

Frequency-Domain Method for Flutter on a Highly

Deformed Wing

Rodrigo Gaspar Pinto Ramos Correia

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Fernando José Parracho Lau

Dr. Frederico José Prata Rente Reis Afonso

Examination Committee

Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha

Supervisor: Prof. Fernando José Parracho Lau

Member of the Committee: Prof. Miguel António Lopes de Matos Neves

November 2020

Acknowledgments

As the author of this work, I would like to thank:

My coordinator, Prof. Fernando Lau, for the availability and helpful advice.

My co-coordinator, Frederico Afonso, for the extensive and tireless feedback and for always being

available whenever I needed assistance.

The IST Aerospace Group, for the assistance provided in several occasions.

My mom and my sister, for support and help along the way.

Abstract

The objective of this work is to build a frequency domain tool through the assembly of already existing

frameworks, which performs a flutter analysis on high aspect-ratio wings where the deformed wing

configurations and its influence over the flutter speed are taken into account. From a Nonlinear

Aeroelastic Framework, the tool gets as input the wing nonlinear aeroelastic static equilibrium positions

and through a MATLAB code builds the structural and aerodynamic models (based on the Euler-

Bernoulli Beam Theory and on the Doublet-Lattice Panel Method, respectively). Then, the solver

NASTRAN performs the aeroelastic analyses by applying the p-k method at those equilibrium positions.

These analyses are performed in an iterative cycle, so it is possible to take into account the wing

deformation due to the airspeed while calculating the flutter speed. The obtained updated flutter speed

is then compared with one calculated by a time domain approach. This comparison showed that despite

some identical trends in both approaches, it was not possible to predict exactly the same flutter speed

in both techniques. Still, it could be concluded that the developed frequency domain tool managed to

produce consistent results at a low computational cost.

Keywords: Aeroelasticity; flutter; frequency-domain; geometric nonlinearities; high aspect-ratio wings.

Resumo

Este trabalho tem por objetivo construir uma ferramenta no domínio da frequência a partir de

ferramentas já existentes, que efetue uma análise de flutter em asas de elevado alongamento, onde a

configuração deformada da asa e sua influência na velocidade de flutter sejam consideradas. A partir

de uma Ferramenta de Aeroelasticidade Não-linear, a ferramenta no domínio do tempo obtém como

input a posição de equilíbrio estático não-linear aeroelástico da asa e, por meio de um código MATLAB,

constrói os modelos estruturais e aerodinâmicos (baseados na Teoria de Viga de Euler-Bernoulli e no

Doublet-Lattice Panel Method, respetivamente). De seguida, o solver NASTRAN realiza as análises

aeroelásticas aplicando o método p-k nessa posição de equilíbrio. Estas análises são realizadas num

ciclo iterativo, permitindo assim considerar a deformação da asa devido à velocidade do ar durante o

cálculo da velocidade de flutter. Para avaliar a precisão da ferramenta, é feita a comparação da

velocidade de flutter atualizada com uma calculada por um método no domínio do tempo. Esta

comparação mostrou que, apesar de terem sido identificadas algumas tendências idênticas em ambas

as abordagens, não foi possível prever exatamente a mesma velocidade de flutter. Ainda assim, pôde-

se concluir que a ferramenta desenvolvida no domínio da frequência conseguiu produzir resultados

consistentes a um baixo custo computacional.

Palavras-chave: Aeroelasticidade; flutter; domínio da frequência; não-linearidades geométricas;

asas de elevado alongamento.

5

Contents

Contents .. 5

List of Tables .. 7

List of Figures .. 8

Nomenclature ... 10

1. Introduction .. 13

1.1. Background and Motivation ... 13

1.2. Objectives ... 14

1.3. Thesis Layout ... 14

2. Theoretical Background ... 15

2.1. Aeroelasticity .. 16

2.1.1. Steady Aeroelastic Analysis .. 17

2.1.2. Unsteady Aeroelastic Analysis .. 18

2.1.2.1. Time Domain Approach .. 18

2.1.2.2. Frequency Domain Approach... 18

2.1.2.2.1. The p-k method ... 19

2.2. Aeroelastic Modeling ... 21

2.2.1. Structural Model .. 21

2.2.1.1. Beam modeling in NASTRAN .. 22

2.2.2. Aerodynamic Model .. 23

2.2.2.1. Doublet-Lattice Method ... 23

2.3. NASTRAN ... 25

2.3.1. NASTRAN’s Files .. 25

2.3.1.1. Executive Control Section ... 26

2.3.1.2. Case Control Section ... 26

2.3.1.3. Bulk Data Section ... 26

2.3.1.3.1. Structure ... 26

2.3.1.3.2. Aerodynamics .. 27

2.3.1.3.3. Splines .. 28

2.3.1.3.4. Flutter solution ... 29

3. The Frequency Domain Analysis Tool ... 31

6

3.1. Input Data ... 33

3.2. The Flutter Parameters Function... 34

3.3. The Beamwriter Function ... 36

3.4. The Flutter_SOL145 Function ... 45

3.5. The Flutter Main Function .. 53

3.6. The Interpolate_deflections Function ... 58

4. Results .. 61

4.1. Application Case .. 61

4.2. The Frequency Domain Method Results ... 62

4.2.1. Frequency Domain Tool under different conditions ... 62

4.2.2. Frequency Domain Results ... 65

4.2.3. Flutter Mechanism .. 66

4.3. The Time Domain Method Results .. 68

4.4. Comparison Between Frequency and Time Domain Methods ... 73

5. Concluding Remarks .. 74

References .. 75

7

List of Tables

Table 1 - Main characteristics of three different wing configurations ... 62

Table 2 - Flutter speed and dimensionless wing tip displacement for an undeformed wing at

normal operating conditions of 40 m/s at an angle of attack of 2 degrees 63

Table 3 - Flutter speed and dimensionless wing tip displacement for a deformed wing at normal

operating conditions of 40 m/s at an angle of attack of 2 degrees ... 63

Table 4 - Flutter speed and dimensionless wing tip displacement for a deformed wing at the

predicted flutter speed at an angle of attack of 2 degrees .. 63

Table 5 - Predicted flutter speeds and corresponding dimensionless wing tip displacements for

wings of different aspect-ratios, where the angle of attack was swept from -4 degrees to 10

degrees. .. 65

Table 6 - Natural frequencies and vibration mechanisms of the first few vibration modes of three

wings with different aspect-ratios .. 68

Table 7 - Predicted flutter speed and dimensionless wing tip displacement using the time domain

approach ... 69

8

List of Figures

Figure 1 - Static and Dynamic aeroelastic instability problems [17].. 16

Figure 2 - Collar's Triangle (1946) [17] ... 16

Figure 3 - The determinant iteration procedure [17] ... 20

Figure 4 - Non-physical representation of p-k method diagrams [17] .. 21

Figure 5 - Representation of a lifting surface model by the DLM [22].. 24

Figure 6 - CBEAM element coordinate systems [26] .. 27

Figure 7 - Coordinate system of a CAERO1 panel [26] .. 28

Figure 8 - Function structure of the Tool.. 32

Figure 9 - flutter.m function flowchart .. 32

Figure 10 - interpolate_deflections.m function flowchart ... 32

Figure 11 - flutter_SOL145.m function flowchart ... 33

Figure 12 - beamwriter.m function flowchart ... 33

Figure 13 - External and Internal geometries of the wing model .. 61

Figure 14 - Flutter speed and dimensionless wing tip displacement for a deformed wing at the

predicted flutter speed at an angle of attack of 2 degrees .. 64

Figure 15 - Dimensionless wing tip displacement vs AR ... 64

Figure 16 - Predicted flutter speeds and corresponding dimensionless wing tip displacements for

wings of different aspect-ratios, where the angle of attack was swept from -4 degrees to 10

degrees. .. 65

Figure 17 - V-G and V-F plots at the flutter speed boundaries for the wings of aspect-ratios of 12,

20 and 28, at an angle of attack of 6 degrees ... 67

Figure 18 - Dynamic response of the 12 aspect-ratio wing measured at the wing tip in plunge,

pitch and chord degrees of freedom for 3 different airspeeds (120 m/s, 130 m/s and 140 m/s) [27]

 .. 70

Figure 19 - Dynamic response of the 20 aspect-ratio wing measured at the wing tip in plunge,

pitch and chord degrees of freedom for 3 different airspeeds (100 m/s, 110 m/s and 115 m/s) [27]

 .. 71

Figure 20 - Dynamic response of the 28 aspect-ratio wing measured at the wing tip in plunge,

pitch and chord degrees of freedom for 3 different airspeeds (70 m/s, 80 m/s and 85 m/s) [27] 72

file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031875
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031876
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031877
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031878
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031879
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031880
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031880
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031881
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031881
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031881
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031882
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031882
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031884
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031884
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031884
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031885
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031885
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031885
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031886
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031886
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031886
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031887
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031887
file:///D:/Dropbox/Tese/RGPRC_Thesis_20200914.docx%23_Toc51031887

9

Figure 21 - Flutter speeds and corresponding dimensionless vertical wing tip displacement

obtained through frequency and time domain methods ... 73

10

Nomenclature

AC aerodynamic damping matrix

AK aerodynamic stiffness matrix

𝐴(𝑝) matrices of aerodynamic stiffness and damping

AR wing aspect-ratio

b wing span

c wing chord

C damping matrix

E Young modulus

EI1 flap bending stiffness

EI2 chord bending stiffness

F applied load vector

𝐹𝑘 aerodynamic forces

𝐹𝑔 structural forces

g gravity acceleration vector

G shear modulus

GJ torsional stiffness

𝐺𝑘𝑔 interpolation matrix

I2/I1 inertia ratio

k reduced frequency

K stiffness matrix

L reference length

M mass matrix

𝑀∞ Mach number

p nondimensional Laplace number

q system degrees of freedom

𝑞0 static aeroelastic equilibrium state

�̂� vector of the amplitudes of the disturbed degrees of freedom

Re Reynolds number

s complex frequency

S wing area

t time

U airspeed

𝑢𝑔 structural grid point deflections

𝑢𝑘 aerodynamic grid point deflections

ux horizontal tip displacement

uz vertical tip displacement

uz/(b/2) dimensionless vertical tip displacement

Vf flutter speed

11

α angle of attack

𝛿 real part of the nondimensional Laplace parameter

ɵy angle of twist

𝜌 air density

12

13

1. Introduction

1.1. Background and Motivation

Over the years, the aviation industry has constantly pursued more efficient aircraft solutions. With

this goal in mind, high aspect-ratio wings have been one of the most studied aircraft

configurations. The idea behind it is that an increase in the wing aspect-ratio reduces the

aerodynamic induced drag [1], which then results in a decrease in the aircraft fuel consumption.

However, despite the aerodynamic benefit that grants a higher lift-to-drag ratio and a longer range

to the aircraft, there are a few structural disadvantages related to this configuration, like higher

wing flexibility and (if there is an increase in the wing span) larger root bending moment.

The increase in wing flexibility derived from a higher aspect-ratio while keeping a light structure

leads to large deformations at normal operating conditions, which in turn results in the occurrence

of aeroelastic effects on such a wing, at a lower speed than in a stiffer wing [2].

Despite causing strain, some of these effects are benign, like buffeting. However, other effects

such as flutter can be quite catastrophic [3]. And since flutter is the most nefarious aeroelastic

phenomenon, it is generally the key focus of analysis in the aeroelasticity field.

Although it is not under the scope of this work, some innovation in the field of augmenting aircraft

aerodynamic performance goes a lot further than increasing the wing aspect-ratio, and has

resulted in quite original aircraft configurations, such as the Blended Wing Body [4] or the Joined

Wing [5]. Other wing configurations, less extravagant than the ones just mentioned, like the Truss-

Braced Wing [6], aim to have higher wing aspect-ratio and span without having the

aforementioned aeroelastic problem.

In the last few decades, highly flexible high aspect-ratio wings were the subject of analysis through

different numerical studies which used low-medium fidelity computational tools [7], such as the

University of Michigan Nonlinear Aeroelastic Simulation Toolbox [8], the Nonlinear Aeroelastic

Trim And Stability of High Altitude Long Endurance (HALE) Aircrafts [9], the Nonlinear-

Aerodynamic/Nonlinear-Structure Interaction Methodology for a HALE Wing [10], or the Unsteady

Vortex Lattice Method [11]. Most of these aeroelastic models are rooted in the coupling of

nonlinear beam equations with 2D aerodynamic models, and the flutter speed can be estimated

either by employing a time marching scheme or by using a frequency domain approach.

In cases where structural nonlinearities are likely to occur, such as in highly flexible wings, the

accuracy of time domain methods is usually superior to that of frequency domain methods,

regarding the determination of the flutter speed [12]. However, time domain methods carry several

disadvantages, like a higher computational cost, the need of various runs at different airspeeds

and a more complex interpretation of the results. These are obstacles that make the application

of such type of methods to aircraft design and optimization problems quite impracticable. Unlike

time domain methods, frequency domain methods can be run with a lower computational cost

14

and be easier to apply to an optimization or an aircraft design problem. Although in highly flexible

wings, because of the nonlinearities that may cause flutter at lower speeds than what linear

analyses predict, the frequency domain methods need to be accordingly updated in order to

accurately predict the flutter phenomenon.

There are not many studies in the literature which compare these two approaches for predicting

flutter speeds. In fact, the author did not find any which featured a comparison for highly flexible

wing structures, where the geometrical nonlinearities would be relevant. In 2007, Salvatori and

Borri [13] compared a time domain method with a frequency domain method for an aeroelastic

analysis of a bridge model. Despite verifying that indeed their frequency domain approach arrived

at the same results of their time domain approach at a lower computational cost, it is thought that

such a frequency domain approach (which is not updated) would not apply to structures that

present nonlinearities [14]. Therefore, in this context, there would be value in developing an

updated frequency domain tool with the goal of accurately estimating the flutter speed of high

aspect-ratio wings, (which are structures that easily present relevant geometrical nonlinearities)

and comparing its results to those produced by a time domain method.

1.2. Objectives

The objective of this work is to build a frequency domain tool which, through the assembly of

already existing frameworks, performs a flutter analysis on high aspect ratio wings where the

deformed wing configurations and its influence over the flutter speed are taken into account. This

tool will be used to study wings of different aspect ratios in order to assess the impact of the large

wing deformation (a characteristic of high aspect ratio wings) on the flutter speed. In this work,

such an updated frequency domain method will be conceived and its accuracy in determining the

flutter speed of high aspect-ratio wings will be evaluated through a comparison of its results with

the ones drawn from a time domain method developed by the IST Aerospace Group [15].

1.3. Thesis Layout

This thesis is structured in the following way:

1. In the first chapter, the context and motivation behind the work are introduced and its

objectives are stated.

2. The second chapter focuses on the theoretical background which supports the work.

3. In the third chapter, the computational tool which was developed to reach the objectives

is explained in detail.

4. In the fourth chapter, the application case of study is presented, and the results obtained

with the frequency domain tool are shown and compared to the ones obtained through a

time domain method.

5. Lastly, in the fifth chapter, concluding remarks are laid out and notes for the future are

suggested.

15

2. Theoretical Background

In this work, the source of all the results obtained by both the time domain approach and the

frequency domain approach is the Nonlinear Aeroelastic Framework developed by the IST

Aerospace Group [15] [16]. In this framework, a Fluid-Structure Interaction (FSI) algorithm was

implemented to couple the structural component of the model (a condensed 3D beam model) with

the aerodynamic component of the model (a 3D panel code method) for nonlinear unsteady and

steady analyses.

The nonlinear unsteady analyses, which estimate the wing’s flutter speed based on the

aeroelastic response to a prescribed gust at a given time interval, constitute the time domain

approach. And for this work, these unsteady simulations are only used for comparison purposes

with the updated frequency domain methodology.

On the other hand, the steady simulations are carried out to provide a position of stationary

equilibrium, where the structural and the aerodynamic meshes converge, to the updated

frequency domain method. The convergence process during the steady simulations will be now

succinctly described. In these simulations, the aerodynamic loading is applied on the structural

mesh. Then, this deformation on the structural mesh changes the aerodynamic mesh, which on

its turn originates a new loading that will deform the structure again. This iterative process goes

on until the point where both the current structural deformation and the current aerodynamic

loading are equal to the previous ones (under a certain tolerance factor). Therefore, when both

the aerodynamic loading and the structural deformation converge, we say that a position of

stationary equilibrium has been reached.

These converged positions of stationary equilibrium are what feeds the developed frequency

domain analysis tool, which will be described in depth in the next chapter. This frequency domain

tool resorts to a MATLAB code which generates the whole frequency domain analysis. It takes as

input the wing converged positions and from there it builds the structural and aerodynamic

models. The structural model is based on a one-dimensional cantilever beam, while the

aerodynamic model is based on a 2D aerodynamic panel method. Then, on these models,

NASTRAN performs the aeroelastic analyses, calculating the flutter speed by applying the p-k

method at the nonlinear aeroelastic static equilibrium position. These analyses are performed in

an iterative cycle, so it is possible to take into account the wing deformation due to the airspeed

while calculating the flutter speed. We so obtain the updated flutter speed, to be then compared

with the one calculated by the time domain approach.

This chapter will be focused on describing the theoretical background behind the steady and

unsteady aeroelastic analyses, as well as behind the structural and aerodynamic components of

the aeroelastic modelling. Also, the solver used in the frequency domain tool (NASTRAN) will be

introduced and the way how it connects the two components of the model through spline

interpolation and employs the p-k method to perform the aeroelastic analysis will be looked upon.

16

2.1. Aeroelasticity

Before proceeding with the theoretical background behind aeroelastic analysis, it is useful to first

introduce precise terminology to describe some aeroelastic problems. The ones that will be looked

upon in this work are two particular cases of what can be described as Instability Boundary

Problems [17]. These problems are concerned with determining the boundary which separates a

stable fluid interaction from an unstable one and can be either static or dynamic. While in static

problems the inertia effect is not accounted for, dynamic problems are the more general type

where inertia effects must be included. The diagram shown below presents two aeroelastic

instability problems which will be mentioned in this work.

Figure 1 - Static and Dynamic aeroelastic instability problems [17]

A more general way of visualizing aeroelastic problems is the Collar’s Triangle, shown in the

picture below. This shows the positioning of some aeroelastic problem types in relation to the

forces considered within the model. Beside the aeroelastic problems, it is possible to locate

several other classic aerospace problems on the diagram.

Figure 2 - Collar's Triangle (1946) [17]

17

As it can be seen in the diagram above, the aeroelastic phenomenon results from the interaction

of aerodynamic, inertial and elastic forces. A typical way of presenting such interaction is to

describe the aeroelastic problem as a system of second-order differential equations in terms of

its degrees of freedom {q}:

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑞} = {𝐹}

where [M], [C] and [K] respectively represent the mass, damping and stiffness matrices of the

system’s structure; and {F} represents the total load vector. The aeroelastic problem shown in the

equation above can be considered as either steady or unsteady.

2.1.1. Steady Aeroelastic Analysis

In a steady aeroelastic analysis, the solution is assumed stationary and thus all the time

dependent terms are eliminated. By doing so, only the interaction between the elastic and the

aerodynamic forces is considered, which results in the following reduced system:

[𝐾]{𝑞} = {𝐹}

The load vector in the equation above contains both aerodynamic and gravity loads:

{𝐹} = [𝐴𝐾]{𝑞} + [𝑀]{𝑔}

where [AK] and {g} are the aerodynamic stiffness matrix and the gravity acceleration vector,

respectively. As it is possible to see from the first term of the right-hand side member of the above

equation, the aerodynamic loads depend on the system’s degrees of freedom, which makes this

analysis a coupled problem. A way to solve this problem is through the implementation of a Fluid-

Structure Interaction algorithm, which purpose is to transfer the loads from the aerodynamic mesh

to the structural mesh and the structural displacements to the aerodynamic mesh, while ensuring

convergence at generalized coordinates. There are two main FSI approaches to establish an

equilibrium between aerodynamic and structural solvers: strongly-coupled; and loosely-coupled.

The former consists in solving the fluid and structure equations simultaneously, while in the latter

the equations of fluid and structure are solved separately and coupled using a scheme until

convergence is reached. In the framework developed by the IST Aerospace Group, a loosely-

coupled method is employed to reach convergence at a position arbitrarily close to the equilibrium

state:

[𝐾]{𝑞} − [𝐴𝐾]{𝑞} − [𝑀]{𝑔} ≈ 0

It is this converged position resulting from the static analysis that will feed the frequency domain

tool described ahead.

(1)

(2)

(3)

(4)

18

2.1.2. Unsteady Aeroelastic Analysis

In unsteady aeroelastic problems Eq. 1 is used, involving all three interaction forces:

aerodynamic, elastic and inertial. This means that the load vector when compared with the steady

case will now include the aerodynamic damping contribution:

{𝐹} = [𝐴𝐶]{�̇�} + [𝐴𝐾]{𝑞} + [𝑀]{𝑔}

where [AC] is the aerodynamic damping matrix. Aerodynamic mass contribution is neglected in

this work. The key aeroelastic problem focus of study in this work is flutter, which can be studied

either in the time domain or in the frequency domain.

2.1.2.1. Time Domain Approach

A time-marching scheme is required for the task of solving Eq. 1 that represents the aeroelastic

problem. Like for the steady analyses, a proper FSI algorithm is required to ensure convergence

between the two solvers (aerodynamics and structures). As for the steady FSI algorithms both

strongly-coupled and loosely-coupled approaches can be followed. In the aeroelastic framework

from the IST Aerospace Group, the loosely-coupled FSI approach is used to ensure a

convergence between aerodynamic and structural meshes by means of a predictor-corrector

scheme at each time step used [15]. The results obtained through this method are the ones to

which we will compare our results obtained through the frequency domain tool.

2.1.2.2. Frequency Domain Approach

To allow for solving the same problem (Eq. 1) in the frequency domain, it is necessary to perform

adequate modifications to the degrees of freedom, which consists in assuming disturbances at

the aeroelastic static equilibrium state {𝑞0}. The disturbances are represented as harmonic

oscillations {�̂�}𝑒𝑠𝑡 at a given damped complex frequencies s and so the total deformation for the

aeroelastic dynamic problem becomes:

{𝑞} = {𝑞0} + {�̂�}𝑒𝑠𝑡

If we consider this assumption, then the equilibrium equation of the dynamic aeroelastic problem

can be written as:

𝑠2[𝑀]{�̂�}𝑒𝑠𝑡 − 𝑠[𝐴𝐶]{�̂�}𝑒𝑠𝑡 + ([𝐾] − [𝐴𝐾]){�̂�}𝑒𝑠𝑡 + ([𝐾] − [𝐴𝐾]){𝑞0} − [𝑀]{𝑔} = {0}

where the matrices of aerodynamic stiffness [𝐴𝐾] and damping [𝐴𝐶] depend nonlinearly on the

complex frequency s. As mentioned before, the vector of amplitudes of the disturbed system

degrees of freedom and the aeroelastic static deformed state are represented by {�̂�} and {𝑞0},

respectively. To estimate the flutter speed, the mass [M], the damping [C] and the stiffness [K]

matrices are set constant and equal to the ones obtained for the steady problem (Eq. 4). Also, no

structural damping [C] was considered in this study and therefore with all these assumptions, the

problem is considerably reduced to:

(5)

(6)

(7)

19

[𝑠2[𝑀] − 𝑠[𝐴𝐶] + [𝐾] − [𝐴𝐾]]{�̂�} = {0}

In this work, the equation above is solved iteratively using the p-k method in NASTRAN.

2.1.2.2.1. The p-k method

The p-k method emerged in the mid 1960’s as an alternative to previous frequency domain flutter

predicting methods, such as the k-method, but with better properties for aerospace problems [17,

p. 120] . By avoiding the computational costs that characterize a time domain solution, it aims at

generating an approximate flutter diagram as a solution to our problem. While explaining this

method, we will employ the following non-dimensional expression for the nondimensional Laplace

number p:

𝑝 =
𝐿

𝑈
(𝜎 + 𝑖𝜔) = 𝛿 + 𝑖𝑘

where 𝑝 = (
𝐿

𝑈
) 𝑠 , 𝛿 is the real part of the nondimensional Laplace parameter and the reduced

frequency is 𝑘 = 𝜔
𝐿

𝑈
. The dynamic equation of motion can then be written as:

[
𝑈2

𝐿2
[𝑀]𝑝2 + [𝐾]] {�̂�} =

1

2
𝜌𝑈2[𝐴(𝑝)]{�̂�}

where 𝐴(𝑝) represents the matrices of aerodynamic stiffness and damping as a function of the

Mach number 𝑀∞ and the Reynolds number 𝑅𝑒.

The p-k method is based on the assumption that we may approximate the aerodynamics of

sinusoidal motions with slowly increasing or decreasing amplitudes using purely harmonic

aerodynamic results. i.e.:

[𝐴(𝑝)] = [𝐴(𝛿 + 𝑖𝑘, 𝑀∞, 𝑅𝑒, …)] ≈ [𝐴(𝑘, 𝑀∞, 𝑅𝑒, …)]

The full equations of motion are then used to determine the correct value of p for each vibration

mode at a given flight condition.

With our assumed form of the aerodynamic forces, the equations of motion can be written as:

[
𝑈2

𝐿2
[𝑀]𝑝2 + [𝐾]] {�̂�} =

1

2
𝜌𝑈2[𝐴(𝑘, 𝑀∞, 𝑅𝑒, …)]{�̂�}

or

[𝐹(𝑝, 𝑘)]{�̂�} = {0}

This equation can be used to determine values of p. Normally, an iterative solution method is

used, with guesses for p determined from the previously analyzed flight condition. The most

common technique is known as “determinant iteration” [18].

(8)

(9)

(10)

(11)

(12)

(13)

20

Figure 3 - The determinant iteration procedure [17]

The basic procedure is the following. First, the vibration mode which will be tracked is chosen,

along with a starting value for 𝑈 near 𝑈 = 0. The Mach and Reynolds number are then computed

for that 𝑈. A first guess, 𝑝1, can be made using the natural frequency of the mode in the absence

of aerodynamic forces. Another initial guess, 𝑝2, can be made by adding a small value of damping

to 𝑝1. Then, the following iterative process is performed as described by Hulshof [17]:

1. Compute or interpolate for [𝐴(𝑘1, 𝑀∞, 𝑅𝑒, …)] and [𝐴(𝑘2, 𝑀∞, 𝑅𝑒, …)].

2. Compute the determinants 𝐹1 = |[𝐹(𝑝1, 𝑘1)]| and 𝐹2 = |[𝐹(𝑝2, 𝑘2)]|.

3. Update p using: 𝑝3 =
𝑝2𝐹1−𝑝1𝐹2

𝐹1−𝐹2

4. Set 𝑝2 = 𝑝3 and 𝑝1 = 𝑝2, then repeat from step 1 until it converges.

5. Choose the next flight condition (𝜌, 𝑈, 𝑀∞, 𝑅𝑒, …).

6. Choose two new values of p based on extrapolation from the previous flight conditions.

7. Return to step 1 and repeat to find the new p at the next flight condition.

(It is helpful to view steps 1-4 as an inner loop and steps 1-7 as an outer loop.)

Once the vibration mode is tracked through its desired range, a different mode is selected and

the entire procedure is repeated. Note that the formula for 𝑝3 in step 3 can be derived using the

diagram shown in Figure 3. Also, only one determinant evaluation is required per iteration, since

𝐹1 can be taken from the previous iteration. The following graphs help to understand what the

results of the p-k method look like, and in the next chapters, they will be referred to as V-f and V-

g diagrams.

21

Figure 4 - Non-physical representation of p-k method diagrams [17]

For each tracked vibration mode, for each 𝑈 value, we get the corresponding frequency and

damping values that allow us to build these graphs. These are essential in determining for which

conditions it exists flutter, i.e.. when there is a change in damping from negative to positive (or

null) while the frequency is a positive value. In those conditions, a flutter point has been found

and it is known its frequency, its speed and in which vibration mode it occurred. In addition,

through such graphs, it is also possible to find the phenomenon of divergence, if there is a point

where the damping changes from negative to positive (or null) but the frequency remains null.

In general, it is possible to say that the diagrams generated from the p-k method are more easily

interpreted and can be closer to those of the actual system than those obtained via previously

existing flutter predicting methods (like the k-method) [18]. They are still only exact, however, at

the flutter point.

2.2. Aeroelastic Modeling

2.2.1. Structural Model

The wing model present in the IST Aerospace group aeroelastic framework is quite different than

the one used in the frequency domain analysis tool described in this work. Their structural

components, however, are both based on beam models constructed through the finite element

method. Despite having different structural formulations (the aeroelastic framework employs a

tridimensional beam model, while the frequency domain tool employs a bidimensional beam

model), the results drawn from them will tendentially point in the same direction, since one of the

degrees of freedom of the beam model employed by the aeroelastic framework is constrained.

This wing/beam approximation is possible because we make the assumption that since we are

dealing with high aspect-ratio wings, their length is many times longer than their thickness and

width. Therefore, it is feasible to approximate such wings as beams, using classical beam theory.

22

The wings are assumed to be cantilevered at their root in both models, thus in the frequency

domain analysis tool only half wing is considered. However, in the aeroelastic framework both

halves are portrayed in its beam model, since the aerodynamic model implemented requires so.

There are two major beam theories: Euler-Bernoulli and Timoshenko. In the Euler-Bernoulli

theory, it is assumed that plane cross sections perpendicular to the axis of the beam remain plain

and perpendicular to the axis after deformation [19, p. 233]. On the other hand, in the Timoshenko

theory, this normality assumption is not used, i.e., plane sections remain plane but not necessarily

normal to the longitudinal axis after deformation [19, p. 261]. Therefore, shear deformation is

taken into account. By analyzing the governing equations of both beam theories [19, p. 262], it is

worth to notice that when the shear strain factor is zero (i.e. for long slender beams) on the

Timoshenko theory governing equations, these become the Euler-Bernoulli theory ones.

Both the wing/beam models of the aeroelastic framework and of the frequency domain tool follow

the Euler-Bernoulli beam theory and use the same model, which is built in the aeroelastic

framework. This model is generated from a pre-defined wing-box where caps, webs and skin

thickness are known as well as the material. Based on these structural parameters it is possible

to compute the inertial properties (such as area and inertia moments) which will be transmitted to

the frequency domain tool and used to generate a finite element model based on one-dimensional

elements. Thus, the same structural model is considered in both computational approaches. The

main difference is in how the analyses are conducted: in the aeroelastic framework a non-linear

solver (Newton-Raphson) is used; while in the frequency domain tool a linear solver is employed.

In the next section, the basics behind how the solver NASTRAN builds the structural model on

the frequency domain model will be looked into.

2.2.1.1. Beam modeling in NASTRAN

NASTRAN is a Finite Element Analysis program, which means that it uses the finite element

method (FEM) to model and solve problems. This finite element method is a numerical method

that is quite powerful in its application to real-world problems that involve complicated physics

and boundary conditions [19, p. 13]. The key concept of such method is that a given complex

domain should be viewed as a collection of simpler subdomains, called finite elements, which are

independent from each other within their respective domains [19, p. 13]. By doing so, it is possible

to systematically construct the approximation functions needed to get the approximated solution

of a problem over each of those finite elements. The idea behind this is that it is easier to represent

a complex function by a collection of simpler ones, normally polynomials. These simpler functions,

which are called interpolation functions, will govern each finite element in a way that the overall

functions for the dependent variables of the problem are approximated by them and its unknown

coefficients.

More specifically, regarding two-node beam elements such as the CBEAM elements used in this

work, S. Raghu [20] is a great source to understand how NASTRAN represents the displacement

of an element by means of the linear combination of shape functions. Once a finite element mesh

23

is defined based on the geometry provided, these shape functions are developed for each

element in regard to the overall governing equations. Finally, after reaching mesh convergence

by increasing the number of finite elements to a desired point, the solution for the whole structure

is then obtained from the assembly of the element solutions.

2.2.2. Aerodynamic Model

The purpose of the aerodynamic component of the models is to simulate the airflow and the

aerodynamic surfaces as accurately as possible. In the aeroelastic framework, the aerodynamics

were modeled through a 3D panel method with compressibility and viscosity corrections [15] [16].

Based on the established wing geometry (airfoil and wing planform dimensions) a mesh using

rectangles (with several chordwise and spanwise divisions) is built and a convergence study is

conducted before running the aeroelastic analysis. In the frequency domain tool, the best option

available was to employ a simpler 2D panel method. This method, known as the Doublet-Lattice

Method (DLM) [21] or the Doublet-Lattice Subsonic Lifting Surface Theory [21], was selected from

the subsonic aerodynamic theories available in NASTRAN, since it was the one most adequate

to the conditions of our problem [21].

2.2.2.1. Doublet-Lattice Method

The Doublet-Lattice Method is used for interfering lifting surfaces in subsonic flow. While its theory

is presented in detail in [21] and [22], the following explanation will summarize the essential

features of this method.

Like in other aerodynamic theories, the DLM requires three matrix equations that lead to the

development of a matrix of aerodynamic influence coefficients (AIC) [23], which was previously

referred to in the p-k method section as the matrix A. These must establish the relations between:

- Air downwash (normalwash) velocity at the surface of an element and lifting pressure.

- Deflection of the lifting element and downwash (substantial derivation matrix).

- Aerodynamic loads and lifting pressure (integration matrix).

The AIC matrix is then formed through a “combination” of these three matrices, making it possible

to relate the aerodynamic forces acting on an element to the element deflection at the control

points. We will be back to this topic after the following introduction to how a lifting surface is

modeled by the DLM.

The theoretical basis of the DLM is a linearized aerodynamic potential fluid theory [21]. In the

DLM, the undisturbed flow is uniform and its speed can be either steady or vary harmonically. All

lifting surfaces are assumed to be parallel to the flow, and each of these surfaces (or panels) is

divided chord-wise and span-wise into small trapezoidal lifting elements (or “boxes”), such that

the boxes are arranged in strips parallel to the flow direction. This configuration is exemplified in

Figure 5.

24

Figure 5 - Representation of a lifting surface model by the DLM [22]

Each box is considered to have an array of acceleration potential doublets of equal yet unknown

strength along the ¼-chord line. The unknown lifting pressures are assumed to be concentrated

uniformly across the ¼-chord line of each box. Through a matrix integral equation, the downwash

resulting from the doublet lines of all boxes is related to the lifting pressure on each panel element.

The substantial derivative in the stream-wise direction of the normal deflection gives the

downwash boundary conditions [21]. To represent the deflection distribution, a series of mode

shapes and generalized coordinates is used [22]. There is one control point per box, centered

spanwise on the ¾-chord line of the box, and the downwash boundary conditions must be

satisfied at each of these points. The last relationship is established by an integration matrix,

which integrates the pressure distribution over the lifting surface to obtain the aerodynamic loads

acting on each element. Having the three relationships established, the only thing left before

calculating the AIC matrix is to obtain the loads acting on the element control points located at ¾-

chord of each element, by chord-wise interpolation of the loads at ¼-chord along the strip.

According to NASTRAN’s Aeroelastic Analysis User’s Guide [23], there are some guidelines that

should be followed when building an aerodynamic element mesh through the DLM method, in

order to obtain accurate results. The ones considered relevant to our aerodynamic model are the

following:

- no less than four boxes should be used per strip;

- the chord lengths of adjacent boxes should change gradually in the stream-wise direction;

- the chord length of the boxes should be less than 0.08 times the velocity divided by the

greatest frequency (in Hz) of interest, i.e., ∆𝑥 < 0.08𝑉∞/𝑓;

- the aspect ratio of the boxes should approximate unity;

- the mesh should be finer next to areas where large pressure gradients and downwash

discontinuities occur (e.g. the wing edge).

25

The way how NASTRAN implements the DLM will be described further ahead.

2.3. NASTRAN

As introduced before, all aeroelastic analyses conducted in the frequency domain tool are

performed by the solver NASTRAN. The purpose of this section is to provide insight on how the

solver NASTRAN works, how the structural and aerodynamic models are built and connected

through spline interpolation and how it employs the p-k method to perform the aeroelastic

analysis. Also, it aims to provide context to the next chapter, where the frequency domain tool is

thoroughly described.

The NASTRAN software is able to perform various specific tasks, such as processing model

geometry, assembling matrices, applying constraints, solving matrix problems, and calculating

output quantities. This software, also called a finite element “solver”, takes an input file written by

the user (or generated by another program), runs it and presents an output file (or several output

files).

Each type of analysis available in NASTRAN is called a “solution sequence”. Each solution

sequence is a pre-defined collection of hundreds or thousands of DMAP commands. DMAP

(Direct Matrix Abstraction Programming) is a high-level programming language with its own

compiler and grammatical rules [24]. Once a solution sequence is selected, its particular set of

DMAP commands sends instructions to the modules that are needed to perform the requested

solution. One particularity of the NASTRAN software is that in each run it can perform various

types of analyses on the same model. Each of these independent analyses is called a subcase.

2.3.1. NASTRAN’s Files

All the information regarding the analyses requests, as well as the model data, is written on an

input file (typically a .bdf file). NASTRAN then processes such input file and writes the analysis

results in an output file (typically a .f06 file), to be later post-processed by the user.

As mentioned above, NASTRAN’s input files are typically .bdf files written in ASCII. Each file is

80 characters (or columns) in length on each line [25] and it is divided into fields according to the

data format. There are two basic categories of input data formats in NASTRAN:

- “Free” format data, where the data fields are simply separated by commas.

- “Fixed” format data, where the data must be aligned in columns of specific width. There

are two subcategories of this format that differ based on the size of the fixed column

width:

o Small field format, where a single line of data is divided into 10 fields of 8

characters each.

o Large field format, where a single line of input is expanded into two lines for

greater numerical accuracy. The first and last fields on each line are 8 characters

wide, while the intermediate fields are 16 columns wide.

26

In this work, the .bdf input files generated by the frequency domain tool will be written according

to the free field format.

Each NASTRAN input file has three mandatory sections: Executive Control, Case Control and

Bulk Data. These sections will be followingly described, along with commands and entries used

in the present work.

2.3.1.1. Executive Control Section

The Executive Control section is where the solution sequences to be run by NASTRAN are

specified, along with other solution parameters. The solution sequence for aerodynamic flutter

analysis is known to NASTRAN as “SOL 145” and it will be the only one that is entered in the

Executive Control section in this work. The last entry of this section is the CEND statement, which

is a required statement that designates the end of the Executive Control section and the beginning

of the Case Control section.

2.3.1.2. Case Control Section

The Case Control Section contains commands that are used to specify and control the analyses

and their output. This is where a title or a label can be assigned to the routine, as well as where

constraints and loads that are used in the Bulk Data section must be declared first, with their

corresponding entry numbers. In addition, it is where analysis subcases and sets are defined.

Also, the output requests for printing and plotting are selected here. In this work, this section is

where the set identification numbers of the flutter analysis method (FMETHOD entry) and of the

eigenvalue extraction method (METHOD entry) are declared. The V-g and V-f plot output is

defined in this section as well. Lastly, the Case Control section must end with the BEGIN BULK

delimiter.

2.3.1.3. Bulk Data Section

The Bulk Data section contains the entries that define the model geometry, its material properties,

element connectivity and properties, loads, boundary conditions and some analysis parameters.

As mentioned above, it begins with the BEGIN BULK entry.

2.3.1.3.1. Structure

In the part of the Bulk Data section that corresponds to the structural model, the material

properties, the geometry of the structure and the boundary conditions are all defined. Through

the MAT1 command, the properties of an isotropic material can be defined for the structure. The

base on which the geometry is built are the so called grid points. The command GRID defines the

location of a geometric grid point, the directions of its displacement, and its single-point

constraints. They can be set in the general coordinate system or in user-defined coordinate

systems and they are used to indicate the position of element nodes. As mentioned before, the

structural elements used in this work are one dimensional beam elements. Each beam element

is defined through the CBEAM entry and its properties through the PBEAM entry. With the

CBEAM command, the grid points that correspond to the two nodes of each beam element are

27

identified, as well as the orientation vector that displays how the beam element planes are placed

(see Figure 6).

Figure 6 - CBEAM element coordinate systems [26]

The components of this vector, specified on fields X1, X2 and X3 of the CBEAM entry, must be

chosen while having the desired orientation of the element coordinate system in mind. It is

important to keep in mind the orientation of the element coordinate system, as many of the beam

properties specified in the PBEAM entry are defined in respect to this system. As just mentioned,

the PBEAM command defines the properties of a beam element, such as its material, cross

section areas, area moments of inertia, cross products of inertia and torsional stiffnesses. Also,

in order to be working with the Euler-Bernoulli beam theory, it is possible to neglect shear

deformation by setting the shear stiffness factors to zero.

2.3.1.3.2. Aerodynamics

As introduced before, in this work, the aerodynamic surfaces are modeled through discretization

in aerodynamic finite elements based on the Doublet-Lattice Method. Each surface has an

aerodynamic grid point, which does not need to coincide with the grid points of the structural

model. In addition, the configuration of the aerodynamic element mesh is independent from that

of the structural mesh, which is quite convenient, since one model may require a finer mesh on a

certain area where such degree of refinement is not required on the other one. Unlike the beam

elements, which have to be declared individually (i.e. each CBEAM command represents a single

beam element), the lifting panel elements are declared in a collective way, by defining macro

elements. Resorting to the CAERO1 command, it is possible to define an aerodynamic macro

element (panel) in terms of two leading edge locations and side chords.

28

Figure 7 - Coordinate system of a CAERO1 panel [26]

As it will be addressed further ahead in this work, in order so that the structural/aerodynamic

interaction meets certain criteria, each aerodynamic panel is “covered” by a different spline and

is defined between two nodes of the structural model. Likewise, the number of spanwise and

chordwise boxes per panel are also defined in order to meet such criteria. The command PAERO1

defines an aerodynamic property for the present panels.

2.3.1.3.3. Splines

The interaction between the structural model and the aerodynamics model results from the

definition of the so-called splines. A spline is an interpolation method by which it is possible to

reflect the aerodynamic forces on the structure and the structural motion on the aerodynamic

mesh. As the aerodynamic mesh moves along with the structural mesh, the structural deflections

are transferred to the aerodynamic deflections and the aerodynamic forces are considered in the

structural equivalent forces acting on the structural grid points. This is fundamental to the analysis

of a dynamic aeroelastic phenomenon such as flutter, since it ensures the coupling of the inertial,

elastic and aerodynamic forces of the model. The splining methods lead to an interpolation matrix

[𝐺𝑘𝑔] that relates the components of structural grid point deflections {𝑢𝑔} to the deflections of the

aerodynamic grid points {𝑢𝑘}:

{𝑢𝑘} = [𝐺𝑘𝑔]{𝑢𝑔}

To interpolate the forces transformation, the two force systems must be “structurally equivalent”

rather than statistically equivalent. This means that the two force systems deflect the structure

equally, rather than having the same resultant loads. Therefore, the aerodynamic forces {𝐹𝑘} and

their structural equivalent values {𝐹𝑔} do the same virtual work in their respective deflection

modes:

{𝛿𝑢𝑘}𝑇{𝐹𝑘} = {𝛿𝑢𝑔}
𝑇

{𝐹𝑔}

(14)

(15)

29

where {𝛿𝑢𝑘} and {𝛿𝑢𝑔} are virtual deflections. By substituting Eq. 14 into the left-hand side of Eq.

15 and rearranging, the required force transformation is obtained because of the arbitrariness of

the virtual deflections:

{𝐹𝑔} = [𝐺𝑘𝑔]
𝑇

{𝐹𝑘}

Eq. 14 and Eq. 16 are both required to complete the formulation of the aeroelastic problems in

which the aerodynamic and structural grid points do not coincide. The splining theories used to

calculate the above-mentioned interpolation matrix are different for each type of spline and are

explained in detail in the NASTRAN Aeroelastic Analysis User’s Guide [23]. For high aspect ratio

wings or beam-like structures like the ones analyzed in this work, linear splines are the most

appropriate. A linear spline is a “beam” function w(x) which is derived using the known deflections

and twist angles at the structural grid points as boundary conditions. This function is then used to

obtain the deflections and twist angles at the aerodynamic grid points. Any aerodynamic panel or

body can be subdivided into subregions for interpolation, using a separate function for each. In

this work, every spline is created through the command SPLINE2, which defines a beam spline

for interpolating motion and forces for aeroelastic problems. When a spline is defined, the user

must declare the structural and the aerodynamic grid points involved in the interpolation, along

with specifying the degrees of freedom that are to be interpolated. The command CORD2R

defines a rectangular coordinate system for each spline, where the y-axis of each system defines

the axis of each spline. The command SET1 defines a set of grid points for each spline that

indicate which structural grid points are to be interpolated for each spline.

2.3.1.3.4. Flutter solution

As introduced before, the p-k method treats the aerodynamic matrices as real frequency

dependent springs and dampers. A frequency is estimated, and the eigenvalues are found. From

an eigenvalue, a new frequency is found and the convergence to a consistent root is rapid.

One issue with the aerodynamic matrices computed by interaction theories such as the Doublet-

Lattice Method is that they are quite expensive to generate. An effective method to evaluate these

matrices for a large number of parameter values is to compute the matrices for a few selected

values and to interpolate to the remaining values. This parametric interpolation is an automatic

feature of the solution modules for aeroelastic analysis. It is also important to notice that these

complex influence coefficient matrices can be defined as depending upon two parameters of the

flow: reduced frequency (dimensionless ratio of frequency to velocity) and Mach number (ratio of

velocity to speed of sound). Therefore, instead of building the aerodynamics matrices for every

reduced frequency used in the p-k method iterations, NASTRAN only does so for a user-defined

list of Mach numbers and reduced frequencies. The MKAERO1 entry specifies the Mach number

and reduced frequencies for which the generalized aerodynamic forces are computed. Therefore,

this entry can be a key factor for the accuracy of the flutter results. It is important to provide

enough reduced frequency values, which cover a broad enough range. The reason why is that if

during the flutter analysis any of the reduced frequency values is outside this range, the

(16)

30

aerodynamic matrices will be obtained from extrapolation, which will likely produce inaccurate

results. Sources in the MSC NASTRAN Users Community Forum have advised in using values

not lower than 0.001 and not higher than 8.0. According to these, such a low value is necessary

in order to accurately follow the development of torsional divergence by any mode. The highest

value should be estimated by multiplying the highest expected frequency by the reference length

and dividing it by the lowest speed considered in the analysis. Through a study that was

conducted, a minimum value of 0.001 and a maximum value of 7.0 were proven to be sufficient

for all the analyzed cases. In this work, the analyses of all models were performed using the same

reduced frequency discretization in the MKAERO entry, ranging from 0.001 to 7.0.

The AERO entry specifies a reference air density and a reference length to be used with the

reduced frequency. The EIGRL command defines the parameters required to perform the

necessary real eigenvalue analysis. With the modal analysis performed and the splining and

aerodynamic matrices computed, the flutter analysis can be performed. Once the generalized

modal matrices are generated and the splining and aerodynamics data is processed, all the

computed matrices are assembled to form the flutter problem equations. For the p-k method,

these equations are solved for each user-defined combination of air density, Mach number and

air speed. As mentioned before, during the p-k method iterative loops, the aerodynamic matrices

for each reduced frequency are obtained through an interpolation of the previously computed

matrices. Through the FLUTTER entry, it is both chosen the p-k method as the flutter analysis

method, and also the aerodynamic parameters for which the flutter problem will be solved,

namely: air density, Mach number and air velocity range. The concrete values of such

aerodynamic parameters are defined in the FLFACT entry. The PARAM entry is used to specify

values for parameters used in solution sequences. For example, the parameter LMODES

indicates the number of vibration modes to be requested in modal formulation.

Lastly, the Bulk Data section ends with the ENDDATA command.

31

3. The Frequency Domain Analysis Tool

In this chapter, we will describe the tool that was developed in MATLAB for the frequency domain

analysis.

All the input wing configuration data we have for the frequency domain analysis comes from the

Non-linear Aeroelastic Framework. This computational tool can run both steady and unsteady

simulations resorting to steady and unsteady FSI solvers. For this work, the unsteady simulations

are only used for comparison purposes with the updated frequency domain methodology; while

the steady simulations are carried out to provide a position of stationary equilibrium, where the

structural and the aerodynamic meshes converge, to the updated frequency domain method.

These converged positions, for different wind speeds, different angles of attack at different

altitudes, for the different aspect-ratio wings, will provide the several deformed wing

configurations that will constitute the file database to be used as input in the frequency domain

analysis tool.

So, the MATLAB code would have to be able to receive as inputs the deformed wing

configurations generated by the FSI Solver and its inertial properties, and then build the structural

and aerodynamic components of the wing models on a .bdf input file to be analyzed with

NASTRAN.

This NASTRAN analysis calculates a flutter speed for each air speed and its correspondent

deformed structure configuration. Finally, the program proceeds to find the actual flutter speed for

the aspect ratio, angle of attack and altitude combination in focus, by running this analysis in an

iterative process to try to converge the wind and flutter speeds. This way, it is possible to use a

frequency domain approach to find the minimum flutter speed for a certain wing configuration,

while taking into account its deformation due to the airspeed.

More specifically, the developed MATLAB tool is constituted by 5 functions (Figure 8). The main

function, flutter.m, (Figure 9) runs the main iterative calculation routine, which in each cycle

resorts to the flutter_SOL145.m function to find the flutter speed for a specific input airspeed and

matching wing configuration. The main function also contains the flutter_param.m function, which

has some analysis parameters, as well as the interpolate_deflections.m function (Figure 10),

which in each cycle interpolates a new deformed wing configuration for the required input

airspeed. Then, in each cycle run, the flutter_SOL145.m (Figure 11) function runs the NASTRAN

flutter analysis for a specific input airspeed and corresponding deformed wing configuration. It

writes the Nastran input file, runs NASTRAN, reads the result file, plots V-G and V-F graphs,

analyzes the results and returns the estimated flutter speeds, as well as the corresponding

frequencies and vibration modes. It also resorts to the beamwriter.m function (Figure 12) to build

both the structural and the aerodynamic components of the beam model that will simulate the

required wing configuration.

32

While the following subchapters will explain in more detail the above mentioned functions, the

diagram and flowcharts below aim to help understanding the structure of the frequency domain

analysis tool. An overview of this updated frequency domain tool is depicted in Figure 8, while in

Figures 9 to 12 each main function of this tool is detailed.

Figure 8 - Function structure of the Tool

Figure 9 - flutter.m function flowchart

Figure 10 - interpolate_deflections.m function flowchart

33

3.1. Input Data

The input data we will base our model on comes in the form of two files generated by the Non-

linear Aeroelastic Framework, which contain geometrical and inertial data of different converged

wing configurations subject to different analysis parameters.

These inputs from the Non-linear Aeroelastic Framework are the OUTNODES.csv file and the

OUTPUT_INERTIAS.csv file.

The OUTNODES.csv file contains the wing geometrical data. Its rows represent the different

nodes and its columns present the following relevant data:

• Column 1: Node ID

• Column 2: Chordwise direction node coordinate component – x

• Column 3: Spanwise direction node coordinate component– y

• Column 4: Vertical direction node coordinate component – z

• Column 5: Leading edge coordinate component at the node location – x_LE

• Column 11: Chord length at the node location – c

• Column 12: Chordwise direction nodal displacement – ux

• Column 13: Spanwise direction nodal displacement – uy

*the beamwriter.m function only writes part of the .bdf input file

 Figure 11 - flutter_SOL145.m function flowchart

Figure 12 - beamwriter.m function flowchart

34

• Column 14: Vertical direction nodal displacement – uz

• Column 15: Chordwise direction nodal rotation – theta_x

• Column 16: Spanwise direction nodal rotation – theta_y

• Column 17: Vertical direction nodal rotation – theta_z

The OUTPUT_INERTIAS.csv file contains wing properties and inertial data. Its rows represent

the different elements and its columns present the following relevant data:

• Columns 1 and 2: Connectivity Matrix (pair of nodes that correspond to the finite

element) – N1 and N2

• Column 3: Area of the beam element cross section – A

• Column 4: Area moment of inertia for bending about the chordwise axis - Ixx

• Column 5: Area moment of inertia for bending about the vertical axis - Izz

• Column 6:Torsional stiffness - Jt

• Column 8: Angle used to rotate each element vector from the global referential

to the element principal referential of inertia - theta_e

It is important to notice that in the steady FSI analysis, while parameters like the AR, the altitude

and the angle of attack obviously don’t change as a function of the air speed, the deformed

configuration changes, i.e. the higher the airspeed, the greater deformation is observed.

Therefore, as inputs for the developed tool, for the same AR, altitude and angle of attack, but

different airspeeds, there will be a single “OUTPUT_INERTIAS.csv” input file, but different

“OUTNODES.csv” input files. Each one representing the deformations of the same wing

configuration due to a different airspeed. And unlike the “OUTNODES.csv” data, the

“OUTPUT_INERTIAS.csv” data is independent from the wing deflection.

3.2. The Flutter Parameters Function

This is a simple function where we define some analysis parameters to be used in the following

functions.

The header of the flutter_parm function is:

function [title_prop, label_files, MAT, ref_chord, y_mandat_breakpt, ...

 panels, altitude_data, aa_data, V_data,...

 branch_nodes] = flutter_parm ()

and its inputs are the following:

- title_prop will return the name of the input file with the wing inertial data;

- label_files will return the input wing Aspect Ratio;

- MAT will return the properties of an isotropic material (Young’s modulus, shear modulus

and density) to be used in the wing beam model;

- ref_chord will return the reference chord;

35

- y_mandat_breakpt will return the number of mandatory break points for the splines;

- panels will return a vector that will influence the number of spanwise and chordwise panel

boxes;

- altitude_data will return a vector with the altitudes for which we have wing configuration

data in our database;

- aa_data will return a vector with the angles of attack for which we have wing configuration

data in our database;

- V_data will return a matrix with vectors that represent the airspeeds for which we have

wing configuration data in our database, for the respective angle of attack and altitude

combinations. As it is possible to see in the example below, the rows of the matrix represent

the different angles of attack and the columns represent the altitudes for which we have

available airspeed vectors, i.e.. available deformed wing configurations in our database.

- branch_nodes will return the option of excluding some nodes from the breakpoint writing

process.

An illustrative example of these inputs is presented below.

% Connectivity data with element properties

title_prop = 'OUTPUT_INERTIAS.csv';

label_files = 'AR12';

% [E, G, rho]

MAT = [70E9,27E9,2700];

%reference chord

ref_chord = 1.2910;

% breakpoint

y_mandat_breakpt = 2;

% aerodynamic mesh

panels = [80,8];

% branch nodes

branch_nodes = NaN;

% Available flight conditions

% 1 2 3 4 5 6 7 8

altitude_data = 0;

% 1 2 3 4 5 6 7 8

aa_data = [-4,-2,0,2,4,6,8,10];

V_data(:,1) = {[10,40,60,80,100,120,140,160,180],... %-4

 [10,40,60,80,100,120,140,160,180],... %-2

 [10,40,60,80,100,120,140,160,180],...

 [10,40,60,80,100,120,140,160,180],... %2

 [10,40,60,80,100,120,140,160,180],...

 [10,40,60,80,100,120,140,160,180],... %6

 [10,40,60,80,100,120,140,160,180],...

 [10,40,60,80,100,120,140,160,180]}; %10

36

3.3. The Beamwriter Function

The first goal was to build a model in NASTRAN that would represent the wing´s structure and

the aerodynamics surrounding it. As mentioned before, our structural model is based on the Euler-

Bernoulli Beam Theory and the aerodynamic model is grounded on the Doublet-Lattice Panel

Method.

The Beamwriter function will import geometric and inertial data from the files “OUTNODES.csv”

and ”OUTPUT_INERTIAS.csv” generated by the non-linear aeroelastic framework, and will write

the beam model in a .bdf input file to be read by the NASTRAN solver.

Here is a general overview of this function by steps:

1. Import wing deflection data and change references.

2. Import wing connectivity and property data and rearrange it.

3. Write GRID points that represent the beam nodes.

4. BEAM CYCLE:

• Write CBEAM beam elements

• Write PBEAM beam properties

5. Write break points for the splines

6. AERODYNAMIC/SPLINE CYCLE:

• Write points for the splines’ coordinate systems

• Write CAERO1 aerodynamic panel elements

• Write CORD2R coordinate systems for the splines

• Write SPLINE2 beam splines

• Write splines’ SET1 node sets

7. Write PAERO1 aerodynamic panel property

These steps are presented next in more detail, starting with the function header and its inputs,

which come from the flutter_SOL145.m function.

Some stress and mass calculation options available will be ignored in the following description,

since they ended up not being used in our analysis.

The Beamwriter function header is:

function

flutter_Beam_Writer4(title_prop,fout,title_deform,aa,panels,mandat_breakpt,n

_g,branch_nodes,PM_data,undeformed)

% Writes deformed beam data in title_out, including GRID, CBEAM, PBEAM,

% CAERO1, SPLINE2, CORD2R, PAERO1 and SET1 entries.

The inputs of this function are the following:

- title prop represents the OUTPUT_INERTIAS.csv input file;

- fout represents the title_out.bdf output file;

37

- title_deform represents the OUTNODES.csv input file;

- aa represents an input angle of attack;

- panels represents a vector that will influence the number of spanwise and chordwise

panel boxes;

- mandat_breakpt represents the option of having mandatory break points for the

splines.

- n_g represents a scale factor (this option is to set to 1 in this work, since no scaling

methodology is employed in this work);

- branch_nodes represents the option of excluding some nodes from the breakpoint

writing process;

- PM_data represents the option of adding mass points;

- Undeformed indicates whether wing deformations are being analyzed;

So, first, we define some parameters/variables, like the structure in which the .bdf output file will

be written, and some inputs related with the writing of the aerodynamic panels and the beam

splines.

Then, we import the deflection data contained in the “OUTNODES.csv” file (title_deform variable).

More concretely, for each beam node that will constitute our model, we have its position and

deflection information, as well as the leading edge and chord data for the wing section

corresponding to the nodes. We also change the wing reference. The code implementation is the

following:

% Import deflection data and change reference

data_raw = csvread(title_deform);

Nnodes = length(data_raw(:,1));

for i=1:Nnodes

 if abs(data_raw(i,3))<1E-10

 root_index = i;

 end

end

origin = data_raw(root_index,2:4);

data_def = data_raw;

for i=1:Nnodes

 data_def(i,2) = data_raw(i,2) - origin(1);

 data_def(i,4) = -data_raw(i,4) + origin(3);

 data_def(i,5) = data_raw(i,5) - origin(1);

end

x = data_def(:,2)*n_g;

y = data_def(:,3)*n_g;

z = data_def(:,4)*n_g;

c = data_def(:,11)*n_g;

if undeformed

 ux = zeros(Nnodes,1);

38

 uy = zeros(Nnodes,1);

 uz = zeros(Nnodes,1);

 theta_x = zeros(Nnodes,1);

 theta_y = zeros(Nnodes,1);

 theta_z = zeros(Nnodes,1);

else

 ux = data_def(:,12)*n_g;

 uy = data_def(:,13)*n_g;

 uz = -data_def(:,14)*n_g; %-

 theta_x = -data_def(:,15); %-

 theta_y = -data_def(:,16); %-

 theta_z = data_def(:,17);

end

Next, we import the beam properties and the connectivity data from the OUTPUT_INERTIAS.csv

file (variable title_prop) and store them in the corresponding variables, as follows:

% Import connectivity and property data and rearrange it

data_prop= csvread(title_prop);

N1 = data_prop(:,1);

N2 = data_prop(:,2);

A = data_prop(:,3)*n_g^2;

Ixx = data_prop(:,4)*n_g^4;

Izz = data_prop(:,5)*n_g^4;

Jt = data_prop(:,6)*n_g^4;

theta_e = -data_prop(:,8);

This way, we know which nodes constitute which beam elements as well as the properties of each

element.

After that, using the GRID command we write the grid points and its coordinates corresponding

to the beam nodes locations on the .bdf output file. It is possible to notice that while the input file

contains data from both wings, since the structural model we are building is a cantilever beam

that represents a wing attached at the root, we will only work with the “positive y” half of the nodes,

that represent half the wing span. Therefore, we must not forget to constrain all degrees of

freedom of the grid point that represents the wing root.

for i = 1:Nnodes

 if ~(y(i) < 0) || abs(y(i)) < 1E-10

 if large_field_struct

 fprintf(fout,'GRID*,%i,,%3.9E,%3.13f,*\n*,%3.13f',...

 i,x(i)+ux(i),y(i)+uy(i),z(i)+uz(i));

 else

 fprintf(fout,'GRID,%i,,%3.1E,%3.5f,%3.5f',...

 i,x(i)+ux(i),y(i)+uy(i),z(i)+uz(i));

 end

 if i == root_index;

 fprintf(fout,',,123456');

 end

 fprintf(fout,'\n');

 end

end

fprintf(fout,'\n');

39

After laying out the grid points where the elements would be, we can then write the CBEAM beam

elements. In addition to the nodes of the beam elements, we have to define the components of

its orientation vectors. This is done by using the angle theta_e to rotate each element vector from

the global referential to the element principal referential of inertia.

for i=1:Nnodes-1

 if ~((y(N1(i)) < 0 && abs(y(N1(i))) > 1E-10) || ...

 (y(N2(i)) < 0 && abs(y(N2(i))) > 1E-10))

 % components of vector N1->N2 (basic coordinates)

 u = x(N2(i))+ux(N2(i))-x(N1(i))-ux(N1(i));

 v = y(N2(i))+uy(N2(i))-y(N1(i))-uy(N1(i));

 w = z(N2(i))+uz(N2(i))-z(N1(i))-uz(N1(i));

 mod = sqrt(u^2+v^2+w^2);

 u = u/mod;

 v = v/mod;

 w = w/mod;

 % components of orientation vector, after sweep

 v_x1 = -v;

 v_y1 = u;

 v_z1 = 0;

 % rotate orientation vector about element axis using theta_e

 v_x2 = u*(u*v_x1+v*v_y1+w*v_z1)*(1-cos(theta_e(i)))+...

 v_x1*cos(theta_e(i))+(-w*v_y1+v*v_z1)*sin(theta_e(i));

 v_y2 = v*(u*v_x1+v*v_y1+w*v_z1)*(1-cos(theta_e(i)))+...

 v_y1*cos(theta_e(i))+(w*v_x1-u*v_z1)*sin(theta_e(i));

 v_z2 = w*(u*v_x1+v*v_y1+w*v_z1)*(1-cos(theta_e(i)))+...

 v_z1*cos(theta_e(i))+(-v*v_x1+u*v_y1)*sin(theta_e(i));

 fprintf(fout,'CBEAM,%i,%i,%i,%i,%4.5f,%4.5f,%4.5f,GGG\n',...

 100+i-1,2000+i-1,N1(i),N2(i),v_x2,v_y2,v_z2);

These CBEAM elements need then to have properties assigned. Basing ourselves on the input

data, using the PBEAM command, we define those properties for all beam elements: material,

cross section areas at both beam ends, area moments of inertia for bending on both planes at

both beam ends, cross products of inertia at both beam ends, and torsional stiffnesses. We also

choose to neglect shear deformation (i.e. to obtain the Euler-Bernoulli beam theory) by setting

the shear stiffness factors to 0.0.

 % Calculation of the torsion component of the rotational

 % deformations, that is, the component of the resultant rotational

 % deformation along the beam element direction:

 % cos(beta) = V_AB.theta/(/V_AB./theta)

 % theta_T = /theta*cos(beta) = V_AB.theta/ /V_AB

 % Where beta is the angle between the resultant (theta) and the

 % element, and theta_T is the torsion angle.

 XA = x(N1(i)) + ux(N1(i));

 XB = x(N2(i)) + ux(N2(i));

 YA = y(N1(i)) + uy(N1(i));

 YB = y(N2(i)) + uy(N2(i));

 ZA = z(N1(i)) + uz(N1(i));

 ZB = z(N2(i)) + uz(N2(i));

 V_AB = [XB-XA, YB-YA, ZB-ZA];

 theta_A = [theta_x(N1(i)), theta_y(N1(i)), theta_z(N1(i))];

 theta_B = [theta_x(N2(i)), theta_y(N2(i)), theta_z(N2(i))];

40

 theta_T_A = dot(V_AB,theta_A)/norm(V_AB);

 theta_T_B = dot(V_AB,theta_B)/norm(V_AB);

 if large_field_struct

 fprintf(fout,'PBEAM*,%i,1000,%6.10E,%6.10E,*\n',...

 2000+i-1,A(i),...

 Izz(i)*cos(theta_T_A)^2+Ixx(i)*sin(theta_T_A)^2);

 fprintf(fout,'*,%6.10E,%7.9E,%6.10E,,*\n',...

 Izz(i)*sin(theta_T_A)^2+Ixx(i)*cos(theta_T_A)^2,...

 -0.5*sin(2*theta_T_A)*(Izz(i)-Ixx(i)),Jt(i));

 if stress

 SO = 'YES';

 fprintf(fout,'*,%7.9E,%7.9E,,,*\n',stress_y(N1(i)),...

 stress_z(N1(i)));

 fprintf(fout,'*,,,,,*\n');

 else

 SO = 'NO';

 end

 fprintf(fout,'*,%s,1.,%7.9E,%6.10E,*\n',SO,A(i),...

 Izz(i)*cos(theta_T_B)^2+Ixx(i)*sin(theta_T_B)^2);

 fprintf(fout,'*,%6.10E,%7.9E,%6.10E,,+\n',...

 Izz(i)*sin(theta_T_B)^2+Ixx(i)*cos(theta_T_B)^2,...

 -0.5*sin(2*theta_T_B)*(Izz(i)-Ixx(i)),Jt(i));

 if stress

 fprintf(fout,'*,%7.9E,%7.9E,,,*\n',stress_y(N2(i)),...

 stress_z(N2(i)));

 fprintf(fout,'*,,,,,*\n');

 end

 else

 fprintf(fout,'PBEAM,%i,1000,%6.2E,%6.2E,',...

 2000+i-1,A(i),...

 Izz(i)*cos(theta_T_A)^2+Ixx(i)*sin(theta_T_A)^2);

 fprintf(fout,'%6.2E,%7.1E,%6.2E,,+\n',...

 Izz(i)*sin(theta_T_A)^2+Ixx(i)*cos(theta_T_A)^2,...

 -0.5*sin(2*theta_T_A)*(Izz(i)-Ixx(i)),Jt(i));

 if stress

 SO = 'YES';

 fprintf(fout,'+,%7.1E,%7.1E,,,',stress_y(N1(i)),...

 stress_z(N1(i)));

 fprintf(fout,',,,,+\n');

 else

 SO = 'NO';

 end

 fprintf(fout,'+,%s,1.,%7.1E,%6.2E,',SO,A(i),...

 Izz(i)*cos(theta_T_B)^2+Ixx(i)*sin(theta_T_B)^2);

 fprintf(fout,'%6.2E,%7.1E,%6.2E,,+\n',...

 Izz(i)*sin(theta_T_B)^2+Ixx(i)*cos(theta_T_B)^2,...

 -0.5*sin(2*theta_T_B)*(Izz(i)-Ixx(i)),Jt(i));

 if stress

 fprintf(fout,'+,%7.1E,%7.1E,,,',stress_y(N2(i)),...

 stress_z(N2(i)));

 fprintf(fout,',,,,+\n');

 end

 end

 fprintf(fout,'+,0.0,0.0\n');

 end

end

fprintf(fout,'\n');

41

The following part of the beamwriter program is the writing of the aerodynamic panels and the

splines. As introduced in the previous chapter, these splines are the tool that will allow us to

connect the structural part to the aerodynamic component of our model.

First, we will define the breakpoints corresponding to the nodes between which the splines will be

defined. The purpose of this definition is to make sure that the aerodynamic surface covered by

each spline meets the following criteria:

• The difference between theta x of the beginning and ending node of each spline doesn't

exceed a certain predefined value, so that the aerodynamic macro element covered by

the spline isn’t too "curved".

• The AR of the surface covered between two breakpoints isn’t greater than 1.

• The first and last break points are the root and the tip, respectively.

• The last CAERO1 element shouldn't be so narrow that it would include only a single

column of panels. In such case, the corresponding surface area should be assigned to

the previous CAERO1 element instead.

% Write coordinate systems needed for splines.

% First, as before, exclude any nodes that don't belong to the elastic axis or to the

% "positive y" wing.

if isnan(branch_nodes)

 data_def_sorted = sortrows(data_def,3);

else

 data_def_clean = data_def;

 branch_nodes = sortrows(branch_nodes',1);

 for i=1:length(branch_nodes)

 data_def_clean(branch_nodes(i)-(i-1),:) = [];

 end

 data_def_sorted = sortrows(data_def_clean,3);

end

root_index = 1;

while(abs(data_def_sorted(root_index,3)) > 1E-10)

 root_index = root_index + 1;

end

data_def_sorted_positive_y = data_def_sorted(root_index:end,:);

node_num = data_def_sorted_positive_y(:,1);

xs = data_def_sorted_positive_y(:,2)*n_g;

ys = data_def_sorted_positive_y(:,3)*n_g;

zs = data_def_sorted_positive_y(:,4)*n_g;

x_LEs = data_def_sorted_positive_y(:,5)*n_g;

cs = data_def_sorted_positive_y(:,11)*n_g;

uxs = data_def_sorted_positive_y(:,12)*n_g;

uys = data_def_sorted_positive_y(:,13)*n_g;

uzs = -data_def_sorted_positive_y(:,14)*n_g; %-

% Then, find span points breakpt(i) such that

% thetax_breakpt(i+1)-thetax_breakpt(i) doesn't exceed a certain value,

% delta_tan.

Nbpts = 1;

42

breakpt(1) = 1;

last_bpt = 1;

Npositive_nodes = length(data_def_sorted_positive_y(:,2));

b = 1;

for i = 2:Npositive_nodes-1

 if node_num(i) == mandat_breakpt(b) || (ys(i) == 0)

 Nbpts = Nbpts + 1;

 breakpt(Nbpts) = i;

 last_bpt = i;

 if length(mandat_breakpt) > b

 b = b + 1;

 end

 elseif ~isnan(max_delta_tan)

 tan_theta_x = ...

 ((zs(i+1)+uzs(i+1))-(zs(i)+uzs(i)))/...

 ((ys(i+1)+uys(i+1))-(ys(i)+uys(i)));

 tan_theta_x_last = ...

 ((zs(last_bpt+1)+uzs(last_bpt+1))-(zs(last_bpt)+uzs(last_bpt)))/...

 ((ys(last_bpt+1)+uys(last_bpt+1))-(ys(last_bpt)+uys(last_bpt)));

 if abs(tan_theta_x - tan_theta_x_last) > max_delta_tan &&...

 node_num(i+1) ~= mandat_breakpt(b)

 Nbpts = Nbpts + 1;

 breakpt(Nbpts) = i+1;

 last_bpt = i+1;

 end

 % Else if AR of surface covered since last breakpoint reaches 1.

 % Condition also ensures that new breakpoint is not set if the next

 % surface would reach a mandatory breakpoint before AR=1.

 elseif (cs(last_bpt)+cs(i))/2 < (ys(i)+uys(i))-(ys(last_bpt)+uys(last_bpt))

 if isnan(mandat_breakpt)

 Nbpts = Nbpts + 1;

 breakpt(Nbpts) = i;

 last_bpt = i;

 elseif((cs(i)+c(mandat_breakpt(b)))/2 < ...

 y(mandat_breakpt(b))+uy(mandat_breakpt(b))-(ys(i)+uys(i)) ||...

 ys(mandat_breakpt(b))-ys(i) < 0)

 Nbpts = Nbpts + 1;

 breakpt(Nbpts) = i;

 last_bpt = i;

 end

 end

end

% The first and last break points are the root and the tip, respectively.

if last_bpt ~= Npositive_nodes

 Nbpts = Nbpts + 1;

 breakpt(Nbpts) = Npositive_nodes;

 last_bpt = Npositive_nodes;

end

% The last CAERO1 element shouldn't be so narrow that it would include only

% a single column of panels. In such case, the corresponding surface area

% should be assigned to the previous CAERO1 element instead:

if panels(2)*2*(ys(last_bpt)-ys(breakpt(Nbpts-1)))/...

 (cs(last_bpt)+cs(breakpt(Nbpts-1)))<1.5

 breakpt(Nbpts-1) = [];

 Nbpts = Nbpts - 1;

end

43

Next, we calculate the points that will define the spline coordinate systems.

Nsplines = Nbpts - 1;

Nset = 501;

for s=1:Nsplines

 XA = xs(breakpt(s)) + uxs(breakpt(s));

 XB = xs(breakpt(s+1)) + uxs(breakpt(s+1));

 YA = ys(breakpt(s)) + uys(breakpt(s));

 YB = ys(breakpt(s+1)) + uys(breakpt(s+1));

 ZA = zs(breakpt(s)) + uzs(breakpt(s));

 ZB = zs(breakpt(s+1)) + uzs(breakpt(s+1));

 S1 = [XA,YA,ZA];

 %S2 = [XA,YA+ZB-ZA,ZA+YA-YB];

 %S3 = [XA-(YB-YA)^2-(ZB-ZA)^2, YA+(XB-XA)*(YB-YA), ZA+(XB-XA)*(ZB-ZA)];

 % With inclusion of the angle of attack:

 %Upwards spline z

 %S2 = [XA - sin(aa)*(YA-YB), YA + sin(aa)*(XA-XB) + cos(aa)*(ZA-ZB),...

 % ZA - cos(aa)*(YA-YB)];

 %S3 = [XA + (XA-XB)*(ZA-ZB)*sin(aa) + ((YA-YB)^2+(ZA-ZB)^2)*cos(aa),...

 % YA + (YA-YB)*((ZA-ZB)*sin(aa) - (XA-XB)*cos(aa)),...

 % ZA - ((XA-XB)^2 + (YA-YB)^2)*sin(aa) - (XA-XB)*(ZA-ZB)*cos(aa)];

 %Downwards spline z

 S2 = [XA + sin(aa)*(YA-YB), YA - sin(aa)*(XA-XB) - cos(aa)*(ZA-ZB),...
 ZA + cos(aa)*(YA-YB)];

 S3 = [XA - (XA-XB)*(ZA-ZB)*sin(aa) - ((YA-YB)^2+(ZA-ZB)^2)*cos(aa),...
 YA - (YA-YB)*((ZA-ZB)*sin(aa) - (XA-XB)*cos(aa)),...
 ZA + ((XA-XB)^2 + (YA-YB)^2)*sin(aa) + (XA-XB)*(ZA-ZB)*cos(aa)];

We write the CAERO1 aerodynamic macro elements. Each aerodynamic panel is placed between

the two breakpoint nodes of each spline and the number of spanwise and chordwise aerodynamic

boxes is defined so that the above-mentioned criteria are met. Also, the angle of attack is taken

into consideration when writing the two leading edge locations and side chords that define each

panel.

 if force_NswPanels
 swPanels = round(panels(1)*(YB-YA)/...

 (ys(Npositive_nodes)+uys(Npositive_nodes)));

 else

 swPanels = round(panels(2)*2*(YB-YA)/...
 (cs(breakpt(s))+cs(breakpt(s+1))));

 end

 fprintf(fout,'CAERO1*,%i,4000,0,%i,*\n*,%i,,,1,*\n',10000*s+1,...
 swPanels,panels(2));

 fprintf(fout,'*,%7.9E,%7.9E,%7.9E,%2.13f,*\n',...
 XA + (x_LEs(breakpt(s)) + uxs(breakpt(s)) - XA)*cos(aa),...
 YA,...

 ZA - (x_LEs(breakpt(s)) + uxs(breakpt(s)) - XA)*sin(aa),...
 cs(breakpt(s)));

 fprintf(fout,'*,%7.9E,%7.9E,%7.9E,%2.13f\n',...
 XB + (x_LEs(breakpt(s+1)) + uxs(breakpt(s+1)) - XB)*cos(aa),...
 YB,...

 ZB - (x_LEs(breakpt(s+1)) + uxs(breakpt(s+1)) - XB)*sin(aa),...
 cs(breakpt(s+1)));

Then we write the CORD2R rectangular coordinate systems for the splines, using the coordinates

of the three previously defined points.

 fprintf(fout,'CORD2R*,%i,0,%7.9E,%7.9E,*\n',300+s,S1(1),S1(2));

44

 fprintf(fout,'*,%7.9E,%7.9E,%7.9E,%7.9E,*\n',S1(3),S2(1),S2(2),S2(3));

 fprintf(fout,'*,%7.9E,%7.9E,%7.9E\n', S3(1),S3(2),S3(3));

After that, we write the SPLINE2 beam spline elements that will interpolate the forces in this

aeroelastic problem, connecting the structural to the aerodynamic components of our model.

 if s==1

 fprintf(fout,'SPLINE2,%i,%i,%i,%i,%i,1.0,1.0,%i,+\n+,1.0,0.0\n',...
 400+s,10000*s+1,10000*s+1 + panels(2),...

 10000*s + swPanels*panels(2),Nset,300+s);

 else

 fprintf(fout,'SPLINE2,%i,%i,%i,%i,%i,1.0,1.0,%i,+\n+,1.0,0.0\n',...
 400+s,10000*s+1,10000*s+1,...

 10000*s + swPanels*panels(2),Nset,300+s);

 End

Also, we write the SET1 grid point list corresponding to the structural nodes of each spline.

 if spline_local

 fprintf(fout,'SET1,%i',Nset);
 field = 3;

 for i=1:Npositive_nodes

 if (ys(i) == ys(breakpt(s)) || ys(i) > ys(breakpt(s))) &&...
 (ys(i) == ys(breakpt(s+1)) || ys(i) < ys(breakpt(s+1)))
 if field == 10;
 fprintf(fout,',+\n+');
 field = 2;

 end

 fprintf(fout,',%i',node_num(i));
 field = field + 1;

 end

 end

 fprintf(fout,'\n\n');
 Nset = Nset + 1;

 end

 if ~spline_local
 fprintf(fout,'SET1,501,1,THRU,%i\n',Npositive_nodes); end

And finally, we write the PAERO1 aerodynamic panel property for the panels we created.

fprintf(fout,'PAERO1,4000\n\n');

That concludes the beamwriter.m file. This file was responsible for writing the model part of the

code on the .bdf file.

We will now describe the flutter_SOL145.m file (which includes the beamwriter.m file), that is

responsible for writing the whole flutter analysis code in the .bdf file.

45

3.4. The Flutter_SOL145 Function

This function will perform the flutter analysis (MSC Nastran SOL145) for a given wing

configuration and input parameters (like airspeed, altitude and wing angle of attack). It will write

the whole Nastran input .bdf file, run NASTRAN, read the result file, analyze the results and return

the estimated divergence and flutter speeds, as well as the corresponding frequencies and

vibration modes.

Here is a general overview of this function:

- Define some analysis parameters

- Open the Nastran input .bdf file and start its writing

o Write the Executive Control section

o Write the Case Control section

o Write the Bulk Data section

▪ Write material properties of the beam model

▪ Call the beamwriter function

▪ Write AERO aerodynamic parameters and its CORD2R coordinate

system

▪ Calculate air density and Mach speed

▪ Define the list of Mach numbers and reduced frequencies for the

aerodynamic matrix using the MKAERO1 entry

▪ Define the flutter analysis using the FLUTTER command and its

aerodynamic factors through FLFACT

- Close the Nastran input .bdf file

- Call Nastran to run the input file

- Read the output .f06 result file

- For each vibration mode, store the velocities and corresponding damping factors and

frequencies in the respective variables

- For each mode, plot the V-g and V-f graphs

- Determine existing divergence and flutter speeds, and its frequencies and modes

associated

- Close the output .f06 result file and show the plots

- Return the summary of the analysis results

The above steps are presented next in more detail, starting with the function header and its

inputs, which come from the flutter.m function.

The flutter_SOL145 function header is:

function [mode_num_F, V_F, f_F, mode_num_D, V_D, flutter_sum] = ...

 flutter_SOL145_3(title_prop,title_deform,title_out,Vinf,h,aa,MAT,...

 ref_chord,panels,mandat_breakpt,n_g,branch_nodes,PM_data,...

 single_speed,undeformed)

46

Its entries are the following:

- mode_num_F will return the mode associated with the minimum flutter speed.

- V_F will return the minimum flutter speed.

- f_F will return the frequency associated with the minimum flutter speed.

- mode_num_D will return the mode associated with the minimum divergence speed.

- V_D will return the minimum divergence speed.

- flutter_sum will return all the flutter speeds and its associated frequencies and

modes.

- title prop represents the OUTPUT_INERTIAS.cvs input file.

- title_deform represents the OUTNODES.csv input file.

- title_out represents the .bdf output file.

- Vinf represents an airspeed.

- h represents an altitude.

- aa represents an input angle of attack.

- MAT represents the material properties.

- ref_chord represents a reference chord.

- panels represents a vector input of spanwise and chordwise number of panel boxes.

- mandat_breakpt represents the option of having mandatory break points for the

splines.

- n_g represents a scalarization factor.

- branch_nodes represents the option of excluding some nodes from the breakpoint

writing process.

- PM_data represents the option of adding mass points.

- Undeformed indicates whether wing deformations are being analyzed.

First, we will define some parameters for the analysis, like how many normal modes and which

velocity range we would like to evaluate.

Nmodes = 18;

V_range = [1,300];

47

Then there are some options that can be defined, like if we want to use a mode tracking function,

in which format we want the output file, or what are the ranges of the graphic plots. Also, we

initialize the vector variables that will hold the results of the analysis (flutter frequency, flutter

speed and divergence speed).

PKS = false;

if PKS

 Hfreq = 720.; %maximum frequency

end

track_modes = false;

%plot options

max_freq = 60;

max_damp = 0.05;

min_damp = -0.1;

post = 0;

aa = aa*pi/180;

V_Fmodes = zeros(Nmodes,1);

V_Fmodes(:) = Inf;

V_Dmodes = zeros(Nmodes,1);

V_Dmodes(:) = Inf;

f_Fmodes = zeros(Nmodes,1);

f_Fmodes(:) = Inf;

Next, we open the .bdf file and start its writing. In the executive control section of the file we

indicate that we will run Nastran’s SOL145, which is the flutter analysis. In the case control

section, we define several parameters regarding the previously chosen analysis, like its title, its

eigenvalue extraction parameters, its flutter analysis method parameters and mostly graphic plot

parameters. The bulk data section is the last section of the Nastran input file, and it is the one

where the whole analysis’ content will be defined.

fout = fopen(title_out,'w');

fprintf(fout,'NASTRAN SPLINE_METRICS, IFPSTAR = NO\n');

fprintf(fout,'SOL,145\nCEND\n\n');

fprintf(fout,'TITLE = Test2 SOL145 with %i m/s NL deflection\n',Vinf);

fprintf(fout,'ECHO = NONE\n');

fprintf(fout,'METHOD = 10\n');

fprintf(fout,'SVEC = ALL\n');

fprintf(fout,'FMETHOD = 40\n');

fprintf(fout,'DISP = ALL\n');

fprintf(fout,'RESVEC = NO\n');

if ~single_speed

 fprintf(fout,'OUTPUT(XYOUT)\n');

 fprintf(fout,' CSCALE = 2.0\n');

 fprintf(fout,' PLOTTER, NASTRAN\n');

 fprintf(fout,' CURVELINESYMBOL = -6\n');

 fprintf(fout,' YTTITLE = DAMPING G\n');

 fprintf(fout,' YBTITLE = FREQUENCY F HZ\n');

 fprintf(fout,' XTITLE = VELOCITY V (M/SEC)\n');

 fprintf(fout,' XMIN = 0.0\n');

 fprintf(fout,' XMAX = %2.1f\n',V_range(2));

 fprintf(fout,' YTMIN = %2.1f\n',min_damp);

 fprintf(fout,' YTMAX = %2.1f\n',max_damp);

 fprintf(fout,' YBMIN = 0.0\n');

 fprintf(fout,' YBMAX = %2.1f\n',max_freq);

 fprintf(fout,' XTGRID LINES = YES\n');

48

 fprintf(fout,' XBGRID LINES = YES\n');

 fprintf(fout,' YTGRID LINES = YES\n');

 fprintf(fout,' YBGRID LINES = YES\n');

 fprintf(fout,' UPPER TICS = -1\n');

 fprintf(fout,' TRIGHT TICS = -1\n');

 fprintf(fout,' BRIGHT TICS = -1\n');

 fprintf(fout,' XYPLOT VG / 1(G,F), 2(G,F), 3(G,F), 4(G,F), 5(G,F), 6(G,F)\n');

% fprintf(fout,' 7(G,F),8(G,F),9(G,F),10(G,F),11(G,F),12(G,F)\n');

End

After the BEGIN BULK command, the first thing we write is the material properties (E, G and ρ)

of our beam model.

fprintf(fout,'BEGIN BULK\n\n');

fprintf(fout,'MAT1*,1000,%6.10E,%6.10E,,*\n%2.3f\n\n',MAT(1),MAT(2));

fprintf(fout,'*,%2.11f\n\n',MAT(3));

Then we call the beamwriter function, that will do everything described in the previous chapter.

flutter_Beam_Writer4(title_prop,fout,title_deform,aa,panels,...

 mandat_breakpt,n_g,branch_nodes,PM_data,undeformed);

Next, we write the CORD2R coordinate system for the general aerodynamic parameters, based

on the input angle of attack. And after that, we write the AERO entry to define those aerodynamic

parameters for the analysis, like the reference density and the reference chord for the reduced

frequencies.

% Aerodynamic coordinate system, followed by AERO entry

fprintf(fout,'CORD2R*,300,0,0.0,0.0,*\n');

fprintf(fout,'*,0.0,%3.13f,0.0,%3.13f,*\n',-sin(aa),-cos(aa));

fprintf(fout,'*,%3.13f,0.0,%3.13f\n\n',-cos(aa),sin(aa));

fprintf(fout,'AERO,300,,%2.5f,1.0,+1\n\n',ref_chord);

Following that, using the input altitude and considering the standard atmosphere model, we

calculate the air density and the Mach speed that will feature in the analysis.

T0 = 288.15;

if h < 11000

 T = T0 - 0.0065*h;

 rho = 1.225*(1 - 0.0065*h/T0)^4.25588;

else

 T = 216.65;

 rho = 0.36392*exp(-0.000157688*(h-11000));

end

a = 340.3*sqrt(T/T0);

M = Vinf/a;

Then, resorting to the MKAERO1 entry, we define the list of Mach numbers and reduced

frequencies for the aerodynamic matrix calculation, that will constitute part of the flutter analysis.

49

We also define some data needed to perform real eigenvalue analyses in Nastran with the

Lanczos method, using the EIGRL entry.

fprintf(fout,'MKAERO1,%3.6f,,,,,,,,+\n',M);

fprintf(fout,'+,0.001,0.01,0.1,0.5,1.,3.,5.,7.\n');

fprintf(fout,'EIGRL,10,10.E-10,,50,,,,MAX\n\n');

Next, using the FLUTTER command, we choose the p-k method as the method of flutter analysis

and the triplet of aerodynamic data for which the flutter problem will be solved, namely: air density,

Mach number, and the velocity range of the analysis. These aerodynamic factors are defined

using the FLFACT command.

if PKS

 fprintf(fout,'FLUTTER,40,PKS,1,2,3,TCUB,%4.3f,0.001,\n',Hfreq);

else

 fprintf(fout,'FLUTTER,40,PK,1,2,3,TCUB,,,\n');

end

fprintf(fout,'FLFACT,1,%2.6f\n',rho);

fprintf(fout,'FLFACT,2,%2.6f\n',M);

if single_speed

 fprintf(fout,'FLFACT,3,%2.4f\n\n',-Vinf);

else

 fprintf(fout,'FLFACT,3,%2.4f,THRU,%2.4f,%i\n\n',...

 V_range(1),V_range(2),500);

End

After defining some more file parameters, we finish the Bulk Data section with the ENDDATA

command, finally concluding the writing of the .bdf Nastran input file.

fprintf(fout,'PARAM,LMODES,%i\n',Nmodes);

fprintf(fout,'PARAM,GRDPNT,1\n');

fprintf(fout,'PARAM,POST,%i\n',post);

fprintf(fout,'ENDDATA\n');

fclose(fout);

Since the Nastran input file is written, we now call the MSC Nastran Software to run the input file.

command = ['C:\MSC.Software\MSC_Nastran\20131\bin\nastran ' title_out];

system(command);

Logically, we will then read and analyze the results. We begin by reading the .f06 result file, which

for every required normal mode will present, for the whole velocity range (V), corresponding

frequencies (F) and damping factors (G).

i=1;

while title_out(i)~='.'

 i=i+1;

end

title_f06 = title_out;

title_f06(i+1:end)='f06';

50

ff06 = fopen(title_f06,'r');

text_f06 = fileread(title_f06);

index = strfind(text_f06,'FLUTTER SUMMARY');

fseek(ff06,index(1),'bof');

for i=1:6

 fgets(ff06);

end

mode = 1;

for m=1:Nmodes

 i1 = 1;

 while mode == m

 line = textscan(ff06, '%s %f %f %f %f %f %f', 1);

 line = [line{1,2:7}];

 if m == 1

 V(i1) = line(2);

 end

 G(i1,m) = line(3);

 F(i1,m) = line(4);

 i1 = i1 + 1;

 R = textscan(ff06, '%s', 1, 'delimiter', ' ');

 if R{1,1}{1,1} == '1'

 for i=1:5

 fgets(ff06);

 end

 mode = textscan(ff06, '%s %s %d', 1);

 mode = mode{1,3};

 for i=1:4

 fgets(ff06);

 end

 end

 end

end

if track_modes;

 [V,G,F] = mode_tracking(V,G,F);

End

After storing the velocities and the corresponding damping factors and frequencies in the

respective variables, we then draw two graphs that will plot the damping as a function of the

velocity range (V-g) and the frequency as a function of the velocity range (V-f), for every vibration

mode analyzed.

if single_speed

51

 xls_gf_title =

strcat('AA_h',num2str(h),'_v',num2str(Vinf),'_aa',num2str(aa*180/pi),'.xls');

 xlswrite(xls_gf_title,G');

 xlswrite(xls_gf_title,F',1,'B1');

else

 figure;

 s(1) = subplot(2,1,1);

 s(2) = subplot(2,1,2);

 plot(s(1),V,G);

 grid(s(1),'on');

 xlabel(s(1),'Velocity');

 ylabel(s(1),'Damping [-]');

 xlim(s(1),[V_range(1),V_range(2)]);

 ylim(s(1),[min_damp,max_damp]);

 plot(s(2),V,F);

 xlabel(s(2),'Velocity');

 ylabel(s(2),'Frequency [Hz]');

 xlim(s(2),[V_range(1),V_range(2)]);

 ylim(s(2),[0,max_freq]);

end

Then, for each vibration mode, we determine any existing cases of flutter or divergence and the

velocities at which they occur. Also, in case of flutter, we determine the frequency at which it

occurs. This is done by checking, for every mode, if there is a point (an increment in the velocity

range variable) where the damping changes from negative to positive or null. At that point, if the

frequency is positive, we have found a flutter point, and we register the velocity and frequency at

which it occurs. On the other hand, if there is a point where the damping changes from negative

to positive or null, but the frequency is zero, it means we have found a divergence point, and so

we register the velocity at which it occurs.

NV = length(V);

NM = size(F,2);

for i=1:NV-1

 for j=1:NM

 if G(i,j) < 0 && (G(i+1,j) == 0 || G(i+1,j) > 0)

 if F(i+1,j) > 1.0E-10 && V_Fmodes(j) == Inf

 % flutter is found

 % interpolates flutter speed and frequency

 V_Fmodes(j) = (((V(i+1)-V(i))/(G(i+1,j)-G(i,j)))*(0-

G(i,j))+V(i));

 f_Fmodes(j) = (((F(i+1,j)-F(i,j))/(G(i+1,j)-G(i,j)))*(0-

G(i,j))+F(i,j));

 elseif F(i+1,j) < 1.0E-10 && V_Dmodes(j) == Inf

 % divergence is found

 %interpolates divergence speed

 V_Dmodes(j) = (((V(i+1)-V(i))/(G(i+1,j)-G(i,j)))*(0-

G(i,j))+V(i));

 end

52

 end

 end

end

After this analysis, we close the .f06 result file and show the plots described before.

Lastly, we store a summary of the minimum divergence speed found and the mode for which it

occurs, as well as a summary of the minimum flutter speed found, and the frequency and mode

for which it occurs. We also store all the remaining flutter speeds found, their corresponding

frequencies, and which modes they represent. These are the return variables of the

flutter_SOL145 function.

fclose(ff06);

%Plot results

command = ['plotps ' title_f06(1:length(title_f06)-4)];

[status,cmdout] = system(command);

% The lowest V_Fmodes value is the flutter speed V_F

[V_F, mode_num_F] = min(V_Fmodes);

f_F = f_Fmodes(mode_num_F);

% The lowest V_Dmodes is the divergence speed V_D

[V_D, mode_num_D] = min(V_Dmodes);

i=0;

for m=1:Nmodes

 if V_Fmodes(m) ~= Inf

 i = i + 1;

 flutter_rand(i,1) = V_Fmodes(m);

 flutter_rand(i,2) = f_Fmodes(m);

 flutter_rand(i,3) = m;

 end

end

if single_speed

 flutter_sum = NaN;

elseif i>0

 flutter_sum = sortrows(flutter_rand,1);

else

 flutter_sum = [Inf,NaN,NaN];

end

end

53

3.5. The Flutter Main Function

We will now describe the main function of the frequency domain analysis tool. This flutter.m

function is an iterative calculation routine and here is a brief explanation of the idea behind this

iterative process. As explained before in the Input Data section, a certain wing configuration that

we choose to analyze will not change its AR, angle of attack and altitude with the variation of the

airspeed. It will, however, have a different deformed configuration for each airspeed. In addition,

for every airspeed/deformed wing configuration combination that we introduce as input, the

calculated minimum flutter speed is expected to be different. For example, at a certain altitude, it

is possible to calculate that a wing with an aspect-ratio of 20 with 2 degrees of angle of attack

(AR20 aa2) that is deformed at the airspeed of 40 m/s will have a predicted flutter speed of 236

m/s. While if the airspeed is increased to 100 m/s, the deformation will be much higher for the

same wing, and the calculated minimum flutter speed will be significantly lower, 113 m/s.

Therefore, the goal of this iterative calculation routine is to converge the input airspeed (and its

corresponding deformed wing configuration) with the flutter speed. This way, it is possible to find

the flutter speed for a certain wing configuration, while taking into account its deformation due to

the airspeed.

Here is a general overview of this function:

• Define analysis parameters;

• Import data (including available database range) from the flutter_parameters function;

• Initiate the iterative cycle for all input altitudes and input angles of attack;

• Define the condition at which the airspeed iterations will stop;

• Define how the airspeeds are iterated;

• Write the name of the deformed wing configuration input file corresponding to the

airspeed for which we want to calculate the flutter speed;

• Call the interpolate_deflections function to obtain such wing configuration input file;

• Write the name of the Nastan input .bdf file matching the analysis’ parameters;

• Call the flutter_SOL145 function to calculate the minimum flutter speed for the

airspeed/deformed wing configuration in analysis;

• Display the input parameters and the return variables of function flutter_SOL145;

• Iterate until the airspeed and flutter speed converge;

• Repeat the cycle for all input angles of attack and input altitudes.

First, we define some key parameters, such as the angles of attack and the altitudes of the wing

configurations we will analyze. We also define the .bdf file label corresponding to how many

vibration modes we will look at, as well as some iterative parameters like Vfact, which will be

addressed in more detail below.

In the flutter_parameters file, which was introduced before, there are some important variables

that we will now import. In addition to a label that represents the aspect ratio of the wing we will

54

analyze, there are also velocity lists for different angles of attack and altitudes that represent the

wing configurations for which we already have input data sheets. The remaining variables that we

import from this file have already been described in previous chapters.

After that, there are some mass points and scaling factors options that will not be used in the

analyses presented here. The initialization of the variables is as follows:

% Iterative flutter calculation routine

% NOTES:

% - "Nmodes", and "V_range" are defined in flutter_SOL145_3.m

% - "PKS" is determined to be true or false in flutter_SOL145_3.m

% - "spline_local" is defined in flutter_Beam_Writer4.m

% - "max_delta_tan" is defined in flutter_Beam_Writer4.m

% - force_NswPanels is defined in flutter_Beam_Writer4.m

% - "n_g" is defined in flutter_Beam_Writer4.m

% - "polynomials" is defined in interpolate_deflections2.m

% - in "undeformed" analyses, it is recommended to say so in "end_label"

clear all

% First airspeed value

Vinf0 = 40;

% Iterative parameters

iterative_flutter = true;

Vfact = 3;

undeformed = false;

single_speed = false;

end_label = '_18modes_8x';

altitude = 0;

aa = 2;%[-4,-2,0,2,4,6,8,10];

% Name of function must correspond to desired case!

[title_prop, label_files, MAT, ref_chord, mandat_breakpt, ...

 panels, altitude_data, aa_data, V_data,...

 branch_nodes] = flutter_parm_M3357();

% Point masses. If necessary, masses must be "true", and correct function

% with PM data to pass on to PM_data must be indicated in the "if"

% statement.

% PM_data comprises of mass and principal inertias of each point mass, as

% well as node numbers of the nodes the masses are to be attached to and

% offsets of PM center of mass to said nodes.

masses = false;

if masses

 PM_data = flutter_PM_M3357();

else

 PM_data = NaN;

end

% Scaling factors

n_g = 1;

n_w = 1;

n_rho = 1;

n_v = n_w*n_g;

ref_chord = ref_chord*n_g;

MAT(1:2) = MAT(1:2)*n_rho*n_v^2;

mode_num_F = zeros(length(altitude));

V_F = zeros(length(altitude));

55

f_F = zeros(length(altitude));

mode_num_D = zeros(length(altitude));

V_D = zeros(length(altitude));

beep on;

Then we begin the iterative cycle. The cycle will run for all input altitudes, initial input airspeeds

and input angles of attack. At each time, it will compare the input altitudes and angles of attack

with the rows and columns of the V_data matrix that contains all the available velocity lists that

correspond to all already available “OUTNODES.csv” wing deformation input files. This way, we

know which list (Vdata) of airspeeds/wing deformation input files we have available for the

combination of altitude and angle of attack that we wish to analyze.

We also convert the altitude and angle of attack in focus to strings, so we can use them for part

of the input files’ names (both for the “OUTNODES.csv” file with the required wing deformation

data to analyze, and for the .bdf Nastran input file that we will write).

for h=1:length(altitude)
 saltitude = num2str(altitude(h));
 for i=1:length(saltitude)
 if saltitude(i) == '.';
 saltitude(i) = '-';
 end
 end
 j = 1;
 while altitude(h) ~= altitude_data(j)
 j = j + 1;
 end
 for v=1:length(Vinf0)
 for a=1:length(aa)
 saa = num2str(aa(a));
 for i=1:length(saa)
 if saa(i) == '.';
 saa(i) = '-';
 end
 end
 i = 1;
 while aa_data(i) ~= aa(a)
 i = i + 1;
 end
 Vdata = V_data{i,j};
 iter = 2;
 Vinf = Vinf0(v);
 last_V = Inf;

Next, we define the tolerance value between the airspeed and the flutter speed at which the cycle

will stop. Meaning that if the flutter speed is already really close (within the tolerance value) to the

airspeed, there is no need to calculate its corresponding flutter speed, since we have already

determined it.

% Condition defines tolerance value for flight speed vs flutter

 while (abs(V_F(h,iter-1)-Vinf) > 0.1 || Vinf == 0);

 if V_F(h,iter-1) == Inf,

 break

 end

56

We will then define how the airspeed that is used for the flutter calculation of each new cycle is

interpolated. This new airspeed will be the difference between the previous airspeed and its

corresponding flutter speed (calculated in the previous iteration), divided by a factor Vfact.

 if abs(V_F(h,iter-1)-Vinf) > 0.1 && iter > 2

 Vinf = Vinf + (V_F(h,iter-1) - Vinf)/Vfact;

 End

The next condition states that if a new airspeed value was iterated in the previous operation, we

convert it to a string to become part of the name of the input files, and use it to calculate the new

flutter speed. On the other hand, if there isn’t a new airspeed value, it means that it had already

converged (under the defined condition value) in the previous cycle, and so there is no need to

calculate a new flutter speed.

 if abs(Vinf-last_V) > 0.0001

 last_V = Vinf;

 sVinf = num2str(Vinf,7);

 for i=1:length(sVinf)

 if sVinf(i) == '.';

 sVinf(i) = '-';

 end

 end

Once we know all the information about the wing configuration for which we want to determine its

flutter speed, we write the title of the “OUTNODES.csv” input file that will match such

configuration. That information being the altitude, the angle of attack and the airspeed of the

current cycle iteration.

 title_deform = ...

 strcat(label_files,'_aa',saa,'_deflections_',sVinf,...

 '_h',saltitude,'.csv');

After that, we call the interpolate_deflections function that based on the Vdata vector (which

contains the airspeed list corresponding to the appropriate V_data matrix entry) will check if the

wing configuration for the required airspeed is present in the input database. If that isn’t the case,

this function will interpolate (based on the already existing deflection data) a new deformed wing

configuration corresponding to the airspeed for which we want to calculate the flutter speed, and

create a new input file with such data.

 interpolate_deflections2(title_deform,label_files,...

 saltitude,saa,Vinf/n_v,Vdata);

Also, we write the title of the Nastan input .bdf file matching the analysis’ parameters. Since we

now have the input file with the required wing configuration for the analysis, as well as the

57

remaining required input variables, we can then call the flutter_SOL145 function, that will return

the desired flutter speed.

 title_out = ...

 strcat(label_files,'_aa',saa,'_flutter_V',sVinf,...

 '_h',saltitude, end_label,'.bdf');

 % Obtain flutter boundary with SOL145

 [mode_num_F(h,iter),V_F(h,iter),f_F(h,iter),...

 mode_num_D(h,iter),V_D(h,iter),flutter_sum] = ...

 flutter_SOL145_3(title_prop,title_deform,title_out,Vinf,...

 altitude(h),aa(a),MAT,ref_chord,panels,mandat_breakpt,...

 n_g,branch_nodes,PM_data,single_speed,undeformed);

Next, we will display the current input altitude and angle of attack for which we are iterating the

flutter speed. This will be followed by the airspeed that is the current input of the flutter_SOL145

function and by its return variables, which are: the minimum flutter speed, its frequency and the

vibration mode for which it occurs; the additional flutter speeds found, their corresponding

frequencies and which modes they represent; the minimum divergence speed found and the

mode for which it occurs.

 if ~single_speed

 disp(strcat('altitude=',num2str(altitude(h)),...

 ' aa=',num2str(aa(a))));

 disp(strcat(int2str(iter-1),':',' Vinf=',num2str(Vinf),...

 ', V_F=',num2str(flutter_sum(1,1)),...

 ', f_F=',num2str(flutter_sum(1,2)),...

 ', mode #=',num2str(flutter_sum(1,3))));

 if length(flutter_sum(:,1)) > 1

 for i = 2:length(flutter_sum(:,1))

 disp(strcat('Additional flutter speed:',...

 ', V_F=',num2str(flutter_sum(i,1)),...

 ', f_F=',num2str(flutter_sum(i,2)),...

 ', mode #=',num2str(flutter_sum(i,3))));

 end

 end

 disp(strcat(', V_D=',num2str(V_D(h,iter)),...

 ', mode #=',num2str(mode_num_D(h,iter))));

 end

 iter = iter + 1;

 beep

 end

 if ~iterative_flutter

 break

 end

Finally, the cycle will be repeated until the airspeed and the flutter speed converge. This will then

happen for all input angles of attack, input initial airspeeds, and input altitudes. For each cycle

that is completed a beep signal is produced.

 end

 beep

58

 end

 beep

 end

 beep

end

3.6. The Interpolate_deflections Function

As mentioned before in the flutter function, the interpolate_deflections function’s objective is to

provide the appropriate deformed wing configuration corresponding to the airspeed for which we

want to calculate the flutter speed.

It will check if the wing configuration for the required airspeed is already present in the input

database and, if that isn’t the case, will generate a new deformed wing configuration by

interpolation of the already existing deflection data and create an input file with such data.

Here is a general overview of this function:

• If the input airspeed doesn’t already exist in the available airspeed database, find which two

database airspeeds are closer to the input airspeed, so to be used in the interpolation.

• Once those two airspeeds are determined, read their corresponding wing deformation data

files.

• Interpolate the wing deformation data in those two files using the input airspeed.

• Write the newly interpolated wing deformation data in a data file corresponding to the input

airspeed.

This function header is shown below.

function interpolate_deflections2(title_deflections,label_files,...

 saltitude,saa,Vinf,Vdata)

% interpolate_deflections2

% Writes new deflection file by interpolation of deflection values of

% existing deflection data.

% Specify whether interpolation is to be done with polynomials. If not, the

% program will resort to linear interpolation.

The inputs of this function are the following:

− title_deflections represents the name of the wing deformation data file corresponding to

the input airspeed.

− label_files represents a string with the input Aspect Ratio.

− saltitude represents a string with the input altitude.

− Saa represents a string with the input angle of attack.

− Vinf represents the input airspeed.

− Vdata is a vector that represents the list of airspeeds that correspond to the wing

deformation input files we have available (from the non-linear aeroelastic framework) for

the input altitude and input angle of attack.

59

When the input airspeed doesn’t already match one of the available airspeeds in our database,

we perform a linear interpolation which always resorts to two airspeeds, VA and VB, for which we

already have deformation data in our database.

Firstly, if the input airspeed (Vinf) (for which we want the corresponding deformed wing

configuration) is lower than the lowest airspeed for which we already have available deformation

data, the linear interpolation will use the lowest and the second lowest airspeeds (of the Vdata

vector) as VA and VB. On the other hand, if the input airspeed is higher than the highest airspeed

for which we already have available deformation data, the linear interpolation will use the highest

and the second highest airspeeds as VA and VB.

if Vinf < Vdata(1)

 VA = Vdata(1);

 VB = Vdata(2);

 elseif Vinf > Vdata(length(Vdata));

 VA = Vdata(length(Vdata)-1);

 VB = Vdata(length(Vdata));

The two remaining possibilities are the case where the input airspeed matches one of the

available airspeeds on the Vdata vector, and the case where the input airspeed is a value between

two available airspeeds on the Vdata vector. On the first case, the function simply ends because

there already is a deformed wing configuration in our database for such input airspeed. On the

second case, however, we will use those two “adjacent” available airspeeds as VA and VB, to

interpolate the new wing configuration.

else

 i = 1;

 while Vdata(i) < Vinf

 i = i + 1;

 end

 if Vdata(i) == Vinf

 return

 end

 VA = Vdata(i-1);

 VB = Vdata(i);

 end

Once we know the VA and VB that will be used for the interpolation, we convert those values to

strings, so we can assemble the name of the corresponding wing deformation data files.

 sVA = num2str(VA,7);

 for i=1:length(sVA)

 if sVA(i) == '.';

60

 sVA(i) = '-';

 end

 end

 sVB = num2str(VB,7);

 for i=1:length(sVB)

 if sVB(i) == '.';

 sVB(i) = '-';

 end

 end

 title_deflections_A = ...

 strcat(label_files,'_aa',saa,'_deflections_',sVA,'_h',...

 saltitude,'.csv');

 title_deflections_B = ...

 strcat(label_files,'_aa',saa,'_deflections_',sVB,'_h',...

 saltitude,'.csv');

We then read those two files and use Vinf’s relative value to VA and VB to linearly interpolate all

the wing deformation data present in the input data files. This newly interpolated data will be

written in a new wing deformation file corresponding to the input airspeed.

 dataA = csvread(title_deflections_A);

 dataB = csvread(title_deflections_B);

 dataC = dataA;

 for i=1:length(dataA(:,1));

 for j = 12:17

 %dataC(i,j) = interpolate(Vinf,dataA(i,j),dataB(i,j),VA,VB);

 dataC(i,j) = (((dataB(i,j)-dataA(i,j))/(VB-VA))*(Vinf-

VA)+dataA(i,j));

 end

 end

end

csvwrite(title_deflections,dataC);

end

61

4. Results

In this chapter, we will first describe the application case that is the object of all analyses. Then,

the results obtained through the frequency domain tool will be laid out. Next, the results obtained

through the time domain method will be presented. Lastly, a comparison between both methods

will be made.

4.1. Application Case

The application case of this work is a simple rectangular NACA 0012 wing model with 20 meters

of span b and variable chord c and, as it can be seen in Figure 13, it has an internal structure with

a wing-box that starts and ends, respectively, at 25% and 75% of the chord.

This model is made of aluminum with a Young modulus of 70 GPa, a density of 2700 kg/m3 and

a shear modulus of 27 GPa. In order to evaluate the effect of aspect-ratio, wing span was set

fixed to 20 m, while the chord was changed to generate three different values of aspect-ratio AR:

12 (c = 1.67 m), 20 (c = 1 m) and 28 (c = 0.71 m). Such geometric modifications change the wing

area. For instance, by reducing the chord a smaller wing area S and a larger aspect-ratio AR were

reached. Moreover, since the wing-box parameters such as the thicknesses of the webs and caps

are normalized to the chord and airfoil maximum thickness, as the wing chord decreases, the

mass and inertia moments also decrease. However, despite the differences in wing area and

mass, they still have the same inertia ratio I2/I1 (ratio between the two bending stiffnesses, chord

EI2 and flap EI1) and undergo different deformed states for the same flight conditions. This is what

allows a comparison between different flutter prediction methods while considering wing models

that present different aeroelastic behavior. A summary of the main characteristics of the

considered wings is presented in Table 1.

Figure 13 - External and Internal geometries of the wing model

62

 These are the different wings that will be studied through different methods in order to try to

understand the influence that large wing deformations (characteristic of high aspect-ratio wings)

have on the wing aeroelastic behavior.

4.2. The Frequency Domain Method Results

In this section, the results obtained from the frequency domain tool will be presented. First, we

will analyze three different conditions in which the tool can be operated and we will draw

conclusions from it. Then, the “end product” results of the frequency domain method to which we

will draw a comparison with the time domain ones will be laid out. Lastly, we will observe the

flutter mechanisms of different wings through the analysis of V-G (Velocity-Damping) and V-F

(Velocity-Frequency) plots.

4.2.1. Frequency Domain Tool under different conditions

First, we will show a contrast between three different conditions through which is possible to use

the frequency domain tool:

- Condition 1 – Undeformed wing at normal operating conditions.

- Condition 2 – Deformed wing at normal operating conditions.

- Condition 3 – Deformed wing at predicted flutter speed.

In the first condition we estimate the flutter speed of a wing at a certain (low) airspeed without

deformation. In the second condition we estimate the flutter speed of a wing at a certain (low)

airspeed while taking into account the deformation due to the airspeed. The third condition

represents the final product of the frequency domain tool, after a convergence cycle, where the

wing is subject to an airspeed that matches the predicted flutter speed, while considering the wing

deformation due to the airspeed.

Two intermediate wings (AR = 16 and AR = 24) were considered for comparison purposes. These

wings also have the same inertia ratio and wing span of the remaining wings, with intermediate

wing area, chord and mass values.

The predicted flutter speed and dimensionless vertical displacement at the wing tip (uz/(b/2)) are

shown in Table 2, 3 and 4 for the above stated conditions.

AR c [m] b [m] S [m2] EI1 [N m2] EI2 [N m2] GJ [N m2] I2/I1 [-] Mass [kg]

12 1.67 20.00 33.33 3.76E+06 1.02E+08 3.57E+06 27.1 679.34

20 1.00 20.00 20.00 4.88E+05 1.32E+07 4.63E+05 27.1 244.56

28 0.71 20.00 14.29 1.27E+05 3.44E+06 1.20E+05 27.1 124.78

Table 1 - Main characteristics of three different wing configurations

63

Table 2 - Flutter speed and dimensionless wing tip displacement for an undeformed wing at normal
operating conditions of 40 m/s at an angle of attack of 2 degrees

Table 3 - Flutter speed and dimensionless wing tip displacement for a deformed wing at normal operating
conditions of 40 m/s at an angle of attack of 2 degrees

Table 4 - Flutter speed and dimensionless wing tip displacement for a deformed wing at the predicted
flutter speed at an angle of attack of 2 degrees

Condition 1 – Undeformed wing at normal operating conditions

AR [-] U [m/s] uz/(b/2) [-] Flutter Speed [m/s]

12 40 0 286.00

16 40 0 233.40

20 40 0 197.05

24 40 0 172.63

28 40 0 160.64

Condition 2 – Deformed wing at normal operating conditions

AR [-] U [m/s] uz/(b/2) [-] Flutter Speed [m/s]

12 40 -1,87E-05 285.55

16 40 0,0001 232.33

20 40 0,0016 194.75

24 40 0,0073 168.27

28 40 0,0245 152.63

Condition 3 – Deformed wing at predicted flutter speed

AR [-] U [m/s] uz/(b/2) [-] Flutter Speed [m/s]

12 218,23 -0,0019 218,23

16 160,76 0,0045 160,76

20 127,40 0,0212 127,40

24 106,10 0,0539 106,10

28 92,24 0,1095 92,24

64

As expected for all conditions, the predicted flutter speed decreases with an increase in the wing

aspect-ratio. While comparing conditions 1 and 2, in Figure 14 it is possible to see that even a

slightly deformed wing (at an airspeed of 40 m/s) has an influence in the predicted flutter speed.

As expected, the prediction is that a deformed wing would reach the flutter point sooner than an

undeformed one. The higher the aspect-ratio, the higher the deformation (as shown in Figure 15)

and consequently the larger the difference between predicted flutter speeds.

Regarding condition 3, in Figure 14, we can see that it presents a similar trend to that of condition

2, although slightly steeper because of the higher deformation at a higher airspeed (which is again

70

120

170

220

270

320

10 15 20 25 30

F
lu

tt
e
r

S
p
e
e
d
 [

m
/s

]

Aspect Ratio [-]

Condition 1

Condition 2

Condition 3

Figure 14 - Flutter speed and dimensionless wing tip displacement for a deformed wing
at the predicted flutter speed at an angle of attack of 2 degrees

Figure 15 - Dimensionless wing tip displacement vs AR

-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0,12

10 15 20 25 30

u
z
/(

b
/2

)
[-

]

Aspect Ratio [-]

Condition 3

Condition 2

Condition 1

65

shown in Figure 15). Also, for the different aspect-ratios, the flutter and airspeed converge at

values that are lower than the one predicted in condition 2.

4.2.2. Frequency Domain Results

Now, the “end product” results obtained through the frequency domain tool (which were

addressed above as “condition 3”) will be looked upon. These are the predicted flutter speeds

and corresponding dimensionless wing tip displacements at the aeroelastic static equilibrium

states for wings of different aspect-ratio at different flight conditions (where the angle of attack

was swept from -4 degrees to 10 degrees).

Table 5 - Predicted flutter speeds and corresponding dimensionless wing tip displacements for wings of
different aspect-ratios, where the angle of attack was swept from -4 degrees to 10 degrees.

Figure 16 - Predicted flutter speeds and corresponding dimensionless wing tip displacements for wings of

different aspect-ratios, where the angle of attack was swept from -4 degrees to 10 degrees.

80

100

120

140

160

180

200

220

240

-0,4 -0,2 0,0 0,2 0,4 0,6

F
lu

tt
e
r

S
p
e
e
d
 [

m
/s

]

uz/(b/2) [-]

AR = 12

AR = 14

AR = 16

AR = 20

AR = 24

AR = 28

α [⁰]
AR = 12 AR = 20 AR = 28

uz/(b/2) [-] Vf [m/s] uz/(b/2) [-] Vf [m/s] uz/(b/2) [-] Vf [m/s]

-4 -0.0296 217.84 -0.1321 132.14 -0.3376 101.51

-2 -0.0204 218.20 -0.0826 129.47 -0.2191 91.58

2 -0.0019 218.23 0.0212 127.40 0.1095 92.24

4 0.0073 217.88 0.0723 128.53 0.2488 98.32

6 0.0164 217.31 0.1209 130.71 0.3551 101.39

8 0.0254 216.55 0.1664 133.42 0.4315 101.52

10 0.0341 215.66 0.2077 136.14 0.4892 100.30

66

As one can observe from Table 5 and Figure 16, the changes made on the wing to produce

different aspect-ratios highlighted the non-linear of behavior of these flexible wings as the flight

conditions change. For low aspect-ratios, such as AR = 12, flutter speeds decrease as the

dimensionless vertical tip displacement increases caused by the different angles of attack. Then,

for an aspect-ratio of 14, the flutter speed is nearly constant with the increase of the vertical tip

displacement. Finally, for aspect-ratios higher than 14, the flutter speed increases as the vertical

tip displacement increases, inverting the previously observed trend, up to a given point as noted

for dimensionless vertical tip displacements above 40% for the wing aspect-ratio of 28. Another

relevant factor to notice is that flutter is predicted to occur at increasing dimensionless tip

displacements as the aspect-ratio increases. An explanation to this could be assigned to the fact

that the higher flexibility effect exceeds the reduction of the loads due to the lower airspeed.

4.2.3. Flutter Mechanism

We will now address the observed flutter mechanism of the different wings at different flight

conditions. For this, we will analyze some V-G and V-F graphs that were obtained at each flutter

speed boundary (the point after convergence where the frequency domain tool computes the

predicted flutter speed). In each case, we will look at the first few vibration modes.

Figure 17 shows a comparison between 3 pairs of V-G and V-F plots corresponding to the wings

of aspect-ratios 12, 20 and 28 at their respective flutter boundaries for an angle of attack of 6

degrees. Table 6 represents the identified vibration mode frequencies and their identified

mechanisms for those different wings.

By analyzing the V-G and V-F plots (Figure 17), it is possible to estimate the flutter points. For the

wing of AR = 12, flutter seems to occur when the fourth mode (first torsion) damping becomes

positive and its frequency starts to converge with the one of the third mode (second flap), which

suggests some mode coupling between these two modes. For the wing of AR = 20, flutter appears

to occur when the fifth mode (first torsion) damping becomes positive and its frequency converges

with the one of the fourth mode (third flap), suggesting some mode coupling between these two

modes. The wing of AR = 28 seems to have a similar behavior as the wing of AR = 20, where

flutter appears to occur when the fifth mode (first torsion) damping becomes positive and its

frequency converges with the one of the fourth mode (third flap), suggesting some mode coupling

between these two modes. Also, as expected, it can be observed that the predicted flutter speed

decreases as the wing aspect-ratio increases. These graphs highlight the non-linear behavior of

the mechanism leading to flutter.

Regarding divergence, for all different wings, it is the first vibration mode that seems to present

divergence, when its damping becomes positive while its frequency is null.

67

(a) AR = 12 (b) AR = 20

(c) AR = 28

Figure 17 - V-G and V-F plots at the flutter speed boundaries for the wings of
aspect-ratios of 12, 20 and 28, at an angle of attack of 6 degrees

68

Looking at Table 6, it can be noticed that in wings of aspect-ratio lower than 20, the first torsion

mode is the fourth vibration mode and third flap mode is the fifth one. On wings of aspect-ratio of

20 or above, this tendency switches, and the third flap mode appears before the first torsion mode.

The reason why we think that this happens is the fact that as the aspect-ratio increases, the inertia

moments change along the wing, leading the wing to become weaker when resisting to flap

bending. As expected, the wing becomes weaker as the aspect-ratio increases, and all the

vibration frequencies decrease. The flap bending modes, however, are particularly weakened.

And this is what we think that originates the observed switch between the first torsion and the

third flap modes. In addition, it is relevant to note that in all the considered wing models the critical

flutter vibration mode seems to be the first torsion mode.

Also from this study, some issues were found with the first chord mode for lower angles of attack,

where it seemed to present flutter and some coupling with other modes. These issues with the

first chord mode were damped as the angle of attack and the wing aspect-ratio were increased,

indicating a possible numerical error, which requires an experimental study.

4.3. The Time Domain Method Results

Regarding the time domain approach, the analyses that were carried out by the IST Aerospace

Group considered a converged structural mesh of 50 nonlinear beam elements, as well as a

converged aerodynamic mesh formed by 210 spanwise divisions and 40 chordwise divisions

spaced using a cosine distribution, plus one fixed wake panel per each spanwise division of 100

chord lengths aligned with the wing chord direction. As previously mentioned, the nonlinear

aeroelastic framework that feeds the frequency domain tool with the static equilibrium

configurations, was now used to obtain the time domain solutions, recurring to a time-marching

scheme. In order to disturb the wing structure and then estimate the flutter speed, a frontal

triangular wind gust profile was applied at the nonlinear aeroelastic static equilibrium computed

for different airspeeds. All wing models are subjected to the same triangular gust profile: starting

at t = 0 s and ending at t = 0.05 s, reaching a maximum velocity of 5 m/s at its peak. The time

step chosen was 0.01 s. The structural dynamic analyses were conducted using the Newmark

method and a predictor-corrector scheme was used to assure aeroelastic convergence [15]. Even

Mode

AR = 12 AR = 20 AR = 28

Frequency

[Hz]

Vibration

Mode

Frequency

[Hz]

Vibration

Mode

Frequency

[Hz]

Vibration

Mode

1 2.39 1st Flap 1.11 1st Flap 0.67 1st Flap

2 9.46 1st Chord 5.78 1st Chord 3.46 1st Chord

3 14.91 2nd Flap 6.95 2nd Flap 4.16 2nd Flap

4 35.17 1st Torsion 19.44 3rd Flap 11.63 3rd Flap

5 41.65 3rd Flap 23.37 1st Torsion 19.76 1st Torsion

Table 6 - Natural frequencies and vibration mechanisms of the first few vibration modes of three wings with

different aspect-ratios

69

though the nonlinear aeroelastic response to above described gust profile was obtained for all

wings and for several airspeeds, only three for each considered wing will be presented here.

Figures 18 to 20 illustrate the dynamic response obtained at the wing tip in plunge uz, pitch ɵy and

chord ux degrees of freedom. These figures show a common pattern: as the airspeed increases,

the response to the applied gust becomes more oscillatory in plunge, pitch and chord degrees of

freedom until a divergent motion is observed for the highest airspeed shown. It is also evident

that there is a second oscillatory motion caused by the gust profile, which disperses for the lower

airspeeds considered. Based on Figures 18 to 20, it is possible to infer that the critical flutter mode

is the first torsion for the three considered wing models, which is in line with what was predicted

by the frequency domain method. In addition, flutter was observed to occur as a coupling between

the first torsion mode and a bending mode (although it was not clearly noticeable which bending

mode it was). This is once again in agreement with what was predicted by the frequency domain

method.

The damping ratio is then determined for plunge, pitch and chord degrees of freedom of the

dynamic response before and after the divergent motion appears. By interpolating the airspeed

vs. the damping ratio, it is possible to estimate the flutter speed as the speed for which the

damping ratio is zero. In Table 7, there is a summary of the speed and dimensionless vertical tip

displacement values at which flutter was predicted to occur, using the time domain method, for

the three wings of different aspect-ratios.

It is possible to observe that a trend emerges out of these findings: like in the frequency domain

method, as the wing flexibility increases (as a consequence of the aspect-ratio increase), the

flutter speed decreases. Additionally, as it happened in the frequency domain approach, flutter

occurs for higher dimensionless tip displacements as the aspect-ratio increases. Again, this

nonlinear behavior might be explained by the fact that the higher flexibility effect exceeds the

reduction of the loads due to the lower airspeed.

AR uz/(b/2) [-] Flutter Speed [m/s]

12 0.1201 121.27

20 0.6274 113.17

28 0.6778 82.80

Table 7 - Predicted flutter speed and dimensionless wing tip displacement using the time domain approach

70

(c) Chord

(a) Plunge (b) Pitch

Figure 18 - Dynamic response of the 12 aspect-ratio wing measured at the wing tip in plunge, pitch and

chord degrees of freedom for 3 different airspeeds (120 m/s, 130 m/s and 140 m/s) [27]

71

(c) Chord

Figure 19 - Dynamic response of the 20 aspect-ratio wing measured at the wing tip in plunge, pitch and
chord degrees of freedom for 3 different airspeeds (100 m/s, 110 m/s and 115 m/s) [27]

(a) Plunge (b) Pitch

72

(b) Pitch
(a) Plunge

(c) Chord

Figure 20 - Dynamic response of the 28 aspect-ratio wing measured at the wing tip in plunge, pitch and
chord degrees of freedom for 3 different airspeeds (70 m/s, 80 m/s and 85 m/s) [27]

73

4.4. Comparison Between Frequency and Time Domain

Methods

Figure 21 - Flutter speeds and corresponding dimensionless vertical wing tip displacement obtained
through frequency and time domain methods

In Figure 21, the flutter results obtained using both frequency (F) and time (T) domain methods

are depicted, where one can see the flutter speed variation as a function of the dimensionless

vertical wing tip displacement for the wings with aspect-ratios of 12, 20 and 28.

As it was discussed in the previous sections, some trends behave alike in both the frequency and

the time domain methods of calculation: the predicted flutter speed decreases as the wing

flexibility increases (as a consequence of the aspect-ratio increase); flutter occurs at increasing

dimensionless tip displacements as the aspect-ratio increases; the critical flutter mode seems to

be the first torsion for all the considered wing models; and it could be said that the predicted flutter

mechanisms are the same in both methods.

However, despite the flutter speed estimated using the frequency domain becoming closer to the

one predicted by time domain method as the wing deformation increases, it was not possible to

obtain exactly the same flutter speed in both approaches. Moreover, by analyzing Figure 21, it

seems these predictions using the frequency domain approach may be less conservative than

the ones obtained by means of the time domain method.

60

80

100

120

140

160

180

200

220

240

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

F
lu

tt
e
r

S
p
e
e
d
 [

m
/s

]

uz/(b/2) [-]

AR = 12 (F)

AR = 12 (T)

AR = 20 (F)

AR = 20 (T)

AR = 28 (F)

AR = 28 (T)

74

5. Concluding Remarks

As introduced in the first chapter, the importance of a fast and accurate method to estimate flutter

speed in optimization and preliminary aircraft design problems has been a key driver in the use

of frequency domain approaches to estimate the flutter speed. However, this approach needs to

be carefully employed, especially when dealing with highly flexible high aspect-ratio wings, where

geometrical nonlinearities such as large deformations are presented. Since these large wing

deflections change the aeroelastic behavior, it is thus of paramount importance to adequately

account for them on the flutter speed prediction.

In this work, a frequency domain method, where the wing aeroelastically static equilibrium state

is used as an input instead of the undeformed wing, was presented and compared with a time

domain method for the flutter speed prediction of high aspect-ratio wings. It could be concluded

that some trends seemed to converge and were identified as behaving alike in both cases.

However, despite the solutions obtained with the two methods becoming closer as the wing

deformation increases, it was not possible to predict exactly the same flutter speed result in both

techniques.

One aspect that might have helped to draw a better comparison between methods is if we would

have been able to extract more data in the time domain method. Then, there would be more

information in the graph of Figure 21, which could have helped us to better understand the

behavior of the results in the time domain. Unfortunately, such was not possible due to numerical

instabilities and convergence could not be reached above the presented angle of attack.

Overall, it could be concluded that the developed frequency domain tool managed to produce

consistent results at a low computational cost, and it can prove useful in situations where its low

computational cost would be relevant. For example, in optimization problems, the frequency

domain tool could be used to evaluate relative predicted flutter speeds in a comparison between

different wing models.

A suggestion for the future could be to refine the structural component of the frequency domain

tool. For example, a change that could be interesting and easy to implement would be to replace

the Euler-Bernoulli beam model with the Timoshenko one. A more complex upgrade would be to

change the beam model for a plate model. The most laborious improvement to the process would

probably be to generate experimental data in order to validate the flutter speed and flutter

mechanism predictions.

75

References

[1] I. H. Abbott and A. E. Von Doenhoff, Theory of wing sections: including a summary of

airfoil data, Mineola: Dover Publications, 1959.

[2] J. E. Cooper and M. Y. Harmin, “Aeroelastic behaviour of a wing including geometric

nonlinearities,” Aeronautical Journal, vol. 115, no. 1174, pp. 767-777, 2011.

[3] J. R. Wright and J. E. Cooper, Introduction to aircraft aeroelasticity and loads, Chichester,

UK: John Wiley & Sons, 2007.

[4] P. Mahamuni, A. Kulkarni and Y. Parikh, “Aerodynamic study of blended wing body,”

International Journal of Applied Engineering Research, vol. 9, no. 24, pp. 29247-29255,

2014.

[5] J. Wolkovitch, “The joined wing: An overview,” Journal of Aircraft, vol. 23, no. 3, p. 161–

178, 1986.

[6] E. Ting, K. Reynolds, N. Nguyen and J. Totah, “Aerodynamic analysis of the Truss-Braced

wing aircraft using Vortex-Lattice superposition approach,” in 32nd AIAA Applied

Aerodynamics Conference, Atlanta, USA, 2014.

[7] F. Afonso, J. Vale, E. Oliveira, F. Lau and A. Suleman, “A review on the non-linear

aeroelasticity of high aspect-ratio wings,” Progress in Aerospace Sciences, vol. 89, pp. 40-

57, 2017.

[8] C. E. S. Cesnik and E. L. Brown, “Modeling of a high aspect ratio active flexible wings for

roll control,” in Proceedings of 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, Denver, Colorado, USA, 2002.

[9] M. J. Patil and D. H. Hodges, “Flight dynamics of highly flexible flying wings,” Journal of

Aircraft, vol. 43, no. 6, p. 1790–1799, 2006.

[10] Z. Wang, P. Chen, D. Liu and D. Mook, “Nonlinear-aerodynamic/nonlinear-structure

interaction methodology for a high-altitude-long-endurance wing,” Journal of Aircraft,

vol. 47, no. 2, p. 556–566, 2010.

[11] J. Murua, R. Palacios and J. M. R. Graham, “Applications of the unsteady vortex-lattice

method in aircraft aeroelasticity and flight dynamics,” Progress in Aerospace Sciences,

vol. 55, p. 46–72, 2012.

[12] F. Petrini, F. Giuliano and F. Bontempi, "Comparison of time domain techniques for the

evaluation of the response and the stability in long span suspension bridges.," Computers

& Structures, no. 85, p. 1032–1048, 2007.

76

[13] L. Salvatori and C. Borri, “Frequency- and time-domain methods for the numerical

modeling of full-bridge aeroelasticity,” Computers & Structures, no. 87, pp. 675-687,

2007.

[14] L. Salvatori and P. Spinelli, “Effects of structural nonlinearity and along-span wind

coherence on suspension bridge aerodynamics: some numerical simulation results,”

Journal of Wind Engineering and Industrial Aerodynamics, vol. 94, no. 5, p. 415–430,

2006.

[15] A. Suleman, F. Afonso, J. Vale, E. Oliveira and F. Lau, “Non-linear aeroelastic analysis in

the time domain of high-aspect-ratio wings: Effect of chord and taper-ratio variation,”

The Aeronautical Journal, vol. 121, no. 1235, pp. 21-53, 2017.

[16] F. Afonso, G. Leal, J. Vale, E. Oliveira, F. Lau and A. Suleman, “The effect of stiffness and

geometric parameters on the nonlinear aeroelastic performance of high aspect ratio

wings,” Proc IMech E Part G: J Aerospace Engineering, vol. 231, no. 10, pp. 1824-1850,

2017.

[17] S. J. Hulshoff, Aeroelasticity (version 11.1): AE4930, Delft: TU Delft, Faculty of Aerospace

Engineering, 2011.

[18] H. J. Hassig, “An approximate true damping solution of the flutter equation by

determinant iteration,” Journal of Aircraft, vol. 8, no. 11, p. 885–889, 1971.

[19] J. N. Reddy, An introduction to the finite element method, 3rd. ed. ed., New York:

McGraw-Hill Education, 2005.

[20] S. Raghu, Finite Element Modeling Techniques in MSC.NASTRAN and LS/-DYNA,

CreateSpace Independent Publishing Platform, 2010.

[21] E. Albano and W. P. Roden, A Doublet-Lattice method for calculating lift distributions on

oscillating surfaces in subsonic flows, Hawthorne, USA: Northrop Corporation, Norair

Division,, 1969.

[22] J. P. Giesing, T. P. Kalman and W. P. Rodden, "Part I, Vol. I: Direct Application of the

Nonplanar Doublet-Lattice Method," in Subsonic unsteady aerodynamics for general

configurations. Air Force Flight Dynamics Laboratory Report No. AFFDL-TR-71-5, Vols. 1,

Parte I, 1971.

[23] MSC Software, MSC.NASTRAN Version 68 Aeroelastic Analysis User’s Guide, MSC

Software, 2004.

[24] MSC Software, DMAP programmer's guide, MSC Software.

[25] MSC Software, Getting Started with MSC NASTRAN - User’s Guide, MSC Software, 2012.

[26] MSC Software, MSC NASTRAN 2012 - Quick Reference Guide, MSC Software, 2012.

[27] F. Afonso, J. Vale, E. Oliveira, R. Correia, F. Lau and A. Suleman, “Comparison between

frequency and time domain approaches for estimation of flutter speed in high aspect-

77

ratio wings,” in International Conference on Structural Engineering Dynamics, Ericeira,

Portugal, 2017.

