distribution across
their complete 32-bits range. Floating-point operands were
generated using an uniform distribution in the interval [0.1 ; 1].
This ensures that operations are never applied to numbers with
a significant different exponent value, thus avoiding rounding
errors that would conduct to the discard of the operator with
the lowest absolute value.

While performing the undervoltage, the GPU goes through
three distinct stages. At the first stage (working), the GPU
works regularly and no changes are detected in the application
output. Then, by continuing the reduction of the GPU voltage,
some computational errors are introduced and some applica-
tion outputs change when compared with the default voltage
setup. By continuing reducing the GPU voltage beyond this
stage, the GPU enters into the crash state, becoming unusable.

To accurately determine the areas of interest (i.e., when
infrequent computation errors occur) and to determine the
crash point, the undervoltage step was reduced to 10mV .
Furthermore, when dealing with the DRAM V-F domain, the
Core V-F domain was set to default values; for the Core
V-F domain, the highest frequency and default voltage of
the DRAM was selected. The GPU power consumption was
measured using gpowerSAMPLER3 [5], at every millisecond.

C. Characterization Results

For an easier understanding of the obtained results, the
following charts only represent the data-points that correspond
to voltages equal-to and lower-than the default voltage of each
frequency level (no interesting data is found at higher voltage
levels). Furthermore, the performance, energy consumption,
and energy-delay product charts were normalized to the results
achieved with the highest core frequency and default voltage
(1600MHz and 1200mV), so a smaller number indicates an
improvement in relation to that configuration.

1) DRAM: Fig. 1 illustrates the usable voltage range of the
DRAM domain and the normalized performance and energy
consumption when varying the OPS parameter between 0 and
50 operations (see Listings 1). The conducted experiment
shows that no computation error or crashes happen for the
default frequencies within the complete voltage range. The
kernel runs successfully, with no perceptible change in the

3github.com/hpc-ulisboa/gpowerSAMPLER
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Fig. 1. DRAM DVFS - Normalized energy consumption and execution time
and usable DRAM voltage for each frequency configuration.

output. The experiment also shows that for all OPS values
(0 to 50), the highest DRAM frequency delivers not only
the best performance but also the lowest energy consumption.
Moreover, undervolting the DRAM at that frequency did not
result in a relevant reduction in the total GPU energy consump-
tion, leading us to conclude that the weight of DRAM in the
GPU energy consumption is not significant in relation to the
Core energy consumption. In accordance, the highest DRAM
frequency will be hence-forwardly considered, guaranteeing
the maximum performance, and leaving the voltage control
for the automatic DVFS system.

2) Cache: Fig. 2 presents the usable voltage interval and
the normalized energy consumption and execution time for dif-
ferent V-F setups. To guarantee the best clarity of the following
pictures, the considered voltage values were only annotated in
Fig. 2 - all the following charts will adopt the same voltage
levels. For frequencies below 1530MHz, no computation errors
or crashes were observed. Only for frequencies as high as
1530 and 1600 MHz performing undervoltage resulted in the
program crashing. A critical observation is that no computation
errors occur, meaning that this architectural component either
works normally or makes the GPU immediately to crash. This
phenomenon is of significant importance to determine the
root cause of failures when analyzing the CNN layers (see
section IV). Furthermore, an increase of OPS allows for a
higher amount of undervolt. Since this change only affects
the stress over the DRAM-Cache controller (the number of
cache accesses and hit-rate maintains the same), it can be
concluded that it is the Cache-DRAM controller that limits
the undervoltage range.

In what concerns the energy and performance variations,
performing voltage scaling at the default frequency (dashed
line) allows a reduction of energy consumption as high as
46.1%. However, this results in a performance degradation of
60.9%. The advantage of performing non-conventional DVFS
becomes apparent by allowing for energy reduction without
any performance degradation. In this case, it is possible to run
the GPU Core at 1600 MHz and 1000 mV, thus achieving an
energy reduction of 35.7% with no performance degradation.

Fig. 3 presents the obtained Energy-Delay Product (EDP)
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Fig. 2. CacheL2 - Normalized energy and performance variations and usable
voltage range for OPS=0, when applying V-F scaling to the GPU Core. The
values shown in the figure represent the applied core voltage and the dashed
line connects the default F-V configurations.

Underlined results correspond to default V-F pairs.

Fig. 3. CacheL2 - Obtained Energy-Delay Product (EDP) for OPS=0, when
applying V-F scaling to the GPU Core.

for the L2 Cache benchmark. This component favors the
higher frequencies and minimum voltages, to achieve the
lowest EDP product.

3) ALU: Fig. 4 represents the usable undervoltage range for
the ALU benchmark. Since most DL frameworks adopt single-
precision floating-point numbers by default, the presented
results of the benchmark refer to this data type. For frequencies
below 1440 MHz, the benchmark successfully runs for all
voltage values. For higher frequencies, it is observed that
after a certain amount of undervoltage, computation errors
start appearing. The GPU crashes if a further undervoltage
level is applied. It is also observable that the voltage margin
increases with the operating frequency, from around 170mV
for 1440MHz to around 210mV for 1600MHz, and that the
existence of dependencies in the code reduces the voltage
margin. However, when compared with the setup with no
dependencies, the undervoltage range of the benchmark con-
figuration that represent the general case (d=3 - see Listings 3)
is only reduced by 10mV.

An interesting phenomenon is observed in the energy-
execution time plot for the highest frequencies. Performing un-
dervoltage not only reduces energy consumption (as expected),
but it also allows for faster execution time. An explanation
can be found by analyzing the power consumption during
the benchmark execution. For the default voltage, the power
surpasses the power cap, which activates the GPU protection
mechanisms, halting the execution until the power is reduced.
By applying an undervoltage, the power significantly decreases
(as PStatic ∝ V and PDynamic ∝ V 2, see [5]) and allows a
sustained maintenance of the desire DVFS configuration.

Finally, Fig. 5 presents the obtained EDP chart, where
the configuration of 1440MHz and 950mV achieves the best
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Fig. 5. ALU - Obtained Energy-Delay Product (EDP) when applying V-F
scaling to the GPU core for the benchmark setup with d=1 (left) and d=3
(right) (see Listing 3).

energy-efficiency, yielding an energy consumption reduction
of 39.1% and an execution time improvement of 12.4%.

4) Reduction: The bars in the right side of Fig. 6 present
the usable voltage range for the reduction benchmark. Due
to the high pressure exercised on cache by this benchmark, the
minimum usable voltage coincides with the one measured for
the Cache benchmark. Due to the low utilization ratio of the
arithmetic units (in comparison with the memories), perform-
ing undervoltage did not change the achieved performance for
a given frequency (similar to the result of Fig. 2).

5) General Comments and Remarks: Fig. 6 presents a
comprehensive comparison of the valid voltage ranges for
all the considered architectural components of the GPU. The
general motive is that the CacheL2 and the ALU are the two
components that compromise the undervoltage capabilities.
CacheL2 affects kernels that are more memory intensive, while
the ALU limits those that are more compute-intensive. These
conclusions help us to understand and predict the behavior of
more elaborate DL applications (see section IV). This figure
also presents corresponding results for branch instructions,
which allowed to conclude that branch miss-prediction does
not negatively impact the minimum voltage.

IV. CNN LAYER CHARACTERIZATION WITH
INDEPENDENT VOLTAGE AND FREQUENCY SCALING

As it was referred in Section II, Tang [4] has recently studied
the impact of frequency scaling on the performance and
energy consumption of DNNs executed in GPUs. By extending
this study with the capability to also apply undervoltage
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Fig. 6. Comparison of usable GPU core voltage ranges for all the considered architectural components of the GPU.

techniques, a broader range of DVFS configurations is herein
envisaged to provide even greater benefits.

Another important characteristic of DNNs is their tolerance
to a certain degree of computation errors [18], without any
significant change in the training and inference results. As
a consequence, it is important to complement the character-
ization that was performed in the previous section with the
voltage scaling effects in DNNs training and inference phases
and, in particular, with its influence on the computation errors
that might occur when exploring the existing voltage margins.

Looking at the particular case of the Convolutional Neural
Network (CNN), its feature extraction ability is supported
on the convolution operator. Nonetheless, CNNs also include
other types of layers, such as fully connected and pooling
layers. However, convolution and fully connected layers take
up to 97% of the GPU energy consumption [19], which makes
them particularly suited to exploit energy saving mechanisms.

Hence, to extend the presented benchmarking results to
a more ambitious analyses based on the use of high-level
deep learning frameworks (e.g., PyTorch, TensorFlow), the
default mathematical libraries provided by the considered GPU
manufacturer (AMD) were extensively evaluated. This section
reports the main achieved conclusions for the convolution
operator and fully connected layers.

A. Convolution Layer

The MIOpen library4 provides multiple convolution imple-
mentations, being the Direct, GEMM and Winograd the ones
that are more often used. At the beginning of the execution,
this library performs one convolution operation with each of
these algorithms. Then, the algorithm that takes the smallest
execution time is chosen and used to perform the remaining
convolutions of the current layer.

To conduct this analysis, a set of convolution layer con-
figurations was selected from the DeepBench benchmark5, in
order to understand how each algorithm is affected by DVFS,
both in its inference and training phases.

Fig. 7 presents the set of valid voltage ranges that were
obtained for the inference and training phases of the convo-
lution layer. When comparing these results with those that
were obtained in the previous section, it can be observed
that some computation errors (and even some GPU crashes)

4github.com/ROCmSoftwarePlatform/MIOpen
5github.com/baidu-research/DeepBench

Frequency 
[MHz]

Fig. 7. Convolution Layer - Usable voltage range when applying V-F scaling
to the GPU core.

were detected at lower voltages. In fact, since this operation
is more complex and requires the utilization of multiple
architectural components, the undervoltage limit is more likely
to be violated by the voltage drops induced by the activation
and deactivation of the GPU architectural components [16].
This phenomenon will make certain parts of the GPU not to
work properly (even momentarily), producing an increased rate
of computation errors and a increased crash threshold voltage.

When comparing the three convolution algorithms, it is
observed that Direct allows for the greatest amount of un-
dervoltage, followed by GEMM and Winograd. The Direct al-
gorithm is the simpler of the three, with no data transformation
and movement being necessary for its execution. In contrast,
GEMM and Winograd need some data pre-processing before
the convolution is performed. This extra step relies on the
activation of more GPU components, making these algorithms
more prone to induce voltage drops.

When comparing the training and inference phases, it is
observed that they present similar undervoltage capabilities
(for all algorithms), with the crash point diverging only around
10mV. However, the training algorithm is more prone to the
introduction of computation errors.

Fig. 8 illustrates the impact of non-conventional DVFS on
the energy consumption, execution time and EDP. When work-
ing with the default voltage level of each frequency (dashed
lines), the Direct and GEMM algorithms exhibit a valley in
their performance chart, with the frequency of 1530 MHz
providing the best performance. In contrast, the Winograd
achieves its best performance with the lowest frequencies.
Upon the introduction of independent voltage scaling, it is
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Fig. 9. Convolution Layer - Energy Delay Product (EDP) when applying V-F
scaling to the GPU core during inference (top) and training (bottom) phases.
The dashed lines connect the results for default F-V configurations.

possible to improve the execution time and energy consump-
tion (in comparison with the default voltage) by 8% and 23%,
19% and 8%, and 14% and 24% for the Direct, GEMM and
Winograd algorithms, respectively. The EDP charts depicted in
Fig. 9 indicate that the most energy efficient configuration for
the three algorithms is at the lowest frequencies and maximum
undervoltage possible. At these configurations, although the
execution time is reduced by 16% (for the Direct and GEMM
algorithms), it is still possible to achieve a reduction in energy
consumption of up to 46%. The use of the most efficient
configuration for the Winograd algorithm improves both the
execution time and the energy by 15% and 32%, respectively.

B. Fully Connected Layer

The RocBlas library6 provides a single API for matrix mul-
tiplication, the underlying mathematical operation of the fully

6github.com/ROCmSoftwarePlatform/rocBLAS
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[MHz]
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Fig. 10. Fully Connected Layer - Usable GPU core voltage range. Values
represent matrix sizes, example Aa×b ·Bb×c

connected layer. By analyzing the performance counters and
the kernels called by the library, it is possible to understand
that multiplication is performed in one of two ways depending
on the size of the matrices. According to [20], small matrices
are first loaded to cache and all the operations are performed in
this device, making the operation compute bounded. For large
matrices, the multiplication starts and it is executed wherever
the necessary data is available on the memory and local caches.
The threshold size corresponds to the size of the L1 Cache.

As a result, non-conventional DVFS will impact these two
implementations of the matrix multiplication in different ways.
For small matrices, it is the ALU that will limit the undervolt-
age. Consequently, it is expected that a valley-like shape is
observable in the performance chart after the application of
frequency scaling (see section III-C3). On the other hand, for
large matrix sizes, the cache will be stressed the most, with
constant requests on the DRAM-Cache controller limiting the
undervoltage. Consequently, the results will be similar to those
that were observed in section III-C2.

Fig. 10 and 11 illustrate the results of the experiment and
confirm the prediction: for small matrix sizes it is possible to
perform a higher degree of undervoltage. Furthermore, it is
possible to have an improvement in the execution time and
energy consumption for both cases. The EDP chart indicates
the same energy efficiency configuration for both cases, which
results in an average reduction of 52% in energy consumption
and 8% of improvement of the execution time.

C. Error Analysis

To evaluate the occurrence of computation errors due to the
utilization of non-conventional DVFS, each benchmark was
executed both with the default “automatic” parameterization
and with the V-F pair under testing, with the same input data.
A warmup kernel was also executed before each of these two
runs, to fill the cache with random data.

For the architecture characterization benchmarks (see sec-
tion III), a computation error was asserted whenever any of
the output vectors differs between the executions. For the
characterization of the CNN layers (see section IV), a different
error metric was adopted due to the utilization of software
libraries (versus custom kernels) operating over floating-point
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Fig. 11. Fully Connected Layer - Normalized energy and performance chart
(top - the dashed lines connect the results for default F-V configurations),
and obtained EDP (bottom) for small (left) and large (right) matrices when
applying V-F scaling to the GPU core.

numbers (as before, generated from an uniform distribution in
the interval [0.1 ; 1] to ensure that operations are never applied
to numbers with significantly different exponent values). These
libraries can launch the kernels in a different order, changing
the order of operations, with a possible impact in the final
result. In fact, by conducting experiments on the default
voltage, it was observed that the order of kernel execution
resulted in a relative output difference not greater than 10−6.
In accordance, a computation error was asserted whenever the
relative difference in each position of the output vectors was
greater than or equal to 10−5.

1) Convolution Layer: Fig. 12 depicts the distribution of the
output results of the convolution layer for the three considered
convolution algorithms (at both inference and training phases)
for the minimum usable voltage values (i.e., before GPU crash)
across all considered core frequency values. The obtained
results emphasize the little effect of the applied undervoltage
on the computed values. Most of the output results are still
fully accurate and only a small portion of the results present
deviations. In fact, it should be emphasized that not only is the
fraction of non-accurate results very small, but the normalized
relative error of those non-accurate results has a very low

Fig. 12. Convolution Layer - Average percentage of accurate results and
relative error distribution of non-accurate outputs for the minimum usable
core voltage across all considered core frequency values.

Fig. 13. Fully Connected - Average percentage of accurate results and relative
error distribution of non-accurate outputs for the minimum usable core voltage
across all considered core frequency values.

magnitude. A particular observation is worth noting about
the results of the inference phase with the GEMM algorithm.
Although the amount of non-accurate results is greater than
in the other configurations, the magnitude of the normalized
relative error is much smaller.

2) Fully Connected: Fig. 13 represents the same evaluation
for the Fully Connected Layer, for both small and large
matrices. Even at these extreme configurations, it is observed
that most results are still computed with full accuracy (98%
of the cases), with a normalized relative error as low as
1.37× 10−3 (on the remaining 2% of the cases).

D. Complete CNN training with non-conventional V-F

The previously obtained results evidence that the small
number and relative amount of computation errors introduced
by these under-voltage conditions is well cooped with the
operations that are conducted in DNN layers. However, the
same evaluation urged to be done for the whole network.
Hence, four complete well-known CNN models (AlexNet,
LeNet, VGG11 and WideResNet) were trained under the pro-
posed non-conventional DVFS. For each case, the previously
performed error analyses was applied to evaluate the best V-F
configurations and to assess the induced errors.

Table III presents the median classification accuracy over
ten runs. Results show that, when compared with the default
setup (i.e., no undervoltage), the introduced computation errors
do not induce any significant change in the network’s final
training accuracy. Also, Table IV presents the best configura-
tions considering maximum undervoltage at highest frequency,
and V-F configuration minimizing EDP.

TABLE III
COMPARING CNN TRAINING ACCURACY WITH THE APPLICATION OF

DIFFERENT UNDERVOLTAGE LEVELS.

Amount of undervolt [mV] AlexNet [%] LeNet [%] VGG11 [%] WideResNet [%]
0 76.59 59.84 86.14 80.32

50 76.48 60.08 86.14 80.39
100 76.60 59.94 86.04 80.23
150 76.61 60.12 86.39 80.08

Number of trained epochs 50 100 30 30

Finally, Table V emphasizes and summarizes the main
achievements of this research, by comparing the CNN exe-
cution at the default V-F setup, with frequency scaling using
default voltage values, and with non-conventional DVFS. It
considers two configurations: (i) at the highest frequency, and
(ii) at minimum EDP. As it can be observed, by exploring
non-conventional DVFS, it is possible to significantly improve



TABLE IV
NON-CONVENTIONAL V-F SETTINGS PER CNN MODEL.

Frequency and Voltage configuration [MHz - V]
Configuration AlexNet LeNet VGG11 WideResNet
Default GPU setup 1600 - 1.2 1600 - 1.2 1600 - 1.2 1600 - 1.2
Standard DVFS* 1270 - 1.0 1270 - 1.0 1270 - 1.0 1270 - 1.0
Proposed @ highest freq. 1600 - 1.1 1600 - 1.05 1600 - 1.1 1600 - 1.05
Proposed @ best EDP 1530 - 1.0 1270 - 1.0 1440 - 1.0 1530 - 1.0
* DVFS setup that optimizes EDP using manufacturer voltage values.

TABLE V
EVALUATION OF PERFORMANCE, ENERGY, AND EDP WHEN APPLYING

NON-CONVENTIONAL DVFS IN THE TRAINING OF NEURAL NETWORKS.

Improvement vs default V-F
Metric Selected configuration AlexNet LeNet VGG11 WideResNet
Energy At highest frequency 24% 20% 22% 23%

At best EDP 38% 38% 33% 38%
Training time At highest frequency 1% 2% 0% 6%

At best EDP 3% -3% -2% 0%
EDP At highest frequency 21% 22% 22% 23%

At best EDP 38% 41% 32% 36%
Improvement vs F scaling with default V-F pairs

Energy At best EDP -2% 0% -1% -2%
Training time At best EDP 8% 0% 6% 10%
EDP At best EDP 3% 0% 3% 6%

a positive value indicates an improvement vs the default V-F configuration of the GPU.

all three metrics (energy, training time, and EDP) without
compromising the resulting accuracy of the whole CNN. The
main benefit of our approach is allowing the utilization of
higher or even the highest frequency (maximizing perfor-
mance) while having similar energy consumption to using the
lower frequency/energy savings performance levels.

V. CONCLUSION

The presented research shows that there is a great benefit
in performing non-conventional DVFS while running CNNs
(and DNNs in general). The conducted GPU architecture
characterization allowed to understand that the L2 Cache and
the ALU are the most sensitive components when performing
undervoltage. It was also observed that it is safe to undervolt
the considered GPU between 150 mV and 200 mV without
significantly constraining the accuracy of results. On the other
hand, this allows for significant energy gains and, in some
cases, it even improves the attained performance. Applying
non-conventional DVFS to the convolution and fully connected
CNN layers reduces the EDP by 50%, at a cost of introducing
a small amount of computation errors. Nevertheless, it was
shown that the application of non-conventional DVFS to the
training of complete CNN models does not significantly affect
the final test accuracy. The obtained results also indicate that it
is possible to improve the GPU EDP while training complete
CNN models by an average of 36.7%. Overall, this paper
shows how to charactetize a GPU architecture sensitivity to
undervoltage, in order to reduce the GPU energy consumption
without degrading the attained results.
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