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Resumo

A utilização de recursos in-situ é um aspecto chave para uma exploração humana eficiente de am-

bientes extraterrestres. Um método de baixo custo para a construção de estruturas preliminares é o

empilhamento de rochas não processadas, encontradas localmente, sem recurso a argamassa. Esta

tese foca-se na aprendizagem autónoma desta tarefa complexa. Abordagens anteriores recorrem a

modelos previamente adquiridos, que podem ser difı́ceis de obter no contexto de uma missão. Em al-

ternativa, propomos uma abordagem sem modelos e baseada em dados. O problema é abstraı́do para

a tarefa de selecionar a posição para cada pedra, apresentada numa sequência, ser colocada sobre

a estrutura atualmente construı́da. O objetivo é cunstruir um muro que aproxime um volume objetivo,

dada a percepção tridimensional da estrutura, do próximo objeto e do objetivo. Um agente é desen-

volvido para aprender esta tarefa utilizando aprendizagem por reforço. O algoritmo Deep Q-networks

é usado, onde a Q-network estima um mapa de valor correspondente ao retorno esperado de colocar

o objeto em cada posição de uma vista superior da estrutura. A q-funtion aprendida capta o objetivo

e a dinâmica do ambiente. O comportamento que surge é, de certo modo, consistente com a teoria

existente para esta tarefa. A polı́tica aprendida supera heurı́sticas criadas com conhecimento prévio

da tarefa, tanto em termos de estabilidade da estrutura como de semelhança com o volume objetivo.

Apesar da simplificação da tarefa, a polı́tica aprendida com esta abordagem pode ser aplicada numa

situação real como o planeador de alto nı́vel num pipeline de construção autónoma.

Palavras-chave: aprendizagem por reforço, utilização de recursos in-situ, construção autónoma,

rochas naturais
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Abstract

In-situ resource utilization is a key aspect for an efficient human exploration of extraterrestrial environ-

ments. A cost-effective method for the construction of preliminary structures is dry stacking with locally

found unprocessed rocks, which is a challenging task. This thesis focus on learning this task from

scratch. Former approaches rely on previously acquired models, which may be hard to obtain in the

context of a mission. In alternative, we propose a model-free, data-driven approach. We formulate an

abstraction of the problem as the task of selecting the position to place each rock, presented to the robot

in a sequence, on top of the currently built structure. The goal is to assemble a wall that approximates

a target volume, given the 3D perception of the currently built structure, the next object and the target

volume. An agent is developed to learn this task using reinforcement learning. The Deep Q-networks

algorithm is used, where the Q-network outputs a value map corresponding to the expected return of

placing the object in each position of a top-view depth image. The learned q-function is able to cap-

ture the goal and dynamics of the environment. The emerged behaviour is, to some extent, consistent

with dry stacking theory. The learned policy outperforms engineered heuristics, both in terms of sta-

bility of the structure and similarity with the target volume. Despite the simplification of the task, the

policy learned with this approach could be applied to a realistic setting as the high level planner in an

autonomous construction pipeline.

Keywords: reinforcement learning, dry stacking, in-situ resource utilization, autonomous con-

struction, model-free
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Chapter 1

Introduction

1.1 Motivation

For a long term human exploration of extraterrestrial environments, such as the Moon, it is essential

to use native materials as replacement to resources otherwise brought from Earth, at great expense.

This is commonly referred to as in-situ resource utilization (ISRU), and its applications range from the

production of propellant and life support gases to the construction of planetary infrastructures [1]. This

thesis focus on the later.

Initial settlement infrastructures, such as roads, platforms and shade walls, may be built with un-

processed or minimally processed local rocks using the ancient method of dry stacking [2]. Although

rudimentary, this technique has been proven to produce robust and long lasting structures [3], while

requiring very low pre-processing time and energy.

Due to the increased risk and limitations imposed by human missions [4], it is important to have

systems with the capability of autonomously setting up the preliminary infrastructures.

However, assembling a structure from a set of irregularly shaped rocks is a complex task, usu-

ally performed by experienced humans and requiring some amount of intuition. It is not clear how to

translate the solution into an autonomous system. Additionally, this system is targeted at unexplored

environments, in which models of the objects and dynamics may not be available.

An increasingly common approach to autonomously learning such difficult tasks is reinforcement

learning (RL). Concretely, the field of deep reinforcement learning (DRL) has seen a number of break-

throughs in recent years, such as the deep Q-network (DQN) algorithm [5] and its subsequent improve-

ments [6].

1.2 Objectives

With this thesis, we aim to show that it is possible for an autonomous agent to learn the complex task of

dry stacking with irregular rocks with a model-free approach. The agent must learn from scratch, without

relying on previously acquired models of the objects and environment dynamics.

2



1.3 Related Work

Some previous works exploit a physics engine to plan a stable structure from a set of pre-scanned

irregular rocks. Lambert and Kennedy [7] developed an application that outputs an assembly plan for a

set of prism-shaped rocks, a 2-D simplification of the problem, where the pose of each rock is obtained

using simulated annealing to minimise a simple heuristic based on the vertical coordinate of the rock

position. Nielsen and Dancu [8] propose a system for assisting real-time dry stone wall construction,

where a good placement is found in simulation by dropping the 3D model of a stone at different positions

and with different orientations. The reached poses are evaluated using the distribution of contact points

and dot product between the contact normals and the vertical direction. Furrer et al. [9] present a method

to select the best next object and pose by applying gradient descent from several random initial poses

to optimize a cost function that takes into account: i) the area of the support polygon, ii) the deviation

between the support polygon normal and the gravity direction, iii) the kinetic energy of the structure

after the placement and iv) the distance between centers of mass of next and previous objects. This

approach is validated in a real world setting with a pipeline capable of constructing vertical stacks of up

to four irregular rocks with a robotic manipulator. Liu et al. [10] propose an approach that successively

reduces a finite set of stable poses, generated by the simulator, by applying a hierarchical sequence of

filters based on heuristics. Concretely, the area and normal of the support polygon, the height relative

to neighboring objects, the top surface sloping and interlocking (number of objects in contact with the

current one). In an experimental setting, this method is shown to outperform the work of Furrer et al.

[9] in building vertical stacks and to be able to construct walls of four courses. This was preceded by

authors’ previous works in a simplified 2-D setting [11, 12], including a RL approach [13] in which the

DQN algorithm is used to learn the values of each stable pose, which are used instead of the sequence

of heuristics.

To the best of our knowledge, there is no previous work that explores a completely model-free ap-

proach to this problem.

1.4 Contributions

We propose a formulation for the problem of autonomously building a dry stack wall with irregular 3D

blocks that is compatible with a model-free RL approach. We show that this formulation provides enough

information and freedom for an agent to learn the task, without relying on previously acquired object

models or internal physical simulation. A deep neural network architecture is developed to learn a

mapping of the state representation to action values using DQN. The implementation of our approach is

openly available1.

1Source code available at https://github.com/menezesandre/stackrl.
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1.5 Thesis Outline

An introduction to the concepts used in this work, within the topics of deep learning (DL) and RL, is

provided in Chapter 2. A theoretical formulation of the approach, including the RL environment and

the agent to learn it, is proposed in Chapter 3 and its implementation is described in Chapter 4. The

experiments performed to validate the approach are presented in Chapter 5. Finally, in Chapter 6, the

advantages and shortcomings of the approach are discussed.
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Chapter 2

Background

This Chapter provides an introduction to the concepts used in the development of this work. Section 2.1

defines deep neural networks and presents the relevant architectures. Section 2.2 introduces the topic

of reinforcement learning and describes the used algorithms.

2.1 Deep Learning

DL is the field of machine learning (ML) that applies artificial neural networks (ANNs) with multiple hidden

layers, also called deep neural networks (DNNs). The usage of a multilayered architecture enables the

model to learn representations of data with increasing levels of abstraction, which makes it possible

to approximate complex nonlinear functions directly from raw input (e.g. images). In opposition to

traditional ML methods, where feature engineering is required to extract relevant information from raw

data, the process of feature extraction is encapsulated in the model and learned according to the target

output [14].

An artificial neuron is a unit conceived to model the biological neurons. It receives signals and

outputs a signal in response. The output of a neuron is obtained by computing a weighted sum of its

input signals and then applying a non-linear activation function, such as the rectified linear unit (ReLU)

defined as f(x) = max(0, x). An ANN is, as the name suggests, a network of these neurons. The

network structure is divided in input units that receive signals from the input of the network, hidden units

that are only connected to other neurons (in terms of input and output) and output units, whose output

signals make up the output up the network. The weights of the neurons, used for the weighted sum

of input signals, are the trainable parameters of the ANN that must be adjusted in order to achieve the

intended output. Figure 2.1 provides a representation of an ANN and the artificial neuron.

The key aspect of an ANN is that, as long as the non-linear activation functions are differentiable,

its output is differentiable with respect to each of its weights. The gradient is computed by applying the

chain rule. Let w[i] represent the weights array of the ith layer and x[i] its output, corresponding to the

input of the (i+1)th layer. Given a function of the network’s output f(x[N ]) (where N is the index of the
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Figure 2.1: Artificial neural network, represented with turquoise input units, grey hidden units and blue
output units. The expanded unit illustrates the operation performed by a neuron: a weighted sum of its
inputs and a bias, followed by an activation function.

last layer) its gradient with respect to the weights of any layer is given by

∇w[i]f(x[N ]) = ∇w[i]x[i]
N−1∏
j=i

(
∇x[j]x[j+1]

)
∇x[N]f(x[N ]), (2.1)

where ∇x[i]x[i+1] is the gradient of a layer’s output with respect to its input and ∇w[i]x[i] with respect

to its weights. With this process, named backpropagation, it is possible to obtain the gradient of the

function with respect to all weights of the network.

Backpropagation makes it possible to apply gradient descent to minimize a given loss function: iter-

atively applying small updates to the weights in the direction opposite to the gradient, which decreases

the loss, until a minimum is found. This loss is typically a metric of how much the network deviates from

the desired function. This function depends on a set of examples of inputs and target outputs. The loss

is calculated by applying the network to each example input and matching the output with the target.

The losses for each example of the set are then combined (e.g. averaged) and the gradient of the total

loss w.r.t. the weights is calculated and applied, in order to decrease the deviation between the network

and the set of examples.

Instead of computing the gradient of the loss for the complete set of examples, this may be estimated

using a smaller batch sampled from the set. As the batch follows the distribution of the set from which it

was sampled, the expected value of the gradient is the same as for the total loss. This noisy estimates

are used for stochastic gradient descent (SGD), a variation of gradient descent in which an update

is performed using the gradient from each batch. This approach has been shown to provide faster

convergence for large sets of examples [14].
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2.1.1 Convolutional Neural Networks

A convolutional neural network (CNN) is a special case of a DNN that employs convolutional and pooling

layers, which are inspired by the way the visual cortex processes signals [14]. Figure 2.2 illustrates the

operations performed by these layers.

Figure 2.2: Convolutional and pooling layers. In a convolutional layer, each unit is connected to a local
patch of the input (represented by turquoise and blue). The pooling layer performs an operation (e.g.
max) that combines a local patch (represented by grey and purple) to reduce dimensions.

A convolutional layer is characterized by local connections and shared weights. Its neurons are

organized in feature maps. All neurons in a feature map share the same set of weights, and each

neuron only uses signals from a local patch of the input to compute its output. In practice, each feature

map is the result of convolving a learnable filter (defined by the shared set of weights) through the input

of the layer. A convolutional layer outputs a stack of such feature maps, resulting in an array with the

same dimensionality as the input. The layer is thus parameterized by the size of the filter (also called

the kernel size), which defines the number of input signals received by each neuron, the strides, that

determine the shift in the region that neighboring neurons receive as input, and the number of filters,

corresponding to the number feature maps.

The convolutional nature of these layers makes them shift invariant: if a pattern in the input produces

a shape of activations in a feature map, the result of shifting the pattern in the input is a feature map with

the same shape of activations shifted accordingly. The usage of local connections enables the detection

and extraction of local features, that are hierarchically assembled into higher level features through

successive layers [14]. A convolutional layer can also be seen as a regularized version of the fully

connected layer, in which the weights of the input signals outside the local patch are set to zero and the

set of weights of each neuron in a feature map are restricted to be equal. This regularization enables

a better generalization, while the local connections and shift invariance make this layer architecture

specially suitable to extract features when the data is arranged in a meaningful way (e.g. a 2D image,

where the dimensions represent space, or a 1D discrete signal, where the dimension represents time).

A pooling layer performs an operation that combines the features in a local patch. One commonly

used operation is taking the maximum of each feature map over the patch. With this operation, the
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semantics of the patch are captured in a single feature vector, which allows a reduction of the size of the

input. These layers are also defined by a pool size, that defines the size of the region from which the

features are merged, and strides (as in convolutions). A usual setting is a pooling layer with kernel size

2 and strides 2, that reduces the dimensions of the input to one half. This is done to allow subsequent

convolutional layers to assemble the most meaningful features of a wider region, making the network

more robust to variations in the disposition of relevant information [14].

A CNN is typically constituted by a series of convolutional layers intercalated with pooling layers,

which extract the features from the input, and then a series of fully connected layers that map these

features to the desired output.

Fully Convolutional Networks

A fully convolutional network (FCN) is a CNN that, in its whole, retains the shift invariance property of the

convolutional layers. Such networks may take as input arrays of arbitrary size and return arrays with the

same dimensionality and sized accordingly [15]. This is accomplished with an architecture that uses ex-

clusively the convolutional and pooling layers described above, along with (optionally) upsampling layers

that increase the size (and hence the resolution) of their input. An architecture with these characteristics

is useful for tasks in which dense feature representations are needed (i.e. a vector of features for each

region of the input, rather than one global vector of extracted features).

Long et al. [15] proposed a fully convolutional architecture for pixelwise classification of images (i.e.

semantic segmentation). A regular CNN is converted to a FCN by replacing the final fully connected

layers with additional convolutional layers. The low resolution of the output feature maps, caused by

the size reductions (e.g. pooling), is addressed by upsampling the output. This is accomplished using

deconvolutions, which can be seen as reversed convolutional layers, that express a learnable upsam-

pling operation (e.g. bilinear). The network is thus constituted by a contracting path, corresponding to

the usual convolutional and pooling layers, and an expanding path through the upsampling layers. The

output is further refined by combining higher resolution features from layers in the contracting path with

with the high level upsampled features.

Ronneberger et al. [16] extended this architecture by increasing the capacity of the expanding path.

While the contracting path remains the sequence of convolutional and pooling layers, the expanding

path is now a sequence of convolutional and upsampling layers, with the same capacity. This allows the

network to propagate the information contained in the high level, low resolution features into successively

higher resolution feature maps, while combining it with the features of corresponding resolution from the

contracting path. This architecture has symmetric downsampling and upsampling paths, resulting in a

u-shaped network and hence named U-net.

2.1.2 Siamese Networks

Siamese networks [17] are used to compute the similarity between two inputs. Each input is passed

through a branch of the network that extracts a feature vector. The features from both branches are then
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used to compute a similarity metric, either learned or predefined. The branches are two sub-networks

with the same architecture and shared weights. These sub-networks must learn to extract the relevant

features from the inputs, so that inputs of the same class are close in the feature space while different

classes are distant. This architecture is useful for problems with a very large or unknown number of

classes and with little to no data available from some of them [18]. While a regular network would

need many examples of a class to learn to classify it, a trained Siamese network may generalize to an

unknown class using a single example of that class to match with other inputs. Figure 2.3 depicts the

Siamese architecture.

Input 0

Input 1

Branch
Network

Branch
Network

Similarity
metric Output

Figure 2.3: Siamese neural network. The branches are networks with shared weights and architectures,
that extract features from the inputs. The features are matched with a similarity metric, either learned or
predefined.

Fully Convolutional Siamese Networks

Bertinetto et al. [19] extended the concept of Siamese networks to the problem of tracking arbitrary

objects, introducing a fully convolutional Siamese architecture. Each branch of the network is by itself a

FCN, extracting feature maps from the object and from the scene where the object must be found. The

feature maps are then cross-correlated, which can be visualized as sliding the feature maps of the object

through the feature maps of the scene and computing a heatmap with a metric of the match for each

possible offset. With this operation, not only each branch is fully convolutional but the whole network is

fully convolutional with respect to the scene image (because the cross-correlation has the same effect

as a convolutional layer where the filters are the feature maps of the object), meaning that a translation

in the scene produces a corresponding translation in the output heatmap.

2.2 Reinforcement Learning

RL is a framework in which an agent interacts with an environment in order to learn a behaviour that

maximizes a reward signal [20, Sec. 1.1]. The accumulated rewards only indicate how good a behaviour

was, not whether it was the best behaviour. This evaluative feedback differs from the instructive feed-

back (i.e. error w.r.t. the correct output) used in supervised learning, creating the need for an active

exploration to find a good behaviour. [20, Ch. 2]
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2.2.1 Overview

A RL problem can be formulated as a Markov decision process (MDP). The environment is defined by

the set of possible states S, the set of available actions in a state A(s), the set of possible rewards

R ⊂ R and the dynamics given by the function p : S ×R× S ×A → [0, 1] defined as

p(s′, r | s, a) = Pr{St+1 =s′, Rt+1 =r | St=s,At=a}, (2.2)

which represents the transitions probability distribution. The state is what is perceived by the agent,

which may be an incomplete representation of the full environment’s state. For simplicity of notation,

it is henceforth assumed that the set of available actions does not depend on the state and can be

represented as A. At each discrete time step t, the agent observes the environment’s state St ∈ S and

takes an action At ∈ A accordingly. This causes the environment to shift to state St+1, which comes

with the reward Rt+1 ∈ R [20, Sec. 3.1]. The tuple (St, At, Rt+1, St+1) represents the transition at time

step t. This process is represented in Figure 2.4.

Environment

Agent

ActionReward State

Figure 2.4: Interaction between agent and environment in a MDP

The goal of the agent is to maximize the cumulative reward. This can be formalized by defining

the return Gt as a function of the reward sequence from time step t, and the goal as maximizing the

expected value of Gt [20, Sec. 3.3]. The return can be simply defined as the sum of the rewards until

the final time step T ,

Gt =

T∑
k=t+1

Rk. (2.3)

However, if there is no time limit (i.e. T =∞) the sum defined in (2.3) may be divergent. For this reason,

a discount factor γ ∈ [0, 1] is introduced, creating the discounted return

Gt =

∞∑
k=t+1

γk−t−1Rk (2.4)

Given that R is bounded, the sum is always convergent if either γ < 1 or T is finite. If we consider

Rt = 0 ∀ t > T , this expression is general for any time limit T and is equivalent to (2.3) for γ = 1 [20,

Sec. 3.4]. This representation is useful because it can be expressed recursively (in terms of the next
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time step) as

Gt = Rt+1 + γ

∞∑
k=t+2

γk−t−2Rk

= Rt+1 + γGt+1.

(2.5)

The way an agent acts is captured by its policy π : A× S → [0, 1], defined as

π(a|s) = Pr{At=a | St=s}, (2.6)

which gives the probability distribution over actions for a given state [20, Sec. 3.5]. This is a stochastic

representation of the behaviour. In alternative, if a policy is deterministic, it can be represented as the

function π : S → A that maps directly states to actions (i.e. a = π(s)).

The expected return of following the policy π from a state s is expressed by the state-value function

vπ : S → R, defined as

vπ(s) = E[Gt | St=s, π] . (2.7)

Using the relation in (2.5) and the fact that, by definition, E[Gt+1 | π] = vπ(St+1), we can express the

state-value in terms of the next state’s value, as

vπ(s) = E[Rt+1 + γGt+1 | St=s, π]

= E[Rt+1 + γvπ(St+1) | St=s,At ∼ π(.|s)] .
(2.8)

Similarly, we can define the value of taking an action a from a state s and then following π as the action-

value function qπ : S ×A → R,

qπ(s, a) = E[Gt | St=s,At=a, π]

= E[Rt+1 + γvπ(St+1) | St=s,At=a] .
(2.9)

The optimal policy π∗ is the one for which the expected return is greatest. That is, v∗(s) = maxπ vπ(s)

and q∗(s, a) = maxπ qπ(s, a). The expected return from a state s given the optimal policy must be the

same as the expected return of taking the best possible action in that state. This is expressed by

v∗(s) = max
a

q∗(s, a). (2.10)

Using (2.9) (applied to q∗) and (2.10), we can define the Bellman optimality equations for the state-value

and action-value functions [20, Sec. 3.6]. Respectively, replacing q∗ in (2.10), we obtain

v∗(s) = max
a

E[Rt+1 + γv∗(St+1) | St=s,At=a], (2.11)
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and replacing v∗ in (2.9) gives

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)
∣∣∣ St=s,At=a

]
. (2.12)

Both equations (2.11) and (2.12) could be expressed in terms of p (2.2), which is useful for model-

based RL. In that case, a model of the environment (previously known or learned) would be used to

compute the optimal policy. However, these methods are out of the scope of this thesis. In opposition, in

model-free RL the model is implicitly captured by fitting the value function and/or policy to the collected

experience.

Most RL methods rely on some form of the generalized policy iteration (GPI) [20, Sec. 4.6]. The core

idea is to alternate between fitting the value function to the expected return of the current policy and

updating the current policy to maximize the value function. This includes the special cases in which the

value function fits to a policy represented directly in terms of the value or the policy is updated directly

using an implicit estimation of the value function. In the case of model-free learning, the expected return

is estimated from the experience. Also, when a model is not available, knowledge about the state-value

function alone is not useful for the policy improvement (i.e. it is of no use to know which state is best

if there is no knowledge about which action leads to that state), so the action-value function must be

estimated for the GPI [20, Sec. 5.2].

In order to approximate the optimal policy using the collected experience, it is necessary to perform

a wide exploration of the state and action spaces. In the context of GPI, it is easy to understand that if

the agent follows the deterministic greedy policy for the current action-value estimates Q

π(s) = arg max
a

Q(s, a), (2.13)

it may never experience potentially better state-action pairs and converge to a sub-optimal policy. For

this reason, a stochastic policy π(a|s) > 0 ∀ a ∈ A, s ∈ S must be used to model the agent’s behaviour

while learning [20, Sec. 5.4]. Some examples of such policies are the ε-greedy policy

π(a|s) =

1− ε+ ε
|A| if a = arg maxa′ Q(s, a′)

ε
|A| otherwise,

(2.14)

where a random action is taken with probability ε, and the softmax (or Boltzmann) policy

π(a|s) =
eQ(s,a)/τ∑
a′ e

Q(s,a′)/τ
, (2.15)

where the current value estimates Q are used as the logits for the action probability distribution. The

parameters ε ∈ [0, 1] and τ ∈ {x ∈ R : x > 0} control the exploration. As these parameters approach

zero, the stochastic policy becomes closer to the deterministic greedy policy.

This need for exploration raises one difficulty: the agent must learn the values of the optimal policy q∗

from experience collected with the exploratory policy. The simplest approach is to use a stochastic policy
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that is close to the greedy policy (e.g. ε-greedy) and improve it until a near-optimal policy is achieved. In

some cases, the greedy policy of the values estimated for this near-optimal policy may even be optimal.

Such approach is used in the on-policy methods, where the policy being improved is the same as the

one used to collect experience. A more general approach is to learn the optimal policy independently of

the behaviour that originated the experience, which is used in the off-policy methods. These methods

are in general more complicated and slower to converge, but the disassociation between collecting and

learning is very powerful [20, Sec. 5.5]. Besides allowing the agent to learn the optimal policy (instead of

near-optimal), it adds great flexibility in terms of the origin of the experience. It is possible, for instance,

to learn from experience collected by an expert or to reuse data collected with old policies.

There are two main groups of methods to learn the value from experience. In broad terms, Monte

Carlo methods estimate the value of a state (or state-action pair) using the experienced returns obtained

from that state (state-action pair) [20, Ch. 5]. Updates to the value estimates need experience from a

complete episode (i.e. up to t = T ) for the returns to be calculated. On the other hand, temporal-

difference (TD) methods rely on the relation from (2.5) to update the value estimates using collected

rewards in combination with the value estimates of subsequent states [20, Ch. 6]. This is commonly

referred to as bootstrapping and makes it possible to learn from each transition, eliminating the need to

collect a complete episode for each update.

2.2.2 Q-learning

The Q-learning algorithm, introduced by Watkins [21], represented a breakthrough in RL for combining

off-policy and TD learning in a model-free method. This algorithm uses the Bellman optimality equation

to estimate q∗ directly, regardless of the behaviour that originated the transitions.

From (2.12), for a transition (St, At, Rt+1, St+1), the value of Rt+1 + γmaxaQ(St+1, a) can be used

for the estimate Q(St, At). Accordingly, the TD error for that transition can be defined as

δt =

Rt+1 + γmaxaQ(St+1, a)−Q(St, At) if St+1 is not terminal

Rt+1 −Q(St, At) otherwise,
(2.16)

where the fact that there is no return from a terminal state is contemplated by the condition.

In its original form (for which the convergence was formally proved by Watkins and Dayan [22]), Q-

Learning uses a tabular representation of Q. That is, the set of current estimates {Q(s, a) ∀ s ∈ S, a ∈

A} is stored in memory. The agent interacts with the environment following an exploratory policy based

on Q (e.g. ε-greedy) and, for each collected transition, updates the current estimate according to the

rule

Q(St, At)← Q(St, At) + ηtδt, (2.17)

where ηt ∈ (0, 1] is the learning rate at time step t.
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2.2.3 Double Q-learning

In stochastic environments, the observed transitions can be noisy, which causes the value estimates to

be noisy as well. The Q-learning algorithm uses maxaQ(St+1, a) as the estimate of v∗(St+1). However,

if Q is noisy, the max operator tends to select positive noise. As this value is used in the update of Q,

the positive noise is propagated, creating an overestimation bias that can harm the performance of the

algorithm. To solve this problem, van Hasselt [23] introduced the Double Q-learning algorithm.

This variation of Q-learning uses two different estimators QA and QB . At each time step, an action is

taken according to an exploratory policy based on both estimates (e.g. the ε-greedy policy for QA+QB).

The collected transition is then used to update either QA or QB (e.g randomly chosen) according to the

rule (2.17). The key difference is that the TD error used for the update of QA is

δAt =

Rt+1 + γQB
(
St+1, arg maxaQ

A(St+1, a)
)
−QA(St, At) if St+1 is not terminal

Rt+1 −QA(St, At) otherwise.
(2.18)

Similarly, δBt is calculated by switching QA and QB in (2.18). The estimation the next state’s optimal

value, previously done with the max operation, is now separated in two phases. The estimator being

updated provides the estimate of the optimal action arg maxaQ
A(St+1, a), while the other estimator QB ,

learned from a different set of transitions, provides an unbiased evaluation of that action. In the limit,

both estimators converge to q∗, while suppressing the propagation of the overestimation bias.

2.2.4 Deep Q-networks

The tabular representation of Q presented in Section 2.2.2 is very limited. For environments with very

large state spaces, the tabular representation of Q would need a large amount of memory to be stored

and it may be infeasible to explore the complete state space, as required for the convergence of Q. This

is the case for any application in which the state is represented as a combination of sensory inputs.

As an example, if the agent’s input is a small 28 × 28 gray-scale image with byte precision (each pixel

takes 256 possible values), the size of the state space would be |S| = 25628×28 ≈ 101888. To extend

RL to such applications, it is necessary to represent the value as a function approximation learned from

experience and that generalizes to unseen states [20, Pt. II]. The problem of function approximation and

generalization is central in the field of machine learning, and any algorithm used in supervised learning

could, in practice, be used for the value function approximation. In the last decade, the use of DNNs

(see Section 2.1) has become widely popular due to its success in a wide range of tasks (e.g. [24]).

To overcome the limitations of the Q-learning algorithm, Mnih et al. [5] developed an agent architecture,

DQN, that combines Q-learning with function approximation using a DNN.

The introduction of function approximation in RL, and specially in off-policy TD learning [20, Sec.

11.3] is known to raise instability and divergence. Some of the identified causes for this problem are the

correlations created by the sequential nature of the experience used to learn, the constant variations in

the experience distribution caused by the changing policy and the correlation between the two terms of
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the TD error (the current estimate Q(St, At) and the target Rt+1 +γmaxaQ(St+1, a)) [5]. To address this

issues, the DQN algorithm adds two concepts to Q-learning: a target estimator and experience replay

[25].

The Q-network can be represented with Q(s, a |w), an estimate of q∗(s, a) given the network weights

vector w. The target network Q(s, a |w−) is a copy of the Q-network, whose weights vector w− is

updated with the values of w every C steps and kept fixed otherwise. The TD error is now defined as

δt =

Rt+1 + γmaxaQ(St+1, a |w−)−Q(St, At |w) if St+1 is not terminal

Rt+1 −Q(St, At |w) otherwise.
(2.19)

With this formulation, each period of C steps corresponds to the simple optimization problem of mini-

mizing the error of Q(. |w) with respect to a fixed target.

With experience replay, the transitions are no longer immediately used for the update and discarded.

At each step, the collected transition is stored in a replay memory, represented by the set of time steps

M = {i : (Si, Ai, Ri+1, Si+1)∈memory}. When the memory reaches its full capacity, the oldest transi-

tions are replaced with the new ones. Independently of the experience collection, at each step (or n

steps) a minibatch of transitions, represented by Bt = {i : (Si, Ai, Ri+1, Si+1)∈minibatch}, is randomly

sampled from the replay memory and w is updated according to

w← w − ηt∇w

(
1

|Bt|
∑
i∈Bt

1

2
δ2i

)
, (2.20)

where a SGD step with mean squared error loss is used for simplicity of representation, although differ-

ent loss functions (e.g. Huber [26]) and optimization algorithms (e.g. Adam [27]) could be used. The use

of a random set of transitions from the replay memory eliminates the correlation caused by sequentiality

and ensures that the data distribution is not affected by the changes in the current policy. Additionally,

experience replay improves the sample efficiency of the algorithm (i.e. the ratio between the amount of

learning and the agent-environment interactions needed). A diagram representation of the algorithm is

shown in Figure 2.5.

In its implementation, the Q-network is a function qw : S → R|A| that, given a state, estimates the

values for all actions. Although requiring a fixed set of actions, this allows the estimation for the full

action space with a single forward pass.

Double DQN

The overestimation bias introduced by the max operator, discussed in Section 2.2.3, persists in DQN.

To overcome this, van Hasselt et al. [28] applied the concept of Double Q-learning to DQN, resulting in

the Double DQN algorithm. Instead of introducing an additional estimator, as in Double Q-learning, this

algorithm takes advantage of the already present target network. Here, the current network provides the

estimate of the optimal action and the target network evaluates this action. The TD error is then given
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Figure 2.5: DQN algorithm.

by

δt =

Rt+1 + γQ (St+1, arg maxaQ(St+1, a |w) | w−)−Q(St, At |w) if St+1 is not terminal

Rt+1 −Q(St, At |w) otherwise.
(2.21)

Prioritized Experience Replay

Schaul et al. [29] introduced the idea of prioritizing experiences that potentially contain more information

to be learned, which was shown to speed up learning and improve performance. As it is not possible to

directly predict how much the agent will learn from a transition, a good estimate for this is the TD error

from the last time it was used in the update. The difference between the target and predicted values

indicates how unexpected that transition was.

The introduction of prioritization can create two issues. First, the experience effectively used in the

updates may be reduced to a small set of high error transitions, causing a loss of diversity. Second, the

distribution of the data used to learn is affected by prioritization, which creates a bias in the estimation

of the expected returns. The first issue is tackled by using stochastic prioritization: instead of sampling

with uniform probability as in regular experience replay, the probability of transition i being sampled is

given by

Pr{i ∈ Bt} =
Pαi∑
j∈M Pαj

, (2.22)

where the exponent α controls the prioritization (α = 0 corresponding to uniform sampling) and the

priority Pi is computed from the TD errors. In its simplest form, the priority is proportional to the absolute

value of the TD error,

Pi = |δi|+ ε, (2.23)

where ε is a small constant that prevents the sampling probability from becoming zero (in practice, the

value used for ε controls the minimum of the sampling probability distribution). To correct the bias in
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the expected return, importance sampling [20, Sec. 5.5] is used. The importance sampling ratio is the

correction from the sampling probability distribution to the real (uniform) data distribution, given by

Wi =
Pr{i ∈ Bt | uniform}

Pr{i ∈ Bt | prioritized}
=

1

|M|

∑
j∈M Pαj

Pαi
. (2.24)

To avoid arbitrarily large steps (i.e. if the prioritized sample probability is very small), the weights are

normalized to be bounded by one. Additionally, a exponent β is introduced to define how much the

prioritization bias is compensated, with β = 1 corresponding to full compensation. This is used because

an unbiased estimation of the expected returns is only needed near convergence, while a bias towards

prioritized samples may be allowed to accelerate initial learning. Accordingly, β may be set to an initial

value β0 < 1 and annealed to one as learning progresses. The weighted update and corresponding

normalized weights are given by

w← w − ηt∇w

(
1

|Bt|
∑
i∈Bt

ωi
2
δ2i

)
, (2.25)

ωi =

(
Wi

maxjWj

)β
=

(
minj Pj
Pi

)αβ
. (2.26)

Dueling DQN

The action-value function can be factorized into the state-value function and an advantage function [30],

such that

q∗(s, a) = v∗(s) + a∗(s, a). (2.27)

From (2.10),

max
a

a∗(s, a) = 0. (2.28)

This factorization is motivated by the fact that the state by itself may be good or bad and sometimes

the action taken has little influence on the value. With separate representations, the state-value can be

learned faster, instead of implicitly learning it for each state-action pair.

Wang et al. [31] introduced this factorization into the DQN architecture. The value Q(s, a |w) is given

by V (s |w0,wv) and A(s, a |w0,wa), where the weights vector w0 is common to both estimators and

w = (w0,wv,wa). Summing the state-value and advantage directly, as in (2.27), would not perform

well with gradient descent on Q, because one value of Q may be given by infinite combinations of V

and A. One way to avoid this would be to force the advantage to fulfill (2.28) by using A(s, a |w,wa) −

maxa′ A(s, a′ |w,wa). However, this representation is very sensitive to changes in the maximum value

of A. A more robust approach is to use the mean, which changes slower, giving

Q(s, a |w) = V (s |w0,wv) +

(
A(s, a |w0,wa)− 1

|A|
∑
a′

A(s, a′ |w0,wa)

)
. (2.29)
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The resulting network architecture, named dueling architecture, can be seamlessly introduced in the

DQN algorithm with any of the other improvements discussed above, and was shown to outperform the

original network architecture.

2.2.5 Universal Value Functions

The transition probability distribution given by (2.2) can be factorized as

p(s′, r | s, a) = Pr{Rt+1 =r | St=s,At=a, St+1 =s′}Pr{St+1 =s′ | St=s,At=a}

= p(r | s, a, s′)p(s′ | a, s).
(2.30)

While the state-transition probability p(s′ | a, s) is purely a function of the environment’s “physics”, the re-

ward distribution p(r | s, a, s′) is defined by the underlying goal. Therefore, a more general representation

of the environment may be given by

p(s′, r | s, a, g) = p(r | s, a, s′, g)p(s′ | a, s), (2.31)

where g ∈ G represents the goal. If the reward is deterministic, then a function r : S × A × S × G → R

can be defined such that

p(s′, r | s, a, g) =

p(s
′ | a, s) if r = r(s, a, s′, g)

0 otherwise.
(2.32)

Accordingly, a general value function (GVF) [32] can be defined as vg,π(s) = E[Gt | St=s, π, g] or

qg,π(s, a) = E[Gt | St=s,At=a, π, g], the expected return given the goal. For an environment with a

defined state-transition probability, many different GVFs may be learned according to different goals.

Each goal is associated with the optimal policy πg∗, corresponding to value functions vg∗ and qg∗.

Schaul et al. [33] proposed to unify the set of possible GVFs, {vg∗ : g ∈ G} or {qg∗ : g ∈ G}, into an

universal value function approximator (UVFA). The idea is to use a DNN that takes the goal as an addi-

tional input, such that Q(s, a, g |w) is an estimation of qg∗(s, a) (similarly, V (s, g |w) estimates vq∗(s, a)).

With this formulation, the function approximation allows to generalize not only over a potentially large

state space S, but also over a potentially large set of goals G.

An UVFA can be learned using the DQN algorithm (Section 2.2.4) by appending the goal to the state

perceived by the agent and choosing an appropriate Q-network architecture qw : S × G → R|A|.

18



Chapter 3

Methodology

This work focus on the problem of building a dry stack wall using irregular objects. The proposed

approach is to learn a planing policy from scratch using model-free reinforcement learning.

To achieve this, it is first necessary to capture the problem in a RL environment. The problem is

formulated as a MDP (see Section 2.2.1) with discrete state and action spaces. Concretely, the state

consists in elevation maps from an overhead view of the structure and a view of the new object to be

placed, and the action is defined as the pixel indexes in the overhead elevation map that correspond to

the new position for the object. It is also necessary to design a system of rewards to lead the agent to

the intended behaviour. These topics are discussed in Section 3.1.

Then, an agent is developed to learn a suitable behaviour for the environment. The proposed agent

follows the DQN algorithm to learn a value estimator that maps states to action values. This value

estimator consists in a deep neural network based on the fully convolutional Siamese architecture (see

Section 2.1.2), which takes as input the elevation maps of the overhead and object views and outputs a

value map, containing the values of placing the object in each position. As this task differs from the usual

utilization of Siamese networks (i.e. the two inputs are semantically different) a modified architecture

is used, in which the branches do not share weights. The development of the agent is described in

Section 3.2.

3.1 Environment

The environment must capture the problem of building a dry stack structure with irregular blocks in a

target volume. In order to frame it as a learnable MDP, the problem is simplified to choosing the position

for each object in a random sequence of irregular blocks. With this simplification, the agent is merely

solving a planing problem, while the picking and placing are encapsulated in the environment.

At each time step, a new object from the sequence is presented to the agent, as well as the currently

built structure and the target volume. The agent must choose a position x ∈ R3 to place the new object,

with freedom restricted to the horizontal coordinates x0 and x1. The object’s vertical coordinate x2 is

defined so that the object is laid on top of the current structure, and with the same orientation as it was

19



presented. To simulate the placement, the velocity of the object is artificially controlled until a support

polygon is achieved (at least three contact points). The simulation is then run freely until all objects

stabilize. This process is repeated until all objects in the sequence were placed. Figure 3.1 shows a

visualization of the environment.

Figure 3.1: Visualization of the environment. The white box represents the region where the agent can
observe the currently built structure, which corresponds to the region where placements are allowed.
The green box represents the target volume. The new object is presented at the top left corner of the
image.

The concept of elevation maps, which are used as the state representation, is defined in Sec-

tion 3.1.1. A formal definition of the environment as a MDP is provided in Section 3.1.2 and the reward

shaping is discussed in Section 3.1.3. In Section 3.1.4 some extensions to the formulation of the state

and action spaces are proposed to increase the flexibility provided to the agent.

3.1.1 Elevation maps

In order to define the state space of the environment, it is first necessary to define elevation maps. An

elevation map is a discretized and truncated representation of a function h : R2 → R that defines a

surface
{
x ∈ R3 : x2 = h(x0, x1)

}
. The horizontal coordinates (x0 and x1) are discretized into a m × n

grid with cell size d ∈ R, such that an horizontal position [x0 x1] is represented by the cell with indexes

(i, j) given by

i = trunc(
x0
d

), 0 ≤ x0 < d ·m

j = trunc(
x1
d

), 0 ≤ x1 < d · n,
(3.1)

where the trunc operation removes the decimal part of a number. An elevation map H ∈ Rm×n is an

array whose elements represent the value of the function h in each cell. For simplicity of notation, this

is represented as the value in the vertices of the grid [x0 x1] = [i · d j · d]. Each element of H is then

given by

hij = h(i · d, j · d). (3.2)

These elements are henceforth referred to as the pixels of the elevation map, and d as the pixel size.

With this definition, a point at the origin (x = [0 0 0]) is represented in the elevation map by the

pixel h00 with zero elevation (i.e. h00 = 0). The dimensions of the array H are aligned with the horizontal
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axis of the coordinate system. That is, two points with the same x0 are represented in the same column

of H and two points with the same x1 in the same row. This coordinate system is given by a 3D frame

that is defined by the view of the elevation map (see Figure 4.2(b) for a representation of the frame in

the view). This frame, in R3, is henceforth referred to as FH. A point defined with respect to the frame

FH is denoted as xH.

An elevation map H is then defined by its dimensions m × n, its pixel size d and its view, given by

the transformation between a given base frame and FH.

Two elevation maps H and H′, with the same pixel size d, are said to have a correspondence if

their views are such that the frames FH and FH′ have the horizontal axis with the same orientation. In

practice, this means that any ∆x in the 3D space is represented by the same interval of pixels in both

maps. With this condition assured, two elevation maps can be matched directly by overlapping them,

knowing that a feature represented in a given interval of pixels in one map would correspond to the same

interval in the other.

Let

Em,n,hmax
=
{
H ∈ Rm×n : hij = min (max (h(i · d, j · d), 0) ,hmax)

}
(3.3)

represent the set of elevation maps of size m×n that capture a truncated version of the function h, such

that the values are clipped between 0 and hmax. This clipping can be seen as setting a maximum and

minimum visible depth. For a clipped elevation map H ∈ Em,n,hmax , the set of indexes of its pixels is

PH = {0, 1, . . . ,m − 1} × {0, 1, . . . ,n − 1} (3.4)

and the set of indexes of the non-empty pixels is defined as

FH = {(i, j) ∈ PH : hij > 0} . (3.5)

3.1.2 Environment formulation

Physically, the environment is constituted by: a static ground plane
{
x ∈ R3 : x2 = 0

}
, with x defined in

the base frame of the environment; the complete set of objects O, from which T 1 objects are sampled

at the beginning of each episode to be sequentially introduced in the world at position xnew and with

orientation given by the unit quaternion qnew = [0 0 0 1]2; and the force of gravity g = [0 0 − g],

applied to all bodies at every instant. The state-transition probability p(s′ | a, s) (probability of reaching

state s′ after performing action a in state s) is implicitly given by a physics engine. The reward distribution

p(r | s, a, s′, g) (probability of receiving reward r when transitioning from state s to s′ with action a, given

the goal g) is discussed in Section 3.1.3.

The state space S = EmO,nO,hO
×EmN,nN,hN

is the combination of the sets of possible clipped eleva-

tion maps of the overhead view O and the new object view N. A state can be represented as the tuple

s = (O,N). The vies of the overhead elevation map O ∈ EmO,nO,hO
is aligned with the base frame of

1Here T is used instead of T as in Section 2.2 to denote that it is a defined constant, rather than a random variable.
2The convention adopted is that the scalar part of the quaternion is its last element.
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the environment (i.e. the transform from the base frame to FO is the identity, xO = x ∀ x ∈ R3) and

represents a discrete view of the current structure (see Figure 3.3), capturing the volume

VO =
{
x ∈ R3 : 0 ≤ x0 < d ·mO, 0 ≤ x1 < d · nO, 0 ≤ x2 ≤ hO

}
. (3.6)

The new object’s elevation map N ∈ EmN,nN,hN
captures the volume centered in xnew

VN =

{
xnew + x ∈ R3 : −d ·mN

2
≤ x0 <

d ·mN

2
, −d · nN

2
≤ x1 <

d · nN

2
, −hN

2
≤ x2 ≤

hN

2

}
. (3.7)

The dimensions mN × nN and hN are set so that every object in O fits in VN. The position xnew is set

so that VO ∪ VN = ∅. The elevation map N represents a bottom view of the object (i.e. of the side

that will be in contact with the structure, see Figure 3.3), which means the vertical axis of FN has the

opposite direction of the vertical axis of the base frame. To keep the correspondence between O and

N, the horizontal axes of FN must have the same direction as the base frame (Figure 3.2 illustrates the

horizontal axes with the same direction and the vertical axis with the opposite). This means that FN is

not a right-handed coordinate system, and the transformation from the environment base frame is given

by

xN = (x− xN)

1 0 0
0 1 0
0 0 −1

 , (3.8)

where xN = xnew −
[
d·mN

2
d·nN

2 − hN

2

]
is the position of the origin of N in the base frame.

The action spaceA = {0, 1, . . . ,mO−mN}×{0, 1, . . . ,nO−nN} is a discretization of the set of possible

positions for the new object inside VO, with freedom restricted to the horizontal coordinates x0 and x1.

An action is represented by the tuple a = (i, j) and can be visualized as overlapping the elevation maps

N with O with an offset of i rows and j columns (see Figure 3.3(a)). The position given by an action

tuple is obtained by computing the corresponding position of the origin of FN with respect to FO and

then transforming the position of the object with respect to FN to FO (which coincides with the base

frame). According to the proposed visualization, the horizontal coordinates of the origin of FN in FO are

obtained by multiplying the pixel indexes (given by the action tuple) with the pixel size d. The vertical

coordinate is set so that the object is placed on top of the current structure. Given an action a = (i, j),

the position of N in the base frame is

xN =

[
i · d j · d max

k,l∈FN

(oi+k,j+l + nkl)

]
, (3.9)

where the third component is obtained with the process illustrated in Figure 3.2, to compute the vertical

distance between N and O at which the surfaces are in contact. The position of the object with respect

to FN is xN
place =

[
d·mN

2
d·nN

2
hN

2

]
. Using the inverse of the transformation in (3.8) and replacing xN

with the value obtained from (3.9), the position of the object in the base frame is

xplace =

[
d
(
i+

mN

2

)
d
(
j +

nN

2

)
max
k,l∈FN

(oi+k,j+l + nkl)−
hN

2

]
. (3.10)
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npixel

pixel

opixel
oi+k + nk

i+ki

k
N

O

Figure 3.2: Process of obtaining the vertical distance between the object and overhead elevation maps.
A simplified 1D version of the elevation maps is used for illustration. The horizontal axis represents the
pixel index and the vertical axis the corresponding elevation value. N is positioned over O with an offset
of i pixels. The vertical distance between O and N at which the surfaces are in contact is given by
oi+k +nk. The pixel k is the non-empty pixel of N for which the sum of the elevation values is maximum.

The goal space G = EmO,nO,hO
is the set of possible goal elevation maps. A goal elevation map

G ∈ G shares the view of O (xG = xO) but represents a virtual target structure (see Figure 3.3(c)), such

that the goal of the environment is to assemble a real structure that approximates the target. This goal

is formalized in Section 3.1.3.

An example of a state-transition (s, a, s′) is represented in Figure 3.3, along with the corresponding

goal g. A visualization of the environment at the same consecutive time steps is provided in Figure 3.4.

(a) State s (left: O; right: N) with a vi-
sualization of action a (corresponding to
the pixel indexes of the top left corner of
the yellow box).

(b) State s′ (left: O; right: N). (c) Goal g = G.

Figure 3.3: Visualization of a state-transition (s, a, s′) and goal g.

3.1.3 Reward Shaping

Reward shaping is a key aspect of RL, as the learned optimal behaviours are critically affected by the

way rewards are distributed. Firstly, it must capture the intended goal in a clear way, that leaves little

room for the agent to “cheat” the environment. Secondly, it should be distributed in a way that facilitates

the learning process towards the desired behaviour. The reward shape is a trade-off between these

two factors. A sparse reward sent when a goal is achieved is very clear. However, if the goal is hard

to achieve, it may be difficult for the agent to learn how to behave until a reward is received. On the

other hand, rewarding behaviours that take the agent towards the goal may accelerate learning, but if

not carefully shaped it may also lead to unintended behaviour that exploits the rewards in an unexpected

way.
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(a) Environment at time step t (St = s). (b) Environment at time step t+1 (St+1 = s).

Figure 3.4: Visualization of the environment at two consecutive time steps. The next object is presented
in xnew, at the top left corner. The white area marks the region covered by the overhead view. The green
area marks the region occupied by the target volume. The marker in the right image points to the newly
placed object.

As stated before, the goal of the environment is to assemble the objects in a way that approximates

the target volume. This goal may be formalized in two ways: either obtaining a structure that matches

the target (i.e. oij ≈ gij ∀ i, j ∈ PO) or the more relaxed goal of filling the target (i.e. oij ≥ gij ∀ i, j ∈

FG). If the number of objects is such that
∑
i,j∈PO

oij ≤
∑
i,j∈PO

gij at any time, the solution that

maximizes both goals is the same and corresponds to maximizing the intersection between the current

and target volumes. The formulations differ because the first explicitly penalizes objects that are not

directly employed to reach the target. In either case, the goal is hard to reach, or even impossible

depending on the settings. In order to generate rewards, a metric of proximity to the goal must be

defined. With such a metric, each episode may yield a return corresponding to how well the goal was

approximated.

The similarity between the current and target structures may be evaluated using the intersection over

union (IoU) of the two volumes. This may be computed from the elevation maps O and G as

IoU =

∑
i,j∈PO

min (oij , gij)∑
i,j∈PO

max (oij , gij)
. (3.11)

The occupation of the target volume is given by the occupation ratio (OR), defined in terms of O and G

as

OR =

∑
i,j∈PO

min (oij , gij)∑
i,j∈PO

gij
. (3.12)

Both these metrics lay in the range [0, 1], with 1 corresponding to a fully achieved goal. The values of

the metrics at time step t (i.e. computed with the elevation maps O and G observed at t) are denoted

as IoUt and ORt. The value of each of the metrics at the terminal state, IoUT or ORT, evaluates how

close the final state is to each of the formulated goals (approximating or filling the target, respectively).

Although these metrics capture the goal of occupying the target volume, they ignore an implicit aspect
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of the goal statement: the structure should be a stable assembly of the irregular objects. An example of

an undesired behaviour that would be rewarded is to place the objects in a way that makes it likely for

them to fall inside the target, rather than not falling. A way to avoid this is to discount the contribution of

each object to the reward according to the distance between its original pose, where it was placed, and

its current pose. This way, an object that falls off from its place no longer contributes to the reward, even

if it falls inside the target. The choice of only discounting the reward contribution, rather than applying

a separate penalty, avoids the need to tune the weights of positive and negative contributions. A poorly

tuned reward could, for example, lead the agent to divert from the intended behaviour just to avoid the

potential penalties.

It is not trivial to distinguish the contribution of each object to the elevation map O, used to compute

the IoU and the OR. However, it is not necessary to use those specific quantities. A metric that can be

used in replacement of the intersection between structures (
∑
i,j∈PO

min (oij , gij)) is the number of ob-

jects inside the target. Intuitively, a greater volume of the intersection is obtained when a larger number

of objects is inside the target. These quantities are not proportional: the volume of the objects is variable,

while the replacement metric considers equal contributions, and the volume of the intersection includes

empty space beneath objects (and consequently is dependent on how the objects are disposed), which

is ignored in the replacement. Despite these facts, the metrics are expected to be highly correlated. The

number of objects inside the target at time step t can be defined as

It =

t−1∑
i=0

b
[i]
t , (3.13)

where

b
[i]
t =

1 if center of mass of object i is inside target at time step t

0 otherwise.
(3.14)

The superscript [i] indicates that the contribution refers to the object presented at time step i, such that

the first state in which that object is in the structure is at time step i + 1. To completely define metrics

equivalent to the IoU and OR, it is also necessary to define approximations to the union of the volumes

and to the target volume. Taking the episode length T as the number of objects that would ideally be

inside the target by the end of the episode, this value can be used as the replacement for the target

volume. Accordingly, the current number of objects, given by the time step index t, may be used as the

replacement for the current volume. The union is then given by the property |X ∪Y| = |X |+ |Y|−|X ∩Y|.

The metric that replaces the IoU is then defined as

IoU∼t =

∑t−1
i=0 b

[i]
t

T + t−
∑t−1
i=0 b

[i]
t

, (3.15)

and, for the OR,

DOR∼t =

∑t−1
i=0 b

[i]
t

T
. (3.16)

With this metrics, it is trivial to apply a discount to each object’s contribution. This discount can be
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defined as

µ
[i]
t = max

(
0, 1−

(
|∆x

[i]
t |

∆xmax

)cx)
max

(
0, 1−

(
|∆θ[i]t |
∆θmax

)cθ)
, (3.17)

where ∆x
[i]
t and ∆θ

[i]
t are the translation and rotation distances between the original pose of object i and

its pose observed at time step t. The parameters ∆xmax and ∆θmax represent the maximum allowable

distances. If the object exceeds one (or both) of these distances, its contribution to the reward is zero.

The exponents cx and cθ control how µ decreases with the distances. Higher values (cx, cθ > 1) make it

less sensitive to small displacements. The discounted metrics can then be defined as

DIoUt =

∑t−1
i=0 b

[i]
t · µ

[i]
t

T + t−
∑t−1
i=0 b

[i]
t

, (3.18)

DORt =

∑t−1
i=0 b

[i]
t · µ

[i]
t

T
. (3.19)

The range of these metrics is also [0, 1], with the value 1 only reachable in the terminal state of a perfect

episode (i.e. all objects inside target and with no displacements from their original poses).

Any of the discussed metrics may be used to distribute rewards at each step by immediately reward-

ing each contribution to the final value. This is accomplished using

Rt =

Mt −Mt−1 if 0 < t ≤ T

0 if t = 0,

(3.20)

where M is one of the metrics (IoU, OR, DIoU or DOR). This way, an action that increases the metric

(e.g. successfully places an object inside the target) is immediately rewarded, while an action that makes

it decrease (e.g. causes part of the existing structure to collapse) is penalised. At the same time, the

undiscounted episode return (2.3) is still the final value of the metric:

G0 =

T∑
t=1

Rt =

T∑
t=1

Mt −
T−1∑
t=0

Mt = MT −M0 = MT. (3.21)

The four metrics produce rewards that contain different amounts of information: the OR exclusively

rewards increases in target occupation; the IoU additionally penalizes improper use of the objects (i.e.

placing outside of the target), while the DOR penalizes poor placements; the DIoU includes all of the

previous information. While more informative rewards should help an agent to learn faster, rewards that

contain too much information may be hard to relate with the observed events and consequently hinder

learning.

3.1.4 Extensions to state and action spaces

Two modifications can be easily made to the formulation of the state and action spaces in order to

increase the freedom of the agent. One is to provide a set of different orientations for the object to be

placed in. The second is to present more than one object at a time (in the limit, presenting the whole list
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of objects to be placed) so that the agent may choose which one to place next. Both these extensions

are accomplished by producing a set of elevation maps like N, from different objects and orientations,

and sending them to the agent as a batch of images. The action then includes the batch index of the

image that corresponds to the object and orientation to be used. An example of a transition under both

these extensions is presented in Figure 3.5.

(a) State s (left: O; right: batch of images like N) with a visualization of action a (corre-
sponding to the pixel indexes of the top left corner of the yellow box in O and the batch
index of the image with the yellow frame).

(b) Overhead view O in state s′.

Figure 3.5: Visualization of a state transition (s, a, s′) of the modified environment. The batch of images
like N presents four possible objects (rows) and eight possible orientations (columns), corresponding to
different rotations around the vertical axis.

This formulation is not as practical to be learned with the proposed approach, because one action

choice requires an evaluation for each of the object images in the batch. However, a policy learned

for the original formulation may be applied to this extensions with a greedy approach. This is done by

separately estimating the value of the best position for each object/orientation and then selecting the

one that presents the highest value over the batch. This is expected to work better for the choice of

orientation, because it does not change the meaning of the action: it is still a pose choice, just with

added freedom. With the choice of the next object, the planning task is not only a sequence of pose

choices but also the choice of the ordering for the objects. An agent that was not trained for this is likely

to end up choosing the easiest objects first, ignoring the fact that the remaining will have to be used

later.

3.2 Agent

The agent takes as input a tuple of arrays (M,N), where M is a mO × nO × 2 array containing the

overhead elevation maps of the current and target structures (O and G respectively) with elements

given by

mijk =

oij if k = 0

gij if k = 1,

(3.22)

and N is the mN × nN elevation map with the bottom view of the new object.

The action to be returned, a tuple with the discretized horizontal coordinates, can be visualized by

overlapping the object view on the overhead view with the action tuple as offset. From this observation,

a natural candidate to map the state to action values is a cross-correlation like operation that slides N
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through O and G, outputting a value for each possible offset. Such an operation provides the intended

codomain and captures the underlying spatial relations in the observed state. The sets

X = RmO×nO × RmN×nN ,

Y = R(mO−mN+1)×(nO−nN+1),
(3.23)

are defined so that a function performing an operation of this kind can be expressed as f : X → Y.

Figure 3.6 shows the process of choosing an action from the state, where the value estimator would

employ these functions.

Value
estimator arg max

mN x nN

mO x nO x 2

(mO-mN+1) x (nO-nN+1)

(i,j)

Figure 3.6: Process of choosing an action from the state. The image in the right is a visualization of the
action, where a = (i, j) gives the pixel indexes of the top left corner of the yellow box.

This idea is explored in Section 3.2.1, where different heuristics are formulated to match this format,

and extended in Section 3.2.2 with the usage of DNNs.

3.2.1 Heuristics

The heuristics used in related works (see Section 1.3) frequently include the height of the position, so

that the object is as low as possible, and an evaluation of the support polygon, to maximize its area

and the dot product between its normal and the direction of gravity. The heuristics used in this work

are inspired by these two criteria. As it is not possible to directly evaluate the support polygon, this

is here approximated by an evaluation of the match between the surfaces of the object and structure.

Additionally, with this formulation, the provided target volume must be taken into consideration. This

section starts by presenting two heuristics based on the height criterion (cross-correlation and height)

and then two heuristics based on the support criterion (difference and correlation coefficients). These

heuristics are formulated as cost functions, such that the best positions according to each heuristic are

the minima of the functions. Finally, the target criterion is presented, to be applied on top of each of the

heuristics.
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Cross-correlation

The first considered heuristic function is the actual cross-correlation between O and N, defined as the

function C : X → Y and given by

Cij(O,N) =
∑

k,l∈PN

oi+k,j+l · nkl, (3.24)

where PN is the set of pixels of N, defined in (3.4). By definition, the values in the elevation maps are

always greater or equal to zero. For this reason, each element of the cross-correlation output Cij(O,N)

can be here interpreted as a weighted sum of the elements {oi+k,j+l : k, l ∈ PN}, with the weights

given by {nkl : k, l ∈ PN}. Elements oi+k,j+l that do not coincide with the object (i.e. nkl = 0) are not

considered in the sum, while the remaining are weighted according to the object shape. Effectively,

this results in a blurring operation, with the filter shape corresponding to the shape of the object. The

local minima of the cross-correlation output are likely to correspond to concavities in the structure where

the object fits, because sharper local minima in the elevation map O would have been blurred out.

Additionally, the global minimum is also the lowest point in the blurred surface, which is consistent with

the height criterion previously referred.

Height

As previously shown in Figure 3.2, the actual height of a position can be directly calculated from the

elevation maps O and N. From (3.9), a height function H : X → Y can be defined as

Hij(O,N) = max
k,l∈FN

(oi+k,j+l + nkl), (3.25)

where FN, defined in (3.5), is the set of non-empty pixels of N. The local minima are positions where the

height is the lowest in a neighborhood, and the global minimum is the lowest placement. This heuristic

is expected to be sharper than (3.24), as it calculates the actual height of each position rather than

performing a blurring operation.

Difference

A metric that can be used to evaluate the match between two surfaces is the sum of squared (or absolute)

differences. Taking O and N positioned as in Figure 3.2, the vertical distance between surfaces may be

used as a difference to be minimized. A difference based heuristic D : X → Y is then defined as

Dij(O,N) =
1

|FN|
∑

k,l∈FN

∣∣∣∣ max
u,v∈FN

(oi+u,j+v + nuv)− oi+k,j+l + nkl

∣∣∣∣cd
=

1

|FN|
∑

k,l∈FN

(Hij(O,N)− oi+k,j+l + nkl)
cd ,

(3.26)

where the exponent cd is used to control the sensitivity of the metric. This formulation includes the

absolute (cd = 1) and squared (cd = 2) differences. The heuristic function defined in (3.25) is used to
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replace the max operation to point out the relation between these heuristics. Taking the absolute value (in

the first line) is redundant because the argument is never less than zero (i.e. maxx′ f(x′)−f(x) ≥ 0 ∀ x).

In order to prioritize larger support polygons, this heuristic can be extended by using a weighted sum

of differences, where the values from pixels farther from the center are given more importance. These

weights may be defined as

wij =

√(
i− mN

2

)2
+
(
j − nN

2

)2
. (3.27)

The extended heuristic is expressed as

Dij(O,N) =
1∑

k,l∈FN
(wkl)cw

∑
k,l∈FN

(wkl)
cw (Hij(O,N)− oi+k,j+l + nkl)

cd , (3.28)

where the exponent cw controls how strongly the weights are applied, with cw = 0 corresponding to the

expression in (3.26).

Correlation coefficients

The match between the surfaces may also be evaluated using the correlation coefficients. Note that

although this operation is similar to the cross-correlation defined above, for this application the outputs

have fundamentally different meanings. As previously stated, the elements of the elevation maps are

always greater or equal to zero. For this reason, only by taking the mean out it is possible to actually

evaluate the match between the surfaces. This heuristic, defined as CC : X → Y, is given by

CCij(O,N) =

∑
k,l∈PN

(oi+k,j+l − oij) (nkl − n)√(∑
k,l∈PN

(oi+k,j+l − oij)2
)(∑

k,l∈PN
(nkl − n)

2
) (3.29)

where the mean values are

oij =
1

|PN|
∑

k,l∈PN

oi+k,j+l,

n =
1

|PN|
∑

k,l∈PN

nkl.

(3.30)

Notice that the vertical axes of O and N are in opposite directions, so a perfect fit corresponds to total

negative correlation (i.e. CCij(O,N) = −1).

Target

The goal given by G must be included in the process of choosing an action. This is done by first creating

a binary map with the region where the goal is not fulfilled, with elements

bij =

1 if oij < gij

0 otherwise.
(3.31)
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This is the region where additional objects are needed in order to achieve the goal. The overlap between

the object and this target area is defined as G : X → Y, given by

Gij(O<G,N) =
1

|FN|
∑

k,l∈FN

bi+k,j+l, (3.32)

where O<G denotes the binary map defined in (3.31). The choice of actions is then reduced to the set

Ag = {(i, j) ∈ A : Gij(O<G,N) > Gmin} , (3.33)

where A is the original action space (see Section 3.1.2) and Gmin is a defined threshold.

The global minimum of an heuristic function f can be obtained as arg mini,j∈A fij(O,N). However,

simply replacing A by Ag in the support of the arg min may yield a point in the edge of Ag that is not

actually a local minimum of f(O,N). In some cases, this may be problematic. An example of why this

is a problem can be visualized as placing an object in the edge of the structure (e.g. because it is the

lowest position in Ag) and it falling outwards (e.g. because the adjacent position, outside Ag, is lower).

To avoid this, it is necessary to verify that the chosen position corresponds to a local minimum. The

intended behaviour may be obtained by first computing the set of local minima of f(O,N) and then

using the lowest of the local minima that is inside Ag. The set of local minima of order d is defined as

Amin =

{
(i, j) ∈ A : fij(O,N) = min

k,l∈Nd(i,j)
fk,l(O,N)

}
, (3.34)

where Nd(i, j) is a neighborhood of (i, j), defined as

Nd(i, j) = {i− d, . . . , i, . . . , i+ d} × {j − d, . . . , j, . . . , j + d}. (3.35)

Note that this definition includes flat regions of the heuristic, which are not problematic according to the

identified failure mode. The action may then be chosen according to

π(s) = arg min
i,j∈Ag∩Amin

fij(O,N), (3.36)

where f may can be replaced by any of the discussed heuristics and the state s includes the elevation

maps O, G and N.

3.2.2 Neural Network

The value estimator in Figure 3.6 may be extended to a DRL setting with the usage of an appropriate

DNN, based on the fully convolutional Siamese architecture [19] (see Section 2.1.2) as represented

in Figure 3.7. The values can then be learned by interacting with the environment, using the DQN

algorithm.

In this case, the inputs of the two branches are semantically different: one contains the overhead

view of the current structure and target volume and the other is the view of the object to be placed. This

31



Input M Input N

φl φr

mN x nN x 1mO x nO x 2

mN x nN x dmO x nO x d

φo

(mO-mN+1) x (nO-nN+1) x 1

(mO-mN+1) x (nO-nN+1)

Output

Figure 3.7: Network architecture. The modules ϕl and ϕr are the left and right branches of the network,
that perform a fully convolutional dense feature extraction to the elevation maps M and N. The module
ϕo performs a fully convolutional transformation to the result of the cross-correlation between the feature
maps, in order to estimate action advantages. An additional scalar is extracted by the module ϕl to
estimate the state value V (s), that is then combined with the action advantage estimates A(s, a).

differs from the usual utilization of Siamese networks, where both inputs have the same meaning and

must be matched (e.g. if the goal was to find an instance of the new object in the current structure).

Therefore, a modification of the Siamese architecture is used, where the branches do not share weights

and may even have different architectures. The only restriction is that each branch outputs an array with

the same height and width as its input, and that both branches output arrays with the same depth. This

means that each branch must be a FCN providing a dense (pixelwise) feature extraction, as described

in Section 2.1.1.

The network architecture is extended with one additional fully convolutional module, placed at the

output of the cross-correlation. This is motivated by the fact that the network must learn a specific value

function, estimated from the collected rewards. In opposition to learning similarity, in which a metric must

be as high as possible for a good match and low otherwise, this network should fit the specific values

corresponding to the expected return. With the additional module, the output of the cross-correlation

may be mapped to the intended values, giving the branches more freedom to express the features

without the restriction of the cross-correlation fitting the value function.

Additionally, the network is adapted to match the dueling architecture (see Section 2.2.4). In this

case, it is intuitive that the intrinsic value of a state is greatly influenced by the current structure: not

only in terms of the availability of potentially good positions for the new object, but also in the stage

of the episode (i.e. an advanced episode, indicated by a structure with many objects, means lower

expected return because the terminal state is closer). Although the shape of the object by itself may

also be indicative of the expected quality of the available positions, this can be seen as part of the action

advantage. This observation is translated into the architecture by extracting a scalar value from the
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branch of the overhead view, which is then combined with the output of the network according to (2.29).

This value is extracted by applying fully connected layers to the higher level, lower resolution feature

maps in the branch (i.e. the end of the contracting path).
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Chapter 4

Implementation

This Chapter describes the implementation1 of the approach proposed in Chapter 3. Section 4.1 pro-

vides the details about the environment implementation, while Section 4.2 describes the components of

the agent.

4.1 Environment

The environment is implemented as a Python class that provides a step method, which receives an

action a and returns the next state s′ and reward r, and a reset method, which sets up a new episode and

returns the first state (corresponding to an empty overhead view and the first object in the sequence).

These are described in detail in Section 4.1.1. The process of generating the models used in the

environment is presented in Section 4.1.2.

4.1.1 Methods

The environment step is divided in different sub methods, as represented in Figure 4.1. The overall

process, from the agent’s action to the returned result, is described in Algorithm 1. The keywords Data

and Input are used to differentiate attributes of the environment, shared by all methods and across

different calls to the same method (e.g. the current state; the list of objects; the identifier of the last

presented object), and the external input a. The process of resetting (or setting for the first time) the

environment is described in Algorithm 2, and includes removing all objects from simulation, uniformly

sampling a sequence of T objects from O to be used in the episode and generating a new goal. The set

of objects O is previously generated using the method described in 4.1.2. A more detailed discussion of

each sub method is provided below. This implementation exposes the OpenAI Gym2 common interface,

which makes it readily usable within several existing RL frameworks.

1Source code available at https://github.com/menezesandre/stackrl.
2G. Brockman et al. OpenAI Gym. https://gym.openai.com/, version 0.17.2.

34

https://github.com/menezesandre/stackrl
https://gym.openai.com/


Simulator
PyBullet

Internal state

State

Reward Action

Action to
simulator

pose

New object
pose

Generate
elevation

maps

Calculate
reward

Agent

Generate goal

Goal

Gym interface

Figure 4.1: Environment implementation.

Algorithm 1: Step environment
Data : Current state and goal s, g; terminal flag done; new object’s pose xnew,qnew; new object

onew; list of objects to be placed Lnew; list of placed objects Lplace.
Input : Action a.
Output: Next state and goal s′, g; reward r; terminal flag done.
if done then

Reset environment (Algorithm 2) // Initializes s, g, done, Lnew, Lplace = ∅
else

xplace ← Convert a to position
Set pose of onew to xplace,qnew // Place the object presented in the last step

while # contact points of onew < 3 do
Step simulation
Set velocity of onew to 0

xplace,qplace ← Get pose of onew
Append onew, (xplace,qplace) to Lplace

while any oi ∈ Lplace is moving do
Step simulation

if Lnew is not empty then
onew ← Pop from Lnew

Insert onew in the simulator at pose xnew,qnew // Present new object to be placed

in the next time step

else
done← True

s′ ← Generate elevation maps
r ← Calculate reward from s, s′, g, Lplace

s← s′

Action to simulator pose

The received action tuple is converted to the position in the base frame of the simulator, xplace, using

(3.9) and (3.10). The orientation is kept, so the pose used to place the new object is given by the tuple

(xplace,qnew).
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Algorithm 2: Reset environment
Data : Current state and goal s, g; terminal flag done; new object’s pose xnew,qnew; new object

onew; list of objects to be placed Lnew; list of placed objects Lplace; complete set of
objects O; episode length T

Output: Initial state and goal s, g
while Lplace is not empty do

oi ← Pop from Lplace

Remove oi from simulator

for i = 1 to T do
oi ← Sample from O
Append oi to Lnew

onew ← Pop from Lnew

Insert onew in the simulator at xnew,qnew // Present the first object

s← Generate elevation maps
g ← Generate goal
done← False

Simulator

The simulation is performed using PyBullet3. At each environment step, the new object’s pose is set

to (xplace,qnew). The simulation is then run step by step until the new object has at least three contact

points with the structure, while its velocity is set to zero after each step. This process simulates a

careful placement of the object in its position, by controlling its velocity until a support polygon (at least

triangle) is achieved. After this, the new object is appended to the list of placed objects along with its

current pose. The simulation is then run until all objects stop moving. In practice, this is achieved by,

after each simulator step, checking whether the velocities of all objects are bellow a threshold (defined

as 0.01ms−1). To avoid the overhead of checking all objects at each step, the velocities are checked

sequentially from the last to the first object in the list of placed objects and the simulation is continued

once a value above threshold is found. As the last object is the most likely to be moving, this results in

only one check for most simulator steps.

Generate elevation maps

A synthetic camera is used in the physics simulator to generate depth images of the overhead view of

the structure and the bottom view of the object. An elevation map differs from a depth image in two key

aspects. First, the quantity represented increases as an object approaches the view point, while the

depth represents the distance from the view point. Secondly, a depth image is a perspective view of the

scene, while an elevation map is by definition (see Section 3.1.2) an orthogonal view. These differences

are represented in Figure 4.2. It is possible to transform a perspective view into an orthogonal view

using the perspective matrix. However, an orthogonal view can be easily approximated in the simulator

by positioning the synthetic camera far away from the scene, such that the minimum and maximum

visible depths dmin and dmax verify dmax−dmin � dmin. With that condition assured, it is trivial to convert

a depth image to an elevation map: for each depth value d the corresponding elevation is h = dmax − d.

3E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics and machine learning. http:

//pybullet.org, version 2.9.6.
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(b) Elevation map with a representation of its frame.

Figure 4.2: Comparison between a depth image with perspective view and an elevation map with or-
thogonal view. Both are represented by a m×n matrix, with values ranging from dmin (near) to dmax (far)
in the depth image and from 0 (far) to hmax (near) in the elevation map.

At each time step, two depth images (structure and new object) are captured after the simulation is

run. The images are then converted to elevation maps. To avoid large memory requirements (to store

the transitions in a replay memory, see Section 2.2.4), the elevation maps are converted to unsigned

integers of 8 bits. The values are then given by

huint8 = trunc(
h

hmax
28), (4.1)

where the trunc operation removes the decimal part of a number. With this conversion, each eleva-

tion map represents a volume discretized in d × d × hmax

256 sized voxels. To ensure consistency in the

voxel size of both elevation maps, the same value is used to convert both maps, corresponding to

hmax = max(hO,hN). This value is a constant defined by the parameters of the elevation maps (see

Section 3.1.2).

Generate goal

Although in its formulation the goal can represent an arbitrary structure, it is here simplified to the set of

structures that can be represented as

gij =

hg if (k0 ≤ i < k0 + l0) ∧ (k1 ≤ j < k1 + l1)

0 otherwise.
(4.2)

That is, the set of rectangular prisms with height hg ≤ hO and aligned with the base frame. The

parameters (k0, k1) and (l0, l1) control the position and extents of the target structure. In this case,

the set of non-empty pixels of G is given by FG = {k0, k0+1, . . . , k0+l0−1} × {k1, k1+1, . . . , k1+l1−1}.

The parameters may be computed with different degrees of randomness: the extents l0 and l1 can be

fixed, in which case the position is randomly chosen and the extents are randomly swapped (i.e. applying

a 90◦ rotation); the area l0 × l1 may be fixed, in which case l0 is also randomly chosen and l1 is set to

keep the fixed area; nothing is fixed, in which case l1 is also randomly chosen. The target parameters

are always set so that the target structure is completely inside the map, k0 + l0 < mO ∧ k1 + l1 < nO,

and so that the new object map fits in the target, l0 ≥ mN ∧ l1 ≥ nN. If one or both extents are randomly

chosen, high aspect ratios are made more likely by sampling l0 from a distribution skewed towards high
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values and l1 towards low values (l0 and l1 are randomly swapped afterwards).

The target structure and corresponding goal elevation map are generated at the beginning of each

episode, and kept constant until time step T.

With this representation, the spatial relation between the current and target structures are clearly

presented to the agent.

Calculate reward

The reward may be calculated using one of the four metrics discussed in Section 3.1.3. The IoU and the

OR are directly computed from the elevation maps O and G according to (3.11) and (3.12). At each time

step, the metric is computed from the new elevation maps and the reward is calculated as the difference

between the current value and the value stored from the previous time step. The current value is then

stored in replacement of the previous one, to be used on the next time step. When the environment is

reset, the previous value is set to zero.

When using the discounted metrics, the condition in (3.14) may be expressed in terms of the target

parameters as

bi =

1 if xi ∈ Tg

0 otherwise,
(4.3)

where xi is the position of object i and

Tg =
{
x ∈ R3 : d k0 ≤ x0 < d (k0 + l0), d k1 ≤ x1 < d (k1 + l1), 0 ≤ x2 < hg

}
(4.4)

is the target volume of goal g, corresponding to an elevation map with parameters (k0, k1), (l0, l1) and

hg. The rotation distance ∆θ is obtained from the original and current orientation quaternions4 (qplace

and q, respectively) as

∆q = qplace · q−1,

∆θ = 2 arccos (∆q3) .
(4.5)

The process of calculating the reward is presented in Algorithm 3.

4.1.2 Model generation

In order to allow the agent to learn a generalization, the experience provided by the environment must

be diverse. This includes the object models used. As it is hard to find a large number of models of

real irregular objects (e.g. natural rocks), these models are synthetically generated. This allows the

generation of a dataset of models from which the sequences used in each episode are sampled.

The model generation process is based on the method presented by Thangavelu et al. [11] to gen-

erate datasets of irregular convex polygons, used for 2D construction. It can be defined as generating

4The used convention is that the scalar part of the quaternion is the last component.
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Algorithm 3: Calculate reward (discounted metrics)
Data : Reward memory M−; boolean indicating whether to compute the discounted IoU (OR

otherwise); episode length T.
Input : Goal g; list of placed objects Lplace.
Output: Reward r.
numerator← 0
denominator← T
for oi, (xplace,qplace) ∈ Lplace do

xi,qi ← Get current pose of oi
if xi ∈ Tg then
|∆x| ← |xplace − xi|
∆θ ← Compute rotation between qplace and qi
d← Compute discount from |∆x| and ∆θ
numerator← numerator + d

else if IoU then
denominator← denominator + 1

M ← numerator/denominator
r ←M −M−
M− ←M

blocks deformed according to an irregularity parameter ς. As such, the starting point is a perfect brick:

a box with extents 1 × 1
2 ×

1
3 , scaled to be inscribed in a sphere with radius rmax. The parameter rmax

is defined to bound the size of the objects (e.g. to create a set of objects that fit in a given gripper). A

random displacement ∆x is then applied to each of the eight vertices of the box, with each component

∆xi sampled from a truncated normal distribution with zero mean, standard deviation σ = ς rmax and

support ∆xi ∈ [−rmax, rmax]. A sequence of n subdivisions and random displacements of the additional

vertices is then applied, were the parameter n controls the level of detail of the objects. A subdivision

consists in dividing each face in four smaller faces, such that a new vertex is added in the middle of

each edge and in the center of each face. This reduces the length of each edge by a factor of 1
2 . The

distribution from which the displacements of the new vertices are sampled is scaled accordingly: after

the ith subdivision, the truncated normal distribution has standard deviation σ = ς 2−irmax and support

∆xi ∈
[
−2−irmax, 2

−irmax

]
. With this process, the displacement of the original vertices greatly affects

the overall shape of the object, while the following subdivisions and displacements successively increase

the detail of the irregular shape. In the end of the “irregularization” process, the model is converted to

its convex hull. This is done for two reasons: first, the usage of convex shapes makes the collision

computations more efficient in the physics engine; secondly, the convex hulls actually resemble more

natural rocks (often subject to erosion) than the obtained irregular shapes. If any of the extents of the

oriented bounding box (i.e. the box with minimum volume that bounds the model) exceeds the diameter

2 rmax due to the random displacements, the model is scaled down to fit in a bounding box with maximum

extent 2 rmax.

The meshes of the models are generated according to the described process using Trimesh5. Each

mesh is positioned and oriented in the model’s frame so that its oriented bounding box is centered at

the origin and aligned with the axes, with the largest extent aligned with the first axis and the smallest

5M. Dawson-Haggerty et al. Trimesh. https://trimsh.org/, version 3.8.1.
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with the third (vertical). A value for the density is uniformly sampled from an interval [ρmin, ρmax], which

simulates diverse materials or materials with variable composition or porosity. The mass and moments

of inertia are then calculated, using the mesh and its density. Each generated model is saved as a

pair of files: the mesh is exported as a Wavefront .obj file and the model information, including mass,

centroid position, moments of inertia, friction and a pointer to the mesh file, are saved in an unified

robot description format (URDF) file. Some examples of models generated with different values of ς are

presented in Figure 4.3.

(a) ς = 0. (b) ς = 0.1. (c) ς = 0.25. (d) ς = 0.5. (e) ς = 0.75.

Figure 4.3: Models generated with different values of the irregularity parameter ς (3 subdivisions per-
formed).

4.2 Agent

The implementation of the DQN agent comprises the Q-network, the replay memory, and the methods

used to train the network. All components are implemented using Tensorflow6. The overall training pro-

cess, corresponding to the DQN algorithm with the extensions presented in Section 2.2.4, is described

in Algorithm 4.

The details about the network architecture and replay memory are presented in Sections 4.2.1 and

4.2.2, respectively. Section 4.2.3 describes how the training loop is designed to improve computational

efficiency.

4.2.1 Network Architecture

The inputs of the network, the 8 bit elevation maps, are converted to floats in the range [0, 1] by dividing

the value of each pixel by 256.

The branches of the network (ϕl and ϕr in Figure 3.7) are defined by the U-net architecture [16]

(see Section 2.1.1), which have been shown to perform well for dense feature extraction. It consists of a

contracting path and a symmetric expanding path. In each level of the contracting path, two convolutional

layers with 3× 3 kernel size and the same number of filters are applied, followed by a max pooling layer

with size 2 × 2 and stride 2, which reduces each dimension of its input to a half. After each down

sampling (by the max pooling layer), the number of feature maps is doubled (i.e. the number of filters

of the convolutional layers is increased by a factor of two relative to the previous level). At the last

level, two more convolutions are applied and then the expanding path begins. At each level of the

6M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/,
version 2.3.0.

40

https://www.tensorflow.org/


Algorithm 4: Training loop
Data : Maximum steps tmax; initial collect steps tinit; target update period ttu; replay memory

size N ; exploration parameter ε; minibatch size K; prioritization parameters α and β;
discount factor γ; learning rate η.

M← Initialize empty replay memory with size N
w← Randomly initialize network weights
w− ← w
S0 ← Reset environment (Algorithm 2)
R0 ← 0
done0 ← False
for t = 0 to tmax do

At ∼ π(St|w, ε) (2.14)
Append (St, Rt, donet, At) toM with priority maxi∈M Pi
St+1, Rt+1, donet+1 ← Step environment with action At (Algorithm 1)
if t > tinit then
Bt ← Sample K transitions fromM with distribution Pr{i ∈ Bt} =

Pαi∑
j∈M Pαj

(2.22);

loss← 0
for i ∈ Bt do

ωi ←
(

minj∈M Pj
Pi

)αβ
(2.26)

if not donei+1 then
δi ← Ri+1 + γQ (Si+1, arg maxaQ(Si+1, a |w) | w−)−Q(Si, Ai |w) (2.18)

else
δi ← Ri+1 −Q(Si, Ai |w)

Pi ← |δi|+ ε (2.23)
loss← loss+ ωi

2 δ
2
i (2.25)

w← Backpropagate(w, η, loss|Bt| )
if t modttu = 0 then

w− ← w

expanding path, a deconvolution with kernel size 2× 2 and stride 2 is applied, so that each dimension of

its output is doubled and the number of feature maps is halved. The upsampled feature maps are then

concatenated to the feature maps from the corresponding level in the contracting path, and two more

3 × 3 convolutions are applied, with number of filters corresponding to the current level. This process

is repeated until the output has the same size as the input. The feature maps extracted through this

contracting and expanding path may then be mapped to the desired number of features using a 1 × 1

convolutional layer. For an input with size m×n, the feature maps at the ith level (either at the expanding

or contracting path) have size 2−im× 2−in and 2iC, where level zero is the level of the input and output

and C is the number of filters of the convolutional layers at level zero. The branches of the network,

ϕl and ϕr, are thus characterized by the hyperparameters Cl and Cr, the number of filters of the first

level, and the indexes of the last level Nl and Nr, such that the size and number of channels of the

feature maps in the last level are 2−Nm × 2−Nn and 2NC. Both modules must output the same number

of channels to be cross-correlated, so the last 1 × 1 convolutions must have the same number of filters

in both branches. Alternatively, the extracted features may be used directly if Cl = Cr, in which case the

last layer could be dropped.

The state-value estimate V (s) is computed from the output of the last level of ϕl, a stack of 2NlCl
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feature maps of size 2−NlmO × 2−NlnO. The stack of feature maps is converted to a single feature

vector by applying a global average pooling layer, that outputs a vector with 2NlCl elements containing

the average activation of each feature map. With this operation, a stack of feature maps extracted from

arbitrarily sized input is reduced to a fixed size vector (i.e. the dependency on mO and nO is removed).

This vector is then passed through a series of fully connected layers, the last of which containing only

one neuron that outputs the scalar value. This part of the network is defined by the hyperparameters Nv,

the number of intermediate fully connected layers, and Cv, the number of units in each of these layers.

Finally, the output module ϕo is just a stack of No convolutional layers with size 3 × 3 and Co filters,

terminated with a 1 × 1 convolution with a single filter, that maps the Co feature maps into a single

channel.

All convolutional and fully connected layers use the ReLU as activation, with the exception of the

1× 1 convolutions at the end of each module and the single neuron layer that produces the state value

estimate, which use no activation. The input of each convolutional layer is zero-padded, so that the

output retains the size of the input.

The whole set of hyperparameters is reduced by setting fixed values or fixed relations. The depths

of the state value estimator and the output module are set to Nv = 1 and No = 2. The number of filters

that characterize each module are set to the same value, C = Cl = Cr = Co, and the 1× 1 convolution

at the end of the branches is not used. The number of units of the fully connected layer (in the state

value estimator) is set to match the length of its input Nv = 2NlC. Noting that the smaller input contains

less information and requires less downsampling for a considerable portion to be captured by a filter

(in a convolutional layer), the number of levels in ϕr may be smaller than ϕl. Accordingly, the relation

between the number of levels is set so that the size of the feature maps in the last level of both branches

is similar, 2−NlmO × 2−NlnO ≈ 2−NrmN × 2−NrnN. Defining the reference number of levels N = Nl, the

number of levels of ϕr may be defined as Nr = N − trunc
(

1
2 log2

mOnO

mNnN

)
. With these restrictions, the

complexity of the network is controlled by the two hyperparameters N and C, that define the depth and

“width” of the network (depth in the sense of the length of the path from input to output, width as in the

amount of information that fits through that path).

A complete diagram of the used network can be found in Figure C.1 of Appendix C.

4.2.2 Replay Memory

As described in Algorithm 4, the replay memory stores tuples with (Rt, St, At, donet), rather than the

complete transition. This avoids storing each state two times: as the next state in one transition and as

the current state in the next. The state is the largest element of the transition, so this modification almost

halves the memory requirement for a given replay memory size. When sampling a transition i from the

memory, the elements (Si, Ai) are taken from the entry i of the memory, while (Ri+1, Si+1, donei+1) are

taken from the next entry. This raises an issue: episode boundaries (i.e. transitions like (ST , AT , R0, S0))

that wouldn’t otherwise be stored may now be sampled as a pair of consecutive entries. To avoid this,

the priority of each new entry is set to zero (i.e. not sampleable) when it is added, and is only set
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to maxi∈M Pi on the subsequent step, when a next state is available. If an added entry is a terminal

state, then the priority is not updated in the next step and is kept as zero. The values of maxi∈M Pi

and mini∈M Pi (used as the priority of new entries and to compute the weights for the prioritization bias

correction, respectively) are stored, and recomputed whenever an update introduces a larger or smaller

priority or when the entries arg maxi∈M Pi or arg mini∈M Pi are updated.

In the training loop, the sampling method of the replay memory is wrapped in a Tensorflow generator

dataset, which optimizes the input pipeline by parallelizing the data fetching and consumption. In prac-

tice, this means that a minibatch used for training in time step t may have been sampled with priorities

from a previous step. This delay is limited by the maximum number of prefetched minibatches: when

this number is reached, the next minibatch is only sampled when the first one was consumed. Setting a

small number (e.g. 3) is sufficient to amortize the sampling time, while the introduced prioritization delay

may be neglected.

4.2.3 Parallelization of simulation and network updates

Although not being an asynchronous method, the DQN algorithm has separate training and collecting

processes that only need to be synchronized at a step level. That is, the minibatch sampling at time step t

must occur after adding transition t in memory and the action at t+1 must be chosen with the parameters

updated at t, but the processes may run separately between these events. To take advantage of this fact,

some alterations were made to the training loop. First, a multiprocessing wrapper of the environment

is implemented, such that an instance at the main process provides the same interface as the regular

implementation, but the computations are actually running in a server process. Secondly, noting that

the outcome of the environment step is only required in the next time step (after the training iteration),

the operations are repositioned to to allow a parallelization between the training step (backpropagation)

and the step of the environment (running the simulation). The alterations performed in the training loop

are depicted in Figure 4.4. As these two processes make up most of the time needed to complete

an iteration, this reduces the iteration time from tcollect + ttrain to max(tcollect, ttrain) + ε, where ε is the

overhead created by multiprocess communication, small when compared to the collect and train times.

Additionally, this implementation of the environment allows multiple simulations to run in parallel. In

this case, the wrapper instance in the main process returns batches of states and rewards, stacked

from the multiple processes, and receives batches of actions that are then unstacked and sent to each

environment. The ratio of sampled transitions per transition added to the memory, that would otherwise

be controlled by setting a number of collect steps performed between training steps, may also be defined

using the number of parallel environments, while decreasing the elapsed time per collected sample.
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Figure 4.4: Training loop flowchart.
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Chapter 5

Results

This chapter presents the experiments performed to validate the proposed approach. Section 5.1 de-

scribes the overall setup for the experiments, including the general parameters used to generate models

and for the environment and the metrics used. In Section 5.2, the baseline results are established using

the heuristics discussed in Section 3.2.1. Finally, Section 5.3 explores the learning process and the

learned policies.

5.1 Setup

5.1.1 Model generation

The models used in the experiments are generated as described in Section 4.1.2. Sets of 500 models

are generated with ς ranging from 0.05 to 1 with steps of 0.05, resulting in a global set of 10000 objects.

The global set is completed with the addition of a model of the perfect brick, generated with ς = 0 (it is

not necessary to generate many of these models because the generation is deterministic). The density

range, from which the density of each model is uniformly sampled, is set as [2200, 2600] (kg m−3) based

on the bulk density range of the lunar highland crust [34]. The size parameter is set as rmax = 0.0625m,

so that all objects are bounded by boxes with at most 0.125m extents. The number of subdivisions

performed is n = 3.

In order to characterize the generated models, three shape metrics are used: the volume of the mesh,

presented as a dimensionless ratio with respect to the volume of the perfect brick; the aspect ratio, which

is here defined as the ratio between the largest and smallest extents of the oriented bounding box; and

the rectangularity, here defined as the ratio between the volume of the mesh and the volume of its

oriented bounding box (such that a box shaped mesh has maximum rectangularity). The perfect brick,

generated with irregularity ς = 0, is characterized by volume ratio 1, aspect ratio 3 and rectangularity 1.

The shape distribution of the models is represented in Figure 5.1.

As expected, the rectangularity decreases as ς increases, and the variances of volume and aspect

ratio increase. From ς ≈ 0.5 upwards, the shape distribution doesn’t change significantly. A sample

of objects generated with ς ≥ 0.5 is presented in Figure 5.2. The volume and the aspect ratio have
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Figure 5.1: Shape distribution of the generated models.

a negative correlation, which is explained by the truncated displacements and size bounds: as the

maximum extent is bounded, higher aspect ratios only occur for small values of the minimum extent,

and consequently smaller volumes. This relation is visible in Figure 5.1 as a clear boundary in the

distribution. The bias introduced in the shape distribution by the size limit is considered acceptable, as

it could be seen as excluding unusable objects (e.g. to large to be handled by the robot) from the set.

Figure 5.2: Sample of used models (ς ≥ 0.5).

5.1.2 Environment

In accordance to the scale of the generated models, the dimensions of the volume VN, represented by

the object elevation map N, are set to mNd = nNd = hN = 0.125m so that every object in the set is fully

captured by the map. The dimensions of the area covered by O are set as mOd = nOd = 0.5m, four

times greater than N in each dimension. The value of the pixel size d represents a trade-off between the

resolution of the representations (and consequently of the discretized positions in the action space) and

the computational requirements, in terms of memory and number of operations. The value used in the

experiments (unless stated otherwise) is d = 2−8m (≈ 4mm), resulting in map dimensions mN × nN =

32× 32 and mO × nO = 128× 128 and a set of 97× 97 = 9409 possible actions at each step. The goals

are generated with a fixed area of one fourth of the total observable area, l0 × l1 = 0.25 · mO × nO (=

4 ·mN × nN). The target height is set as hg = 2 hN = 0.25m. Note that although this is only two times

the maximum dimension of the objects, the height is typically the smallest dimension due to the oriented
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bounding box alignment (e.g. 0.25m corresponds to seven courses of the perfect brick). The maximum

height visible in O is set as hO = hg + hN = 0.375m, so that the target is visible with a margin of the

maximum dimension of an object. This corresponds to a height resolution (in the discretized 8 bit maps)

of 0.375 · 2−8m (≈ 1.5mm). The number of objects necessary to approximate the target is estimated

with the number of perfect bricks that fit in the volume 0.25 · mOd · nOd · hg, corresponding to T = 76.

Unless specified, the models used are sampled from the set of 5500 objects generated with ς ≥ 0.5.

The step size of the physics engine (i.e. the amount of time proceeded in each simulation step) is set

to 0.01s, which was found to be a good trade-off between simulation speed and accurate behaviour.

The gravitational acceleration is defined as g = 9.8ms−2, the value at the surface of the Earth (see

Section 5.2.2 for a comparison with g = 1.6ms−2, the value at the lunar surface).

5.1.3 Metrics

The metrics used to evaluate the policies are the IoU, defined in (3.11), and the average discount

ADt =
1

t

t−i∑
i=0

µ
[i]
t , (5.1)

where µ[i]
t is the discount defined in (3.17) applied to the ith object at time step t. While the first evaluates

the similarity between the current and target structures, the second quantifies the effectiveness of the

policy by evaluating the proximity between the planed placements and the actual positions of the objects

in the current structure. A policy is considered good if it “intentionally” achieves a high similarity with

the target structure, where the intentionality is measured by the proximity between planed and actual

poses. The evaluations are reported as the average final value of the metrics, IoUT and ADT (for the

reference T = 76 or a different defined value), which are an evaluation of the result of the assembly

plan. However, in difficult settings it may be hard to surpass some asymptotic performance boundary,

which makes policies of different quality reach the end of the episode with similar values. To differentiate

these, an evaluation of the metrics’ evolution is included in the form of the area under the curves, A(IoU)

and A(AD), defined as

A(M) =

T∑
t=1

M t, (5.2)

where M is one of the metrics. A higher value of A(IoU) means that the policy reaches a high IoU

(close to the asymptotic boundary) sooner, which is preferable. Higher A(AD) means that the proximity

between planed and actual positions holds for longer, even if it inevitably decreases towards the end of

the episode. The average values are computed over a set of N evaluation episodes, such that

M t =
1

N

N∑
i=1

Mi,t, (5.3)

where Mi,t is the value of the metric in time step t of the ith episode.

For the training rewards, the four metrics discussed in Section 3.1.3 are considered. The rewards
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are generated according to the difference between the values of the metric in consecutive time steps,

as in (3.20).

The parameters of the discounted metrics are defined as follows. The maximum translation distance

is set to ∆xmax = 0.125m, the distance needed for an object to have zero overlap with its original

position (corresponding to the maximum dimension of the objects). The maximum rotation distance is

set to ∆θmax = πrads, corresponding to opposite orientations. The exponents are set to cx = cθ = 2,

which means the discounts are applied as a squared difference.

In Section 3.1.3, the discounted metrics were formulated based on the assumption that the number

of objects inside the target is approximately equivalent to the intersection between current and target

structures. In order to validate this, a sequence of 100 episodes is run with a policy that randomly picks

an action from A at each time step. Each state is simultaneously evaluated with the number of objects

inside the target,
∑t−i
i=0 bi, and the intersection between structures,

∑
i,j∈PO

min(oij , gij). At each step,

two rewards are yielded as the difference between consecutive values of each of the metrics. The two

sequences of rewards present a correlation coefficient of 0.76, which confirms the assumption made.

5.2 Baseline

The baseline results are obtained for three levels of (expected) performance. The first corresponds to the

policy that randomly samples actions from A. The second introduces the notion of the goal by restricting

the set of actions to be sampled to Ag (3.33), the set of positions in the target region. Finally, some

knowledge about the problem is added to the action choice with one of the four heuristics discussed in

Section 3.2.1.

The minimum overlap with the target region, used to compute Ag (3.33), is set to Gmin = 0.75, mean-

ing that at most one fourth of the object’s area is allowed to be outside of the target. The neighborhood

size used to compute the set of local minima Amin (3.34) is set to d = 1. This value is enough to sig-

nificantly (not totally, because the estimates are noisy) suppress the effect of choosing a minimum in

the edge of Ag that is not actually a local minimum of the function, while the computational overhead

of computing the local minima is kept low. The exponents of the difference based heuristic D (3.26)

are set to cd = cw = 2, as these were the values that held a better performance amongst the possi-

ble combinations of absolute and squared difference (cd ∈ {1, 2}) and linear, quadratic or no weighting

(cw ∈ {0, 1, 2}).

Each of the six considered policies is tested with the same set of 100 episodes (i.e. same targets and

sequences of objects), with the environment setup described in Section 5.1.2. The curves IoUt and ADt

are shown in Figure 5.3. The evaluation metrics are reported in Table 5.1. Figure 5.4 shows examples

of structures obtained with each policy for a given target and sequence of objects.

The three distinct levels of performance are visible in the results. As expected, the random policy

doesn’t approximate the target structure, which is translated by a low IoU. The distribution of the objects

through a larger area allows lower displacements from the original poses, resulting in higher AD. The

introduction of the goal to reduce the set of possible actions greatly increases the IoU, but the absence
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Figure 5.3: Evolution of the evaluation metrics throughout the episode for the baseline policies. Each
point represents the average over 100 episodes.

Table 5.1: Evaluation metrics for the baseline policies. Values reported as the average and standard
deviation over 100 episodes.

IoU76 A(IoU) AD76 A(AD)

Random 0.212 ± 0.029 10.3 ± 0.2 0.565 ± 0.039 54.8 ± 0.5
Random (goal) 0.323 ± 0.028 17.8 ± 0.2 0.299 ± 0.040 38.0 ± 0.6
Cross-correlation 0.351 ± 0.024 19.8 ± 0.2 0.503 ± 0.036 55.2 ± 0.3
Height 0.345 ± 0.029 19.6 ± 0.2 0.488 ± 0.040 54.6 ± 0.4
Difference 0.328 ± 0.033 19.3 ± 0.3 0.331 ± 0.033 46.0 ± 0.4
Correlation coefficients 0.352 ± 0.031 20.2 ± 0.2 0.381 ± 0.041 48.2 ± 0.5

(a) Random (b) Random (goal) (c) Cross-correlation

(d) Height (e) Difference (f) Correlation coefficient

Figure 5.4: Examples of structures obtained with the baseline policies for the same target and sequence
of objects, at time step t = 30.
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of a pose choice criterion results in a highly ineffective policy and large displacements from the orig-

inal poses. The heuristics improve the effectiveness of the planed placements, resulting in a further

improvement of the IoU and higher values of AD. Despite its simplicity, the cross-correlation based

heuristic produces the best combination of IoU and AD.

From Figure 5.3, it is possible to split an episode in roughly three stages. In the first stage, it is fairly

easy to place the objects inside the target without displacements. This is observable in the initial section

of the ADt curves (Figure 5.3(b)), in which the values obtained by the heuristic policies stay close to one.

This stage corresponds to filling the target area with a first course of objects and may be roughly defined

as the first 10 steps of an episode, which is both consistent with the observed curves and the number

of perfect bricks that fit in a course with the target area defined in Section 5.1.2. After the first course,

the episode may be further divided in two more stages from the IoUt curves (Figure 5.3(a)). Initially, the

action selection criteria introduced by the heuristics produce better placements, which is translated by

the greater slopes in the IoUt curves relative to the policy that randomly selects positions in the target.

After a certain point, the different position choices no longer produce significantly different results and

the curves become approximately parallel, each converging to an asymptotic boundary. This point may

be defined as 30 steps, which in the ideal case (perfect brick) would correspond to three courses. On

the third stage, it is increasingly difficult to find a good position, regardless of the selection criterion. This

observation also confirms the importance of reporting the area under the curves to differentiate distinct

levels of performance before the asymptotic boundary.

To quantify the relation between the different heuristics, a sequence of 4000 states is used to simul-

taneously generate value maps according to each heuristic. The correlation coefficients of the estimated

values are presented in Table 5.2 and Figure 5.5 shows an example of the value maps for a given state.

All pairs present positive correlation, which means that to some extent the heuristics capture similar

features of the state. The most distinct from the remaining is the correlation coefficients based heuristic

(CC). The cross-correlation (C) and height (H) based heuristics are the most similar, as both take into

account the elevation of a position. While C produces a smooth value map, corresponding to filtering

the overhead elevation map with the object, H yields a sharper value map with the exact heights of each

position. This makes the first slightly more robust to irregular objects, while the latter is specially suitable

for more regular objects.

Table 5.2: Correlation coefficients of the values estimated by each of the heuristics, for a sequence of
4000 states.

C H D CC
C 1 0.91 0.5 0.54
H 0.91 1 0.76 0.37
D 0.5 0.76 1 0.09
CC 0.54 0.37 0.09 1
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(a) State (b) Cross-correlation (c) Height (d) Difference (e) Correlation coeffi-
cient

Figure 5.5: Examples of value maps obtained with the heuristics for a given state (t = 20). Yellow
represents highest value, corresponding to minimum of the heuristics (the action choice is restricted to
local minima in the target region, not depicted here).

5.2.1 Influence of elevation map resolution

The same set of 100 episodes is run again with different values of the elevation maps’ pixel size d,

and consequently different numbers of possible actions. The additional values considered are d ∈

{2−9, 2−7} [m], corresponding to half and double the original pixel size. Halving the pixel size cor-

responds to increasing the number of pixels (and consequently the required memory and number of

operations) by a factor of 4. The performance metrics obtained with the cross-correlation heuristic for

the different values of d are presented in Table 5.3. While using the pixel size d = 2−8m represents an

improvement over the larger d = 2−7m, further subdividing it doesn’t seem to improve performance and

strongly increases the computational costs.

Table 5.3: Evaluation metrics obtained with different pixel sizes, for the cross-correlation heuristic policy.
Values reported as the average and standard deviation over 100 episodes.

d [m] IoU76 A(IoU) AD76 A(AD)

2−7 0.35 ± 0.025 19.8 ± 0.2 0.497 ± 0.034 55.0 ± 0.3
2−8 0.351 ± 0.024 19.8 ± 0.2 0.503 ± 0.036 55.2 ± 0.3
2−9 0.348 ± 0.029 19.8 ± 0.2 0.497 ± 0.039 55.2 ± 0.4

5.2.2 Influence of gravitational acceleration

The set of 100 episodes is repeated with the gravitational acceleration set to g = 1.6ms−2. Table 5.4

reports the performance of the cross-correlation heuristic under each of the gravity values. While a

slightly greater similarity with the target is achieved with lower g, the structures obtained under higher g

are in general closer to the planed positions. The results are close, which means the difficulty of learning

a policy for any of the gravity values should be similar. An important difference is that the simulation

progresses slower for lower gravity. Concretely, for the experiment with g = 1.6ms−2 the environment

takes on average 118 simulation steps from the placement until the objects settle, while for g = 9.8ms−2

it takes on average 68 steps, making the simulations generally faster for the later. This makes this value

preferable for faster experiments, while it may be assumed that equivalent results would be obtained for

different values of g.
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Table 5.4: Evaluation metrics obtained with different values of gravitational acceleration, for the cross-
correlation heuristic policy. Values reported as the average and standard deviation over 100 episodes.

g [ms−2] IoU76 A(IoU) AD76 A(AD)

9.8 0.351 ± 0.024 19.8 ± 0.2 0.503 ± 0.036 55.2 ± 0.3
1.6 0.358 ± 0.024 20.2 ± 0.2 0.483 ± 0.037 54.3 ± 0.4

5.2.3 Influence of irregularity

To evaluate the effect of the irregularity in the performance, each policy is evaluated on 21 sets of 25

episodes, each set using sequences of sampled objects with a specific value of ς ∈ {0, 0.05, . . . , 1}.

The evolution of A(IoU) and A(AD) with the increase of the irregularity ς is depicted in Figure 5.6. As

expected, the height based heuristic performs particularly well for regular objects. As for the shape

distribution (see Figure 5.1), the performance is similar with objects generated with irregularity greater

than ς ≈ 0.5.
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Figure 5.6: Influence of irregularity on the evaluation metrics, for the baseline policies. Each point
represents the average over 25 episodes.

5.3 Learning

Based on the conclusions from Section 5.2, the learning is focused on the first two stages of construction,

roughly corresponding to the assembly of a structure with 30 objects. This is the segment of the task in

which it is clear that a better policy produces better results, which means it is learnable.

The environment is setup according to the description in Section 5.1.2, with episode length T = 30. In

order to accelerate the collection of experience when training, the simulation step size is set to 0.0125s,

corresponding to a 20% reduction in the number of steps necessary to elapse a given time period in

simulation. This is the largest step size that was verified not to introduce incorrect behaviour in the

simulation (e.g. objects penetrating the ground plane). As the observations are only taken in the end of

each simulator run (when the objects settle), the accuracy of the process is not too relevant as long as
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the final result is not physically incorrect.

The rewards are scaled upwards to be of order one, which is closer to the expected initial value esti-

mates from the randomly initialized network. If the rewards are very small, the initially random estimates

of the next state’s value completely dominate the TD target Rt+1 + γV (St+1). This requires an initial,

sometimes long, learning stage that corresponds to gradually scaling down the network’s output, which

delays the process of actually learning from the rewards to later iterations. Taking the number of perfect

bricks that fit in the target as a reference, the value of the IoU or OR increases by approximately 1
76 when

an object is successfully placed in the target, so the rewards based on these metrics must be scaled by

a factor of 76 to be of order one. The discounted metrics DIoU and DOR are defined to ideally reach 1

at the final time step T, so scaling the rewards by a factor of T = 30 results in rewards that ideally take

the value 1 at each time step.

The network used to learn the value function follows the architecture described in Section 3.2.2. The

size of the network is defined by N = 5 and C = 16, resulting in a network with 2126226 trainable

parameters. The value of N is set so that each neuron in the last convolutional layer of the bottom level

has a field of view with size similar to the input of the network. The value of C is a trade-off between rep-

resentation capacity and computational cost. For each experiment, the network’s weights are initialized

with values sampled from normal distributions with variance scaled according to the method proposed

by He et al. [35] and the biases are initialized as zero. The parameters are optimized using Adam [27]

with learning rate η = 6.25 · 10−5 and exponential decay rate for the first and second moment estimates

β1 = β2 = 0.95. This learning rate is the largest value in
{

0.001 · 2−i : i ∈ N
}

that provided consistent

convergence. The function being optimized is the Huber loss [26] of the TD error, which is more robust

to outliers than the squared error.

The training process follows the Double DQN algorithm with prioritized experience replay (see Algo-

rithm 4). The replay memory size is defined as N = 400000 transitions, which is the largest size that

satisfies the memory constraints. Two transitions are collected between network updates, corresponding

to two environments running on parallel processes. Each network update is performed using a minibatch

of size K = 32. With these settings, each transition is replayed on average 16 times before being re-

placed in the replay memory. The target network is updated every 10000 iterations. The exploration is

performed using an ε-greedy policy with ε linearly annealing from 1 to 0.1 throughout the first 400000

training iterations. A set of 20000 transitions is collected with a random policy before training starts. The

prioritization exponent is set as α = 0.6 and the priority bias compensation β is linearly annealed from

0.4 to 1 over the first 400000 iterations. The discount factor is set as the probability of a transition not

being terminal, given by γ = 1− 1
T ≈ 0.967.

The obtained policies may be qualitatively characterized in terms of the level of behaviour, based

on the observations from Section 5.2. One of the learning objectives should be for an agent to capture

the notion of the goal, which is translated by the assignment of higher values to positions in the target.

The other is to capture the dynamics of the environment in order to choose the positions that lead to

the best final structure. The later may be observed in the behaviour through the two considered stages

of construction: first, a good foundation for the structure must be laid, by filling the target area with the
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first course; afterwards, the structure must be gradually increased by choosing good positions for the

following objects.

On the used hardware (CPU: Intel(R) Core(TM) i7-7820X, GPU: GeForce GTX 1080 Ti) and for the

described setup, one training iteration takes around 0.15s of continuous process time (CPU for the

simulation and GPU for inference and backpropagation). This results in almost 42 hours of continuous

process time to complete 106 iterations and in practice a training session of this length takes longer

(e.g. if more than a session is running simultaneously). This makes the experiences extremely costly

in terms of computation. Due to this limitation, only one or two runs are presented to illustrate most

of the conclusions. It is also possible that an extensive hyperparameter search could allow further

improvements to the results.

5.3.1 Main experiments

A set of training sessions is run with rewards generated by each of the four metrics discussed in Sec-

tion 3.1.3, to evaluate the behaviours that emerge from each reward shape. After each 10000 iterations,

a set of 100 episodes is run separately (without collecting the transitions) with the current greedy pol-

icy (no exploration) and evaluated using the IoU. This allows a comparison between the evolution of

the different training sessions independently of the random behaviour introduced by exploration and the

metric used to generate the rewards. Two different random initializations are used with each metric. The

evolution of the evaluations during training is presented in Figure 5.7. The policies obtained after 106

iterations are then evaluated on the same set of 100 episodes to observe the evolution of the IoU and

AD during the episode. Figure 5.8 depicts the best (out of the two runs) IoUt and ADt curves obtained

with the policies learned from each metric. The corresponding results are reported in Table 5.5. The

learning curves of the policies used for Figure 5.8 are highlighted in Figure 5.7 with the stronger line.

When the training sessions are referred to as first and second run, the second is the best one (stronger

line).

Table 5.5: Evaluation metrics for the learned policies. Values reported as the average and standard
deviation over 100 episodes.

IoU30 A(IoU) AD30 A(AD)

Learned from IoU 0.266 ± 0.026 5.17 ± 0.1 0.584 ± 0.064 23.0 ± 0.4
Learned from OR 0.265 ± 0.027 5.08 ± 0.1 0.569 ± 0.059 21.8 ± 0.4
Learned from DIoU 0.285 ± 0.029 5.38 ± 0.1 0.703 ± 0.056 26.2 ± 0.3
Learned from DOR 0.281 ± 0.031 5.37 ± 0.1 0.682 ± 0.058 25.7 ± 0.3

Random (goal) 0.232 ± 0.025 4.31 ± 0.1 0.507 ± 0.064 20.2 ± 0.5
Cross-correlation 0.27 ± 0.024 5.03 ± 0.1 0.769 ± 0.046 27.1 ± 0.2

From the learning curves in Figure 5.7, it is observable that the notion of the goal is easily (and

quickly) learned from the rewards generated with any of the metrics. This corresponds to reaching

the second level of baseline performance (given by the policy that samples actions from the target

region), which always happens on the first 104 iterations (also, see the value maps after 104 iterations
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Figure 5.7: Evolution of the evaluation results during training with rewards generated by each of the
metrics. Each plot shows two runs with different initializations, with the one that produces the best final
policy highlighted with the stronger line. The three levels of baseline performance are presented for
reference.
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Figure 5.8: Evolution of the evaluation metrics throughout the episode for the policies learned after 106

iterations. Each point represents the average over 100 episodes.
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in Appendix A). Afterwards, some placing criterion is gradually learned and the performance becomes

comparable with the third level, given by the cross-correlation heuristic. Although all policies reach this

level, only the policies learned from the discounted metrics (DIoU and DOR) were able to significantly

outperform the cross-correlation heuristic in the evaluation during training.

Sometimes, during training, the performance breaks down. This happens when one of the layers

in the network’s critical path stops producing any activation for most inputs it receives, which results in

the network predicting equal values for all actions most of the times. 1 Frequently, there is still some

inputs to which the layer responds, which allows the network to recover and sometimes even transform

its representation into something better (according to the evaluation criterion). However, it may also

happen that the layer stops producing activations for all inputs it receives, which means that nothing is

backpropagated to the layer’s weights nor to the previous layers. In this case, learning stops completely

for that segment of the network and the collapse is unrecoverable. An example of this is the worst run in

Figure 5.7(c), in which it is verified that the output of the left branch (that extracts features from the new

object) is all zero for any object, resulting in the cross-correlation output being all zero and, consequently,

the same advantage for all actions.

The curves from Figure 5.8 allow an initial analysis of the obtained behaviours. From Figure 5.8(b),

the difference between the policies learned with the discounted (DIoU and DOR) and not discounted (IoU

and OR) metrics is clear. The later were not explicitly directed towards minimizing the displacements,

which is reflected in an ADt curve closer to the random policy. Despite this, these policies manage

to achieve a similarity with the target structure close to the cross-correlation heuristic, as seen in Fig-

ure 5.8(a). The fact that these policies do not keep the value of AD close to 1 on the first steps of the

episode, along with the higher slope in the beginning of the IoUt curve, bring up a previously ignored fact

about the IoU and OR: as the volume considered to be the structure includes empty spaces beneath the

objects, these metrics may be maximized by pilling the objects with large spaces between them. This

behaviour makes the intersection increase faster initially, but produces unstable structures (intuitively, a

robust structure should be compact) and ultimately undermines the performance. On the other hand, the

policies learned with the discounted metrics show an ADt curve close to the cross-correlation heuristic,

with an initial segment close to one. This indicates that a first course is laid, upon which the subsequent

objects are (somewhat) carefully placed. With this behaviour, the policies reach a greater similarity with

the target, translated by the largest final IoU. Between the policies learned with the discounted metrics,

the one learned with the DIoU presents a slightly better performance, which may be explained by the fact

that this metric is more informative. On the other hand, this fact also makes the value function harder

to learn, which could make it more prone to a network collapse (although the fact that this happened in

one out of two runs is not conclusive). The behaviour learned from this metric is studied to more depth

bellow.

1A layer is in the network’s critical path if any of the input information has necessarily to pass through that layer to reach the
output. This excludes layers in the lower levels of the branches, due to the skip connections of the U-net.
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Consistency of learned value functions

Despite the differences in performance, the learned value functions share a somewhat consistent foun-

dation across runs and different reward metrics (see the similarities in Appendix A, Figures Figure A.2 to

Figure A.9). This is due to the shared goal of placing objects in the target. To quantify this, a sequence

of 1920 states is simultaneously evaluated by the networks obtained by each of the eight runs after 4·105

iterations, and the obtained pixelwise values are correlated. The correlation coefficients obtained for all

28 pairs are verified to be greater or equal to 0.9. As the training progresses, each network develops a

more specific shape for the value estimates, but the foundation remains similar. Repeating the previous

experiment with the networks obtained after 106 iterations, 13 out of the 28 possible pairs retain a corre-

lation coefficient greater than 0.9, while all the remaining pairs (with the exception of the run with DIoU

that collapsed) present correlation coefficients greater than 0.72.

Utilization of network capacity

In order to quantify the utilization of the representation capacity of the networks, some of the feature

maps obtained inside the network are analysed. Concretely, the analysed feature maps are the outputs

of the left and right branches (arrays with dimensions 128 × 128 × 16 and 32 × 32 × 16, respectively)

and the outputs of the last layer of the bottom level of each branch, corresponding to the end of the

contracting path (arrays with dimensions 8 × 8 × 256 for the left branch and 8 × 8 × 64 for the right

one). Each pixel is seen as an instance of a features vector. For each trained network, a sequence

of 3 episodes of length T = 60 is played. Here, longer episodes are used to expose the networks to a

wider variety of states. The pixels of the outputs of each of the referred layers, obtained for each state,

are stored as a list of feature vectors. This results in lists with length 3 · 60 · 128 · 128 = 2949120 and

3·60·32·32 = 184320 for the outputs of the left and right branches and 3·60·8·8 = 11520 for the outputs of

the bottom layers. From the obtained sequences of feature vectors, two metrics may be computed. For

each sequence, the number of features that are not always zero represents the number of feature maps

in the corresponding layer that produce any activation. Using principal component analysis, the number

of components needed to explain 99% of the variance of the sequence of feature vectors may be used

as a metric of the utilization of the capacity. This number of components corresponds to the number

of feature maps that the layer would need to represent a linear combination of the current output while

losing only 1% of the representation. Table 5.6 reports these metrics for the best performing networks

obtained with each reward shape after 106 training iterations. From the number of components needed

to represent each layer’s output, it is clear that the networks are far from their full representation capacity.

Often, and specially for the bottom layers, the representation is compressed to only use a subset of the

available channels. This indicates that the used size of the networks is not a limitation and that longer

training sessions could improve the representation, and consequently the performance.
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Table 5.6: Analysis of the utilization of the network’s representation capacity after 106 iterations, for
best performing networks obtained with each reward shape. For each of the selected layers, the table
reports the number of principal components that capture 99% of the feature maps’ variance (#PC) and
the number of channels that produce any activation for the given input (#Act.).
Learned from Left output (16 ch.) Left bottom (256 ch.) Right output (16 ch.) Right bottom (64 ch.)

#PC #Act. #PC #Act. #PC #Act. #PC #Act.

IoU 14 16 6 51 12 16 32 54
OR 9 16 59 255 6 14 12 27
DIoU 11 16 4 19 9 12 39 50
DOR 10 16 7 59 10 16 13 33

Behaviour learned from DIoU

As the best performing policy emerged from the rewards generated with the DIoU, the behaviours

learned from this metric are further analysed. First, to evaluate the consistency, two additional train-

ing sessions are run with different initializations. The best one out of the four (the two runs originally

reported in Figure 5.7(c) and the two new ones) is then trained for longer, in order to check if the per-

formance can be further improved. The learning curves are presented in Figure 5.9 and show the initial

evolution of the four sessions and the further training of the best one.
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Figure 5.9: Learning curves of the four runs with rewards generated by the DIoU. Values reported every
100 iterations. The loss is the average over each 100 iterations. The return is the average undiscounted
episode return over the last 200 training episodes. All curves are smoothed with a Gaussian filter with
standard deviation 25 (corresponding to 2500 iterations) and truncated at 4 standard deviations to make
the plots clearer.

From the learning curves in Figure 5.9, it is clear that the most frequent evolution is closer to the first

run, which suggests that the second run is the result of a “lucky” initialization. It may be concluded that

a value function for the DIoU is hard to learn, which results in frequent collapses of the network when

learning with the defined settings.

It is visible from the loss curves that the network frequently converges to a local minimum early in
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training. On the other hand, the second run gradually decreases the loss until the end of the exploration

annealing period. The later behaviour could be made more frequent by, for example, using a smaller

learning rate and increasing the exploration annealing period. This is consistent with the idea that an

extensive (and expensive) hyperparameter tuning would allow improvements to the obtained results.

Although the evaluations using the IoU (Figure 5.7(c)) do not appear to change significantly after a

certain point, the return curve (which is the sum of rewards generated by the DIoU) of the second run

in Figure 5.9 shows a slight increasing tendency. This suggests that learning could continue to slowly

improve the policy over a training session with length of a larger order of magnitude. This improvement is

explained by an increasing effectiveness that results in lower displacements from the original poses. This

is illustrated in Figure 5.10, which compares the evolution of the evaluation metrics during an episode

(averaged over the same set of 100 episodes) for the policy after 106 and 1.8 · 106 iterations. The

ADt curves clearly reflect this difference, with the later policy achieving a larger ADT and A(AD), even

surpassing the cross-correlation heuristic in this aspect. From the IoUt curve it is possible to interpret

the behaviour development: the curve increases slower in the beginning because the agent learned

to create a more compact first course, which ultimately leads to a better final result. The checkpoint

at 1.8 · 106 iterations is selected to illustrate the behaviour because it was verified to achieve the best

average performance under both evaluation criteria. However, it is also verified that the variance of the

results decreases for later iterations, which means that the policy becomes more consistent.
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Figure 5.10: Evolution of the evaluation metrics throughout the episode for the policy learned with the
DIoU after 106 and 1.6 · 106 iterations. Each point represents the average over 100 episodes.

Figure 5.11 shows examples of structures obtained with the policy learned after 1.8 · 106 iterations.

Figure 5.12 depicts value maps obtained with the trained network. In order to characterize the learned

position choice criteria, the value maps generated by the network are matched with value maps gen-

erated by the the cross-correlation and correlation coefficients based heuristics. These heuristics are

selected because each captures one of the predefined criteria: prioritizing lower positions and finding a

good fit for the object in the structure. For each state in a sequence of 100 episodes with length T = 30,

the values obtained for the pixels in the target region are correlated2. Figure 5.13 shows the distribu-

2The correlation is only computed for the pixels in the target region because that’s the region to which the heuristics apply
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tion of the obtained correlation coefficients per episode step (over the 100 episodes). This presentation

allows an understanding of how the learned behaviour adapts to each stage of the episode.

(a) First episode, t = 10. (b) First episode, t = 30. (c) Second episode, t = 10. (d) Second episode, t = 30.

Figure 5.11: Examples of structures obtained with the policy learned from rewards generated by the
DIoU, after 1.8 · 106 training iterations. Images show two time steps (t ∈ {10, 30}) for each of two
episodes.

(a) State at t = 0. (b) State at t = 10. (c) State at t = 20. (d) State at t = 30.

(e) Value map, t = 0. (f) Value map, t = 10. (g) Value map, t = 20. (h) Value map, t = 30.

Figure 5.12: Examples of value maps obtained with the policy learned from rewards generated with the
DIoU, after 1.8·106 training iterations. Images show four states (t ∈ {0, 10, 20, 30}) and the corresponding
estimated value maps.

One very interesting observation is the behaviour learned for the first steps. The agent learns to start

an episode by enclosing the target area with the first objects. This allows the following objects to be

supported by an inwards sloping surface, which prevents them from falling out and increases the overall

stability. This behaviour, learned from scratch, is consistent with the theory of dry stacking (although

typically the largest objects would be selected for this purpose, which is not allowed here). After this

first stage, the agent tries to pack the objects as tightly as possible to fill the inside of the first course

and build upon it. As the episode progresses, the actions seen as advantageous become sparser, as it

can be visualized in Figure 5.12. The value maps for the first steps are highly correlated with the cross-

correlation heuristic. This is expected because the behaviour of enclosing the target area and then filling

its inside is consistent with placing the objects as low as possible. The similarity with the correlation

coefficients heuristic increases during the first steps, as the target area fills up and the objective of

tightly packing the objects in the first course becomes coincident with finding a good fit for the object in
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Figure 5.13: Correlation coefficients between the values estimated by the learned policy and heuristics
during an episode. The top plot shows the similarity with the cross-correlation heuristic (C) and the bot-
tom one with the correlation-coefficient heuristic (CC). Each column represents the distribution obtained
for 100 episodes.

the structure. As the number of objects in the structure increases, the correlation with both heuristics

decreases (although remaining positive on average). From the obtained results (see Figure 5.10), it is

clear that the learned value function captures a better understanding of the environment dynamics than

the defined heuristics, which is translated by generally more stable placements.

5.3.2 Ablation

This Section presents experiments that illustrate the improvements introduced by some of the choices

previously used.

Dueling architecture

To evaluate the effect of the dueling architecture, a pair of training sessions is run with the same setup

and network initialization, the only difference being that the dueling part is removed from one of the

networks. This corresponds to the fully connected layers that estimate the state-value and its addition to

the output of the network. The resulting non dueling network has 2060177 trainable parameters, 66049

less than the original, but this change doesn’t significantly reduce the computational cost. The rewards

for both training sessions are generated using the DOR metric and the length of the training episodes is

T = 40.

The learning curves over 106 iterations are presented in Figure 5.14, and an example of the value

maps returned by the networks are shown in Figure 5.15. Although corresponding to one run only, the

results are perfectly illustrative of the improvement introduced by the dueling architecture. The fact that

the state-value is estimated separately allows the action advantage, given by the cross correlation, to
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be focused on the actions inside the target. In the case of the non dueling architecture, the output of

the cross-correlation is forced to take into account the returns over the complete action space, because

even if the action doesn’t bring advantage there is always the possibility of future rewards. This leaves

less capacity to express the different values of each immediate action.
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Figure 5.14: Learning curves with and without the dueling architecture. Values reported every 100
iterations. The loss is the average over each 100 iterations. The return is the average undiscounted
episode return over the last 200 episodes. All curves are smoothed with a Gaussian filter with standard
deviation 5 (corresponding to 500 iterations) and truncated at 4 standard deviations to make the plots
clearer.

(a) State (b) Dueling (c) Non dueling

Figure 5.15: Examples of value maps obtained with and without the dueling architecture for a given state
(t = 20), from networks trained over 106 iterations.

Reward scaling

Figure 5.16 presents an example of a learning curve obtained without reward scaling, compared with the

exact same setup (including network initialization) and rewards scaled as previously described. Rewards

are generated using the DIoU metric. The process of learning from the rewards only starts around iter-

ation 4 · 105, when the network’s output is small enough to be comparable with the rewards. Figure 5.17

shows examples of value maps returned by the networks at two points in training: before and after the

run without reward scaling starts to fit to the rewards. At iteration 4 · 105, the network trained with scaling

already shows an understanding of the environment, while the one trained without shows no relation
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with the actual values of the actions. At iteration 6 · 105, the network trained with no scaling already

reflects the values of the actions, but at this point the one trained with scaled rewards already learned

a more refined estimate of the values. It is not clear that the asymptotic result without scaling would be

worst, but the learning process is definitely accelerated by scaling the rewards.
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Figure 5.16: Learning curves with and without reward scaling. The return is the average undiscounted
episode return over the last 200 episodes. The curves corresponding to scaled rewards are scaled back
down in order to match the quantities represented by the ones without scaling. All curves are smoothed
with a Gaussian filter with standard deviation 5 (corresponding to 500 iterations) and truncated at 4
standard deviations to make the plots clearer.

(a) State (b) No scaling, 4 · 105
iterations

(c) No scaling, 6 · 105
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(d) Scaled rewards, 4 ·
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Figure 5.17: Examples of value maps obtained with and without reward scaling at two training points
(before and after the network starts fitting to the unscaled rewards), for a given state (t = 10).

5.4 Extensions to state and action spaces

Additional experiments were performed in order to evaluate the improvements allowed by the extensions

to the state and action spaces discussed in Section 3.1.4. A set of 100 episodes is run under each of

different settings, using the policy learned from DIoU rewards after 2.71 · 106 iterations. This checkpoint

is used here instead of 1.8 · 106 iterations because it was also verified to be a local maximum in terms of

average performance and, additionally, the results obtained for this experiments make the conclusions
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more evident. The results obtained after 1.8 · 106 iterations are equivalent, but the differences between

the different settings are much smaller (i.e. the average curves are too close).

Orientation

To evaluate the effect of providing orientation freedom, experiments were performed providing 8, 16 and

32 possible orientations for each object. The different orientations are obtained with a rotation of the

object around the vertical axis, such that the complete turn around the axis is divided in equal intervals

(e.g. for 8 possible orientations, the rotation interval between consecutive orientations is ∆θ = π
4 rads).

The results obtained for each setting are shown in Figure 5.18. It is clear that providing the freedom

for the agent to select the orientation improves the performance, as all obtained curves are above the

one obtained with the base formulation. From the initial evolution of the ADt curve, it is possible to

understand that this extension allows the agent to assemble a tighter first course, which leads to the

overall improvement of the final result. There is no need to provide a high resolution in terms of the

orientation (i.e. small angles between possible orientations) to see this performance improvement, as

the best results are obtained when the agent is provided 8 possible orientations to select from.
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Figure 5.18: Evolution of the evaluation metrics throughout the episode with different levels of orientation
freedom. Values obtained with the policy learned from DIoU rewards after 1.8 · 106 training iterations.
Each point represents the average over 100 episodes.

Ordering

In order to evaluate the result of providing the choice of the next object to the agent, additional experi-

ments were performed, first with fixed orientation and then providing 8 possible orientations. The results

obtained with each extension and both simultaneously are compared in Figure 5.19. As expected, the

agent does not respond so well to the choice of the next object. The ADt curve holds closer to 1 for

longer, which is explained by the fact that the agent starts by selecting the “easiest” objects first, which

yield higher expected returns. This behaviour ignores the fact that the “hardest” objects are being left to

the end of the episode, which leads to a faster decrease of the ADt towards the end of the episode and
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a generally lower final value for the IoU. Providing the choice of orientation along with the choice of the

object improves these results, but the negative effect of greedily selecting the next object remains.
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Figure 5.19: Evolution of the evaluation metrics throughout the episode with the different extensions to
state and action spaces. Values obtained wih the policy learned from DIoU rewards after 1.8 ·106 training
iterations. Each point represents the average over 100 episodes.
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Chapter 6

Conclusions

The major achievement of this work was to develop a setup in which a dry stacking policy can be learned

with a model-free approach. An agent is able to capture the goal of the environment and its dynamics,

and even develop a strategy that is, to some extent, consistent with the existing dry stacking theory [3].

Despite this remarkable learning result, the obtained performance is still bounded by the limited action

space, which is far from the available to a human performing the task.

With this achievement, we can confirm that it is possible to learn this complex task from scratch,

without relying on any previously acquired models of the objects and environment dynamics. Addition-

ally, the RL approach is validated by the emergence of strategy, which requires an understanding of the

sequentiality of the task in addition to the dynamics that rule each single transition.

One of the major drawbacks for this work was the computational cost of the experiments, that include

intensive physical simulations and expensive operations with large neural networks. This factor made

the path to the presented results a very prolonged process of trial and error, which ultimately prevented

further improvements to the solution.

6.1 Future Work

As stated, the results suggest that further improvements could be achieved with a better choice of

parameters. To find the optimal set of hyperparameters, a more thorough parameter search would need

to be performed. This search would not need to be a brute force grid search, but wold require several

iterations of performing training sessions, taking conclusions and adjusting the parameters accordingly.

The architecture of the network used as the value estimator could also be developed. Although not

commonly used in DRL, there is a number of recent advances in the field of DL that may be used to

improve the network representation. As an example, the utilization of residual connections [36] could

contribute to avoid the frequent network collapses observed in training (see Figure 5.9). Additionally, a

fully convolutional alternative to the U-net like architecture is the usage of atrous (dilated) convolutional

layers [37], which has also been shown to perform well for dense feature extraction.

This work employed the DQN algorithm with some of its improvements. However, there is a number
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of other modifications to the algorithm that have been shown to improve the performance [6]. One that

could be readily introduced in the proposed approach is n-step bootstrapping [20, Ch. 7], which only

requires small modifications to the process of sampling transitions and computing the TD targets.

The proposed approach can be seen as a high level planning method. Even though the learned policy

captures a good representation of the task, the performance is bounded by the feedforward execution.

This work could be applied to a realistic setting by introducing it in a pipeline with a lower level feedback

controller and a robotic manipulator to perform the placements. Such controller could be used to produce

the careful placements simulated in the environment. After the manipulator is moved to the position given

by the planer, the object can be carefully placed by applying torques to the joints with magnitude just

under the necessary to counteract the gravity of the object. A stable position is reached when the object

appears to have no weight to the manipulator. This is a better criterion than achieving at least three

contact points. Several possibilities can be explored from this process. A maximum displacement could

be defined, so that if no stable position is reached after this displacement the placing is aborted and

the manipulator retracts with the object (and a different position is tried). Additionally, different abortion

criteria could be defined from the available sensory inputs, e.g. in order to avoid a structure collapse.

All of these ideas for an autonomous system are consistent with the usual process of building dry stack

walls (by humans), that includes carefully trying positions, checking the stability and repositioning if

necessary.

Another point that could be explored is the selection of the next object to be placed. As shown,

simply applying the learned policy to greedily select the next object results in leaving the “worst” objects

(according to the learned value function) to the end of an episode, which is likely to be a poor sorting

criterion. To improve this, the sorting of the objects would have to be included in the learning process,

which would require to rethink the agent architecture.
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Appendix A

Examples of value maps

Figure A.1 represents three states of an episode (t ∈ {0, 10, 20}). Each of the remaining figures repre-

sents the value maps estimated by the network at different points in training (iterations 104, 4 · 105 and

106) for each of the represented states.

(a) t = 0 (b) t = 10 (c) t = 20

Figure A.1: States. Goal represented with the dotted line.

(a) 104 (b) 4 · 105 (c) 106 (d) 104 (e) 4 · 105 (f) 106 (g) 104 (h) 4 · 105 (i) 106

Figure A.2: Value maps from first run with IoU rewards, after the given number of iterations.

(a) 104 (b) 4 · 105 (c) 106 (d) 104 (e) 4 · 105 (f) 106 (g) 104 (h) 4 · 105 (i) 106

Figure A.3: Value maps from second run with IoU rewards, after the given number of iterations.
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(a) 104 (b) 4 · 105 (c) 106 (d) 104 (e) 4 · 105 (f) 106 (g) 104 (h) 4 · 105 (i) 106

Figure A.4: Value maps from first run with OR rewards, after the given number of iterations.

(a) 104 (b) 4 · 105 (c) 106 (d) 104 (e) 4 · 105 (f) 106 (g) 104 (h) 4 · 105 (i) 106

Figure A.5: Value maps from second run with OR rewards, after the given number of iterations.

(a) 104 (b) 4 · 105 (c) 6.5 ·105 (d) 104 (e) 4 · 105 (f) 6.5 · 105 (g) 104 (h) 4 · 105 (i) 6.5 · 105

Figure A.6: Value maps from first run with DIoU rewards, after the given number of iterations. Here the
third training point is at 6.5 · 105 iterations, just before the unrecoverable collapse of the network.

(a) 104 (b) 4 · 105 (c) 106 (d) 104 (e) 4 · 105 (f) 106 (g) 104 (h) 4 · 105 (i) 106

Figure A.7: Value maps from second run with DIoU rewards, after the given number of iterations.

(a) 104 (b) 4 · 105 (c) 106 (d) 104 (e) 4 · 105 (f) 106 (g) 104 (h) 4 · 105 (i) 106

Figure A.8: Value maps from first run with DOR rewards, after the given number of iterations.

(a) 104 (b) 4 · 105 (c) 106 (d) 104 (e) 4 · 105 (f) 106 (g) 104 (h) 4 · 105 (i) 106

Figure A.9: Value maps from second run with DOR rewards, after the given number of iterations.
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Appendix B

Examples of structures

This Appendix presents examples of structures obtained with some of the considered policies, for three

distinct goals and sequences of objects. Images represent the structure at time steps t ∈ {10, 30}.

(a) t = 10 (b) t = 30 (c) t = 10 (d) t = 30 (e) t = 10 (f) t = 30

Figure B.1: Structures obtained with the policy that samples actions from the target region.

(a) t = 10 (b) t = 30 (c) t = 10 (d) t = 30 (e) t = 10 (f) t = 30

Figure B.2: Structures obtained with the policy based on the cross-correlation heuristic.

(a) t = 10 (b) t = 30 (c) t = 10 (d) t = 30 (e) t = 10 (f) t = 30

Figure B.3: Structures obtained with the policy learned from IoU.

(a) t = 10 (b) t = 30 (c) t = 10 (d) t = 30 (e) t = 10 (f) t = 30

Figure B.4: Structures obtained with the policy learned from OR.
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(a) t = 10 (b) t = 30 (c) t = 10 (d) t = 30 (e) t = 10 (f) t = 30

Figure B.5: Structures obtained with the policy learned from DIoU.

(a) t = 10 (b) t = 30 (c) t = 10 (d) t = 30 (e) t = 10 (f) t = 30

Figure B.6: Structures obtained with the policy learned from DOR.
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Appendix C

Complete network diagram

C.3



Input M

Input N

128x128x2

2x Conv 3x3

MaxPool 2x2
128x128x16

64x64x16

2x Conv 3x3

MaxPool 2x2
64x64x32

32x32x64

2x Conv 3x3
32x32x32

MaxPool 2x2
16x16x64

2x Conv 3x3
16x16x128

MaxPool 2x2
8x8x128

2x Conv 3x3

UpConv 2x2

8x8x256

Concatenate
16x16x128

2x Conv 3x3
16x16x256

UpConv 2x2

Concatenate

16x16x128

32x32x64

2x Conv 3x3

UpConv 2x2

32x32x128

32x32x64

Concatenate
64x64x32

2x Conv 3x3

UpConv 2x2

64x64x64

64x64x32

Concatenate
128x128x16

2x Conv 3x3
128x128x32

128x128x16

32x32x16

2x Conv 3x3
32x32x1

MaxPool 2x2
16x16x16

2x Conv 3x3
16x16x32

MaxPool 2x2
8x8x32

2x Conv 3x3

UpConv 2x2

8x8x64

Concatenate
16x16x32

2x Conv 3x3
16x16x64

UpConv 2x2

Concatenate

16x16x32

32x32x16

32x32x32

2x Conv 3x3

Global
AvgPool

Fully connected
256

Fully connected
1

256

256

2x Conv 3x3

32x32x16

97x97x1

Conv 1x1
97x97x16

97x97x1

1

Output

97x97

Figure C.1: Diagram of the network used as the value estimator
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