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Abstract— Based on past experience, our brain is capable of an-
ticipating imminent sensory inputs to simplify routine tasks such as
reading or driving. Inspired by this notion, studying the prediction of
sensory signals may turn out to be an important stepping stone on the
path towards intelligent systems.

In the last five years the effort for materializing this idea by
predicting video frames has intensified, yet, current solutions are still
hampered by the rapid increase in difficulty that comes with the size
of the frames and the prediction horizon. Two ways of mitigating these
problems are to disentangle sources of information and to add the
future actions of an agent as an extra input, with the later adding
the extra benefit of allowing the use of the video prediction model in
planning tasks. Naturally, in this type of application the ability of the
model to grasp the implications of each action is of critical importance.

With this in consideration, this work can be summarized in the
following contributions: (i) we propose a new method that evaluates
video prediction models based on their ability to guide action decisions;
(ii) we design an autoencoder model that separates agent information
from information of objects, using knowledge of future actions and
the inherent structure of video data; and (iii) we investigate whether
separately predicting object information, conditioned on the actions,
can improve the state of the art in video prediction.

Keywords: Video Prediction, Disentangled representations, Robotics,
Benchmarking, Predictive Coding, Deep Learning

I. INTRODUCTION

A crucial step in problem solving - as we are taught from a young
age - is to find a point of view that offers a new, simpler angle on
how to approach the task at hand. For example, dividing 210 by
6 is a trivial problem using long division, however, it becomes
incredibly more difficult if instead the question is presented as
dividing the Roman numerals CCX by VI [1]. Most people would
start by finding a better representation for the information and
convert the numbers from Roman to Arabic notation. In general,
a good representation for available information is one that makes
subsequent tasks easier [1].

It turns out that such a notion may be rooted not only in the way
we are encouraged to think by our professors but also in human na-
ture. A proposition of especial interest to this thesis is the possibility
that the human brain learns representations of the surrounding world
in a prediction based fashion. In the past two decades, prediction
oriented theories of the human brain have emerged, posing the idea
that, in the early stages of visual processing, neurons work to reduce
redundancy in the transmitted signals by only relaying information
that is not easily predicted.

In particular, the Predictive Coding theory of Rao and Ballard [2]
proposes that at each level of processing exist two types of neuron
populations: representation neurons that, based on an internal world
model, predict activity at the lower level and error neurons, com-
puting the mismatch between the prediction coming from the upper
level via feedback connections and the actual neuronal response at
that level. Forward connections then convey the prediction error to
the upper layer for the world model to be updated, progressively
allowing better estimates of future sensory inputs. Under the light
of Predictive Coding, a visual scene is perceived when the brain’s

Fig. 1: A sawyer robot imagining different possible outcomes of
executing a sequence of actions in the hypothetical task of pushing
a ball to a whole.

prediction successfully matches the incoming signal, which may
only happen after online corrections to the initial guess.

Nowadays, the ideas of Rao and Ballard have matured into a
theory of brain functioning and perception usually referred to as
Predictive Processing (PP). This theory supports the idea that brains
are predictive engines that are continuously trying to anticipate the
structure of the incoming sensory signal based on past experience.
For this theory to be feasible, however, an additional wrinkle must
be taken into account and that is prediction driven learning. In the
earlier stages of their lives, the way humans learn about the world
is characterized by observation, experimentation and trial-and-error.
These constitute a way of interacting with the world and learning
what to expect at any given situation while having in our senses a
self-supervisory signal that is free, rich and continuously available
for comparison. This allows the optimization of a predictive model
which in turn leads to an ever improving grasp of the surrounding
world [3]: a baby that is capable of anticipating what is about to
happen when her mom opens the fridge or predicting what she will
see and hear as a stack of block toys starts leaning in one direction
has already collected a lot of knowledge about the world and how
to act within it.

Finally, this notion of learning by experimentation, leads to the
consideration that sensori prediction must somehow be connected
with action decision and the motor cortex, an idea that is core of
Karl Friston’s Free Energy Principle [4]. Specifically, Friston argues
that biological organisms are defined by their natural tendency
to resist disorder [5], i.e., by seeking states that allow them to
remain within physiological bounds. In doing that, agents associate
beneficial states with low entropy (or uncertainty) and work to
minimize surprise or, in other words, the likelihood of undesirable
states. This interpretation entails that, while in Predictive Processing
updating the internal model of the world was the single mechanism
available for reducing the error between sensory predictions and



actual observations, action is now regarded as a complementary
way of reducing such an error, by selectively acting upon the world
in ways that result in desirable observations and bring the internal
model’s predictions about.

The most straightforward way of translating these ideas to an
artificial system is through video prediction as, for a model to be ca-
pable of anticipating imminent visual inputs, it must have acquired
some internal knowledge of how its world works. Furthermore,
when an agent’s actions are taken into consideration, it becomes
possible for the model to imagine the possible futures that result
of the different available actions and to select the most convenient
action sequence, as illustrated in Fig. 1. In these applications, the
ability to select the best possible action is very dependent on
how well the Video Prediction (VP) model can anticipate future
observations based on the robot’s actions and the current status of
the scene. Having a metric that can rank video prediction models
based on how well they perform as a forward model is therefore
of fundamental importance.

A second question raised by the availability of the actions is
whether these, along with the sequential structure of the video, can
be used to disentangle (separate) the sources of visual information
related with the agent from those related with external objects
present in the scene. The importance of this question, along with our
solution, is described in chapter IV. Finally, we intend to explore
how having disentangled representations of the agent’s actions and
of the objects in the scene can be beneficial for a video prediction
model. In summary, this work has the following contributions:

• we propose a novel action-based quality assessment metric for
robotic VP models;

• we apply the metric on several different models and quantita-
tively rank them from a robotic perspective;

• we propose a new method of disentangling agent and object
information for video prediction in robotic tasks;

• we quantitatively compare our approach with other methods
both in visual quality and ability to be used in planning tasks.

In addition, we provide the implementation of both our proposed
metric1, for use in VP models that we did not consider, and of our
propsed disentangled prediction model2.

II. THEORETICAL BACKGROUND & RELATED WORK

A. Deep learning models for video prediction

Early work in anticipation of visual information includes sensori-
motor networks [6], which emulate the interaction between the
visual and motor systems in organisms to predict future visual
stimulus. In [7], sensori-motor networks are applied to small image
patches to predict the next time step’s stimulus. However, when
the problem is extended to more generic settings involving obser-
vations of a complete scene and longer temporal sequences, more
complex models become necessary, making deep neural networks
the predominant solution for VP in the last few years.

Recently, a significant research effort has been made on finding
data efficient methods that can leverage the structure of image
data. Convolutional neural networks are a kind of neural network
designed to solve problems in which the data is structured in a
grid, which has made it an ubiquitous model in image and video
frame processing. The name convolutional stems from the fact
that these networks use the convolution of the layer input with
the weights, instead of the matrix multiplication used in fully

1https://github.com/m-serra/action-inference-for-
video-prediction-benchmarking

2https://github.com/m-serra/adr

connected networks. This modification is not only motivated by the
improvement in data efficiency, but also by the notion that most
meaningful features in an image - such as edges and corners - are
sparse interactions between pixels in the same local region. [8].

However, the fact that the output of a Convolutional Neural
Network (CNN) is solely based on the most recent input and not on
the history of observed inputs constitutes a limitation in problems
like video prediction, in which the information contained in the
sequence of frames is crucial for a good performance. In contrast,
Recurrent neural networks (RNNs) exploit sequential information
by having a recurrent cell that continually receives as input new
elements xt of a sequence. Within this cell, there is an internal
feedback loop - the hidden state h - which works as a memory,
allowing past information to persist, which makes Recurrent Neural
Networkss (RNNs) a crucial tool in video prediction.

A final model widely used in video prediction is the autoencoder,
which is an unsupervised approach to learning a low dimensional
feature representation of the factors of variation in the training data.
In other words, the aim is to obtain a hidden vector whose values
specify the characteristics necessary to distinguish examples in the
data. The autoencoder approach to solving this problem is based
on learning an identity mapping while imposing an information
bottleneck at an intermediate representation. With an image as
example, we start by using a function f - the encoder - to map
the image x to a low dimensional vector h = f(x). A second
function g - the decoder - takes h as input and maps it to the
original high dimensional space of the image, obtaining x̂ = g(h).
If we further impose that the reconstruction x̂ should be as similar
as possible to the original image x, by optimizing `2(x, x̂), the
small size of h will force the encoder to prioritize conveying the
main characteristics describing the data, while the decoder will learn
to closely reconstruct the data from those characteristics.

B. Video prediction

In the last 5 years, research in video prediction has intensified,
propelled by the advances in deep learning described in the previous
section, as well as improved computational resources and the
collection of large scale video datasets. Today, VP models can,
for the most part, be classified in one of two types of approach:
pixel motion models and latent variable models. Additionally, they
can be deterministic or stochastic, and can be conditioned on an
agent’s actions.

The introduction of the concept of pixel motion by Finn et al. [9],
Xue et al. [10] and De Brabandere et al. [11], is perhaps one of the
most meaningful contributions to VP, as it liberates the system from
having to predict every pixel from scratch by instead modelling
pixel motion from previous images and applying it to the most
recent observation. The main challenge with this approach lies in
modeling the motion of the pixels and combining the predictions for
each pixel/object into a single predicted image. The advantages are
evident, though: by focusing prediction on the moving pixels, the
dimensionality of the problem is greatly reduced. Also, since the
model is based on the prediction of independent pixel movement
and does not rely on any a priori physical model of the world, it
has the ability to generalize what is learned during training to novel
objects, never seen before.

Rather than focusing on this approach, some authors have opted
for pixel based approaches that use latent variables to reason about
all the information contained in the video [12] [13]. Even though
this may seem an unpromising solution to video prediction, different
interpretations of the base architecture can lead to improved results
over pixel motion models. Latent variable models are implemented

https://github.com/m-serra/action-inference-for-video-prediction-benchmarking
https://github.com/m-serra/action-inference-for-video-prediction-benchmarking
https://github.com/m-serra/adr


with autoencoders and start by obtaining a low dimensional feature
representation h for each observed frame. Typically, an RNN is
then used to project this representation into the future, taking
into account the past sequence of h vectors and finally, for each
predicted ĥ that the RNN outputs, a decoder network is used to
construct a future frame.

This type of architecture poses two main difficulties: on the one
hand the encoder is tasked with selecting the essential factors of
variation of the scene and not only expressing them using a small
set of real numbers, but also in a way that the decoder can interpret.
On the other hand - and unlike pixel motion models - the decoder
has to directly generate every pixel of the predicted frames. Still, if
the model learns to produce good, low dimensional representations
of the data, it is possible to obtain crisp predictions for much
longer into the future. This is because, as long as the h vectors are
consistent in time and the decoder can interpret them, every new
frame will be constructed in the same conditions, preventing the
accumulation of errors. This is unlike pixel motion models, which
rely on the actual pixel values from the most recent frame (whether
it was observed or predicted) to construct the new one, meaning that
errors can easily compound and lead to blurry predictions.

A problem that is common to these approaches to video predic-
tion is the existence of factors of variation in the environment that
are not observable. These include, for example, the spin of a falling
ball that makes it bounce in unpredictable directions, the weight of
a poked object or, when using a fixed camera angle, the depth of
different objects. For regions affected by these aspects, the models
should ideally be able to give their best guess and output the most
likely pixel values. However, in trying to minimize the `2 loss for
the predicted frame, the VP models have a tendency to output an
average of the different possible modes, a result that will never
contain the true value of the pixel. To solve this problem, some
authors propose the conditioning of the VP model on latent random
variables [14] [15]. This way, during training, the models can learn
to associate these variables with the unobservable aspects of the
environment so that at test time, when the variables are sampled
from a prior distribution, a decision for one of the possible outcomes
is induced.

C. Video prediction based planning

Action planning is perhaps the most important application of
VP models. This is because, by acting upon the environment an
agent can observe the inner workings of its world, which in turn
elicits better sensory prediction and enables further, more complex
interactions. In this type of tasks, VP models serve as forward
models, i.e., as a function that, given the current state and action,
outputs the next state.

This is explored in the work of Ha et al. [16], with the intro-
duction of an architecture that learns a policy for solving OpenAI
Gym [17] reinforcement learning problems using an encoder of
observed video frames and a MDN-RNN to predict future visual
codes, given current and past observations and executed actions.
In a real world robotic scenario, Finn and Levine [9] use a VP
model to continuously sample the expected future given different
sequences of actions. The sequence that maximizes the likelihood
of the robot achieving the goal of pushing an object to a specified
location is selected at each time step to be executed. This type of
model-based control is an active area of research in Reinforcement
Learning (RL) and large-scale datasets of robotic experiment such
as RobotNet [18], should allow future breakthroughs.

III. EVALUATING VIDEO PREDICTION MODELS

A. The human standpoint

A common trend in VP models is the evaluation of model
performance based on metrics designed to mirror human perception
of quality in image and video, i.e., Quality of Experience (QoE).
This is a subjective concept, which depends not only on the data
fidelity of the reconstructed image or video but also on the personal
experience and expectations of the viewer [19]. The standard
measure for QoE is the Mean Opinion Score (MOS) which is
the average quality rating, given by a sample of viewers. QoE
prediction is an active area of research in which proposed methods
are usually compared to the Peak Signal to Noise Ratio (PSNR)
benchmark. PSNR is a logarithmic measure of the mean squared
error between a distorted image and the original. Its mathematical
simplicity and convenient optimization properties make it one of
the most popular metrics for image quality [20]. However, PSNR
compares images pixel by pixel, not taking into account the content,
leading to pathological cases [19] in which it fails at approximating
human judgement.

An alternative metric that addresses this problem is the Structural
Similarity (SSIM) Index [21], which is founded on the principle that
signals that are close in space have strong dependencies between
each other and that the human visual system is highly adapted for
extracting this structural information. SSIM indices are calculated
using a sliding window which produces an index map. This index
is 1 if the structure of corresponding patches of the two images
is the same and the final SSIM score corresponds to the average
of the index map. More recently, Learned Perceptual Image Patch
Similarity (LPIPS) metrics, based on learned features of neural
networks such as VGG have shown remarkable capabilities as a
perceptual distance metric [22].

Inspired by the developments in image generation, methods
that are specifically designed for assessing realism in generated
video have also been proposed [23]. The Fréchet Video Distance
(FVD) [24] accounts for visual quality, temporal coherence, and
diversity by measuring the distance between the distribution that
originated the observed data and the distribution from which the
predicted video is generated, instead of comparing pixels or image
patches.

B. The robotic standpoint

Despite all the metrics described in section III-A being widely
used in state of the art VP research, we argue that they are not
necessarily adequate in action oriented applications such as robotic
planning. Instead we propose a new angle on the problem where
the key idea is that the quality of the VP model should be measured
by how well it can guide an agent in deciding its actions from the
predicted frames.

We start by assuming that the better the dynamics representation
of the agent is at encoding action features, the better it will be
for planning actions based on the expected outcome. Under this
assumption, the problem turns into evaluating how well a VP model
is encoding action features and assigning it a score based on such
evaluation.

With this in mind, we hypothesise that the ability to observe a
sequence of predicted frames and infer the executed actions should
be an indication that the VP model is correctly encoding action
features. To better illustrate this idea, first consider a failure case:
if the VP model generates a sequence of predicted frames that do
not correspond to the actions executed by the robot, then no action
inference model can recognize the correct set of actions from the



predicted images, resulting in a low action inference score. On the
other hand, if the VP model understands the consequences of the
input actions, then the frames it predicts should correctly reflect
the action and its consequences, allowing an inference model to
recognize the actual executed actions and attain a high score.

To assess the quality of models, we first train a simple con-
volutional neural network to infer the actions executed between
every two frames using predicted videos. The actions are assumed
to be continuous and multidimensional, to be representative of most
robotic control action-spaces. Each pair of frames is concatenated
along the channels dimension and given to the network as input,
as illustrated in fig. 2. Because action dynamics should not change
over time, model parameters are shared across all time steps of
a sequence. While a RNN would typically have been useful for
learning the sequence of executed actions, we choose to input a
window of two frames at a time, cutting off any temporal correlation
between actions. This forces the inference model to identify actions
from the frames instead of focusing on learning the temporal action
distribution. The option for a window size of two frames is due
to the fact that in the selected dataset the robot’s actions are
randomly updated every two frames. For datasets with different
conditions, however, the window size parameter can control the
temporal information received by the network without shifting the
attention of the model from the frames, and it is expected that bigger
windows should result in better action inference.

Fig. 2: Action inference network. At each step the network receives
a pair of frames and outputs a recognized action.

IV. DISENTANGLING AGENT AND OBJECTS FOR VIDEO

PREDICTION

The notion of learning representations of the data that facilitate
the realization of subsequent tasks is central in deep learning and
video prediction. Autoencoders, for example, learn to discover and
represents the underlying factors generating the data. Typically,
these factors of variation are described as being a set of sources
interacting in complex ways. Ideally, these sources could be dis-
entangled and varied independently of one another to produce a
change in the associated characteristics of the observed data [25]. In
practice however, obtaining a representation in which the underlying
causes of the data are factorized in this fashion is a difficult
task. Nonetheless, an independent understanding of each factor of
variation in the data translates in a significantly easier solution
to any subsequent task, such as classification or prediction [26],
making this one of the most important problems in deep learning.
In particular, having separate representations for different sources
of information allows the processing of each one independently and
the prediction of only the most relevant parts of the scene, which
may represent a solution for the dimensionality problem of video
prediction.

A. Disentangling agent movement

With the intent of separating visual information that is part of an
agent from the content and movable objects in the scene, we ask
the question: Can the movement of a robot be reconstructed up to
time step t+ k from the content information observed at time step
t and the actions commanded to the robot between t and t+ k?

Solving this challenge requires a model that is capable of both
identifying which parts of an image are related to the robot
and of transforming that information according to the specified
action. Inspired by previous work on how to disentangle content
information from pose (motion) in videos [27], we propose a
solution, which starts by setting the constraint that, for the most
part, the content of a video remains the same during the a video
sequence, but can change from video to video. Hence, we adopt a
loss term that encourages the content representation hc to be the
same when built from frames of the same video, which has the
effect of making it time-invariant:

Lsimilarity(Ec) = ||Ec(xt−c:t)− Ec(xt+m−c:t+m)||22, (1)

where Ec represents the content encoder, xt the video frame at
time step t and m is a time gap chosen at random. We consider
time step t the present moment while t− c is the first frame in the
video, with c being the number of past frames given to the content
encoder as context.

While in previous work [27] movement requires an adversarial
loss term to remove any content information, we have a simplified
task at this stage because we’re only concerned with the agent’s
own movement, which is determined by the commanded actions.
Using actions has the benefit of content information being separated
from movement information by default. So, to answer the initial
question only one more loss term is needed, imposing that the model
should be able to reconstruct the future frame xt+k from the content
representation at time t and the action representation

Lreconstruction(Ec, A,Da) = ||Da(ht−c:tc ,ht+ka )−xt+k||22, (2)

with k being another random time gap, ht+ka being the output of
the action encoder ht+ka = A(at−c:t+k) and Da being the decoder
that generates the predicted frame x̂t+k from the content and action
representations. The complete training objective is then

L = Lreconstruction(Ec, A,Da) + αLsimilarity(Ec) (3)

and we refer to this model as Action-conditioned Disentangled
Representations - Agent Only (ADR-AO).

As previously discussed, real world environments are character-
ized by complex dynamics that often depend on unobservable and
unpredictable factors. A patent example observed in ADR-AO is
concerned with the difficulty of perceiving depth from a single 2D
observation of the scene, often leading to blurry reconstructions,
as illustrated in Fig. 4. To solve this issue, we extend the model
to learn a set of latent variables za that the model can associate
with the unobservable factors, allowing it to decide on one of
the possible outcomes for these factors. This is achieved with the
help of a distribution qφ(zta|a0:t+k,xt), that is trained both with
a reconstruction term and with the regularizing constraint that it
should remain close to a prior distribution p(za) chosen to be a
Gaussian N (0, I). The final extended objective function becomes

L =Lreconstruction(Ec, A,Da) + αLsimilarity(Ec)

+ βDaKL(qφ(za|a0:t+k)||p(za)).
(4)

To condition the on the sequence of executed actions, we use an
LSTM that at each time step receives the content representation and



Fig. 3: Stochastic ADR-AO.

the current time step’s action representation ht+ka and outputs the
parameters of a multivariate Gaussian distribution from which za
is sampled. This extended architecture is summarized in Fig. 3.

It is worth noting that unlike common practice in stochastic
VP models [15] [14], where at test time the latent variables must
be sampled from the prior p(za), in our model the approximate
posterior distribution qφ(zta|a0:t+k,xt) can be used at test time,
as the LSTM is only conditioned on the future actions, that are
known. This allows our model to use the latent variables to model
hidden factors of variation without creating random futures that
diverge from the truth, as is the case in [15].

Fig. 4: To minimize the error of predicting whether the arm
passes in front or behind the green stapler, the deterministic
model averages the two modes, resulting in a blurry predic-
tion. On the other hand, the stochastic model can make a de-
cision on the most likely mode, placing the arm in front of
the stapler and preserving most of the stapler’s shape. Better
seen online at https://web.ist.utl.pt/ist181063/vp_
examples/stochasticity_experiment/.

B. Disentangling object information

Inspired by the predictive views of the human brain described
in section I, we argue that a VP system used in a robotic context
should focus on the external, difficult to predict, consequences of
the robot’s actions, rather than on the foreseeable self movements of

the robot. This shift in attention can be made possible with the help
of the ADR-AO model proposed in the previous section. Because
ADR-AO is trained to only be aware of the planned motion of the
agent, its predictions show objects that end up getting displaced
in the ground truth video being ignored and left in their original
position (see Fig. 5). This means that the error between ground
truth frames xt and frames generated with ADR-AO x̂ta, i.e.,

xterr = xt − x̂ta, (5)

produces an image dominated by information of the objects that
moved during the video, while the background and the movement
of the agent - which have already been predicted - get suppressed,
as illustrated in Fig. 5. In practice, this cue on the object information
can then be leveraged by a model to learn a representation for the
objects that ADR-AO fails to perceive, in a mechanism that draws
parallelism with the forward propagation of yet unexplained error
in Predictive Coding. Importantly, this information is obtained in
a self-supervised way, without the need for data pre-processing or
human annotation to obtain object locations and identities, as is
common in most state of the art work [28] [29].

Fig. 5: Top row: ground truth frames. Middle row: predictions
with ADR-AO, where objects are left in their initial position.
Bottom row: the error between the two rows is dominated by object
information. Better seen online at https://web.ist.utl.pt/
ist181063/vp_examples/error_images/.

Having a separate cue on object information, we can now train
an autoencoder to obtain a low dimensional representation of the
objects ho. We aim at reconstructing a video frame at time step
t+ k from the content information of c context frames xt−c:t and
a sequence of actions at−c:t+k to be performed by the agent. While
the goal might be the same, the approach differs in the task of the
autoencoder: whereas for ADR-AO the decoder reconstructs its best
approximation of xt+k, to learn the feature representation of the
objects the new autoencoder is now trained to reconstruct the error
xerr . As such, the future frame xt+k is also needed as an extra
input, to obtain the error image. If, ideally, the reconstruction x̂err
is sufficiently close to the original error image, the future frame
x̂t+kpred can be obtained as

x̂t+kpred = x̂t+ka + x̂t+kerr . (6)

In practice, however, we verify that better results are obtained if
xerr is split into its positive and negative components with each
one being reconstructed separately:

xerr = xerr+−xerr− = max{0,xt− x̂ta}−max{0, x̂ta−xt}.
(7)

Because at this stage ADR-AO is considered to have been pre-
trained, we reuse its action A and content Ec encoders to obtain

https://web.ist.utl.pt/ist181063/vp_examples/stochasticity_experiment/
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low dimensional feature representations of the actions ha and of
the content hc, which aid the decoder Do in the reconstruction of
the error image. Yet, the trainable parameters of both Ec and A
are frozen, and only Eo and Do are trained. The model of Fig. 6 -
which we call ADR - is trained with three different reconstruction
loss terms. The first term determines that the obtained frame x̂pred
should be as close as possible to the corresponding ground truth
frame, in terms of `2 distance. The second and third loss terms
are concerned with the positive and negative components of the
error reconstruction and encourage their `2 distance to the input
error images to be as small as possible. The need for these two
extra loss terms was verified empirically, as they encourage sparsity
in the decoder’s output and provide an additional cue for the
reconstruction, preventing the model from overfitting to the training
data. The complete loss function is presented in equation (8):

L(Eo, Do) =||xt+k − x̂t+kpred)||
2
2 + α(||xt+kerr+ − x̂t+kerr+)||22

+ ||xt+kerr− − x̂t+kerr−)||22)
(8)

Fig. 6: ADR architecture with action and content encoders omitted
for simplicity.

C. Disentangled video prediction

While the first stage of the model, ADR-AO, only requires knowl-
edge of the ground truth frames at training time, for computing
the loss function, the complete model, ADR, also makes use of
the ground truth for obtaining the error images that serve as input
to the Eo module. While this poses no problem when the task is
limited to reconstruction, in a practical video prediction problem
the ground truth frames would not be available, meaning that only
ADR-AO could be directly used for video prediction.

To predict video using ADR, a new module that can acquire
knowledge of the temporal evolution of the object representations
ho needs to be added. For that, we opt for the use of an LSTM, as
illustrated in the diagram of Fig. 7. At each time step t, the LSTM
receives a complete representation of the current frame, which is the
concatenation of the content, action and object representations, and
is asked to output the object representation for the next time step
(t + 1). During the temporal period corresponding to the context
frames, the ho vector received by the LSTM can be obtained
from the observed frames, allowing the initialization of the hidden
state. However, once the model runs out of context frames, the
predicted vectors ĥo must be fed back to the LSTM, instead of
vectors coming from Eo, effectively allowing it to unroll imagined
futures. Finally, to obtain the predicted error images that allow
the construction of x̂pred, Do is used. We refer to this updated
framework as Action-conditioned Disentangled Representations -
Video Prediction (ADR-VP).

An important benefit of having disentangled sources of informa-
tion is highlighted by this architecture: because content vectors are
trained to be constant in time and action representations are obtained
from commanded actions to which the model has access (even
future ones), the LSTM can focus on only predicting information
related to the objects, reducing the complexity of its task. Finally,

Fig. 7: Video prediction with ADR.

it is important to note that to predict the object representation for
the next time step, the LSTM should receive both the current and
the next action vectors as input. This allows the LSTM to predict
the movement of the objects conditioned on a known imminent
movement of the agent, whereas otherwise it would have to guess
object movement based on an unknown trajectory of the arm.

Despite having tested different solutions for training ADR-VP,
inluding teacher forcing [1] and scheduled sampling [30], we were
not able to train the model to a point in which it successfully
predicts object movement. There may be several factors contributing
to this result, in particular the dataset and the architecture. BAIRs
robot push dataset has the particularity of the robotic arm moving
randomly around the container, which possibly impacts the training
of our model. This type of movement causes video sequences in the
dataset to often have no interaction between the robotic arm and
the objects contained in the box. Furthermore, even in sequences in
which objects are displaced, the movement is typically only seen
in a subset of the frames, with other frames showing no object
movement. This implies an imbalance in the dataset in terms of
the number of frames in which objects move, versus the number
of frames in which they are static, possibly leading the network to
learn that predicting no movement minimizes the expected loss.
In comparison, our chosen baseline, DRNET, which also trains
an LSTM for video prediction with teacher forcing, is tested on
the KTH dataset and succeeds in predicting video frames. This
dataset, however, is composed of videos of human actions such as
walking and waving the arms up and down, where movement is
consistent and present from frame to frame, which possibly avoids
the aforementioned issue.

The other effect of the random actions of BAIRs robotic arm is
unpredictability. Even though the uncertainty in the arm’s trajectory
is offset by the knowledge of the actions that will be commanded
in the future, this kind of movement may still have some reflection
in the consistency of the movement of the objects. In particular,
because the arm’s trajectory can change from frame to frame, so
can the objects’ trajectory, cutting of the temporal correlation that
would allow the LSTM to produce good predictions.

Still, there have been video prediction models tested on BAIR
dataset, such as CDNA, Stochastic Variational Video Prediction
(SV2P) and Stochastic Video Generation with Learned Prior
(SVG-LP). However, as demonstrated in the results chapter, quan-
titative and qualitative results obtained with these models show that
the only one that successfully predicts object movement is SVG-LP,
with the others simply blurring them out. Even so, SVG-LP is
a stochastic action-free model, leading most of its predictions to
diverge from the actual observed future. In contrast, the fact that
ADR-VP is conditioned on the actions, constrains it to only predict
futures that are close to the truth, which possibly results in increased
difficulty during training.

Finally, the reason for the poor predictive capabilities of ADR-VP
may be related with its architecture and the complexity of the the 3



stage training procedure. This not only makes the training process
difficult, due to increased run times and number of parameters to
be tuned but also increases the chances of error accumulation from
on stage to the other. Another factor introducing complexity in the
LSTM’s is the dimensionality of ho. While DRNET uses the same
scheme to predict hp vectors of size 24, we set the d|ho| to 128.
This represents a considerable increase in complexity which we try
to account for by increasing the number of trainable parameters in
the LSTM.

V. EXPERIMENTS AND RESULTS

A. Experimental setup

We conduct our experiments using the BAIR robot push
dataset [31] which consists of a robotic arm pushing a collection of
objects on a table. Videos are 30 frames long, with 64×64 images.
The dataset also provides the commanded action sequences, a 4-
dimensional array representing the joint velocities and whether the
gripper is open or closed, and a 3-dimensional array representing
the Cartesian coordinates of the gripper. A characteristic of the
BAIR which has a particular effect on the results is the fact that
joint velocities are only updated every two frames. In practice,
this alternating nature results in the action inference network not
experiencing all types of actions the same way, therefore becoming
better fit to some situations than others. For this reason, action
inference results are presented separately for odd and even frames.

In our experiments we focus on action-conditioned video pre-
diction models. We select 1) CDNA: a deterministic model based
on pixel-motion modelling [32], 2) SAVP: which also models pixel
motion but introduces variational and adversarial terms to the loss,
to try to improve prediction quality and account for the variability in
the environment [33], 3) a variant of SAVP in which the adversarial
term is suppressed, 4) SV2P: an extension of CDNA conditioned
on stochastic variables [14], 5) and finally we test SVG-LP: the
stochastic, action-free model of [15]. All models were pre-trained
by the respective authors with exception of CDNA. At training
time, they receive 2 context frames and actions (with the exception
of SVG-LP which is action-free) and predict video up to time step
12.

B. Evaluating video prediction from a robotic standpoint

To test whether our proposed action inference metric provides
new insights that are useful for selecting the best video predic-
tion model to be used in a planning task, we start by doing a
forward pass over the entire training set and saving the generated
predictions, for each of the models being tested. While the models
were trained to predict until time step 12, they are now asked to
generalize until step 30.

Having a dataset of predictions for each VP model, the action
inference network is trained on the 28 frame long predictions (the
2 context frames are not considered). In our experiments, we define
the actions being inferred as the displacements ∆x and ∆y of the
robot’s gripper along the x and y axis, between every two time
steps. The ground truth targets for the actions are directly extracted
from the BAIR dataset gripper state sequences by subtracting
consecutive temporal positions for both axis. This results in an
action sequence of length 27 for each 28-frame predicted video.

We start by evaluating the selected group of VP models on some
of the traditionally used metrics described in section III-A and
on the recently proposed FVD. As opposed to the methodology
adopted by some of the previous work [33], [15] in which 100
possible futures are sampled and the best score of the group is
reported, we choose to sample a single time, in order to better

approximate the conditions of a robot planning actions. This ap-
proach has especial impact on action-free models like SVG-LP,
that are exposed to greater uncertainty. Regarding the action-
conditioned models, the results displayed in Fig. 8 are in line with
previous reports, indicating that models have better performance
when conditioned on both actions and stochastic variables, as is the
case with SAVP-VAE and SV2P. On the other hand, the addition
of an adversarial loss term seems to affect performance negatively,
which reflects on SAVP having a lower PSNR/SSIM score than a
deterministic model like CDNA despite the high visual appeal of
the predicted frames. The FVD values for the test set predictions
are presented in Table I.

Fig. 8: Average PSNR and SSIM over the test set with 95%
confidence interval. Results were reproduced with modification
from [32], [15], [33].

For each VP model’s predictions dataset, the action inference
model that produces the best validation score during training is
selected. To measure how well it can identify the executed actions,
we compute the Mean Absolute Error (MAE) between inferred
and ground truth actions. In our experiments MAE is computed
along the 256 test examples for each time step and the evolution of
the metric over time is reported in Fig. 9. The most immediate
characteristic in the temporal evolution of action inference that
arises from an initial analysis of Fig. 9 is that the temporal
downgrade artefact in performance observed in PSNR and SSIM is
not manifested in the capacity of the model to recognize the actions.
This quality of the metric stems from the fact that the parameters
of the inference model are shared across all time steps, a choice
based on the fact that action dynamics do not change over time and
therefore VP models should have a consistent action encoding for
all time steps. For this reason, a VP model that encodes actions in
a consistent manner should allow the inference network to better
learn how to recognize actions and will therefore display stable
MAE values across time, as is verified for SAVP and SAVP-VAE.
On the other hand, because video predictions made by CDNA have
changing dynamics, starting with good resolution and transitioning
to blurry images as time advances, it is difficult for the action
inference model to learn to identify actions.

The performance of the action inference on predictions made by
different models indicates, based on Fig. 9 and on Table I, that the
model that is better encoding action features and would therefore



Fig. 9: Average MAE results with 95% confidence interval for
predictions made by different VP models in the y axis. Similar
results are obtained for the x axis. Odd and even time steps are
shown separately.

be the most suited in robotic planning problems is SV2P, closely
followed by SAVP-VAE, implying that conditioning on stochastic
variables is beneficial but the introduction of the adversarial loss
for better image quality removes attention from optimal encoding
of action features. These models even outperform the ground truth
oracle, supporting the argument that the stochastic variables should
be accounting for non observable aspects of the scene and that
some blurring of the background may actually help the inference
network focus on the action features. On the other hand, the action-
free SVG-LP model has an MAE value of 0.163 which corresponds
to the variance of the data. This indicates, that the inference model
is unable to identify the actions and limits itself to predicting a
constant average. The origin of this result is that an action-free
stochastic model from which a single prediction is sampled, may
produce a future that is different from the ground truth, causing
recognized actions to not match the targets and preventing the model
from learning a meaningful mapping during training.

In general, and as reported by [24], PSNR and SSIM present
a very high correlation as both of them are based on frame by
frame comparisons with the original data. Furthermore, because
most VP models use an `2 term in the loss function, these are
biased metrics. We also verify that multiple ranking changes occur
between our proposed score and FVD, including SV2P scoring the
best in action recognition while having an FVD value close to that
of SVG-LP, which for being action-free has the lowest score under
our metric. These results show that the ability to recognize actions
from predicted images doesn’t necessarily correlate with previously
proposed metrics and that action inference may offer a valuable
perspective for choosing the best model in a planning scenario.

C. Disentangling agent and object information

In analysing how the proposed model fares in natural scenarios
like the one of BAIR dataset, we start by addressing its disentangle-
ment capabilities. Here, the intention is to understand if ADR-AO
is capable of distinguishing the body of the agent (in this case
the robotic arm) from other bodies in the environment. Knowing
that the learned representations should be (1) informative about the
reconstructed frame in the sense that it allows a correct recovery of
the content and agent pose, (2) flexible enough to sample different
possible (and possibly unseen) scenarios in a planning task, and
(3) generalizable to new domains with a short adaptation period.
Different experiments were implemented to verify these conditions.

We start by evaluating the reconstruction capabilities of ADR-

AO. Because the intention is to learn representations for self
information and content, an ideal result for BAIR dataset would
be for these to allow the reconstruction of the future frame xt+k

with the robotic arm correctly positioned and all the objects in their
original pose. Figure 10 shows two predicted sequences obtained
using ADR-AO, where 5 frames were given as input and the next 15
predicted. The model succeeds in isolating visual information that
is part of the agent (in this case the robotic arm), as demonstrated
by its ability to correctly translate the arm, despite some loss
in sharpness. Furthermore, the fact that the predicted movement
matches the ground truth trajectory of the arm means that the model
is successfully learning a mapping between commanded actions and
the resulting arm position in the visual field. We also verify that
the limited information contained in the inputs prevents the model
from learning to predict the movement of the objects, as intended.
It nevertheless predicts the existence of some change in the pixels
that are part of these object, resulting in some blurriness.

Fig. 10: ADR-AO predictions on BAIR dataset. While the move-
ment of the arm is well predicted, displaced objects are left in their
original position. Better seen online at https://web.ist.utl.
pt/ist181063/vp_examples/adr_ao.

With the intent of the designed model being its use in robotic
planning tasks where different possible action sequences and their
corresponding future can be sampled, it is important to determine
whether the proposed model is capable of generating previously
unseen agent movements. To do so, we train ADR-AO using only
the Cartesian position of the gripper as input actions, allowing
artificial and previously unseen arm movements to be handcrafted
by setting a sequence of positions where the arm should move
to. This experiment is illustrated in Fig. 11), where the original
actions of a video sequence of the dataset are replaced by a new,
infinity shaped trajectory. The model is able to generate a future
that matches the new trajectory while maintaining the original
background. This confirms that, if the object movement can later
be modelled, ADR-AO may be used for planning tasks.

Fig. 11: Prediction with handcrafted action sequence. Better
seen online at https://web.ist.utl.pt/ist181063/vp_
examples/disent_self_movement/

Finally, we investigate whether the representations learned on
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BAIR dataset are generalizable to new environments, given some
short adaptation. For that, ADR-AO pre-trained on BAIR dataset
is fine-tuned on 800 examples of the Google Push Dataset, which
despite constituting a related scenario, has a different robot, objects,
camera angle and reference for the joint angles and gripper position.
As stated in the literature [34], disentangled representations should
facilitate tasks such as transfer and few-shot learning, so a good
performance on a new dataset with such few adaptation examples
should be a positive indication of the content and self informa-
tion sources being separated. The ability to adapt to the Google
Push Dataset is illustrated in Fig. 12. From a first glance at the
sequence it is apparent that the model succeeds in reconstructing
the background with remarkable detail, despite the limited number
of observations of the environment and the objects it contains. On
the other hand, the visual information of the robotic arm is well
predicted in terms of trajectory but somewhat blurred.

Fig. 12: Generalization to Google Push Dataset. Better seen online
at https://web.ist.utl.pt/ist181063/vp_examples/
google_push/

Having modelled the movement of the agent we now turn to the
objects in the scene. As described in section IV-B, the separate
object representation is obtained as a consequence of ADR-AOs
prediction error, which we consider to be dominated by object in-
formation, therefore requiring no further steps for disentanglement.
As such we restrict the analysis to a qualitative assessment of the
reconstruction ability of ADR.

In general, we observe that the model succeeds in capturing
the object information conveyed in the error signal, enough for
the true movement of the objects to be perceived in a frame by
frame reconstruction. This is illustrated by the example of Fig. 13,
where a group of objects is pushed and their movement, which
was absent in the output of ADR-AO, is now apparent. There is
however a significant amount of blurriness in the moved objects,
which is likely introduced by ADR-AO as an attempt to minimize
the reconstruction loss in areas around objects, which is supported
by the example. Another aspect worth highlighting is how ADR can
sometimes show some difficulty in modelling the negative change
of the object, i.e., in removing the object from its initial position.
Additional examples can be seen online in the url of Fig. 13.

These results demonstrate that the broad movement of the objects
is well reconstructed, which represents a first step towards object
information being well modelled - one of the main faults of
existing video prediction models. Nevertheless, the aforementioned
challenges show that there is still room for improvement and better
object reconstruction should result in increased consistency in the
ho vector, which in turn should facilitate the training of ADR-VP.

D. Video Prediction

To evaluate the video prediction capabilities of ADR we test the
model both on visual quality metrics (PSNR, SSIM and FVD) and
in our proposed action inference metric. We now opt to present
only the results for three best models previously found (CDNA,
SAVP-VAE and SV2P). Additionally, we show the performance of
both the deterministic and stochastic versions of ADR-AO and of
ADR trained on top of the stochastic ADR-AO.

Fig. 13: Reconstruction with ADR. Better seen online at https:
//web.ist.utl.pt/ist181063/vp_examples/adr.
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Fig. 14: Model comparison in terms of PSNR and SSIM. The
vertical blue line indicates the training horizon.

Starting with an analysis of the models’ performance in terms
of PSNR and SSIM, presented in Fig. 14, there are two aspects to
highlight. The first one is that both the deterministic and stochastic
versions of ADR-AO obtain a performance that matches the per-
formance of the two best VP models available in the literature.
On another note, we verify that the deterministic version of ADR-
AO marginally outperforms the stochastic version. Because both of
these metrics are very correlated with the `2 loss, this is a result
that was expected as, during training, the stochastic version has
an extra loss term to optimize for, removing focus from the `2
reconstruction term. On the other hand, the deterministic ADR-AO
is allowed to minimize the reconstruction loss as much as it can,
even if - as seen in Fig. 4 - this results in objects disappearing. It is
important to consider that unlike the other VP models, ADR-AO is
explicitly designed not to consider object information, making these
two models the floor of the performance that our complete model
can achieve. Furthermore, the fact that in spite of this characteristic,
ADR-AO still achieves state of the art results is a confirmation
that existing VP models fail at conveying the future of object
information.

The second aspect of Fig. 14 worth being highlighted is the added
performance that comes with considering object information, as
shown by ADR. Even though ADR is not in practice a VP model, as
it requires access to ground truth video frames, it still provides proof
of the importance of modelling object movement and represents a
ceiling on the performance that ADR-VP may achieve. As such,
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results for a working ADR-VP should be between ADR-AO and
ADR, prospecting that further work on ADR-VP can lead to an
improvement of the state of the art in video prediction.

As a second way of measuring model performance, we test
how well the predicted frames allow an action inference model
to recognize the agent’s actions, with the results measured in terms
of MAE and presented in Fig. 15 and in table I.

Fig. 15: Model comparison in terms of action inference for the
y axis. Results for the x axis are similar. The vertical blue line
indicates the training horizon.

The results indicate that the best action recognition was achieved
in frames predicted by the stochastic version of ADR-AO, closely
followed by the deterministic ADR-AO and SV2P, with the separa-
tion between models being better perceived in the values of table I.
Interestingly, while in PSNR and SSIM the stochastic ADR-AO
model did worse than the deterministic, it is now the opposite.
This is a result that further demonstrates that simply minimizing
the reconstruction error is not beneficial for downstream tasks such
as classification and planning and that a prediction that is plausible
is preferable to one that blurs out uncertain aspects of the scene.

A final aspect to take into consideration is how ADR predictions
don’t allow a better performance of the action inference model,
when compared to the agent only versions. This suggests that
keeping the background static while moving the arm is helpful for
the inference model. A possible explanation for this result is that,
because the model only has to correctly recognize the movement
of the arm, the removal of other dynamic information allows it to
focus on its task. This idea is further supported by the oracle results
(where the action inference model was run on ground truth frames),
which are both worse than the results achieved by some of the VP
models and very close to those achieved by ADR.

TABLE I: FVD and MAE values for each VP model.

Model FVD Value MAE Value
CDNA 943.5 0.0111
SAVP 738.3 0.0092

SAVP-VAE 409.8 0.0056
SV2P 691.1 0.0049

SVG-LP 728.2 0.0160
ADR-AO Determ. 793.0 0.0049
ADR-AO Stoch. 857.2 0.0046

ADR 801.1 0.0057
Oracle 0.0 0.0058

VI. CONCLUSIONS AND FUTURE WORK

In this work we started by proposing a solution for the problem
of assessing video prediction models from the standpoint of a robot

planning actions. We demonstrated the limitations of evaluating
video prediction models solely based on their ability to generate
realistic looking frames, instead, arguing that the choice of video
prediction models used in planning tasks should be based on
complementary metrics, so that both visual quality and the ability of
the model to understand the consequences of the robot’s actions are
considered. A shortcoming of our action-inference metric is that it
only takes into account the actions of the robot and should therefore
be extended to also consider the objects in the scene. Doing that
may require the introduction of better datasets that include states of
the environment other than gripper position, in particular objects’
positions and speeds.

In our second contribution, we tested whether the sequential
structure of video and the agent’s actions can be used to disentangle
sources of information in video. Our proposed solution takes
advantage of these inductive biases to separate visual information
related with the agent, from information of the objects present in
the scene. In the future it would be interesting to consider new
scenarios that include a moving camera and third person agent’s
who can generate movement that is uncorrelated with the agent.

Finally, we explored the possibility of improving state of the art
in video prediction by building a model based on the previously
obtained representations. In our approach, we try to shift attention
from the agent’s own movement, which is foreseeable, to the
movement of the objects, which has greater uncertainty and is
more difficult to model. We include two video prediction models:
ADR-AO and ADR-VP. ADR-AO manages to match, and in some
cases improve, the state of the art while explicitly disregarding
object information. Such a result is a confirmation of the inability
of existing models to predict object dynamics and highlights the
importance of our proposal to focus on object information. How-
ever, we failed to train ADR-VP to the point where it succeeds in
object prediction. The most immediate work direction is therefore
fixing ADR-VP, possibly with a simpler architecture, trainable end-
to-end and testing it on more diverse large scale datasets such
as RoboNet [18]. The proposed models should then be tested on
planning tasks similar to the one proposed in [9], and compared
to alternative video prediction models. This would allow both the
study of the correlation between our action-inference metric with
the success rate in planning tasks, and to determine whether our
proposed solution for video prediction is in fact better suited for
planning tasks.
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