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Abstract

In-situ resource utilization is a key aspect for an efficient human exploration of extraterrestrial
environments. A cost-effective method for the construction of preliminary structures is dry stacking
with locally found unprocessed rocks, which is a challenging task. This thesis focus on learning this task
from scratch. Former approaches rely on previously acquired models, which may be hard to obtain in
the context of a mission. In alternative, we propose a model-free, data-driven approach. We formulate
an abstraction of the problem as the task of selecting the position to place each rock, presented to
the robot in a sequence, on top of the currently built structure. The goal is to assemble a wall that
approximates a target volume, given the 3D perception of the currently built structure, the next object
and the target volume. An agent is developed to learn this task using reinforcement learning. The Deep
Q-networks algorithm is used, where the Q-network outputs a value map corresponding to the expected
return of placing the object in each position of a top-view depth image. The learned q-function is
able to capture the goal and dynamics of the environment. The emerged behaviour is, to some extent,
consistent with dry stacking theory. The learned policy outperforms engineered heuristics, both in
terms of stability of the structure and similarity with the target volume. Despite the simplification of
the task, the policy learned with this approach could be applied to a realistic setting as the high level
planner in an autonomous construction pipeline.
Keywords: reinforcement learning, dry stacking, in-situ resource utilization, autonomous construc-
tion, model-free

1. Introduction
For a long term human exploration of extraterres-
trial environments, such as the Moon, it is essential
to use native materials as replacement to resources
otherwise brought from Earth, at great expense.
This is commonly referred to as in-situ resource
utilization and, amongst other applications, is use-
ful for the construction of planetary infrastructures
[1]. Initial settlement infrastructures, such as roads,
platforms and shade walls, may be built with unpro-
cessed or minimally processed local rocks using the
ancient method of dry stacking [2]. Although rudi-
mentary, this technique has been proven to produce
robust and long lasting structures, while requiring
very low pre-processing time and energy. Due to
the increased risk and limitations imposed by hu-
man missions [3], it is important to have systems
with the capability of autonomously setting up in-
frastructure.

However, assembling a structure from a set of ir-
regularly shaped rocks is a difficult task, usually
performed by experienced humans and requiring
some amount of intuition. It is not clear how to

translate this into an autonomous system, specially
in a context in which no models of the environment
are available. An increasingly successful approach
to autonomously learning such difficult tasks is re-
inforcement learning. Concretely, the field of deep
reinforcement learning has seen a number of break-
throughs in recent years, such as the DQN algo-
rithm [4].

With this work, we propose a formulation for
the problem of autonomously building a stable dry
stack wall with irregular 3D blocks that is compat-
ible with a model-free reinforcement learning ap-
proach. We aim to show that it is possible for an
agent to learn this complex task from scratch, with-
out relying on previously acquired object models or
internal physical simulation. To accomplish this,
a deep neural network architecture is developed to
learn a mapping of the state representation to ac-
tion values using DQN [4].

1.1. Related work

Some previous works exploit a physics engine to
plan a stable structure from a set of pre-scanned
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irregular rocks [5–11]. These works use the physics
engine to generate a set of possible poses, from
which the best one is chosen according to a de-
fined set of criteria. These criteria usually prior-
itize lower positions and larger support polygons
with normal closer to the vertical direction. Re-
inforcement learning has been applied to learning
such a criterion [9] in the form of a value function
that evaluates the possible poses, learned using the
DQN algorithm. Some of these works have been ap-
plied in an autonomous construction pipeline, used
to build vertical towers with up to four stones [7] or
complete walls with four courses [11].

To the best of our knowledge, there is no pre-
vious work that explores a completely model-free
approach to the problem of dry stacking with irreg-
ular rocks.

2. Background

In a reinforcement learning setting, an agent inter-
acts with an environment in order to learn a be-
haviour that maximizes a reward signal [12].

At each time step t, the agent observes the envi-
ronment’s state St and takes an action At accord-
ingly. This causes the environment to shift to state
St+1, which comes with the reward Rt+1. The tu-
ple (St, At, Rt+1, St+1) represents the transition at
time step t. The transition probability distribution
p(s′, r|s, a) is a property of the environment.

The agent must learn a policy that maximizes
the cumulative reward Gt =

∑∞
k=t+1 γ

k−t−1Rk,
where the discount factor γ defines the importance
given to delayed rewards. This policy may be
obtained implicitly from an estimate of the action-
value function qπ(s, a) = E[Gt | St=s,At=a, π],
by selecting the action that maximizes the ex-
pected cumulative reward for a given state.
From the definition of Gt, it is possible to de-
rive Bellman optimality equation q∗(s, a) =
E[Rt+1 + γmaxa′ q∗(St+1, a

′) | St=s,At=a],
where q∗ is the action-value function for the
optimal policy.

2.1. Deep Q-networks

The DQN algorithm uses a deep neural network to
learn a function approximation Q of the optimal
action-value function q∗. This is done by mini-
mizing the temporal difference error δt = Rt+1 +
γmaxaQ(St+1, a|w−) − Q(St, At|w), derived from
the Bellman optimality equation. w and w− are the
parameters of the current and target networks, used
to estimate the action-values. The target network is
updated with the parameters of the current network
at a defined period and kept constant otherwise for
stability reasons. At each interaction with the envi-
ronment, the agent selects an action according to an
exploratory policy (e.g. ε-greedy) based on the cur-
rent action-value estimates and stores the transition

in a replay memory. The network update is then
performed by sampling a minibatch of transitions
from the replay memory and performing a stochas-
tic gradient descent step (or any improved optimiza-
tion algorithm) to minimize

∑
i∈batch loss(δi), with

some defined loss function (e.g. quadratic).

2.2. Dueling DQN

The action-value function can be factorized into
the state-value function and an advantage func-
tion as q∗(s, a) = v∗(s) + a∗(s, a). This factoriza-
tion is motivated by the fact that the state by it-
self may be good or bad and sometimes the action
taken has little influence on the value. With sepa-
rate representations, the state-value can be learned
faster, instead of implicitly learning it for each
state-action pair. Wang et al. [13] introduced this
factorization into the network architecture in the
DQN algorithm. The network produces two out-
puts V (s|w0,wv) and A(s, a|w0,wa) that are com-
bined to obtain Q(s, a|w). The weights vector w0 is
common to both estimators and w = (w0,wv,wa).

2.3. Universal Value Functions

The transition probability distribution can be fac-
torized as p(s′, r|s, a) = p(r|s, a, s′)p(s′|a, s). While
the state-transition probability p(s′|a, s) is purely a
function of the environment’s “physics”, the reward
distribution p(r|s, a, s′) is defined by the underlying
goal. Therefore, a more general representation of
the environment may be given by p(s′, r|s, a, g) =
p(r|s, a, s′, g)p(s′|a, s), where g represents the goal.

Accordingly, a general value function [14] can
be defined as qg,π(s, a) = E[Gt | St=s,At=a, π, g],
the expected return given the goal. For an envi-
ronment with a defined state-transition probabil-
ity, many different general value functions may be
learned according to different goals. Each goal is as-
sociated with the optimal policy πg∗, corresponding
to value function qg∗.

Schaul et al. [15] proposed to unify the set of pos-
sible general value functions, {qg∗ : g ∈ G}, into an
universal value function approximator. The idea is
to use a deep neural network that takes the g as an
additional input, such that Q(s, a, g‖w) is an esti-
mate of qg∗(s, a). With this formulation, the func-
tion approximation allows to generalize not only
over a potentially large state space, but also over
a potentially large set of goals.

3. Methodology

The proposed approach to learn a dry stacking pol-
icy using model-free reinforcement learning is di-
vided in two parts. First, a simplified version of
the task is formulated as a RL environment with
discrete state and action spaces. Then, an agent
architecture is developed to learn a value function
for the environment, using DQN.
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3.1. Environment
The environment must capture the problem of
building a dry stack structure with irregular blocks
in a target volume. In order to frame it as a learn-
able RL environment, the problem is simplified to
choosing the position for each object in a random
sequence of irregular 3D blocks.

At each time step, a new object from the sequence
is presented to the agent, as well as the currently
built structure and the target volume. The agent
must choose a position x ∈ R3 to place the new ob-
ject, with freedom restricted to the horizontal coor-
dinates x0 and x1. The object’s vertical coordinate
x2 is defined so that the object is laid on top of the
current structure, and with the same orientation as
it was presented. To simulate the placement, the
velocity of the object is artificially controlled until
a support polygon is achieved (at least three con-
tact points). The simulation is then run freely until
all objects stabilize. This process is repeated until
all objects in the sequence were placed. Figure 1
shows a visualization of the environment, which is
simulated using PyBullet1.

Figure 1: Visualization of the environment. The
white box represents the region where the agent can
observe the currently built structure, which corre-
sponds to the region where placements are allowed.
The green box represents the target volume. The
new object is presented at the top left corner of the
image. The boxes are represented for visualization
and are not physically present in the environment.

A state of the environment is represented as a
pair of elevation maps, containing an overhead view
of the current structure and a bottom view of the
new object (i.e. the side of the object that will be in
contact with the structure). An elevation map is an

1E. Coumans and Y. Bai. Pybullet, a python module for
physics simulation for games, robotics and machine learning.
http://pybullet.org, version 2.9.6.

array whose elements represent the elevation (ver-
tical coordinate) at a given discretized horizontal
position. The elements are always greater or equal
to zero, with zero corresponding to the maximum
distance to the view point. Two consecutive states
(s and s′) are represented in Figures 2(a) and 2(b).
An action is given as a pair of indexes a = (i, j),
and can be visualized as overlapping the elevation
maps of the object and structure with an offset of
i rows and j columns. This visualization is repre-
sented in Figure 2(a). The goal is represented with
an elevation map with the same dimensions as the
overhead view, but representing the target volume.
An example of a goal g is provided in Figure 2(c).

(a) State s and
action a.

(b) State s′. (c) Goal g

Figure 2: Visualization of a transition (s, a, s′) and
the current goal g. The action a = (i, j) corre-
sponds to the pixel indexes of the top left corner of
the yellow box in the left figure.

3.2. Reward shaping

Reward shaping is a key aspect of RL, as the learned
optimal behaviours are critically affected by the way
rewards are distributed. It must capture the in-
tended goal clearly, while being distributed in a way
that facilitates learning.

As stated before, the goal of the environment is to
assemble the objects in a way that approximates the
target volume. This may be formalized as achieving
the highest intersection over union (IoU) between
the volume of the built structure and the target.
This can be computed from the overhead elevation
map O and the goal elevation map G as

IoU =

∑
i,j min (oij , gij)∑
i,j max (oij , gij)

. (1)

This metric lays in the range [0, 1], with 1 corre-
sponding to a fully achieved goal.

Although this metric captures the goal of approx-
imating the target volume, it ignores an implicit as-
pect of the goal statement: a structure should be
a stable assembly of the irregular objects. An ex-
ample of an undesired behaviour that would be re-
warded is to place the objects in a way that makes it
likely for them to fall inside the target, rather than
not falling. A way to avoid this is to discount the
contribution of each object to the reward according
to the distance between its original pose, where it
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was placed, and its current pose. This way, an ob-
ject that falls off from its place no longer contributes
to the reward, even if it falls inside the target.

As it is not possible to distinguish the contribu-
tion of each object to the elevation map O, used
to compute the IoU, an approximation must be de-
fined. Although the volume of the objects is vari-
able, a quantity that is correlated with the inter-
section between current and target volumes (nu-
merator in (1)) is the number of objects inside
the target. In order to compute a metric equiv-
alent to the IoU, it is also necessary to define an
approximation to the union (denominator in (1)).
This can be done by defining the episode length T
(the number of objects that would ideally be inside
the target volume in the end of an episode) as the
approximation to the target volume, and the cur-
rent number of objects, given by the current time
step t, as the approximation to the current vol-
ume. The union may be obtained using the prop-
erty |X ∪ Y| = |X |+ |Y| − |X ∩ Y|. The equivalent
discounted metric may then be defined as

DIoUt =

∑t−1
i=0 b

[i]
t · µ

[i]
t

T + t−
∑t−1
i=0 b

[i]
t

, (2)

where b
[i]
t is 1 if object i is inside the target at time

step t and 0 otherwise, and µ
[i]
t is the applied dis-

count. This metric also lays in the range [0, 1], with
1 corresponding to the ideal case of a terminal state
in which all objects are inside the target volume
with no displacements from the original poses. The

value of b
[i]
t can be determined by retrieving the ob-

ject position (center of mass) from the simulator
and checking if it is inside the target volume. The
discount can be defined as

µ
[i]
t = max

(
0, 1−

(
|∆x

[i]
t |

∆xmax

)cx)
×

max

(
0, 1−

(
|∆θ[i]t |
∆θmax

)cθ)
,

(3)

where ∆x
[i]
t and ∆θ

[i]
t are the translation and ro-

tation distances between the original pose of ob-
ject i and its pose observed at time step t. The
parameters ∆xmax and ∆θmax represent the maxi-
mum allowable distances. If the object exceeds one
(or both) of these distances, its contribution to the
reward is zero. The exponents cx and cθ control
how µ decreases with the distances. Higher values
(cx, cθ > 1) make it less sensitive to small displace-
ments.

This metric may be used to distribute rewards at
each step by immediately rewarding each contribu-

tion to the final value. This is accomplished using

Rt =

{
DIoUt −DIoUt−1 if 0 < t ≤ T
0 if t = 0,

(4)

This way, an action that increases the metric (e.g.
successfully places an object inside the target) is
immediately rewarded, while an action that makes
it decrease (e.g. causes part of the existing structure
to collapse) is penalised. At the same time, the
accumulated episode reward is the final value of the
metric, which corresponds to an evaluation of the
final result:

T∑
t=1

Rt =

T∑
t=1

DIoUt −
T−1∑
t=0

DIoUt = DIoUT . (5)

3.3. Model generation
In order to allow the agent to learn a generaliza-
tion, the experience provided by the environment
must be diverse. This includes the object models
used. As it is hard to find a large number of models
of real irregular objects (e.g. natural rocks), these
models are synthetically generated. This allows the
generation of a dataset of models from which the
sequences used in each episode are sampled.

The model generation process is based on the
method presented by Thangavelu et al. [8] to gener-
ate datasets of irregular convex polygons, used for
2D construction. It can be defined as generating
blocks deformed according to an irregularity param-
eter ς. As such, the starting point is a perfect brick:
a box with extents 1× 1

2 ×
1
3 , scaled to be inscribed

in a sphere with radius rmax. The parameter rmax

is defined to bound the size of the objects (e.g. to
create a set of objects that fit in a given gripper). A
random displacement ∆x is then applied to each of
the eight vertices of the box, with each component
∆xi sampled from a truncated normal distribution
with zero mean, standard deviation σ = ς rmax and
support ∆xi ∈ [−rmax, rmax]. A sequence of n sub-
divisions and random displacements of the addi-
tional vertices is then applied, were the parameter n
controls the level of detail of the objects. A subdi-
vision consists in dividing each face in four smaller
faces, such that a new vertex is added in the middle
of each edge and in the center of each face. This
reduces the length of each edge by a factor of 1

2 .
The distribution from which the displacements of
the new vertices are sampled is scaled accordingly:
after the ith subdivision, the truncated normal dis-
tribution has standard deviation σ = ς 2−irmax and
support ∆xi ∈

[
−2−irmax, 2

−irmax

]
. With this

process, the displacement of the original vertices
greatly affects the overall shape of the object, while
the following subdivisions and displacements suc-
cessively increase the detail of the irregular shape.
In the end of the “irregularization” process, the
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model is converted to its convex hull. This is done
for two reasons: first, the usage of convex shapes
makes the collision computations more efficient in
the physics engine; secondly, the convex hulls actu-
ally resemble more natural rocks (often subject to
erosion) than the obtained irregular shapes. If any
of the extents of the oriented bounding box (i.e. the
box with minimum volume that bounds the model)
exceeds the diameter 2 rmax due to the random dis-
placements, the model is scaled down to fit in a
bounding box with maximum extent 2 rmax.

The meshes of the models are generated accord-
ing to the described process using Trimesh2. Each
mesh is positioned and oriented in the model’s
frame so that its oriented bounding box is cen-
tered at the origin and aligned with the axes, with
the largest extent aligned with the first axis and
the smallest with the third (vertical). A value for
the density is uniformly sampled from an inter-
val [ρmin, ρmax], which simulates diverse materials
or materials with variable composition or porosity.
Some examples of models generated with different
values of ς are presented in Figure 3.

(a) ς = 0. (b) ς = 0.1. (c) ς = 0.25. (d) ς = 0.5.

Figure 3: Models generated with different values
of the irregularity parameter ς (3 subdivisions per-
formed).

3.4. Agent
At each time step, the agent observes the mO ×
nO overhead elevation map O, the mN×nN object
elevation map N and the mO × nO goal elevation
map G (same size as O). The overhead and target
views are stacked to form the mO × nO × 2 array
M with elements given by

mijk =

{
oij if k = 0

gij if k = 1,
(6)

which makes the spatial relation between the cur-
rent structure and target volume clear to the agent.

As previously stated, an action a = (i, j) can be
visualized as overlapping the object elevation map
on the overhead elevation map with the correspond-
ing offsets. From this observation, a natural candi-
date to map the state to action values is a cross-
correlation like operation that slides N through M,
outputting a value for each possible offset. Such
an operation provides the intended codomain and

2M. Dawson-Haggerty et al. Trimesh. https://trimsh.

org/, version 3.8.1.

captures the underlying spatial relations in the ob-
served state. Figure 4 provides a visualization of
the agent architecture, where the value estimator
performs cross-correlation like operation.

The value estimator is translated into a neural
network with an architecture based on a fully con-
volutional Siamese network [16]. The developed ar-
chitecture is represented in Figure 5.

In this case, the inputs of the two branches are se-
mantically different: one contains the overhead view
of the current structure and target volume and the
other is the view of the object to be placed. This
differs from the usual utilization of Siamese net-
works, where both inputs have the same meaning
and must be matched (e.g. if the goal was to find
an instance of the new object in the current struc-
ture). Therefore, a modification of the Siamese ar-
chitecture is used, where the branches do not share
weights and may even have different architectures.
The only restriction is that each branch outputs
an array with the same height and width as its in-
put, and that both branches output arrays with the
same depth. This means that each branch must
be a fully convolutional network providing a dense
(pixelwise) feature extraction. Concretely, the U-
net [17] architecture is used for this effect. As the
object elevation map is smaller and contains less se-
mantic information, a shallower network is used for
its branch. The network sizes used are 5 levels in ϕl
and 3 in ϕr, and both branches use convolutional
layers with 16 channels at the first level (see [18]).

The network architecture is extended with one
additional fully convolutional module, placed at the
output of the cross-correlation. This is motivated
by the fact that the network must learn a spe-
cific value function, estimated from the collected
rewards. In opposition to learning similarity, in
which a metric must be as high as possible for a
good match and low otherwise, this network should
fit the specific values corresponding to the expected
return. With the additional module, the output
of the cross-correlation may be mapped to the in-
tended values, giving the branches more freedom to
express the features without the restriction of the
cross-correlation fitting the value function. This
module consists of two 3 × 3 convolutional layers
with 16 channels and ReLU activation followed by
a 1 × 1 single channel convolution, with no activa-
tion, that maps the 16 channels to the output value
function.

Additionally, the network is adapted to match
the dueling architecture. In this case, it is intuitive
that the intrinsic value of a state is greatly influ-
enced by the current structure: not only in terms
of the availability of potentially good positions for
the new object, but also in the stage of the episode
(i.e. an advanced episode, indicated by a structure
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Value
estimator arg max

mN x nN

mO x nO x 2

(mO-mN+1) x (nO-nN+1)

(i,j)

Figure 4: Process of choosing an action from the state. The image in the right is a visualization of the
action, where a = (i, j) gives the pixel indexes of the top left corner of the yellow box.

Input M Input N

φl φr

mN x nN x 1mO x nO x 2

mN x nN x dmO x nO x d

φo

(mO-mN+1) x (nO-nN+1) x 1

(mO-mN+1) x (nO-nN+1)

Output

Figure 5: Network architecture. The modules ϕl
and ϕr are the left and right branches of the net-
work, that perform a dense feature extraction to
the inputs M and N. The module ϕo performs a
fully convolutional transformation to the result of
the cross-correlation, in order to estimate action ad-
vantages A(s, a). A scalar is extracted by the mod-
ule ϕl to estimate the state value V (s), that is then
combined with the action advantage estimates.

with many objects, means lower expected return
because the terminal state is closer). Although the
shape of the object by itself may also be indicative
of the expected quality of the available positions,
this can be seen as part of the action advantage.
This observation is translated into the architecture
by extracting a scalar value from the branch of the

overhead view, which is then combined with the
output of the network as in [15]. This value is ex-
tracted by applying a global average pooling layer
to the higher level, lower resolution feature maps in
the branch (i.e. the end of the contracting path of
the U-net), and then applying one fully connected
layer with 256 units and ReLU activation and a sin-
gle fully connected unit (no activation) to map the
feature vector to a scalar.

3.5. Baselines
Three baseline levels of performance are considered
for comparison with the learned policies. The first
corresponds to the policy that randomly samples
actions from the complete action space, correspond-
ing to the observable region. The second is given
by the policy that randomly samples actions inside
the target volume, which corresponds to capturing
the notion of the goal of the environment. For the
third level, a position choice criterion is introduced
in the form of an heuristic function. This level cor-
responds to capturing an understanding of the en-
vironment dynamics.

The considered heuristic is given by the cross-
correlation between O and N, given by

Cij(O,N) =
∑
k,l

oi+k,j+l · nkl. (7)

By definition, the values in the elevation maps
are always greater or equal to zero. For this rea-
son, each element of the cross-correlation output
Cij(O,N) can be here interpreted as a weighted
sum of the elements oi+k,j+l, with the weights given
by nkl. Elements oi+k,j+l that do not coincide with
the object (i.e. nkl = 0) are not considered in the
sum, while the remaining are weighted according
to the object shape. Effectively, this results in a
blurring operation, with the filter shape correspond-
ing to the shape of the object. The local minima
of the cross-correlation output are likely to corre-
spond to concavities in the structure where the ob-
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ject fits, because sharper local minima in the ele-
vation map O would have been blurred out. Addi-
tionally, the global minimum is also the lowest point
in the blurred surface, which is consistent with the
height criterion used in related work. The action
choice is performed in two steps. First, the cross-
correlation is computed and the local minima are
calculated. Then, the lowest of the local minima
that are located in the target region is selected as
the action to be performed.

4. Results
A set of experiments is performed on the described
environment. The set of models used is constituted
by 500 models generated with each value of ς ∈
{0.5, 0.55, . . . , 1}, resulting in a complete set of 5500
models. The number of subdivisions performed in
the generation process is 3. The size of the over-
head and object elevation maps are 128 × 128 and
32 × 32, respectively. The episode length is set as
30. Two metrics are used to evaluate the obtained
policies. The first is the IoU defined in (1), which is
a measurement of the similarity between the built
and target volumes. The second is the average of
the discounts defined in (3), given by

ADt =
1

t

t−1∑
i=0

µ
[i]
t , (8)

which is a metric of the similarity between the
planed structure (given by the poses were the ob-
jects were placed) and the actual structure (given
by the current poses of the objects). The later eval-
uates the effectiveness and stability of the place-
ments.

The training sessions are performed using the
DQN algorithm with a replay memory of size
400000, minibatch size of 32, and 2 transitions
collected between network updates. The network
optimization uses Adam [19] with learning rate
6.25 · 10−5 and exponential decay rate for the first
and second moment estimates 0.95.

Two training sessions are run with rewards gen-
erated with the IoU (1) and four with rewards gen-
erated by the DIoU (2). At intervals of 10000 iter-
ations, the current greedy policy is evaluated with
100 episodes. Figures 6 and 7 show the evolution
of the evaluation results during training, compared
with the results of the three baseline levels. The
curves highlighted with the stronger colour are con-
sidered the best run for each reward shape, and cor-
respond to the same network initialization.

From the learning curves in Figures 6 and 7, it
is observable that the notion of the goal is easily
(and quickly) learned. This corresponds to reach-
ing the second level of baseline performance, given
by the policy that samples actions from the tar-
get region. Afterwards, the dynamics of the envi-

0.0 0.2 0.4 0.6 0.8 1.0
Iteration 1e6

0.05

0.10

0.15

0.20

0.25
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U 3

0

Learning
Random
Random (goal)
Cross-correlation

Figure 6: Evolution of the evaluation results during
training with rewards generated by the IoU.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Iteration 1e6

0.05

0.10

0.15

0.20

0.25

0.30
Io

U 3
0

Learning
Random
Random (goal)
Cross-correlation

Figure 7: Evolution of the evaluation results during
training with rewards generated by the DIoU.

ronment should be gradually captured by the value
functions. It is verified in Figure 7 that the rewards
generated by the DIoU result in returns that are dif-
ficult to predict, which explains the frequent break-
downs of the training sessions. These breakdowns
correspond to one of the layers in the network stop-
ping to produce activations for any input, which re-
sults in the prediction of equal values for all actions
and the consequent performance breakdown. The
layer that doesn’t produce activations blocks back-
propagation, which stops the learning process. This
outcome could be prevented with the usage of dif-
ferent hyperparameters (e.g. smaller learning rate)
or network architecture modifications (e.g. residual
connections). Despite this, for one of the training
sessions a placing criterion is learned and the per-
formance surpasses the third baseline level, given by
the cross-correlation heuristic. On the other hand,
the policies learned with the IoU are more consis-
tent, but do not significantly outperform the base-
line.
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To further analyse the policies obtained from the
best run with each metric, a set of 100 episodes
is used to evaluate the evolution of the evaluation
metrics, IoU and AD, during an episode. The re-
sults are shown in Figures 8 and 9, compared to
the average evolution obtained with the baselines
for the same episodes. Table 1 reports the aver-
age and standard deviation of the final values of
the metrics obtained with each policy (learned and
baselines).
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Figure 8: Evolution of the intersection over union
and average discount during an episode, for the pol-
icy learned with rewards generated by the IoU. Val-
ues reported for the baselines are the average over
100 episodes.
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Figure 9: Evolution of the intersection over union
and average discount during an episode, for the pol-
icy learned with rewards generated by the DIoU.
Values reported for the baselines are the average
over 100 episodes.

Regarding the policy learned with the IoU, it is
possible to observe that the fact that no discounts
are applied results in a policy that produces gener-
ally unstable placements. The AD curve in Figure 8

Table 1: Evaluation results. Values reported as the
average and standard deviation over 100 episodes.

IoU30 AD30

Learned with IoU 0.266 ± 0.026 0.584 ± 0.064

Learned with DIoU 0.303 ± 0.029 0.791 ± 0.058

Random 0.125 ± 0.027 0.738 ± 0.06

Random (goal) 0.232 ± 0.025 0.507 ± 0.064

Cross-correlation 0.27 ± 0.024 0.769 ± 0.046

shows average values of ADt closer to the random
policy. This ends up undermining the final perfor-
mance.

From Figure 9, the evolution of the IoU and AD
throughout the episodes allows an interpretation of
the behaviour improvement over the baselines. The
IoU starts by increasing slower than for the cross-
correlation heuristic. This is explained by the fact
that this policy starts by packing a tight first course,
which also results in keeping the value of AD closer
to one for longer. This initial behaviour, along with
a suitable understanding of the dynamics of the en-
vironment, end up enabling the assembly of struc-
tures more similar to the target and with less dis-
placements from the original poses. Figure 10 shows
two stages of a structure assembled by the obtained
policy, and Figure 11 presents an example of an ob-
tained value map.

(a) t = 10 (b) t = 30

(c) t = 10 (d) t = 30

Figure 10: Example of a structure obtained with
the learned policy.

An interesting observation is the behaviour
learned for the first steps. The agent learns to start
an episode by enclosing the target area with the
first objects. This allows the following objects to be
supported by an inwards sloping surface, which pre-
vents them from falling out and increases the overall
stability. This behaviour, learned from scratch, is

8



(a) State. (b) Value map.

Figure 11: Example of a value map obtained with
the learned policy for the given state. The target is
represented in the state with the dotted yellow line.

consistent with the theory of dry stacking (although
typically the largest objects would be selected for
this purpose, which is not allowed here).

5. Conclusions

The major achievement of this work was to de-
velop a setup in which a dry stacking policy can
be learned without any previously acquired mod-
els of the environment. An agent is able to learn
from scratch a policy that captures the goal of the
environment and its dynamics. The emerged be-
haviour is, to some extent, consistent with existent
dry stacking theory.

As discussed, the results could be improved upon
(or made more consistent) with a better choice of
hyperparameters or with some improvements to the
network architecture.

The policies learned with the proposed approach
could be applied to a realistic setting as the
high level planner in an autonomous construction
pipeline, where a lower level controller would per-
form the careful placements.
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