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Abstract 

The objective of this work is to build a frequency domain tool through the assembly of already 

existing frameworks, which performs a flutter analysis on high aspect-ratio wings where the 

deformed wing configurations and its influence over the flutter speed are taken into account. From 

a Nonlinear Aeroelastic Framework, the tool gets as input the wing nonlinear aeroelastic static 

equilibrium positions and through a MATLAB code builds the structural and aerodynamic models 

(based on the Euler-Bernoulli Beam Theory and on the Doublet-Lattice Panel Method, 

respectively). Then, the solver NASTRAN performs the aeroelastic analyses by applying the p-k 

method at those equilibrium positions. These analyses are performed in an iterative cycle, so it is 

possible to take into account the wing deformation due to the airspeed while calculating the flutter 

speed. The obtained updated flutter speed is then compared with one calculated by a time domain 

approach. This comparison showed that despite some identical trends in both approaches, it was 

not possible to predict exactly the same flutter speed in both techniques. Still, it could be 

concluded that the developed frequency domain tool managed to produce consistent results at a 

low computational cost. 

Keywords: Aeroelasticity; flutter; frequency-domain; geometric nonlinearities; high aspect-ratio 

wings. 

1. Introduction 
Over the years, with the goal of pursuing more efficient aircraft solutions, one of the most studied 

aircraft configurations has been high aspect-ratio wings. However, despite the aerodynamic 

benefit that grants a higher lift-to-drag ratio and a longer range to the aircraft, there are a few 

structural disadvantages related to this configuration, such as higher wing flexibility. This increase 

in wing flexibility while keeping a light structure leads to large deformations at normal operating 

conditions, which in turn results in the occurrence of aeroelastic effects on such wing, at a lower 

speed than in a stiffer wing [1]. Flutter is one of the most risky aeroelastic phenomena and it is 

generally the key focus of analysis in the aeroelasticity field. 

In cases where structural nonlinearities are likely to occur, such as in highly flexible wings, the 

accuracy of time domain methods is usually higher than that of frequency domain methods [2], 
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which may reflect on the determination of the flutter speed. However, time domain methods carry 

several disadvantages, like a higher computational cost and a more complex interpretation of the 

results, which make the application of such type of methods to aircraft design and optimization 

problems quite impracticable. Unlike time domain methods, frequency domain methods can be 

run with a lower computational cost and be easier to apply to an optimization or an aircraft design 

problem. Although in highly flexible wings, because of the nonlinearities that may cause flutter at 

lower speeds than what linear analyses predict, the frequency domain methods need to be 

accordingly updated in order to accurately predict the flutter phenomenon.  

There are not many studies in the literature [3] [4] which compare these two approaches for 

predicting flutter speeds and, in fact, the author did not find any which featured a comparison for 

highly flexible wing structures, where the geometrical nonlinearities would play an important role. 

Therefore, there would be value in developing an updated frequency domain tool where the 

deformed wing configurations and its influence over the flutter speed are taken into account, with 

the goal of accurately estimating the flutter speed of high aspect-ratio wings and comparing its 

results to those produced by a time domain method. This is the objective of this work. 

2. Methodology 
The aeroelastic phenomenon results from the interaction of aerodynamic, inertial and elastic 

forces [5]. A typical way of presenting such interaction is to describe the aeroelastic problem as 

a system of second-order differential equations in terms of its degrees of freedom {q}: 

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑞} = {𝐹} 

where [M], [C] and [K] respectively represent the mass, damping and stiffness matrices of the 

system’s structure; and {F} represents the total load vector. The aeroelastic problem shown in the 

equation above can be considered as either steady or unsteady. 

Both unsteady and steady analysis can be run in the Nonlinear Aeroelastic Framework developed 

by the IST Aerospace Group [6] [7] in order to generate the time domain results, as well as the 

wing converged positions of stationary equilibrium that serve as input for the frequency domain 

tool. In this framework, a Fluid-Structure Interaction (FSI) algorithm was implemented to couple 

the structural component of the model (a condensed 3D beam model) with the aerodynamic 

component of the model (a 3D panel code method) for nonlinear unsteady and steady analyses. 

The nonlinear unsteady analyses, which estimate the wing’s flutter speed based on the 

aeroelastic response to a prescribed gust at a given time interval, constitute the time domain 

approach. And for this work, these unsteady simulations are only used for comparison purposes 

with the updated frequency domain methodology. 

On the other hand, the steady simulations are carried out to provide a position of stationary 

equilibrium, where the structural and the aerodynamic meshes converge, to the updated 

frequency domain method. These converged positions of stationary equilibrium are what feeds 

the frequency domain analysis tool, which will be summarized in the next chapter. This frequency 

domain tool resorts to a MATLAB code which generates the whole frequency domain analysis. It 

(1) 
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takes as input the wing converged positions and from there it builds the structural and 

aerodynamic models. The structural model is an one-dimensional cantilever beam based on the 

Euler-Bernoulli Beam Theory [8], while the aerodynamic model is a 2D aerodynamic panel 

method grounded on the Doublet-Lattice Panel Method [9]. Then, on these models, the solver 

NASTRAN performs the aeroelastic analyses, calculating the flutter speed by applying the p-k 

method at the nonlinear aeroelastic static equilibrium position. These analyses are performed in 

an iterative cycle, so it is possible to take into account the wing deformation due to the airspeed 

while calculating the flutter speed. We so obtain the updated flutter speed, to be then compared 

with the one calculated by the time domain approach. 

3. The Frequency Domain Analysis Tool  
As introduced before, all the input wing configuration data we have for the frequency domain 

analysis comes from the Nonlinear Aeroelastic Framework. It carries out steady simulations to 

provide converged positions of the stationary equilibrium to the updated frequency domain 

method. These converged positions, for different wind speeds and angles of attack for the 

different aspect-ratio wings, will provide the several deformed wing configurations that will 

constitute the file database to be used as input in the frequency domain analysis tool. 

The MATLAB code receives the deformed wing configurations generated by the FSI Solver and 

its inertial properties as inputs, and then builds the structural and aerodynamic components of the 

wing models on input files to be analyzed with NASTRAN. 

This NASTRAN analysis calculates a flutter speed for each air speed and its correspondent 

deformed structure configuration. Finally, the program proceeds to find the actual flutter speed for 

the aspect-ratio and angle of attack combination in focus, by running this analysis in an iterative 

process to try to converge the wind and flutter speeds. This way, it is possible to use a frequency 

domain approach to find the flutter speed for a certain wing configuration, while taking into account 

its deformation due to the airspeed. 

More specifically, the developed MATLAB tool is constituted by 5 functions (Figure 1). The main 

function, flutter.m, (Figure 2) runs the main iterative calculation routine, which in each cycle 

resorts to the flutter_SOL145.m function to find the flutter speed for a specific input airspeed and 

matching wing configuration. The main function also contains the flutter_param.m function, which 

has some analysis parameters, as well as the interpolate_deflections.m function (Figure 3), which 

in each cycle interpolates a new deformed wing configuration for the required input airspeed. 

Then, in each cycle run, the flutter_SOL145.m (Figure 4) function runs the NASTRAN flutter 

analysis for a specific input airspeed and corresponding deformed wing configuration. It writes 

the Nastran input file, runs NASTRAN, reads the result file, plots V-G and V-F graphs, analyzes 

the results and returns the estimated flutter speeds, as well as the corresponding frequencies and 

vibration modes. It also resorts to the beamwriter.m function (Figure 5) to build both the structural 

and the aerodynamic components of the beam model that will simulate the required wing 

configuration.  
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The diagram and flowcharts below aim to help understanding the structure of the frequency 

domain analysis tool. An overview of this updated frequency domain tool is depicted in Figure 1, 

while in Figures 2 to 5 each main function of this tool is detailed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*the beamwriter.m function only writes part of the .bdf input file 

Figure 4 - flutter_SOL145.m function flowchart 

Figure 1 - Function structure of the Tool 

Figure 3 – interpolate_deflections.m function flowchart 

Figure 2 - flutter.m function flowchart 
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4. Results 

4.1. Application Case 

The application case of this work is a rectangular NACA 0012 wing model with 20 meters of span 

b and variable chord c and, as it can be seen in Figure 6, it has an internal structure with a wing-

box comprised between 25% and 75% of the chord.  

 

 

 

 

 

 

 

 

 

 

 

This model is made of aluminum with a Young modulus of 70 GPa, a density of 2700 kg/m3 and 

a shear modulus of 27 GPa. In order to evaluate the effect of aspect-ratio, wing span was set 

fixed to 20 m, while the chord was changed to generate three different values of aspect-ratio AR: 

12 (c = 1.67 m), 20 (c = 1 m) and 28 (c = 0.71 m). Such geometric modifications change the wing 

area. For instance, by reducing the chord a smaller wing area S and a larger aspect-ratio AR were 

reached. Moreover, since the wing-box parameters such as the thicknesses of the webs and caps 

are normalized to the chord and airfoil maximum thickness, as the wing chord decreases, the 

mass and inertia moments also decrease. However, despite the differences in wing area and 

mass, they still have the same inertia ratio I2/I1 (ratio between the two bending stiffnesses, chord 

EI2 and flap EI1) and undergo different deformed states for the same flight conditions. This is what 

allows a comparison between different flutter prediction methods while considering wing models 

that present different aeroelastic behavior. A summary of the main characteristics of the 

considered wings is presented in Table 1.  

Figure 5 - beamwriter.m function flowchart 

Figure 6 - External and Internal geometries of the wing model 
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4.2. The Frequency Domain Method Results 

4.2.1 Frequency Domain Tool under different conditions 

First, we will show a contrast between three different conditions through which is possible to use 

the frequency domain tool: 

- Condition 1 – Estimating the flutter speed of an undeformed wing at a low airspeed. 

- Condition 2 – Estimating the flutter speed of a deformed wing at a low airspeed. 

-  Condition 3 – Estimating the flutter speed after a convergence cycle, at an airspeed that 

matches the predicted flutter speed, while considering the wing deformation due to the 

airspeed. 

 

 

 

 

 

 

 

 

 

 

 

As expected for all conditions, the predicted flutter speed decreases with an increase in the wing 

aspect-ratio. While comparing conditions 1 and 2, in Figure 7 it is possible to see that even a 

slightly deformed wing (at an airspeed of 40 m/s) has an influence in the predicted flutter speed. 

As expected, the prediction is that a deformed wing would reach the flutter point at a lower speed 

than an undeformed one. The higher the aspect-ratio, the higher the deformation (as shown in 

Figure 8) and consequently the larger the difference between predicted flutter speeds. 

Regarding condition 3, in Figure 7, we can see that it presents a similar trend to that of condition 

2, although slightly steeper because of the higher deformation at a higher airspeed (which is again 

AR c [m] b [m] S [m2] EI1 [N m2] EI2 [N m2] GJ [N m2] I2/I1 [-] Mass [kg] 

12 1.67 20.00 33.33 3.76E+06 1.02E+08 3.57E+06 27.1 679.34 

20 1.00 20.00 20.00 4.88E+05 1.32E+07 4.63E+05 27.1 244.56 

28 0.71 20.00 14.29 1.27E+05 3.44E+06 1.20E+05 27.1 124.78 
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Figure 8 - Dimensionless wing tip displacement vs AR Figure 7 - Flutter speed vs AR 

Table 1 - Main characteristics of three different wing configurations 
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shown in Figure 8). Also, for the different aspect-ratios, the flutter and airspeed converge at values 

that are lower than the one predicted in condition 2. 

4.2.2 Frequency Domain Results 

The following are the “end product” results obtained through the frequency domain tool (which 

were addressed above as “condition 3”).  

 

Figure 9 - Predicted flutter speeds and corresponding dimensionless wing tip displacements at the aeroelastic static 
equilibrium states for wings of different aspect-ratio at different flight conditions (where the angle of attack was 

swept from -4 degrees to 10 

As one can observe from Figure 9, the changes made on the wing to produce different aspect-

ratios highlighted the nonlinear of behavior of these flexible wings as the flight conditions change. 

For low aspect-ratios, such as AR = 12, flutter speeds decrease as the dimensionless vertical tip 

displacement increases caused by the different angles of attack. Then, for an aspect-ratio of 14, 

the flutter speed is nearly constant with the increase of the vertical tip displacement. Finally, for 

aspect-ratios higher than 14, the flutter speed increases as the vertical tip displacement 

increases, inverting the previously observed trend, up to a given point as noted for dimensionless 

vertical tip displacements above 40% for the a wing aspect-ratio of 28. Another relevant factor to 

notice is that flutter is predicted to occur at increasing dimensionless tip displacements as the 

aspect-ratio increases. An explanation to this could be assigned to the fact that the higher 

flexibility effect exceeds the reduction of the loads due to the lower airspeed. 

4.2.3 Flutter Mechanism 

Here, we will observe the flutter mechanism of a wing through the analysis of V-G (Velocity-

Damping) and V-F (Velocity-Frequency) plots. 
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By analyzing Figure 10, for the wing of AR = 12, flutter seems to occur when the fourth mode (first 

torsion) damping becomes positive and its frequency starts to converge with the one of the third 

mode (second flap), which suggests some mode coupling between these two modes. For the 

wing of AR = 20, flutter appears to occur when the fifth mode (first torsion) damping becomes 

positive and its frequency converges with the one of the fourth mode (third flap), suggesting some 

mode coupling between these two modes. These graphs highlight the nonlinear behavior of the 

mechanism leading to flutter. 

Looking at Table 2, it can be noticed that in wings with aspect-ratios lower than 20, the first torsion 

mode is the fourth vibration mode and third flap mode is the fifth one, while on wings of aspect-

ratio of 20 or above, this tendency switches, and the third flap mode appears before the first 

Table 2 - Natural frequencies and identified vibration mechanisms of the first few vibration modes of three wings 
with different aspect-ratios 

Mode 

AR = 12 AR = 20 AR = 28 

Frequency 

[Hz]  

Vibration 

Mode 

Frequency 

[Hz] 

Vibration 

Mode 

Frequency 

[Hz] 

Vibration 

Mode 

1 2.39 1st Flap 1.11 1st Flap 0.67 1st Flap 

2 9.46 1st Chord 5.78 1st Chord 3.46 1st Chord 

3 14.91 2nd Flap 6.95 2nd Flap 4.16 2nd Flap 

4 35.17 1st Torsion 19.44 3rd Flap 11.63 3rd Flap 

5 41.65 3rd Flap 23.37 1st Torsion 19.76 1st Torsion 

(a) AR = 12 (b) AR = 20 

Figure 10 - V-G and V-F plots at the flutter speed boundaries for the wings of aspect-ratios of 12 and 20, at an angle 
of attack of 6 degrees 



9 

 

torsion mode. The reason why we think this happens is the fact that as the aspect-ratio increases, 

the inertia moments change along the wing, leading the wing to become weaker when resisting 

to flap bending. As expected, all the vibration frequencies decrease, but the flap bending modes 

are particularly weakened. It is also relevant to note that in all the considered wing models the 

critical flutter vibration mode seems to be the first torsion mode. 

4.3 The Time Domain Method Results 

The following table (Table 3) presents a summary of the speed and dimensionless vertical tip 

displacement values at which flutter was predicted to occur, using the time domain method, for 

three wings of different aspect-ratios. 

 

 

 

 

4.4 Comparison Between Frequency and Time Domain Methods 

 

 

As it was discussed in the previous sections, some trends were found to behave alike in both the 

frequency and the time domain methods of calculation: the predicted flutter speed decreases as 

the wing flexibility increases (as a consequence of the aspect-ratio increase); flutter occurs at 

increasing dimensionless tip displacements as the aspect-ratio increases; the critical flutter mode 

seems to be the first torsion for all the considered wing models; and it could be said that the 

predicted flutter mechanisms are nearly the same in both methods (coupling between a torsion 

and a flap bending modes). However, despite the flutter speed estimated using the frequency 

domain becoming closer to the one predicted by time domain method as the wing deformation 

increases, it was not possible to obtain exactly the same flutter speed in both approaches. 
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Table 3 - : Predicted flutter speed and dimensionless wing tip displacement using the time domain approach 

AR uz/(b/2) [-] Flutter Speed [m/s] 

12 0.1201 121.27 

20 0.6274 113.17 

28 0.6778 82.80 

Figure 11 - Flutter speeds and corresponding dimensionless vertical wing tip displacement obtained through 
frequency and time domain methods 
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Moreover, by analyzing Figure 11, it looks like these predictions using the frequency domain 

approach might not even be conservative.  

Concluding this comparison, it is not possible to infer from these results that the updated 

frequency domain approach, where the static equilibrium state was used, yields accurate results. 

Further research is thus needed.  

5. Concluding Remarks 

In this work, a frequency domain method, where the wing aeroelastically static equilibrium state 

is used as an input instead of the undeformed wing, was presented and compared with a time 

domain approach for the flutter speed prediction of high aspect-ratio wings. It could be observed 

that some trends seemed to converge and were identified as behaving alike in both cases. 

However, despite the solutions obtained with the two methods becoming closer as the wing 

deformation increases, it was not possible to predict exactly the same flutter speed result in both 

techniques. Still, it can be concluded that the developed frequency domain tool managed to 

produce consistent results at a low computational cost, and it can prove useful in situations where 

its low computational cost would be relevant. For example, in optimization problems, the 

frequency domain tool could be used to evaluate relative predicted flutter speeds in a comparison 

between different wing models. A suggestion for the future could be to refine the structural 

component of the frequency domain tool. For example, a change that could be interesting and 

easy to implement would be to replace the Euler-Bernoulli beam model with the Timoshenko one. 

A more complex upgrade would be to change the beam model for a plate model. The most 

laborious improvement to the process would probably be to generate experimental data in order 

to validate the flutter speed and flutter mechanism predictions. 
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