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Resumo

O movimento de lı́quidos dentro de reservatórios é chamado ‘sloshing’. Este fenómeno é de interesse

para a indústria aeroespacial, dada a prevalência de sistemas de propulsão com combustı́veis lı́quidos

em aeronaves modernas. O deslocamento dos lı́quidos gera forças e momentos destabilizadores

que devem ser compensados pelos sistemas de controlo de atitude. Adicionalmente, quando fluidos

criogénicos são utilizados, as suas elevadas sensibilidades térmicas, aliadas ao movimento do lı́quido,

promovem a transferência de calor entre as fases gasosa e lı́quida. Para condições crı́ticas, observam-

se grandes flutuações de pressão, e a estabilidade estrutural do tanque pode ser comprometida.

O objectivo deste trabalho foi estudar a problemática de ‘sloshing’ não-isotérmico e investigar se

um modelo de laboratório de pequena-escala consegue reproduzir os fenómenos observados em tan-

ques de combustı́ves criogénicos de foguetões modernos. A análise é realizada através de simulações

numéricas com o software OpenFOAM. As taxas de amortecimento, posição da interface, forças e

momentos gerados são analisados, e a semelhança no movimento é comparada entre ambas as

instalações. O problema da destratificação térmica é estudado para diferentes campos térmicos ini-

ciais, diferentes excitações externas e diferentes condições térmicas das paredes do tanque. Para

condições de sloshing linear, o comportamento mecânico do escoamento, bem como a evolução ter-

modinâmica do sistema, foram semelhantes para ambas as instalações. Contudo, observou-se que,

apesar de a instalação em tamanho-real não ter sido muito afetada pela presença de fluxos-térmicos

normais às paredes do tanque, o modelo em pequena-escala foi significativamente afetado, revelando

diferenças nas evoluções da pressão e temperatura dos sistemas.

Palavras-chave: ‘Sloshing’, fluı́dos criogénicos, efeito da queda de pressão, destratificação

térmica, CFD, OpenFOAM.
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Abstract

The motion of liquids inside a reservoir is called sloshing. This phenomenon is of interest to the

aerospace industry given the prevalence of liquid-based propulsion systems in modern spacecraft. The

fluid displacement generates destabilizing forces and moments which must be compensated by the at-

titude control systems. Moreover, when cryogenic fluids are considered, their high thermal sensitivities

coupled with the liquid motion causes thermal mixing to take place between the gas and liquid phases.

For critical conditions, large pressure fluctuations are observed, and the structural stability of the tank

can be compromised.

The aim of this work was to study the scaling laws of non-isothermal sloshing and investigate whether

a small-scale laboratory model can reproduce the phenomena observed in the cryogenic stages of

modern launch vehicles. This was done through Computational Fluid Dynamics simulations with Open-

FOAM. The damping rates, interface position, sloshing forces and moments were analysed and similarity

in the motion was compared between both facilities. The thermal destratification problem was studied

for different initial thermal fields, different sloshing excitations and different thermal responses of the

solid container walls. For planar sloshing conditions, the scaling approach yielded good similarity in

terms of the flow dynamics as well as the thermodynamic evolution of the system. While the full-size

facility was found to be less affected by the presence of wall-normal heat fluxes, the small-scale model

was significantly impacted by this, leading to differences in the pressure and thermal evolutions of the

systems.

Keywords: Sloshing, cryogenic fluids, pressure-drop effect, thermal destratification, CFD, Open-

FOAM.
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Chapter 1

Introduction

1.1 Framework

Liquid sloshing can be defined as the movement of the free liquid surface in a container or reservoir when

subjected to a disturbance. This motion is associated with the displacement of a certain “sloshing mass”

that produces forces and moments on the container’s walls. These disturbances may be vibrations,

acceleration changes, and pitch, roll or yaw motions.

This phenomenon is of particular interest to the aerospace industry given the great number of space-

craft which use liquid-based propulsion systems. These systems function by burning chemical pro-

pellants at high pressures, thus releasing large amounts of energy. Thrust is generated through the

discharge of hot combustion products at high speeds through the nozzle located aft the combustion

chamber. Figure 1.1 shows the schematic of a generic liquid propulsion system.

Figure 1.1: Schematic of a generic liquid based propulsion system. Adapted from [1].

Applying a momentum balance on the exit of the rocket’s nozzle, the generated thrust can be obtained

through Equation 1.1, where ṁe is the mass flux of the propellant at the exit section, Ue is the velocity of

the exhaust gases, Ae is the cross-sectional area of the nozzle at the exit section, pe is the pressure at

the exit section, and pa is the ambient pressure [1].

F = ṁpUe + Ae(pe − pa) (1.1)
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The impulse of the rocket I(t) due to the engine’s thrust can be calculated by integrating the generated

force over time. This is given by Equation 1.2.

I(t) =
∫ t

0
F (t)dt (1.2)

Furthermore, the specific impulse Is provides a measure of the stored propulsive energy with respect

to the corresponding fuel weight. High values for this parameter are desirable since they indicate that

more energy is stored in the propellant, thus requiring a smaller fuel load and allowing for additional

weight to be used in other areas of the spacecraft. For constant thrust, and constant propellant mass

flux, the specific impulse is given by:

Is =
|F |

gṁp
. (1.3)

Although the exact value of the specific thrust is dependent on the operating conditions, it is nonethe-

less a useful measure to compare the performance of different propulsive systems. As a result, Table

1.1 shows the specific impulse, Is, as well as the specific impulse at sea level, Is (SL), of several rocket

stages which use different propulsion solutions.

Table 1.1: Information regarding the propulsion systems used in several rocket stages

Stage Oxidizer/Propellant Kind Is [s] Is (SL) [s]

Saturn V [2]

S-IC LOx/RP-1 semi-cryogenic 304 265

S-II LOx/LH2 cryogenic 421 200

S-IVB LOx/LH2 cryogenic 421 200

Ariane 5 ECA [3]

EAP Solid propellant solid 275 250

EPC LOx/LH2 cryogenic 434 335

ESC-A LOx/LH2 cryogenic 446 -

Atlas V [4]

Booster Solid propellant solid 275 245

CCB LOx/RP-1 semi-cryogenic 338 311

Centaur LOx/LH2 cryogenic 451 -

Space shuttle [5]
Booster Solid propellant solid 269 237

Orbiter LOx/LH2 cryogenic 455 363

Of the presented spacecraft, the Ariane 5 ECA, and Atlas V launch vehicles are still currently in use

for a wide range of applications such as communications, military, observation, among others [3, 4]. The

space shuttle was retired in 2011 [5], and Saturn V had its last flight in 1973 [2]. The presented data

shows that the combination of liquid hydrogen (LH2) as propellant, and liquid oxygen (LOx) as oxidizer

generates the highest specific impulse when compared to the other propulsive solutions. This explains

why cryogenic fluids have become standard for space propulsion in recent years.

However, there are risks and challenges which must be overcome when adopting cryogenic propul-

sive solutions. Firstly, when ignited, hydrogen is known to react very violently in the presence of oxygen,

causing very strong explosions if the amount of reactants is high [6]. Therefore, strong safety measures

must be implemented to reduce the risk of hazardous handling of the propellant and oxidizer. Moreover,
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the characteristic low saturation temperatures (Tsat ∼ 20K = −253.15◦ C for H2 at a pressure of ∼ 1

bar) make long term storage complicated due to evaporation if residual heat fluxes are present outside

the tank. In order to counter-act this issue, a great deal of thermal insulation and shielding must be

employed, which adds to the complexity, cost and weight of the system.

During the propelled flight phase of the launcher, lateral sloshing is a critical motion exhibited by the

fluids inside the cryogenic stages [7]. The cryogenic tanks can be full up to 95% [8], and the resulting

fluid displacement generates destabilizing forces and moments, which must be counteracted by the

attitude control system. In fact, there have been several instances throughout history where propellant

sloshing led to complete or momentary loss of control in spacecraft.

An early example is the Apollo-11 Lunar Module in 1969. Sloshing of the remaining propellant

induced an oscillatory motion onto the Lunar Module during the last seconds of the first lunar landing.

This hampered the ability to control the module during the crucial landing manoeuvrer. As the propellant

level decreased to about fifty percent, the fluid gained more space to slosh, yet retained enough mass

to generate strong forces and moments, demanding harsher control requirements [9].

A more recent case took place on March 21st, 2007. During its second flight, the SpaceX Falcon-1

launcher lost control 2 minutes 10 seconds into the vehicle’s second stage burn and, as a result, failed

to reach orbit. After investigating the mission failure, it was found that propellant sloshing caused the

oscillation. The LOx slosh frequency coupled with the thrust vectoring control system gradually amplified

the vehicle’s oscillations until flight control was completely lost [10].

Figure 1.2: Successful launch of a Falcon 1 rocket from the SpaceX launch site in Kwajalein Atoll,
September 28, 2008 [10].

Another problematic point is related to the high thermal sensitivity of cryogenic fluids. Prior to launch,

the cryogenic containers are pressurized from atmospheric conditions up to 3.1-3.3 bar [11, 12, 13]. This

pressurization leads to the increase of the gas temperature in the fuel tank. Then, as the system evolves

towards thermal equilibrium, the warmer gas exchanges heat with the container walls and with the liquid

propellant leading to a thermally stratified field in the container. The exact shape of this thermal field

depends on the pressurization method, its duration and the fluids used.

Figures 1.3a and 1.3b shows two examples of thermally stratified fields inside cryogenic containers

after active pressurization with gaseous nitrogen (a), and oxygen (b). The data was obtained from
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experimental measurements performed by Lacapere et. al (2009) [14] inside a cryostat with 19cm of

radius and 800cm of height. The gas phase is characterized by a large temperature drop between the

top of the container and the free surface, whereas the thermal gradient in the liquid is focused only in the

region below the interface. Due to liquid sloshing the stratified field is disturbed leading to thermal mixing

between the warmer gas and the colder liquid. The heat transfer rate between both fluids depends on

their thermal properties and initial temperature, as well as the excitation conditions the container is

subjected to.
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Figure 1.3: Initial stratification in the cryostat just before sloshing for LN2 pressurized with GN2 (a) and
LOx pressurized with GOx (b) [14].

As a result of the mixing, the gas region cools down, decreasing its density. Consequently, the gas

mass is no longer enough to maintain the current tank pressure, so this quantity must also decrease.

This effect is accentuated by condensation effects between the vapour and liquid phases [14, 8, 15].

This phenomenon is often referred to, in the literature, as the ‘pressure drop effect’, and it has been

observed to take place in several flights of the Ariane 4 and 5 launchers [13]. The magnitude of this drop

depends on a series of factors, and it may cause several unwanted effects such as compromising the

structural integrity of the propellant tank [8], and affecting the performance of cold gas thrusters, if they

are used [16].

In addition to the previously mentioned effects, the presence of external heat fluxes (due to radiation,

or thermal conduction within the rocket structure) must also be considered. These fluxes lead to the

formation of wall normal temperature gradients in the container which cause the fluids to warm up, and

liquid evaporation to take place at the contact line [17]. In isolation, these effects are associated with an

increase in the tank pressure. However, if liquid sloshing is also present both effects must be accounted

for in order to accurately determine the thermodynamic evolution of the system.

In summary, sloshing of cryogenic fluids is a flow phenomenon which causes adverse mechanical

and thermodynamic effects in modern spacecrafts which requires further investigations.
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1.2 Motivation and objectives

The goal for this work is to analyse the scaling laws of non-isothermal sloshing and investigate whether

a small scale laboratory model is capable of reproducing the main phenomena encountered in a full-size

cryogenic fuel tank. The analysis is carried out through CFD (Computational Fluid Dynamics) simula-

tions with OpenFOAM. The focus is on understanding the role of sloshing in the thermal destratification

process, and the effect that this has in the pressure evolution. Therefore, no phase change effects are

considered in the computational models. This approach is identical to assuming that the container is

partly filled with a cryogenic liquid, while using a non-condensable gas for the ullage pressurization.

The numerical study is carried out in two separate phases. First, the isothermal sloshing case is

analysed in order to assess the scaling of the wave response between both facilities. The interface

displacement, sloshing forces and moments are analysed both in the time and frequency domains, and

numerical estimates are given for the damping rates of the systems.

Then, the non-isothermal problem is approached. This is also decomposed in two stages: first, ther-

mal stratification simulations are performed in order to compare the similarity of this process between

both facilities, and then the sloshing-induced mixing simulations are executed. In an effort to decrease

the computational load, the container walls are not modeled in this analysis. Instead, two sets of bound-

ary conditions, A and B, are considered in order to account for both extremes of wall heat transfer

conditions. Case A assumes that the lateral walls are adiabatic, while case B assumes that these are

at fixed temperatures, equal to the gas temperature Tgas in the portion initially in contact with the gas,

and equal to Tliq in the portion initially in contact with the liquid. In both cases, the upper and the bottom

walls of the tank are assumed at uniform temperature Tgas and Tliq respectively.
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Chapter 2

Sloshing background

2.1 State of the Art

During the space race in the 1960s, a lot of work was developed by the National Aeronautics and Space

Administration (NASA) concerning liquid sloshing in space vehicles. Bauer (1964) [18] and Abramson

(1966) [19] developed a compendium of the work done up to that point regarding analytical and mechan-

ical models to describe liquid sloshing for several container configurations. Furthermore, Abramson also

compiled a large amount of experimental data with the aim of complementing and validating the theoret-

ical models.

Regarding the existence of different sloshing regimes, Miles (1984) [20] developed a theoretical

model to study the effect of the excitation parameters in the expected fluid response. The different

sloshing regimes (planar, non-planar swirl, and chaotic) were found to depend on the frequency offset

parameter B. This parameter is a measure of the proximity to resonance conditions, and is a function

of the excitation amplitude, the excitation and natural frequencies, as well as the tank radius.

Moran (1994) [21] performed large scale experiments with LH2 in a partly filled pressurized spherical

tank. The goal was to study the pressure evolution in the container for different lateral sloshing condi-

tions. The effect of the sloshing regime was studied, and it was found that while both chaotic and stable

sloshing modes led to a pressure drop inside the tank, the chaotic motion had a much stronger effect on

this phenomenon. The impact of using a non-condensable gas for the pressurization was also tested. It

was found that for these conditions, with gaseous Helium (GHe) as the non-condensable pressurant, the

container’s pressure would increase during the sloshing experiment. This was mostly attributed to the

presence of environmental heat fluxes surrounding the tank. Moreover, the effect of the ullage volume

was studied, and it was found that as the liquid fill level increases, so does the pressure drop since

initially there is less available vapor mass to maintain the tank pressure.

The pressure drop effect in lateral sloshing was studied by Lacapere et. al (2009) [14] using LN2 and

LOx to model the behaviour of cryogenic sloshing at a smaller scale. The pressure drop was verified, and

thermal mixing could be observed in the vicinity of the liquid-vapor interface. Computational simulations

were also performed to model the flow, and showed good agreement with the experimental results.
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Himeno et. al (2011) [15] performed a series of experiments on the pressure drop phenomenon under

different conditions. Different degrees of excitation were used in order to test their effect on the pressure

drop and on the free surface shape. Physical damping devices were introduced to limit the sloshing

motion and, consequently, inhibit the pressure drop effect. Moreover, similarly to what was done in the

work of Moran (1994), the use of Helium as a non-condensable gas was also tested and proved to

strongly mitigate the measured pressure drop.

Arndt (2011) [8] further investigated the pressure drop for lateral sloshing of LN2 near the first natural

frequency with different tank pressurization methods. Passive pressurization was compared against ac-

tive methods using gaseous nitrogen (GN2) and helium (GHe). The temperature stratification generated

by the tank pressurization proved to be crucial in determining the pressure evolution. For the case of

GHe pressurization, different partial pressures of helium were tested. From this, Arndt (2011) found

that as the partial pressure of helium increased, the tank’s pressure evolution became less sensitive to

sloshing. In fact, from a certain amount of GHe, the pressure drop effect was able to be completely

neutralized. These results are analogous with LH2 and may be scaled up to analyse data from full size

facilities.

Still in this thesis, Arndt (2011) experimentally measured the damping ratio for different fill levels and

found good agreement with the theoretical expressions presented in Abramson (1966) [19]. Following on

the conclusions taken by Arndt (2011) [8], van Foreest (2010) [22] built a 1D model capable of predicting

the pressure drop and thermal distribution inside the liquid phase. The 1D model was compared to both

experimental results and CFD simulations, and overall good agreement was found. Later, this model

was used by Montsarrat (2017) [13] to understand the pressure and thermal evolution in several flights

of the Ariane 5 ECA launch vehicle.

2.2 The pressure drop effect

The pressure drop effect is a well-documented problem that takes place within cryogenic stages of

launch vehicles during the initial propelled flight phase. There are two main triggers for this phenomenon

to take place:

1. Tank pressurization prior to launch, which causes a thermal stratification to set in the container.

2. Flight perturbations, or trajectory changes which induce oscillations in the cryogenic container’s

motion. This results in the unwanted displacement of the liquid mass known as liquid sloshing.

The presence of this initial thermal field coupled with liquid sloshing leads to thermal mixing inside

the cryogenic stage. The colder bulk liquid mixes with the warmer gas, leading to a general cooling down

of this region and promoting condensation of the vapour phase. Both these mechanisms contribute to

a decrease of the tank pressure, however the aim of this thesis is study only the impact of the sloshing-

induced thermal mixing.

The magnitude of this pressure drop is dependent on a series of factors such as the pressurization

technique, the type of pressurant gas used, the excitation conditions, and the volume of gas present
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Figure 2.1: Schematic illustration of thermal stratification that sets in the fluids after the pressurization
of the container.

within the tank [8, 21].

Pressurization methods

• Passive pressurization: Tank pressure increases due to presence of residual heat fluxes that

lead to expansion of the vapour phase. Takes a long time for the required pressure to be achieved

in the container. Consequently there is more time for the temperature to be transported along the

container, meaning that the thermal gradient in the liquid will be smoother along a larger distance

δT under the interface. As a result, the thermal mixing effect will be less severe. Thus, the pressure

drop effect is reduced.

• Active pressurization with vapour of the same species as the liquid: Tank pressurization

achieved by the introduction of gas from an external reservoir. Fast method to achieve the re-

quired pressure. As a result, there will not be as much time for the temperature to be transported

throughout the liquid under the interface. This results in a very sharp thermal gradient along a

small distance δT . This sharp thermal gradient leads to very effective heat transfer promoted by

liquid sloshing, and thus to a larger pressure drop.

• Active pressurization with non-condensible gas: Identical to the previous method, however the

use of a non-condensible gas reduces the pressure drop effect since condensation effects should

not be present. Thermal mixing will only be responsible for cooling down the vapour phase through

heat transfer. This is the situation that is modeled in the computational section of this thesis.
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Ullage volume

The proportion of gas to liquid volume in the cryogenic container can be crucial in assessing the mag-

nitude of the pressure drop [21]. For large ullage volumes, the pressure drop has been observed to be

more severe. This is attributed to the fact that there is less vapour mass to maintain the tank pressure.

Excitation conditions

As discussed in Section 2.7, different sloshing wave responses can be obtained by varying the im-

posed excitation conditions. Stable wave modes are characterized by a predictable free surface motion,

whereas unstable modes lead to violent and dynamic wave responses.

Experimental observations show that high amplitude chaotic slosh responses increase the pressure

drop effect when compared to stable wave modes [21] . These cause a more significant circulation of

the subcooled bulk liquid towards the interface, which has the consequence of increasing the thermal

mixing, thus cooling down the vapor region more efficiently and increasing the condensation rate.

2.3 Mathematical modeling

The sloshing problem analysed in this work is the lateral excitation of a partially filled cylindrical reservoir

which has its axis aligned with the gravitational acceleration. Consider the cylinder to have radius R, fill

level h, and total height H.

Figure 2.2: Partly filled cylinder of radius R, fill height h, and total hieght H [23]

For a lateral harmonic excitation with amplitude A0 and imposed frequency Ω, the corresponding tank

position, velocity and acceleration are determined by Equations 2.1, 2.2 and 2.3, respectively.

X0(t) = A0 sin(Ωt) (2.1)

Ẋ0(t) = A0Ω cos(Ωt) (2.2)

Ẍ0(t) = −A0Ω
2 sin(Ωt) (2.3)
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Thus, lateral sloshing may be modeled through two possible methods:

1. Impose excitation through rigid body motion of the container. An inertial reference frame is consid-

ered, and the fluid velocity at the container walls must match the velocity of the walls themselves.

This is the method employed in the work of Hansinger (2016) [24] and Jaguer (2019) [25].

2. Impose excitation in a non-inertial reference frame where the container is considered stationary.

Here, sloshing is induced by lateral acceleration changes given by Equation 2.3. This is the ap-

proach followed by Agui (2015) [26], and Kartuzova (2018) [27]. It is implemented by considering

an additional source term in the momentum equations which corresponds to the lateral force the

container exerts on the fluid when it moves.

Both approaches were tested and implemented in OpenFOAM, and a comparison of both methods

is presented in Section 4.3.

2.4 Governing equations

This section is devoted to explaining the governing equations and relevant boundary conditions for the

non-isothermal sloshing problem. The expressions derived below provide the fundamental basis for the

derivation of the scaling laws and the definition of the dimensionless groups controlling the flow similarity.

In the most general sense, fluid motion problems can be described by three transport equations that are

given through the conservation of mass, conservation of momentum and conservation of energy.

For the work developed in this master’s thesis, the problem is divided in two steps. First, isother-

mal simulations were performed with the goal of studying the scaling of the sloshing dynamics and

assessing the effect of the numerical discretization in this context. Then, non-isothermal simulations

were conducted in order to evaluate the scaling of the thermal destratification process and the pressure

evolution of the system. Since the governing equations and the physical assumptions are different for

both cases, they are presented separately in this section.

2.4.1 Isothermal sloshing

For isothermal sloshing, the fluids are considered to be incompressible. Thus, the density of both phases

is assumed to be constant, ρ = cte. As a result, for this situation, the differential form of the mass

conservation equation is simplified into the following [28]:

∇ · u =
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
= 0. (2.4)

Where u = (ux , uy , uz) is the flow velocity vector. The momentum conservation equation is derived

from Newton’s second law of motion, which relates the rate of change of momentum of a fluid with the

sum of forces acting on the control volume. For a generic fluid system, the external forces can act on

the boundaries of the control volume, such as pressure and shear stresses, or throughout the volume

itself, which is the case for gravity.
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The differential form of the incompressible momentum balance is given by Equation 2.5, where p is

the pressure, TTT is shear stress tensor, and g is the imposed acceleration on the fluid. The two terms

on the left hand size represent the temporal and spatial rate of change of momentum due to convective

transport, respectively. The term ∇ · p represents the normal stresses applied on the fluid element due

to pressure, ∇ ·TTT accounts for viscous dissipation/diffusion of momentum and ρg is the source term for

volumetric forces.

ρ
∂u
∂t

+ ρu(∇ · u) = −∇p +∇ ·TTT + ρg (2.5)

For incompressible Newtonian fluids with constant viscosity µ, the shear stress tensor, T, is directly

related to the local velocity gradients, through Equation 2.6 [29, 30].

∇ ·TTT = ∇ ·
(
µ[∇u + (∇u)T]

)
= µ∇2u (2.6)

The ρg term represents the volumetric forces which act on the flow. Depending on the modeling

approach for the sloshing excitation, different acceleration components can be considered within g.

For the inertial reference frame approach, g = (0, 0, g)T, meaning only the gravitational acceleration is

considered to act on the flow. Then, the excitation is established by displacing the domain through rigid

body motion and correcting the equations to account for this displacement. However, for the non-inertial

reference frame approach, the volumetric forces account for the change in lateral acceleration of the

domain. Thus, in these conditions, g = (Ẍ0, 0, g)T, where Ẍ0 is defined in Equation 2.3.

The above equations are valid for both phases, however boundary conditions are required at the

interface in order to establish compatibility in the motion and in the applied stresses. Thus, the velocity of

both fluids at this boundary must match the velocity of the free surface itself, and the pressure difference

between both phases must be balanced with surface tension. This is established through the Young-

Laplace equation [31]:

∆p = pliq − pgas = −σκ. (2.7)

Where ∆p is the pressure difference between the liquid and gas phases, σ is the surface tension,

and κ is the free surface curvature. Moreover, no-slip boundary conditions are assumed for the velocity

at the tank walls.

2.4.2 Non-isothermal sloshing

2.4.2.1 Governing equations for the compressible gas phase

The non-isothermal sloshing case requires a different treatment for the gas and liquid phases. The gas

phase is modeled as being compressible, through the ideal gas law:

p = ρRsT . (2.8)
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Where, Rs is the ideal gas constant and T is the flow temperature. The compressible mass and

momentum balance equation must be considered for the gas phase:

∂ρ

∂t
+∇ · (ρu) = 0 (2.9)

∂

∂t
(ρu) + u(ρ∇ · u) = −∇p +∇ ·TTT + ρg. (2.10)

For these conditions, ∇ · u 6= 0 and the viscous stress tensor TTT takes the form [29]:

TTT = µ
[
∇u + (∇u)T

]
+
([
−2

3
µ + λ

]
(∇ · u)

)
III. (2.11)

Where λ is the bulk viscosity of the fluid and III is the identity matrix. According to Bird et. al (2006)

[32], the bulk viscosity term can be neglected, hence simplifying the expression in order to depend purely

on the velocity field as well as the (− 2
3µ) term, which is commonly referred to as the dilatation viscosity

[29].

The total fluid energy can be decomposed in three main components: internal (e), kinetic (K), and

potential. Thus, if potential energy effects are treated as the work done by body forces [33], the rate of

change of total energy in the control volume only takes into account the internal and kinetic components.

The flow of energy through the control volume boundaries is possible due to the presence of external

heat fluxes or due to the application of work involving body and surface forces. Thus, the total energy

conservation equation is written in differential form in Equation 2.12.

∂(ρe)
∂t

+∇ · (ρue) +
∂(ρK)
∂t

+∇ · (ρuK ) = ∇(k∇T ) +∇ · (TTT · u)−∇ · (pu) + ρg · u (2.12)

Where k is the thermal conductivity of the fluid. For sloshing applications, the kinetic energy con-

tribution can be neglected [8, 27], and introducing the ideal gas relation between internal energy and

temperature, ∂e = Cv∂T [34], the thermal energy transport equation is retrieved:

∂

∂t
(ρCv T ) +∇ · (ρCv uT ) = ∇(k∇T ) +∇ · (TTT · u)−∇ · (pu) + ρg · u. (2.13)

Where Cv is the specific heat capacity at constant volume.

2.4.2.2 Governing equations for the incompressible liquid phase

On the other hand, the liquid phase is still modeled as being incompressible. However, the Boussinesq

approximation is introduced in order to account for thermally-induced density variations in the liquid. The

core idea of this model is that density changes produce negligible difference in terms of inertia, however

significant variations are expected in terms of buoyancy:

ρ = ρ0[1− β(T − T0)] , with β = −1
ρ

(
∂ρ

∂T

)
p

. (2.14)

Where, ρ0 is the density at reference temperature T0 and β is thermal expansion coefficient. The
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mass conservation balance retains the form of the continuity equation shown in Equation 2.4 but the

buoyancy term of the incompressible momentum balance is modified:

ρ0
∂u
∂t

+ ρ0u(∇ · u) = −∇p + µ∇2u + ρ0[1− β(T − T0)]g. (2.15)

The thermal energy transport equation is simplified by removing the spatial and temporal dependency

on the density, by neglecting the compressive and shear work done on the fluid by the ∇ · (p · u) and

∇ · (TTT · u) terms, respectively:

ρ
∂

∂t
(Cv T ) + ρ∇ · (Cv uT ) = ∇(k∇T ) + ρg · u. (2.16)

The ρg ·u term represents the work done by volumetric forces. When the sloshing motion is modeled

in the inertial reference frame, this quantity is neglected, since only the gravitational acceleration acts

on the fluid. However, for the non-inertial reference frame approach, this term is included in the ther-

mal energy transport equation in order to account for the changes in lateral acceleration that the fluid

experiences.

2.4.2.3 Boundary conditions

The kinematic and dynamic boundary conditions for the interface are retained from the isothermal case,

and the no-slip boundary condition for the velocity is also considered. Moreover, the temperature of the

free surface is assumed to be at saturation conditions, Tliq = Tgas = Ti = Tsat. Therefore, the required

pressurization level to achieve a certain interface temperature can be computed through the Clausius-

Clapeyron law [34]:

ln
(

p
p0

)
=
∆hv

Rs

(
1

Tsat,0
− 1

Tsat

)
. (2.17)

Where p and p0, respectively, are the tank pressure after and before the pressurization stage, Tsat

and Tsat ,0, respectively, are the saturation temperature after and before pressurization, ∆hv is the latent

heat of vaporization, and Rs is ideal gas constant for the pressurant.

Phase change effects are not considered in the modeling of the non-isothermal analysis since the

goal of this work is to understand purely the role of sloshing in the thermal destratification problem.

Nonetheless, the presence of condensation or evaporation can be qualitatively assessed by monitoring

the temperature of the interface and relating it to the Clausius-Clapeyron equation. For example, if

the interface temperature decreases, in order to remain in equilibrium conditions, the pressure of the

vapour phase must decrease, promoting condensation to take place in the ullage. On the other hand,

an increase in Ti is associated with a rise in vapour pressure, which should be established through

evaporation of the liquid.
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2.5 Linearised incompressible potential flow theory

This section is devoted to the introduction of simplified models for liquid sloshing. The goal of these

approaches is to simplify the set of governing equations by imposing several restrictions on the problem,

thus allowing for a clearer understanding of the mechanics and key parameters involved. This analysis

is very important in understanding the frequency response of the sloshing waves when lateral excitation

are applied.

In the linearised theory of liquid sloshing, flow irrotationality is assumed, ∇ × u = 0. This property

coupled with the incompressible nature of the fluid, allows the velocity field to be described through a

potential function Φ.

∇Φ = u (2.18)

The complete set of considerations for the linearised potential model is presented below:

1. Irrotational flow: ∇× u = 0

2. Incompressible fluid: ρ = constant⇒ ∇ · u = 0

3. Small displacements and velocities

4. Gravity-dominated flow

5. Rigid cylindrical container walls

6. Harmonic container oscillation: X0(t) = A0 sin(Ωt)

Applying these conditions to the momentum balance of Equation 2.5 yields the linearised potential

equation of motion (Equation 2.19), where g is the gravitational acceleration. The full derivation is shown

in Appendix A.2.

∂Φ

∂t
+

p
ρ
− gz + Ẍ0r cos(θ) = 0 (2.19)

2.5.1 Velocity potential function

The velocity potential Φ is calculated in cylindrical coordinates by writing it as a product of functions of

its independent variables [35]:

Φ = f1(r )f2(θ)f3(z)T (t). (2.20)

The mathematical expression for Φ is computed with by solving the continuity equation, and by

applying the problem’s boundary conditions:

• Continuity equation for potential flow: ∇2Φ = 0

• Zero velocity normal to the tank’s side walls:
(
∂Φ
∂r

)
r=R = 0
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• Zero velocity normal to the tank’s bottom wall:
(
∂Φ
∂z

)
z=−h = 0

• At the liquid’s free surface, consider that the normal z component of the fluid velocity is equal to

the normal component of the velocity of the surface itself: ∂z
∂t = −

(
∂Φ
∂z

)
z=0

Thus, the velocity potential function is given by Equation 2.21. The complete derivation is presented

in the work of Ibrahim (2005) [36].

Φ(r , θ, z, t) =
∞∑

m=0

∞∑
n=1

αmn(t) cos(mθ)Jm

(
ξmnr

R

)
cosh [ξmn(z + h)/R]

cosh (ξmnh/R)
(2.21)

Where m, n are parameters that define the sloshing mode, Jm is the Bessel function of the mth

order, ξmn is the nth zero of the first derivative of the mth order Bessel function (i.e. J
′

m(ξmn) = 0),

and αmn(t) is a temporal function, that is determined through the imposed excitation parameters. This

result highlights the fact that the sloshing response is given by an infinite sum of harmonic modes. The

following subsections will provide further insight on the way the excitation conditions lead to different

wave responses.

2.5.2 Natural frequencies

Two-dimensional free surface oscillations in closed cylindrical containers can be considered as standing

waves between two walls. As a result, the calculation of the natural sloshing frequencies is crucial in

understanding the expected motion.

Figure 2.3: Schematic illustration of a sloshing standing wave (adapted from [23])

For a cylindrical container with radius R, filled with liquid at height h, subjected to a lateral harmonic
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excitation, the natural frequencies of the linear sloshing problem are given by Equation 2.22 [36]. The

derivation of this expression is shown in Appendix A.3.

ω2
mn =

(
gξmn

R
+
σ

ρ

ξ3
mn

R3

)
tanh

(
ξmnh

R

)
(2.22)

For gravity-dominated sloshing, gξmn/R � σξ3
mn/ρR3, meaning that the natural frequencies can be

considered independent of the fluid properties. Moreover, if the fill level is such that h/R � 1, they

become independent of this parameter as well. Thus, for highly-filled containers under normal gravity

conditions the natural sloshing frequencies are simply given by:

ω2
mn =

gξmn

R
. (2.23)

Table 2.1 shows the values of the dimensionless natural frequencies ω∗mn = ωmn(gR)−1/2, as well as

the zeros ξmn for different sloshing modes (m, n).

Table 2.1: Zeros ξmn for the first derivative of the mth order Bessel function of the first kind, and dimen-
sionless sloshing frequencies ωmn, for the (m, n) sloshing modes.

ξmn
m

ω∗
mn

m
0 1 2 3 4 0 1 2 3 4

n

0 0 0 0 0 0

n

0 0 0 0 0 0
1 3.832 1.841 3.054 4.201 5.318 1 1.957 1.357 1.748 2.050 2.306
2 7.016 5.331 6.706 8.015 9.282 2 2.649 2.309 2.590 2.831 3.047
3 10.174 8.536 9.970 11.346 12.682 3 3.190 2.922 3.157 3.368 3.561

2.5.3 Sloshing modes

The free surface shape η for each (m, n) mode in planar sloshing is given by Equation 2.24. This

expression is obtained by writing Equation 2.19 in free vibration conditions around the initial undisturbed

interface (z = 0) and by inserting the potential definition from Equation 2.21. The potential solution is

assumed to be of the form Φ ∼ Φeiωmnt , where i is the imaginary unit [36].

ηmn(r , θ, t) = iωmnαmn cos(mθ)Jm

(
ξmnr

R

)
eiωmnt . (2.24)

Expanding the complex exponential argument in the form eiωmnt = cos(ωmnt) + i sin(ωmnt) allows for

the determination of the real solution only. Furthermore, with the goal of only visualizing the free surface

shapes for the different sloshing modes, the terms that do not depend on spatial or temporal coordinates

are grouped together: Amn = ωmnαmn.

Re(ηmn) = −Amn cos(mθ)Jm

(
ξmnr

R

)
sin(ωmnt). (2.25)

Figure 2.4 shows the expected surface shape for different sloshing modes (m, n). The number of

waves in the tangential direction is determined by m, whereas the number of radial waves is determined

by n. Moreover, the free surface’s radial profile is determined exclusively by the shape of the mth order
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Bessel function of the first kind.

Figure 2.4: Free surface shape for different sloshing modes (m, n). Figures generated in Python by
inserting different (m, n) values in Equation 2.25.

From Table 2.1, the lowest wave mode that can be excited in lateral sloshing conditions is the first

asymmetrical one m = n = 1. This mode is characterized as an approximately flat wave that moves

along with the direction of excitation. Observations on the initial propelled phase of launch vehicle flights

show that this (1, 1) mode is the primary fluid response in cryogenic stages as the spacecraft ascends

through the atmosphere [14, 8, 13, 37]. As such, the focus of this work will be on sloshing excitations

close to this natural frequency, ω11.

2.5.4 Forced lateral vibration

This subsection presents the potential solutions for the free surface displacement and sloshing force in

lateral excitation conditions. These quantities are later used as a form of comparison with the numerical

results.

The velocity potential of the first asymmetrical sloshing mode, derived in Appendix A.4, is given by

Equation 2.26.

Φ(r , θ, z, t) =
∞∑

n=1

2R
(ξ2

1n − 1)
A0Ω

3

(ω2
1n − Ω2)

J1(ξ1nr/R)
J1(ξ1n)

cosh [ξ1n(z + h)/R]
cosh (ξ1nh/R)

cos(θ) cos(Ωt) (2.26)

Free surface displacement

For forced lateral excitations, the free surface equation of motion is written as:

(
∂Φ

∂t
− σκ

ρ

)
z=0
− gη = −Ẍ0r cos(θ). (2.27)
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Neglecting surface tension effects, and inserting the velocity potential definition in the expression

above allows for the determination of the free surface displacement for the first asymmetrical sloshing

mode.

η(r , θ, t) =
A0Ω

2 cos(θ) sin(Ωt)
g

( ∞∑
n=1

2RΩ2

(ξ2
1n − 1)(ω2

1n − Ω2)
· J1(ξ1nr/R)

J1(ξ1n)
+ r

)
(2.28)

Lateral sloshing force

The pressure on the walls due to liquid sloshing is obtained by solving Equation 2.19 with respect to p.

Then, the force applied on the container is obtained by integrating the pressure distribution along the

walls.

Fx =
∫ θ=2π

θ=0

∫ z=0

z=−h/2
p(r = R) · R cos(θ)dzdθ (2.29)

For the problem of lateral liquid sloshing, one is typically more concerned with the lower modes since

these are achieved at lower excitation frequencies. The most relevant case is the first asymmetric mode

since for symmetric waves the resulting force is zero [23], [8]. As such, for lateral excitation conditions

and m = 1 [36]:

Fx = ρπR2hX0Ω
2 sin(Ωt)

[
1 +

∞∑
n=1

1
ξ1nh

2RΩ2

(ξ2
1n − 1)(ω2

1n − Ω2)
tanh

(
ξ1n

h
R

)]
. (2.30)

It should be reiterated that this analysis concerns only linear sloshing, which is valid for flow oscilla-

tions very far from resonance conditions. Once the first natural frequency is reached, the liquid motion

becomes chaotic or the planar waves turn into a swirl motion [8]. The topics regarding the different

sloshing regimes (planar, non-planar and chaotic) are covered in Section 2.7.

2.6 Equivalent mechanical approach

Liquid sloshing dynamics can be described through equivalent mechanical models. These approximate

the oscillating fluid mass as spring-mass or pendulum-mass systems. The simpler mathematical ex-

pressions used in this approach allow for their implementation in spacecraft control systems [38, 39].

Moreover, unlike the classical potential analysis, these models allow for the consideration of viscous

effects in the sloshing response.

Mechanical models consider that the total fluid mass, m, is composed by a fixed mass, m0, alongside

several masses, mn, which are excited during sloshing.

m = m0 +
∞∑

n=1

mn (2.31)

For the first asymmetrical sloshing mode m = 1, the sloshing masses are given as a function of the
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Figure 2.5: Schematic illustration of both equivalent mechanical sloshing models: spring-mass (left)
pendulum-mass (right) systems [36]

geometry as well as the excitation conditions [38]:

mn = m
2R tanh(ξ1nh/R)
ξ1nh(ξ2

1n − 1)
. (2.32)

Both the spring-mass and pendulum-mass approaches are equivalent and provide identical results.

However, it should be noted that, similarly to the potential analysis discussed in the previous section,

these models are only valid for linear sloshing, and for the first asymmetrical mode, m = 1.

Spring-mass system

The equation of motion for the nth spring is given by the second order ODE (ordinary differential equation)

shown in Equation 2.33.

mnẍn = −knxn − dnẋn + F (t) (2.33)

Where kn = mnω
2
1n is the spring’s stiffness, dn = 2mnγω1n is the damping rate, γ is the damping ratio,

and F (t) is the excitation force, which in lateral sloshing conditions is given by:

F (t) = mnA0Ω
2 cos(Ωt). (2.34)

For the first asymmetric sloshing mode, the damping ratio, γ, is given by the empirical correlation

presented in Equation 2.35, where ν is the liquid’s kinematic viscosity, and C1, n1 are parameters that

depend on the problem’s geometry. For a closed cylindrical container without baffles, C1 = 0.79 and

n1 = 1/2 [19].

γ = C1

(
ν

R3/2g1/2

)n1
(

1 +
0.318

sinh(ξ1nh/R)

(
1 +

1− h/R
cosh(ξ1nh/R)

))
(2.35)

The solution of Equation 2.33 is given by the superposition of the homogeneous solution xnh with the
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particular one xnp .

xn(t) = xnh (t) + xnp (t) (2.36)

Where xnp is the steady-state response to the forced excitation:

xnp (t) =
A0√[(

ω1n
Ω

)2 − 1
]2

+ 4γ2
(
ω1n
Ω

)2
cos(Ωt − φ), (2.37)

with

φ = arctan
(

2γ(ω1n/Ω)
(ω1n/Ω)2 − 1

)
. (2.38)

And xnh represents the initial transient displacement. During this transient regime, the natural fre-

quencies are excited, leading to an additional oscillatory contribution that is exponentially damped during

the first moments of the motion:

xnh (t) ∝ e−γω1nt cos(ω1n

√
1− γ2t). (2.39)

The duration of this initial transient phase is dependent on the damping ratio of the system and on

the natural frequency that is being excited.

Free damping

When the tank excitation is stopped, the liquid inside the container enters free damping conditions. The

fluid displacement is described by a damped oscillatory motion that satisfies Equation 2.39.

Consequently, as the fluid motion decreases its amplitude, the free surface displacement, η, as well

as the sloshing force, Fx , will also be described by decay functions [8] such that:

η(t) ∝ e−ωnt and Fx (t) ∝ e−ωnt . (2.40)

The damping ratio, γ, is often measured indirectly through the logarithmic decrement Λ. This param-

eter measures the ratio between the peak amplitude of a signal for two sequential time periods [38].

Λ = ln
(

Current Peak Response
Next Peak Response

)
(2.41)

Therefore, the damping ratio is computed as:

γ =
Λ√

4π2 + Λ2
. (2.42)

2.7 Sloshing regimes

According to Miles’ weakly nonlinear theory [20], the fluid response to a forced lateral motion is strongly

dependent on the excitation parameters, namely the amplitude A0, and frequency Ω of the movement.
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Three different sloshing regimes may be observed, depending on the selection of these two parameters

[13, 40, 41]:

1. Linear sloshing (planar waves): Observed for low amplitudes and frequencies very far from

resonance. Characterized by a steady harmonic motion where the peak wave height is constant

over time. The free surface remains planar, the nodal diameter is fixed and perpendicular to

direction of excitation, and the oscillation frequency is equal to the excitation frequency. This is

the regime that is characterized with potential and mechanical models outlined throughout this

chapter.

2. Chaotic sloshing: Typically takes place near resonance conditions. Characterized by a rotary

motion that never becomes constant or harmonic. Peak wave height and nodal diameter change

with time. Wave height increases until the moving wave’s acceleration equals the gravitational

forces. After wave breaking, the process restarts until the critical amplitude is reached again.

3. Swirl wave: Very stable regime that typically develops when the excitation frequency is higher

than resonance conditions. Constant rotary motion of the free surface along the axial direction.

Nodal diameter rotates with constant angular velocity.

(a) (b)

Figure 2.6: Experimental observations of sloshing regimes: (a) Planar (b) Swirl wave. Image acquisition
performed at VKI with a 16-bit sCMOS camera at 100Hz.

For lateral sloshing, deep waters and low damping conditions, Miles determined that the boundaries

between these regimes are defined by Equation 2.43, where Bi are the fixed values of the frequency

offset parameter that separate the different sloshing regimes: B2 = −0.36, B3 = −1.55, and B4 = 0.735.

A0

R
=

1
1.684

(
(Ω/ω11)2 − 1

Bi

)3/2

(2.43)

Figure 2.7 shows the phase diagram for the different sloshing regimes that can be obtained by varying

the dimensionless excitation amplitude A0/R and frequency Ω/ω11.
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Figure 2.7: Phase diagram for the different sloshing regimes.
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Chapter 3

Scaling the problem

The main purpose of this work is to analyse the scaling for the sloshing-induced thermal mixing phe-

nomenon that takes place inside cryogenic stages of launch vehicles. Given the typical dimensions of

these stages, it is typically not viable to create full-size prototypes to experiment with in laboratorial set-

tings. Thus, small-scale models must be created. The challenge is to preserve similarity in terms of the

flow conditions that take place between the small-scale model and the real life full-size facility.

There are two main approaches in order to develop scaling laws: dimensional analysis (DA), and

scaling of equation (SE) [42]. Dimensional analysis consists of three main steps:

1. Development of a list of dimensional variables that describe the system

2. Conversion of these dimensional quantities into dimensionless numbers

3. Determination of a physical law that relates these dimensionless numbers

The main drawback of the DA approach is that the entire list of dimensional variables to consider must

come from the individual. There is no guarantee that the quantities chosen are the most relevant, or that

they completely model the physics related to the problem. On the other hand, in the SE approach these

variables are directly given by the governing equations as well as the boundary and initial conditions

of the system. However, this approach is still not infallible since simplifications are often made to the

governing equations of the system and their true impact on problem might not be fully known a priori.

For this work, dimensionless numbers will be obtained through the SE approach.

3.1 Dimensionless numbers

This section is dedicated to explaining the relevant dimensionless numbers for the non-isothermal lateral

sloshing problem. Two main assumptions are considered for the scaling approach followed in this work.

The first is the assumption that the gas phase produces a negligible impact in the sloshing motion.

This is attributed to the large difference in the inertia of the gas compared to the liquid. The second

is the consideration that the main driver for the thermodynamic evolution of the system is the mixing

that takes place between the interface and the sub-cooled liquid region underneath it [8]. As a result,
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the dimensionless numbers are generated by scaling only the equations and boundary conditions which

govern the liquid phase.

Therefore, neglecting phase change effects, the set of relevant governing equations and boundary

conditions for the non-isothermal scaling problem is summarized below. The dimensionless numbers

which control the isothermal problem can still be retrieved from this analysis by neglecting the parame-

ters which arise from the energy equation as well as the Boussinesq approximation.

∇ · u = 0 (3.1)

ρ0
∂u
∂t

+ ρ0u(∇ · u) = −∇p + µ∇2u + ρ0[1− β(T − T0)]g (3.2)

ρ
∂

∂t
(Cv T ) + ρ∇ · (Cv uT ) = ∇(k∇T ) (3.3)

∆p = pliq − pgas = −σκ. (3.4)

Table 3.1 contains the list of reference quantities used for the nondimensionalization of these equa-

tions. The tank radius (R) was chosen as the reference length, and the excitation velocity (A0Ω) was

used as the reference velocity. The dimensionless temperature in the gas and liquid was defined based

on the boundaries of these phases.

Table 3.1: Reference parameters considered for the scaling analysis.

Physical
Reference Definition

parameter
Length R Container radius
Velocity A0Ω Tank excitation velocity

Acceleration g Gravitational acceleration
Time R/A0Ω Length scale divided by the velocity scale

Pressure ρ0(A0Ω)2 Dynamic pressure scaling
Temperature Ttop − Tbot Difference between the tank top (warm) and bottom (cold)

The dimensionless expressions are obtained by inserting the reference quantities from Table 3.1 in

the dimensional equations and manipulating the terms until they are dimensionless. This is shown below

from Equations 3.5 to 3.8.

∇∗ · u∗ = 0 (3.5)

∂u∗

∂t∗
+ ~u∗(∇∗ · u∗) = −∇∗p∗ +

µ

ρ0(A0Ω)R
1/π1

µ∇∗2u∗ +
gR

A2
0Ω

2

1/π2

f∗ −
A2

0Ω
2

gRβ∆Tref

1/π3

(∆T )∗g∗ (3.6)
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∂T ∗

∂t∗
+ u∗(∇∗T ∗) =

k
ρCv (A0Ω)R

1/π4

∇∗2T ∗ (3.7)

∆p∗ =
σ

ρ(A0Ω)2R
1/π5

κ∗ (3.8)

The full set of dimensionless numbers is shown in Table 3.2. The Reynolds number (Re) is associ-

ated with the π1 parameter and it relates the relative strength of viscous forces when compared to inertial

ones. This parameter is crucial in sloshing applications since it offers an estimate for the damping that

the liquid experiences as it moves along the container walls. This is important for the initial moments of

sloshing since the wave solution is the superposition of the excited frequency wave-mode with higher fre-

quency modes which are gradually damped throughout time. Thus, differences in the system’s damping

ratio will yield different transient wave responses.

The Froude (Fr) and Weber (We) numbers are connected to the π2 and π5 parameters, respectively.

These dimensionless numbers compare the relative strength of hydrodynamic forces, thus determin-

ing which hydrodynamic regime may be expected. The scheme shown in Figure 3.1 synthesizes this

analysis by classifying the flow as gravity, inertia or capillary dominated. For sloshing applications, it is

common to consider two different dimensionless numbers: the Bond (Bo), and Ohnesorge (Oh) num-

bers. Both of these can be obtained from the already derived set of dimensionless parameters, and they

directly relate the importance of surface tension with respect to the other hydrodynamic forces.

Figure 3.1: Hydrodynamic regimes [23].

The Bond number is in the horizontal axis of Figure 3.1. It can be obtained through the ratio of

the Reynolds and Weber numbers, and it relates the importance of gravitational forces with respect to
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capillary ones [31].

Bo =
We
Fr

=
ρgR2

σ
(3.9)

The Ohnesorge number on the other hand, is the ratio of the Weber and Reynolds numbers and

it relates viscous, inertial and capillary forces [31]. This parameter is especially important for strong

capillary flows, and for these conditions it takes the place of the Reynolds number in assessing the

effect of damping in the flow motion [43, 44].

Oh =
√

We
Re

=
µ√
ρσR

(3.10)

Buoyancy driven convection is related to inertial forces through the π3 parameter. This may be

described as the ratio of the Grashof (Gr) with the square of the Reynolds number. Where Gr is defined

as:

Gr =
gβ∆TrefL3

ν
. (3.11)

With L being the reference length. Finally, the ratio of thermal diffusion to advection is related to the

π4 parameter which may be seen as the Peclet number (Pe) for heat transfer [33].

Table 3.2: Dimensionless numbers for the nonisothermal lateral sloshing problem

DN Expression Definition

π1 Re ρ0(A0Ω)R
µ Inertial forces / Viscous forces

π2 Fr A2
0Ω

2

gR Inertial forces / Volume forces

π3
Gr

Re2
gRβ∆Tref

A2
0Ω

2 Buoyancy forces / Inertial forces

π4 Pe ρ0Cv (A0Ω)R
k Advection / Diffusion

π5 We ρ0(A2
0Ω

2)R
σ Pressure forces / Surface tension

This analysis was developed by scaling the conservation equations and boundary conditions applied

to the sloshing problem. However, the same exercise could be applied to the potential flow and to the

equivalent mechanical models. However, it must be noted that not every parameter would be able to be

reproduced with the standard simplified expressions. For example, neither the potential or mechanical

models take thermal effects into account, and the linearised potential flow assumption neglects viscous

damping.

3.2 Scaling approach

Geometric similarity

The goal for this work is to establish scaling laws between a large-scale cryogenic tank and a small-

scale laboratorial model. Thus, geometric similarity is established between both facilities by scaling up

the already existing laboratorial model.
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The VKI sloshing cell consists of a quartz cylindrical container with flat top and bottom with a radius

R = 40 mm, and a total height H = 104 mm. The large-scale facility considered in this work is obtained

by scaling up the small-scale model by a factor of fifty. This results in a cylindrical sloshing tank with

radius R = 2000 mm, and total height H = 5200 mm. These dimensions are in agreement with typical

full-size cryogenic containers found in the literature [7, 45, 46, 47].

Moreover, the liquid fill ratio is considered fixed and equal to 80% for both facilities and all test cases.

This value was chosen in order to mimic the high fill levels of cryogenic stages in launch vehicles during

the initial propelled flight phase. Moreover, this assures that h/R = 2.08 > 1, meaning that the bottom

shape of the container produces a negligible effect in the sloshing response [8, 48]. The geometric

constraints for this study are summarized in Table 3.3.

Table 3.3: Dimensions for the full-size cryogenic tank and the small-scale laboratorial model

R (m) H (m) Fill level (%)
VKI sloshing cell 0.04 0.104

80
Full size facility 2 5.2

Kinematic similarity

Kinematic similarity is enforced by selecting excitation parameters such that the wave response (i.e.

sloshing regime) is identical in both the large and small-scale facilities. This is achieved by guaranteeing

that the frequency offset parameter B, is the same for both facilities [41]:

B =

(
Ω
ω11

)2
− 1(

1.684 A0
R

)2/3 . (3.12)

Thus, kinematic similarity is satisfied provided that the dimensionless excitation amplitude A0/R

and frequency Ω/ω11 are imposed. As a result of fixing these quantities, the dimensional excitation

parameters may be written as follows:

A0 =
(

A0

R

)
const .

R and Ω =
(

Ω

ω11

)
const .

Ω. (3.13)

Recalling that for normal gravity conditions and deeply filled tanks ω11 ∼
√

g/R, the excitation veloc-

ity is written as:

A0Ω ∼
(

A0

R

)(
Ω

ω11

)
const .

√
gR. (3.14)

Thus, [u] ∼
√

gR is found as an excitation-independent characteristic velocity for gravity-dominated

sloshing. This result shows that the π2 parameter (Froude number) is always preserved between large

and small-scale sloshing facilities provided that the dimensionless excitation parameters are kept con-

stant.
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Dynamic similarity

Dynamic similarity is assured if all dimensionless numbers are equal for both the small-scale model

and the large cryogenic tank. As stated above, fixing the dimensionless excitation parameters for both

facilities allows for equality to be maintained in terms of the Froude number. This guarantees that the

relative importance of inertia and volume forces in the flow is the same.

Analysing parameters π1, π4 and π5, it is evident that these are exclusively dependent on the tank

dimensions and on the fluid’s properties. As a result, given that the container dimensions are imposed

on the problem, similarity with respect to these quantities can only be attempted through the adequate

choice of fluid for the small-scale model.

On the other hand, π3 is additionally dependent on the reference temperature difference ∆Tref. Thus,

similarity for this parameters may be improved by imposing adequate values for the initial thermal field

in the sloshing containers. The relationship between the reference temperature difference in the small-

scale model (∆Tref )m and the full-size facility (∆Tref )p that guarantees perfect similarity in terms of π3 is

given by Equation 3.15

(∆Tref )m =
(

A2
0Ω

2

gRβ

)
m

(π3)p. (3.15)

Scaling approach

The scaling approach used in this work is the following:

1. Select fixed values for the dimensionless excitation parameters: A0/R and Ω/ω11. This assures

that the sloshing regime is respected, and that the Froude number (π2) will be the same for both

facilities.

2. Select a fluid to be used for the small-scale facility such that dimensionless parameters π1, π4, and

π5 are as similar as possible.

3. Consider an initial thermal field in the small-scale facility such that the reference temperature dif-

ference (∆Tref) yields for good similarity in terms of the π3 parameters.

The first step of this approach is simple to execute since it only requires adjusting the excitation

amplitude and frequency that are imposed on the container. However, step 2 raises several difficulties

since there is no known fluid which can lead to perfect matching of the dimensionless numbers in both

sloshing facilities. As mentioned in Chapter 1, the full size facility is filled with cryogenic H2, and the

small-scale model is typically operated with engineering fluids (HFE7000, HFE7200) or cryogenic N2

[14, 8, 16]. The properties of theses fluids for atmospheric pressure and saturation conditions are

shown in Table 3.4.

Figures 3.2 to 3.4 show the similarity in terms of the Reynolds, Peclet and Weber numbers for both

facilities considering N2, HFE7000 and HFE7200 as replacement fluids for H2, and assuming a linear

sloshing excitation with A0/R = 0.045 and Ω/ω11 = 0.7. When comparing the dimensionless numbers

for the full-size and small-scale cases, a difference of 2 to 3 orders of magnitude can be observed for

the chosen replacement fluids.
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Table 3.4: Fluid properties for gas and liquid H2, gas and liquid N2, liquid HFE7000 and liquid HFE7200 at
atmospheric pressure and saturation conditions. Information from the NIST database [49], and Rausch
et. al (2015) [50].

Tref ρ0 ν σ Cp k α β

(K) (kg/m3) (m2/s) (N/m) (J/kgK) (W/mK) (m2/s) (1/K)

LH2 20.6 70.58 1.85E-7
1.91E-3

9904.74 0.104 1.49E-7 0.016

GH2 20.6 1.42 7.71E-7 12134.22 0.017 1.01E-6 0.264

LN2 77.94 803.43 1.95E-7
8.74E-3

2044.36 0.144 8.8E-8 0.006

GN2 77.94 4.91 1.12E-6 1128.29 0.008 1.36E-6 0.107

HFE7000 293.15 1418.14 3.29E-7 0.012 1294.94 0.075 4.08E-8 0.002

HFE7200 293.15 1433.91 4.83E-7 0.014 1213.36 0.067 3.85E-8 1.58E-3
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Figure 3.2: π1 similarity.

0 1 2
R (m)

104

105

106

4

Peclet (Pe) similarity

LH2
LN2

HFE7000
HFE7200

Figure 3.3: π4 similarity.
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Figure 3.4: π5 similarity.

The difference in terms of the Reynolds number suggests that the small sloshing cell suffers sig-

nificantly more damping than the full-size facility due to the stronger relative strength of viscous forces

compared to inertial ones. Moreover, the difference in the Peclet indicates that thermal diffusion has

a stronger effect on the heat transfer that takes place in the smaller geometry relative to advection.

Intuitively this is attributed to the fact that the smaller container allows for the thermal information to

propagate throughout the domain by diffusion more quickly than in the larger container. Finally, assess-

ing the difference in the Weber number, one can conclude that, once again due to the smaller scale,

surface tension effects are more important in the VKI sloshing cell. However, provided that the tank

diameter is much larger than the capillary length of the problem, surface tension is expected to play a

negligible role.

Step 3 allows for similarity to be assured in terms of the π3 dimensionless number (Gr/Re2). This is

achieved through Equation 3.15, which relates the temperature difference between the top and bottom

of the containers for both sloshing facilities.

Given this relationship, a simplified approach is used for the physical modeling of the thermal strat-

ification process. An initial state is set for the container, where both the gas and liquid regions are

assumed to have constant temperature. The temperature in the gas phase is assumed to be equal to

the temperature in the top of the container, Tgas = Ttop, and the liquid is assumed to have the tempera-

ture of the bottom, Tliq = Tbot (Figure 3.5a). Then, the system is allowed to evolve towards equilibrium
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with heat transfer taking place between the warm gas and the cold liquid. This leads to the formation of

the thermally stratified field shown in Figure 3.5b, where the black dotted line indicates the position of

the interface.

(a) (b)

Figure 3.5: Simplified model to determine the thermally stratified field: a) Initial thermal profile with
constant temperature in the gas and liquid b) Stratified thermal field at a more advanced point in time.

The temperature of the gas and liquid is known for the full-size H2 facility from the master’s thesis

of Hoppe (2013) [11]. In this document, a performance study is executed for the pressurization of the

ESC-A cryogenic stage from the Ariane 5 ECA launch vehicle. The average temperature of the gaseous

hydrogen is measured to be at 47.3 K and the liquid is at 20.6 K for tank pressures between 3.1-3.3 bar.

Table 3.5: Temperature information for H2 and the replacement fluids in order to guarantee perfect
similarity in terms of the π3 dimensionless parameter.

H2 N2 HFE 7200 HFE 7000
∆T (K) 26.7 77.65 271.83 218.91
Tliq (K) 20.6 77.35 - -
Tgas (K) 47.3 155 - -

The simplified model requires Tgas and Tliq to be introduced as inputs in order to start the non-

isothermal analysis. As such, these values are calculated for the potential replacement fluids (N2,

HFE700 and HFE7200) through similarity with the π3 dimensionless number in the liquid phase. Ta-

ble 3.5 shows the required values for the temperature difference between the gas and liquid regions in

order guarantee perfect similarity in terms of (π3)liq. These results highlight the difficulty in using non-

cryogenic fluids for the current non-isothermal analysis given the impractically large ∆T required by this

scaling approach. Consequently, for the remainder of this work, only H2 and N2 were considered in the

numerical analysis.
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Chapter 4

Numerical methods

4.1 The Volume of Fluid Method

The Volume of Fluid Method (VOF) was first developed by Hirt and Nichols in 1981 [51] with the goal

of modeling immiscible multiphase flows in CFD (Computational Fluid Dynamics). The VOF method

defines a volume fraction variable αf which varies between 0 and 1 in order to represent the volumetric

proportion of fluid phase f in a given cell of a CFD mesh [23]. If αf = 1, the cell is fully filled with fluid

f , whereas if αf = 0 there is no amount of this fluid contained in the cell. Therefore, cells which contain

αf values between 0 and 1 indicate the presence of the free-surface. For N immiscible phases, the total

sum of all volume fractions in a given cell must amount to unity.

Figure 4.1: Interface discretization with the VOF method [52].

Figure 4.1 shows the fluid interface being captured in a two-phase flow with the VOF method. The

dark shaded cells represent the liquid, whereas the light grey cells correspond to the gas. The number

in each cell is the volumetric fraction of the liquid αl , the straight lines show the estimated placement of

the free surface, and n is the calculated interface normal vector in the respective cell.

The VOF method allows for a single set of continuity, momentum and energy equations to be solved

for the entire multiphase flow. The position of fluid f and the movement of the free surface is determined
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by solving the typical conservation equations alongside the advection equation for αf :

∂αf

∂t
+∇ · (αf u) = 0. (4.1)

After the determination of the αf field, equivalent fluid properties are computed in each cell based

on the individual fluid properties and on the volume fraction field. For the case of a two phase flow

composed by liquid and gas, the cell density and kinematic viscosity required by the momentum equation

are given by:

ρ = ρlαl + ρg(1− αl ) (4.2)

ν = νlαl + νg(1− αl ) (4.3)

Where, the l subscript refers to the liquid, and g refers to the gas. This procedure is applied to any

property that is used in the governing equations and can be easily extended to more than two phases.

The VOF method in OpenFOAM

The simplest implementation of the VOF method in OpenFOAM is done through the interFoam solver.

This is a two-phase solver for immiscible, incompressible and isothermal fluids that solves a single set

of continuity and momentum equations alongside the α advection equation. The continuity equation

is implemented as shown in Equation 2.4, however both the momentum and α equations have some

modifications.

In order to give stability to the solution and to simplify the definition of boundary conditions, the

pressure is treated through the p rgh variable [53]:

prgh = p − ρg · x. (4.4)

Where x is the position vector and prgh is the modified pressure obtained by removing the hydrostatic

component ρg·x from the total value. An additional source term is also added to the momentum equation

in order to account for capillary forces near the interface. This is achieved through the Continuum Surface

Model (CSF) developed by Brackbill et. al (1992) [54], which is shown in Equation 4.5.

Fσ = σκ∇αf (4.5)

Where σ is the surface tension, αf is the volumetric fraction for fluid f and κ is the mean free surface

curvature given by:

κ = ∇ ·
(
∇αf

|∇αf |

)
. (4.6)
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Thus, the momentum equation solved in interFoam is the following:

∂

∂t
(ρu) + u∇ · (ρu) = −∇prgh +∇ ·TTT− g · x(∇ρ) + σκ∇αf . (4.7)

The interface is captured by solving the volumetric phase fraction advection equation with an ad-

ditional compression term that aims to reduce numerical diffusion and smearing of the interface [55].

Thus, the α advection equation considered by the solver is shown in Equation 4.8, where uc is the

relative velocity that acts perpendicular to the free surface, calculated through Equation 4.9.

∂αf

∂t
+∇ · (αf u) + ∇ · [αl (1− αl )uc ]

Additional compression term

= 0. (4.8)

~uc = Cα|u|
∇αf

|∇αf |
(4.9)

The Cα parameter is a user defined value which quantifies the magnitude of the compression term

[52]. It is usually set to 1 corresponding to a “compression velocity” of the same order as the local flow

velocity [56].

In order to further minimize numerical diffusion in the transport of the volumetric phase fraction and

to guarantee boundedness in the solution, the MULES (Multidimensional Universal Limiter with Explicit

Solution) scheme is applied to solve the α advection equation. This is an implementation of the FCT

(Flux Corrected Transport) theory developed by Zalesak (1979) [57], and is extensively detailed in the

work of Márquez Damián (2014) [53].

The interFoam algorithm in OpenFOAM-v1912 is described in Appendix B.1

4.2 Numerical Grids

The three-dimensional numerical grid was generated using the blockMesh utility included with the instal-

lation of OpenFOAM-v1912. A total of 36 regions (or blocks) were generated in order to adequately model

the cylindrical container. As shown in Figure 4.2, each transversal section of the geometry is defined

by an inner square region, four intermediate sections, and four exterior sections close to the container

walls. The axial direction was decomposed in four main sections: liquid (Z01), bottom-interface (Z12),

upper-interface (Z23), and main gas (Z34).

The number of cells in the inner box region is controlled by the nT parameter, whereas the number of

cells in the radial direction for the intermediate and exterior regions are defined by nR and nR2, respec-

tively. Identically, parameters nZ01, nZ12, nZ23, and nZ34 control the number of cells in the axial direction

for their respective regions. The total mesh dimensions (i.e. inner box side length, cylinder radius and

height) were scaled by a given factor such that the grid proportions were kept the same for both the large

and small-scale sloshing facilities. This allowed for the grid density to be the same for both situations.

Moreover, the base time-step was scaled based on Equation 4.10, where Te is the period of excitation

and N is the user-selected number of time-steps per period. This procedure ensured that the same
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Figure 4.2: Three-dimensional mesh generated with the blockMesh utility.

temporal resolution was applied to both sloshing containers.

∆t =
Te

N
(4.10)

Figure 4.3: Two-dimensional mesh generated with the blockMesh utility.

Chapter 5 contains the grid independence study which was conducted for both the large H2 and

small N2 containers. The objective was to assess the impact of the grid spacing and temporal resolu-

tion on the sloshing response. For this purpose, the time-step was adjusted in order to guarantee the

Courant number was maintained constant between all simulations. OpenFOAM calculates this param-

eter through Equation 4.11, where ∆t is the simulation’s time step, V is the cell volume, and φi is the

volumetric face flux.

Co = 0.5
∆t
V

∑
faces

|φi | (4.11)

The ‘0.5’ factor arises from the fact that the magnitude of the cell face flux |φi | is considered. In
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reality φi is either negative or positive depending on whether the flux is entering or exiting the cell face.

Therefore, an average of the incoming and outgoing fluxes is estimated by summing them together and

dividing by two [58].

In order to test the effects of finer grids and more reduced time-steps without severely increasing

the computational time and resources, two-dimensional grids were also generated using blockMesh.

The 2D simulations are not perfectly equivalent to the 3D ones since instead of representing a cylinder,

these consider the domain to be more akin to a rectangular container. Nonetheless, for linear sloshing

conditions, the potential theory indicates that the flow solutions should be identical [36]. Figure 4.3

shows the generated two-dimensional grid, which inherits an identical generation process to the 3D

case.

The chosen temporal scheme was the first-order implicit Euler, the gradient and laplacian terms were

discretized with second-order Gauss linear, and the divergence terms were treated with the second-

order TVD (Total Variation Diminishing) flux-limiting van Leer scheme. This scheme limits the cell face

fluxes, thus eliminating numerical oscillations (i.e. wiggles) in the flow field [59]. Moreover, no turbulence

model was considered for this analysis [60].

4.3 Modeling of isothermal lateral sloshing

As mentioned in Chapter 2, liquid sloshing in a closed reservoir can be modeled through two methods:

1. Imposed excitation through rigid body motion of the container using Equation 2.1.

2. Imposed excitation in a non-inertial reference frame where the container is stationary and the

motion is introduced through source terms in the momentum equations. The source terms account

for the changes in acceleration expressed by Equation 2.3.

In order to check if both approaches produce identical results in OpenFOAM, two sloshing simulations

were performed using the methods stated above. The numerical grid, discretization schemes, solution

methods, and time-step were kept the same for both cases, with the only difference being in the method

of exciting the fluid. The simulations were performed in the linear sloshing regime for 120 seconds, with

(A0/R) = 0.1 and (Ω/ω11) = 0.5 for the large H2 tank. The base time-step used was 0.006 seconds, and

the maximum allowed Courant number was set to 0.1.

The rigid body motion is available with the default interFoam solver that comes installed with OpenFOAM

v1912. The lateral oscillatory motion is applied through the dynamicMeshDict file shown in Listing 4.1.

The amplitude of the oscillating motion is set to 0.2 meters, and the frequency is roughly 1.502 rad/s.

Listing 4.1: dynamicMeshDict file required to model the oscillating rigid body motion.

1 dynamicFvMesh dynamicMotionSolverFvMesh;

2 motionSolver solidBody;

3 solidBodyMotionFunction oscillation;

4 solidBodyMotionFunction oscillatingLinearMotion;

5 oscillatingLinearMotionCoeffs
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6 {

7 amplitude (0.2 0 0);

8 omega 1.501717859;

9 }

On the other hand, the implementation of the non-inertial sloshing method requires modification to

the solver’s source code in order to account for time-varying body forces. The modified solver is named

interModGFoam, and it works by reading a new acceleration field at each time-step from a tabulated list

[23]. The time-varying acceleration field is then added to the momentum equation in the form of the g

vector that is shown in Equation 4.7, such that:

g =
(
Ẍ0(t), 0, g

)T
, where g ≈ 9.8 m/s2. (4.12)

0 20 40 60 80 100 120
Time (s)

0.2

0.1

0.0

0.1

0.2

0.3

D
is

pl
ac

em
en

t (
m

)

3D H2 Interface displacement

interFoam interModGFoam
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Figure 4.5: Interface displacement DFT with the
interFoam and interModGFoam solvers

Figure 4.4 shows the temporal evolution of the interface displacement using both methods. The

chosen temporal scheme is the first-order implicit Euler, the gradient and laplacian terms are discretized

with second-order Gauss linear, and the divergence terms are treated with the second-order TVD (Total

Variation Diminishing) flux-limiting van Leer scheme. The base time-step is of 0.006 seconds, with a

maximum courant number of 0.1.

The initial sloshing response is the result of the superposition of the ‘steady-state’ periodic solution

where the fluid sloshes according to the excitation frequency Ω = 2πfe, with the initial transient response

which develops according to the natural frequency ω11 = 2πf11 and that is damped at a rate of γω11 s−1

[13]. This initial transient phase is observed in both cases, however its intensity appears to depend on

the excitation method.

The interModGFoam static mesh approach results in considerably smaller wave amplitudes and the

solution as whole appears to be less sensitive to this initial superposition of modes. This can be checked

by computing the Discrete Fourier Transform (DFT) of the signal, which is shown in Figure 4.5. The

excitation frequency fe = 0.239 Hz is both the first and largest spike visible in this plot. The signal
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amplitude at frequency fe is the same for both excitation methods. This can be explained by the fact that

the steady-state periodic solution,

η(t) = ηmax sin(Ωt) (4.13)

is equally present since the start of the simulation, as is predicted by the simplified mechanical. However,

the second spike, which corresponds to the natural frequency f11 = 0.478 Hz and that is associated with

the initial transient motion, has a much higher amplitude in the moving mesh approach than in the static

one.
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Figure 4.6: Lateral sloshing force with the
interFoam and interModGFoam solvers
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Figure 4.7: Lateral sloshing moment with the
interFoam and interModGFoam solvers

When analysing the lateral sloshing force (Fx ) and moment (My ) with respect to the container’s base,

identical results are obtained. Figures 4.6 to 4.7 show that although the periodic sloshing response is

the same using both methods, the initial transient period results in different estimations for the sloshing

force and moment. This suggests that the simulation start-up might not be perfectly identical for both

approaches since different responses are observed only in the transient regime, while identical solutions

are obtained for steady periodic conditions.

The moving mesh approach with the interFoam solver was used for the remainder of this work.

4.4 Modeling of non-isothermal lateral sloshing

One of the most crucial aspects of liquid sloshing in cryogenic stages is the thermodynamic evolution

of the system that is created triggered by the fluid motion. In order to model the non-isothermal effects

and pressure fluctuations that take place inside these containers when they slosh, the pressure-based

compressibleInterDyMFoam solver was considered. As the name suggests, this is a variation of the

interFoam solver which is aimed at compressible flow problems and solves the energy balance along-

side the momentum, continuity and α advection equations.

Using this solver, the Boussinesq approximation was used for the liquid phase, and the ullage gas

was treated with the perfect gas model. This approach was used in the works of Himeno (2011) [15],
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Agui (2015) [26], and Kartuzova (2018) [27]. However, unlike those cases, mass transfer effects are not

considered in this work since the focus is to study the impact of sloshing on the thermal de-stratification

effect. The numerical simulations presented in this work allow for the decoupling of the momentum

and energy exchanges from the mass transfer effects, which is not possible for real life experimental

conditions.

The description of the compressibleInterDyMFoam solver is presented in Appendix B.2.

4.5 Moving contact line problem

In a partially filled container, the contact line is known as the region which separates wet portions of the

wall from dry ones. Surface tension is the result of the molecular forces in this region that arise due to

a normal stress anisotropy in the vicinity of the interface [61]. This leads to a pressure difference ∆p at

the interface that can be calculated by the Young-Laplace equation.

The moving contact line problem arises due to the incompatibility of the no-slip boundary condition at

the walls with the fact that the liquid-gas interface must be allowed move (slip) [62]. Physically speaking,

if the flow velocity at the walls was indeed zero, the contact line would theoretically be pinned down as

well and remain static until the end of time. However, in reality we know that this is not the case.

Numerically, this issue is resolved using the VOF method through the α advection equation. Even

though the no-slip boundary condition is used at the walls, since the flow properties are stored in the

cell centroids, there will be a non-zero velocity in the cell centre next to the wall which promotes the

advection of the volumetric phase fraction along the solid boundary. The issue with this approach is

that the contact line movement may become overly damped if the grid becomes too refined close to the

walls, as was verified by the work of Hansinger (2016) [24]. He used the interFoam solver to numerically

determine the damping ratio γ of water in a partly-filled container after a lateral sloshing excitation. The

numerical γ was found to increase as the mesh was refined near the walls, meaning that the coarsest

grids tested offered better agreement with the theoretical results. This problematic is exemplified by

Figure 4.8, where the velocity gradient near the wall is shown for a coarse and fine mesh.

Figure 4.8: Schematic for the wall velocity gradient in a coarse mesh (left) and fine mesh (right) [24].
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The advancement of the contact line along the wall is computed based on velocity U1 which is

included in the α advection equation. Assuming a no-slip condition at the wall, for a very fine grid U1 → 0,

meaning that the contact line will tend to stick to the boundary. This leads to additional resistance to the

free surface motion, which may then be interpreted as artificial damping.

The moving contact line problem is a well-known challenge in the simulation of two-phase flows.

The problem stems from the fact that the dynamics involved are the result of molecular interactions, and

applying a typical continuum mechanics approach leads to a stress singularity to be found on the contact

line [61]. The Navier-slip model is a mechanism that was developed in order to relax this singularity and

to eliminate the contradiction of employing a no-slip boundary condition on an moving contact line. The

core idea of this model is to consider the fluid to have a given slip-velocity ~uslip tangent to the solid

surface that is proportional to the strain-rate.

uslip = λn ·
[
∇u + (∇u)T

]
(4.14)

Equation 4.14 gives the slip-velocity for the proposed Navier-slip model, where n is the surface

normal vector, and λ is called the slip-length [63]. The slip-length was first theorized by Maxwell (1878),

who argued it should be proportional to the mean free path. This was later demonstrated experimentally

by Andrew & Harris (1995) [64] and analytically by Bocquet (1993) [65].

Due to grid refinement limitations, numerical simulations require unrealistically large values for the

slip-length in order to resolve the shear stress singularity problem. Thus, the slip length λ becomes

merely an adjustable parameter for the simulation, which depends on the grid spacing [66]. Moreover,

in order to provide accurate results, this method should be employed alongside a dynamic contact angle

model [66, 67].

OpenFOAM allows for the implementation of a similar model through the partialSlip boundary con-

dition. This allows for a given amount of slip to be considered based on the user input valueFraction,

which may range between 0 and 1. If the valueFraction is set to 1, the no-slip boundary condition is

recovered, whereas setting this parameter to 0 imposes the free-slip state. By inspection of the source

code, this boundary condition does not seem equivalent to the Navier-slip condition since it defines the

wall-normal velocity gradient (snGrad) and the slip-velocity as:

∂U
∂n

=
Uslip − Uc

∆/2
(4.15)

Uslip = valueFraction · refValue + (1− valueFraction) · Uc (4.16)

Where n is the surface normal vector, Uc is the velocity at the cell centroid adjacent to the wall, ∆/2

is the distance between the cell centroid and the wall, and refValue is a user defined reference value

for the velocity at the wall.

For the simulations performed in this work, the classical no-slip boundary condition was employed.

The consequences of this choice are discussed in Chapter 5.
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Chapter 5

Results and discussion

5.1 Isothermal sloshing

5.1.1 3D sloshing simulations

5.1.1.1 Effect of the grid refinement

The effect of the grid refinement on the sloshing motion was assessed. Four different meshes were gen-

erated following the methodology explained in Chapter 4. Figure 5.1 shows the tested numerical grids

alongside their respective number of cells and Table 5.1 summarizes the time-step control parameters.

Figure 5.1: Numerical grids used for the 3D sloshing simulations and their respective hexahedral cell
count.

Table 5.2 shows the fluid properties considered for H2 and N2 alongside the excitation conditions and

tank dimensions considered for both sloshing facilities. The simulations were carried out in the linear

sloshing regime with dimensionless excitation parameters: (A0/R) = 0.045 and (Ω/ω11) = 0.7. The fluid
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Table 5.1: 3D mesh parameters for time-step control.

Number of cells dt (H2) dt (N2) max(Co)
Mesh 00 2 875 0.0144 0.002

0.1
Mesh 01 40 376 0.0072 0.001
Mesh 02 109 824 0.006 8E-4
Mesh 03 197 721 0.0048 6.8E-4

properties were obtained from the NIST (National Institute of Standards and Technology) database [49]

at ambient pressure and saturation conditions.

Table 5.2: Fluid properties for H2 and N2, their respective container dimensions, and the excitation
parameters considered for both cases.

ρ ν σ R H A0 ω11 f11 Ω fe
(kg/m3) (m2/s) (N/m) (m) (m) (m) (rad/s) (Hz) (rad/s) (Hz)

LH2 70.58 1.85E-7
0.002 2 5.2 0.09 2.774 0.442 1.942 0.309

GH2 1.417 7.71E-7
LN2 803.43 1.95E-7

0.009 0.04 0.104 0.0018 21.238 3.38 14.866 2.366
GN2 4.913 1.12E-6

Figures 5.2 and 5.3 show the interface displacement during the first instants of sloshing for the

large H2 tank and the small N2 sloshing cell, respectively. Both these plots highlight the initial non-

periodic sloshing motion that occurs when the excitation is applied directly from rest. This motion is the

superposition of multiple excited wave-modes which are gradually damped as the system evolves. The

rate at which these modes are damped is greatly affected by the spatial and temporal resolution of the

numerical grid. In fact, Figures 5.2 and 5.3 reveal that the rate at which the higher-frequency waves

are damped decreases as the grid becomes more refined. This is attributed to numerical diffusion in

the coarsest grids, which generates additional damping for the sloshing motion, thus causing lower

than expected wave amplitudes and leading to under-estimations for the duration of the initial transient

regime.
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Figure 5.2: Contact line displacement in the initial sloshing moments for the H2 container (0 to 60
seconds).

Although the initial fluid response appears to be quite sensitive to the spatial and temporal resolution,
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Figure 5.3: Contact line displacement in the initial sloshing moments for the N2 container (0 to 13
seconds).

this appears to not be the case when the periodic sloshing motion fully sets in. This is seen in Figures 5.4

and 5.5, which show the contact line displacement for both the H2 and N2 containers in a more advanced

time. At this point, all simulations produce identical results. The contact line displacement adopts

an oscillatory periodic form, which is in very good agreement with the results given by the linearised

potential theory (Equation 2.28).
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Figure 5.4: Periodic contact line displacement for
the H2 container (from 80 to 120 seconds).
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Figure 5.5: Periodic contact line displacement for
the N2 container (from 25 to 30 seconds).

Monitoring the sloshing force and moment yields identical results. However, when analysing the tem-

poral evolution of these parameters, in Figures 5.6 and 5.7, they appear to have a more ‘stable’ response

than the contact line displacement. In other words, the initial superposition of sloshing responses ap-

pears to have a smaller effect on the total force and moment evolution. A possible explanation for

this occurrence is the fact that for planar waves the contact line displacement is mainly affected by the

sloshing mass that is excited close to the interface, whereas the sloshing force and moment are cal-

culated by integrating the pressure distribution and shear stress along the entire fluid volume. Thus,

the smaller variations that occur at the surface level and that can be seen in Figures 5.2 and 5.3 will

not cause enough of an impact in terms of pressure distribution or shear force to affect the total force

measurement in the containers.

Figures 5.8 and 5.9 show the lateral sloshing force response for H2 and N2, respectively, for a more

42



0 10 20 30 40 50 60
Time (s)

2000

1000

0

1000

2000

Fo
rc

e 
(N

)
3D H2 Lateral force

00 01 02 03

Figure 5.6: Lateral sloshing force for the H2 con-
tainer (from 0 to 60 seconds).

0 2 4 6 8 10 12
Time (s)

0.2

0.1

0.0

0.1

0.2

Fo
rc

e 
(N

)

3D N2 Lateral force

00 01 02 03

Figure 5.7: Lateral sloshing force for the N2 con-
tainer (from 0 to 13 seconds).
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Figure 5.8: Lateral sloshing force for the H2 con-
tainer (from 80 to 120 seconds).
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Figure 5.9: Lateral sloshing force for the N2 con-
tainer (from 25 to 30 seconds).

advanced point in time where the higher frequency waves are already damped. Once again, the results

line up almost perfectly with the theoretical lateral force given by the linearised potential flow theory

(Equation 2.30).

Figures 5.10 and 5.11 show the Discrete Fourier Transform (DFT) of the lateral sloshing force in the

H2 and N2 containers, respectively. These results show the expected superposition of two wave signals

at different frequencies, f11 and fe.

For H2, the Fourier analysis reveals the first spike to be the numerical estimate for the forced fre-

quency, given in the most refined grid by fe = 0.33 Hz, and the second spike to be the numerical natural

frequency, f11 = 0.47 Hz. Similarly, the results for N2 in the most refined grid yield fe = 2.37 Hz, and

f11 = 3.33 Hz. The frequency analysis confirms the fact that as the grid is refined, the intensity of the

signal at f11 increases relative to signal at fe for both the H2 and N2 facilities. This translates to a stronger

presence of the higher frequency modes in the transient response.

To assess the effect of numerical diffusion on the initial transient response, the numerical damping

ratio was computed by conducting free damping sloshing simulations. Utilizing the data from previous

simulations, the sloshing motion was stopped and the fluid was allowed to enter free damping conditions,
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Figure 5.10: DFT for the H2 lateral sloshing force
signal from 0 to 60 seconds.
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Figure 5.11: DFT for the N2 lateral sloshing force
signal from 0 to 13.5 seconds.

sloshing side-to-side while the wave amplitude gradually decreased. Figures 5.12 and 5.13 show the

lateral force evolution for free damping conditions in the H2 and N2 containers, respectively. These plots

confirm the fact that the damping rate of the system decreases as the grid is refined and the time-step

reduced.
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Figure 5.12: Lateral sloshing force for free damp-
ing conditions in the H2 container.
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Figure 5.13: Lateral sloshing force for free damp-
ing conditions in the N2 container.

The numerical damping rate of the system γnum is calculated in a few steps. First, the local maxima

of the lateral sloshing force Fmax ,i in free damping conditions are extracted and matched alongside the

current peak number, i . Then, the logarithm is applied to these values in order to relate ln(Fmax ,i ) with i .

An exponential decay in amplitude yields a linear decrease of ln(Fmax ,i ) as i increases. The slope of this

function is the logarithmic decrement of the system Λnum:

Λnum =
1
i

ln
(

Fmax ,0

Fmax ,i

)
, (5.1)

which is used to obtain the numerical damping rate through Equation 2.42.

Figures 5.14 and 5.15 show the linear decrease of ln(Fmax ,i ) alongside the computed numerical

damping rate for the different meshes used in the H2 and N2 cases. These results are summarized in

Table 5.3 and compared with the empirical formula given by Equation 2.35.
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Figure 5.14: Logarithmic decrement for the lateral
sloshing force in the H2 container.

0 2 4 6 8 10 12 14
Number of peaks

5.5

5.0

4.5

4.0

3.5

3.0

ln
(F

)

3D N2 Lateral force peaks (free damping)

01 = 2.65e 02
02 = 1.30e 02
03 = 1.10e 02

04 = 8.79e 03
theor. = 2.21e 03

Figure 5.15: Logarithmic decrement for the lateral
sloshing force in the N2 container.

Table 5.3: Comparison of numerical and theoretical damping ratios for both the H2 and N2 sloshing
facilities, where Λ is the logarithmic decrement, and γ is the damping ratio.

H2 00 H2 01 H2 02 H2 03 N2 00 N2 01 N2 02 N2 03
Λnum 0.162 0.079 0.064 0.052 0.167 0.082 0.069 0.055
γnum 2.58e-2 1.25e-2 1.02e-2 8.29e-3 2.65e-2 1.30e-2 1.10e-2 8.79e-3
γtheor 1.14e-4 2.21e-3

γnum/γtheor 226.3 109.6 89.47 72.7 12 5.9 5 4

There are two main observations that can be made from Table 5.3. First, the numerical damping

ratios for both the H2 and N2 simulations are considerably higher than the ones given by Equation 2.35.

This is true especially for the H2 case where the difference is almost two orders of magnitude even for

the most refined grid. Second, although the theoretical damping rates for H2 and N2 are almost an order

of magnitude different compared to each other, the numerical values are very similar among both cases

(i.e. γH200 ∼ γN200 , γH201 ∼ γN201 , and-so-on).

These results suggest that numerical diffusion dominates the free vibration problem and that the

damping shown in Figures 5.12 and 5.13 is actually a measure of the ‘numerical damping’. Moreover,

by examining the γnum/γtheor parameter, it is estimated that the full-size H2 facility and the N2 sloshing

cell should reach mesh independent states at different grid refinements. Since the full-size facility ex-

periences smaller physical damping rates, a more refined grid must be used in this case in order to

decrease numerical diffusion to lower values.

However, it should be noted that this analysis is only relevant if the transient regimes are of interest.

For cases where only the periodic planar response is relevant, the results of this section show that the

flow solution is identical across all the tested numerical grids.

5.1.1.2 Isothermal 3D similarity

This section is devoted to the analysis of the scaling laws for isothermal sloshing. To achieve this,

the dimensionless interface displacement η∗, lateral force F ∗x and moment M∗y are compared between

the full-size H2 facility and the N2 sloshing cell. The non-dimensionalization of these flow parameters

is based on the reference quantities used to scale the governing equations in Chapter 3. As such,
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the interface displacement η is scaled with the reference length R, while the lateral sloshing force and

moment are scaled with the reference dynamic pressure ρ0(A0Ω)2 integrated over the container’s lateral

walls with area 2πRh. The underlying assumption in this analysis is that pressure forces are dominant

compared to shear forces, and thus the dynamic pressure scaling is adequate to evaluate the sloshing

loads. The considered dimensionless flow parameters are given by Equation 5.2.

η∗ =
η

R
(5.2)

F ∗x =
Fx

ρ0(X0Ω)2Rh
(5.3)

M∗y =
My

ρ0(X0Ω)2Rh2 (5.4)

Figures 5.16, 5.17 and 5.18 show the dimensionless interface displacement, lateral sloshing force

and moment for both the H2 and N2 containers using the 02 mesh configuration. These results show

good similarity in the numerical simulations of both sloshing containers, especially when the stable

sloshing regime is reached. For these conditions, the small-scale results can be scaled up in order to

predict the flow response in the large container with great accuracy (Figures 5.17 and 5.18).
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Figure 5.16: Dimensionless interface displacement for the H2 and N2 facilities between t∗ = 0 and
t∗ = 11.3.

As was expected, the main differences lie within the initial transient regime, however even for this

stage, the flow response very similar. The maximum interface displacement, sloshing force and mo-

ment are shown in Table 5.4, alongside the average εavg and maximum εmax differences between both

dimensionless solutions over time.

Table 5.4: Maximum values and deviations for the dimensionless interface displacement, lateral force
and sloshing moment in the H2 and N2 containers.

η∗max εηavg εηmax F ∗xmax
εFx

avg εFx
max M∗ymax

ε
My
avg ε

My
max

H2 0.1597
0.0002 0.0703

112.050
0.069 77.58

66.667
0.066 71.892

N2 0.1588 112.384 66.749

During the transient period, higher-frequency wave modes are excited and gradually damped. This
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Figure 5.17: Dimensionless lateral force for the H2
and N2 facilities between t∗ = 8 and t∗ = 11.3.
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Figure 5.18: Dimensionless lateral moment for the
H2 and N2 facilities between t∗ = 8 and t∗ = 11.3.

means that differences in the damping ratio of the system lead not only to distinct flow responses during

this stage, but also to different durations of the transient state itself in both containers. The numerical

damping rates for both systems are estimated as γH2 02 = 0.0102 and γN2 02 = 0.011. As mentioned in

the previous section, even though these values are very similar between each other, they are one to two

orders of magnitude higher than the theoretical values from Equation 2.35. It is believed that numerical

diffusion dominates the problem and because of this, γH2 02 and γN2 02 are not accurate measures for

the real damping in the system. As a result, one should be very critical of the flow similarity observed

during the initial transient period.

The fact that these parameters are identical between each other suggests that both simulations show

good similarity in the numerical sense. However, neither case is spatially or temporally refined enough

to show the true viscous damping nature of the system. In order to further investigate this issue without

greatly increasing the computational resources required, the next section continues this same analysis

but with two-dimensional cases.

5.1.2 2D sloshing simulations

5.1.2.1 Effect of the grid refinement on the numerical diffusion

As a starting point for the two-dimensional simulations, the effect of the grid refinement on the numerical

sloshing solution was assessed. The 2D nature of the problem allowed for higher spatial and temporal

refinements to be considered than in the three-dimensional simulations. The tested numerical grids are

shown in Figure 5.19 and the mesh parameters are summarized in Table 5.5.

The two-dimensional problem can be seen in three dimensions by considering a rectangular con-

tainer where the third spatial dimension (normal to the plane seen in Figure 5.19) is much larger than

the height or width. Thus, the expected damping in the 2D simulations is not the expected to be the

same as in the 3D case. Nonetheless, this study was still conducted in order to have an order of magni-

tude for this issue without increasing too much the computational demand of the simulations. For these
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Figure 5.19: Numerical grids used for the 2D sloshing simulations and their respective hexahedral cell
count.

conditions, the first asymmetrical natural frequency of the system is given by [24]:

ω2
11 =

πg
R

tanh
(
πgh
R

)
, (5.5)

where R is the bottom length of the rectangular container. This yields ω11 = 2.77 rad/s for H2 and

ω11 = 19.62 rad/s for N2. In order to make sure that the same point of the Miles diagram (Figure 2.7)

is considered, the excitation frequency was adjusted in order to guarantee the same Ω/ω11 of the 3D

simulations.

Table 5.5: 2D mesh parameters for time-step control.

Number of cells dt (H2) dt (N2) max(Co)
Mesh 01 2000 0.0056 0.0008

0.1
Mesh 02 3720 0.0046 0.0007

Mesh 03 4875 0.0037 0.0005

Mesh 04 12 000 0.0019 0.0003

Figures 5.20 and 5.21 show the lateral sloshing force the H2 and N2 containers with the different

tested grids for the first moments after sloshing. The solution is identical to the observed in the three-

dimensional simulations. Moreover, applying the Discrete Fourier Transform (5.22 and 5.23) to these

signals reveals that once again they are the result of the superposition of two elements: one constant

amplitude wave excited at fe, and an exponentially decaying wave at f11. The increase in spatial and

temporal resolution decreases the effect of numerical diffusion, thus increasing the damping time of the

higher frequency wave. This is seen in Figures 5.22 and 5.23 where the amplitude of the signal at f11

increases alongside the grid refinement.

The numerical damping rates for the 2D cases shown in Figures 5.24 and 5.25 are computed with

the method outlined in Section 5.1.1.1. These results are summarized and compared to the theoretical

values in Table 5.6. Given the rectangular container shape, the theoretical damping rate is calculated

with Equation 2.35 considering C1 = 1 and n = 1/2 [36].

The higher grid refinement used for the 2D cases resulted in lower numerical damping rates than

the 3D simulations. The results are particularly favourable for the N2 sloshing cell, where γnum becomes
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Figure 5.20: 2D H2 lateral force signal from 0 to
60 seconds.
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Figure 5.21: 2D N2 lateral force signal from 0 to
13.5 seconds.
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Figure 5.22: DFT for the 2D H2 lateral force signal
from 0 to 60 seconds.
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Figure 5.23: DFT for the 2D N2 lateral force signal
from 0 to 13.5 seconds.

very close to theoretical value as the grid is refined. For the full-size H2 facility, the additional cells and

reduced time-step help with decreasing γnum, however there is still a difference of around one order of

magnitude with respect to γtheor.
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Figure 5.24: Logarithmic decrement for the lateral
sloshing force in the H2 container.
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Figure 5.25: Logarithmic decrement for the lateral
sloshing force in the N2 container.
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Table 5.6: Comparison of numerical and theoretical damping ratios for both the H2 and N2 sloshing
facilities, where Λ is the logarithmic decrement, and γ is the damping ratio.

H2 01 H2 02 H2 03 H2 04 N2 01 N2 02 N2 03 N2 04
Λnum 0.053 0.045 0.034 0.018 0.056 0.046 0.037 0.019
γnum 8.5e-3 7.09e-3 5.34e-3 2.9e-3 8.9e-3 7.37e-3 5.9e-3 3e-3
γtheor 1.45e-4 2.79e-3

γnum/γtheor 58.6 48.9 36.83 20 3.2 2.64 2.11 1.08

5.1.2.2 Effect of the wall resolution

As mentioned at the end of Chapter 4, the no-slip velocity boundary condition was selected for the

container side-walls. As a result of this choice, the movement of the contact line is assured by the

velocity stored at the centroid of the wall-adjacent cell. Thus, in order to assess the effect this has in

the numerical solution, three different wall refinement configurations were tested in the N2 sloshing cell.

These can be seen in Figure 5.26. The grid refinement was applied in a specific region close to the walls

defined as the Stokes boundary layer.

Figure 5.26: Close up on the different wall refinement configurations tested. The first cell thickness of
each case is: 123 µm (left), 45 µm (center) and 20 µm (right).

According to theory of linear sloshing, the Stokes boundary layer is the region close to the wall where

viscous dissipation takes place [36]. For this dynamic problem, the thickness of this boundary layer δs

depends on the fluid’s viscosity, the frequency of excitation, and is estimated by Equation 5.6.

δs = 2π

√
2ν
Ω

(5.6)

For the N2 sloshing cell excited at a frequency of Ω = 13.73 rad/s, δs is estimated to be equal to 2.88

mm (7.2% of the container radius). Table 5.7 summarizes the relevant information regarding the different

wall refinement configurations tested. Mesh “N2 03” was considered as the base for this series of tests,

which is now labelled as “A”.

Table 5.7: Summary of the wall refinement configurations for the N2 sloshing cell

Mesh
1st cell Stokes boundary N. cells inside

thickness (µm) layer thickness (mm) Stokes boundary layer
A 123

2.88e-3
2

B 45 5
C 20 10
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Figure 5.27 shows the interface displacement using the three mesh configurations mentioned above.

By direction inspection, an appreciable difference between the different cases is not observed. The

mean deviation between the solution given by mesh A and B is only 0.2%, and 0.7% for mesh B and

C. However, the free damping simulations shown in Figures 5.28 and 5.29 confirm that the numerical

damping ratio increases alongside the wall resolution. The increase between configuration A to B is

5.4%, and from B to C 6.3%.
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Figure 5.27: Interface displacement between 0 and 20 seconds in the N2 sloshing cell for different lateral
wall refinements.
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Figure 5.28: Logarithmic decrement for the lateral
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Figure 5.29: Lateral sloshing force for free damp-
ing conditions in the N2 container for different wall
resolutions.

These results show that for the tested configurations, although the no-slip velocity boundary condition

introduces differences in the damping rate of the system, their effect on the observed sloshing response

in negligible.

5.1.2.3 Effect of the temporal scheme

All previously shown simulations were performed using the first-order implicit Euler scheme. As a result,

and in an effort to provide more accurate flow results, this section is devoted to studying the effects

of using higher-order schemes for the temporal discretization of the governing equations. The base
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numerical grid selected for this analysis was grid “N2 03”.

The Crank-Nicolson scheme is implemented in OpenFoam-v1912 using a weighing coefficient γ ∈

[0, 1] in order to combine both the forward (explicit) and backward (implicit) Euler time-stepping schemes.

Equation 5.7 shows the temporal discretization of the generic ODE ẏ = f (t , y ) using the Crank Nicolson

scheme [68]:

yn+1 − yn

∆t
= γf (tn+1, yn+1) + (1− γ)f (tn, yn) (5.7)

Where, n and n + 1 are the current and following time-steps, respectively. For γ = 1, the implicit Euler

scheme is obtained, whereas for γ = 0, the explicit formulation is given. Lastly, if γ = 1/2, the classic

second-order Crank Nicolson scheme is recovered. For stability reasons, OpenFOAM limits the range of

the γ parameter to [0.5, 1]. Thus, in order to avoid values between 0 and 0.5, the user-input is introduced

through an intermediary variable c0 ∈ [0, 1] defined as:

c0 =
1− γ
γ

. (5.8)

In this formulation c0 = 1 leads to γ = 0.5, and c0 = 0 yields γ = 1.

Three different temporal discretizations were considered in this analysis: the implicit Euler scheme,

and the Crank-Nicolson scheme with blending coefficients c0 = 0.5 (γ = 0.67) and c0 = 0.9 (γ = 0.52).

Decreasing c0 from 1 leads to an increase in numerical dissipation and makes it so the scheme is no

longer second-order accurate, however it improves the stability of the solution [68]. Attempts were made

to run the 2D sloshing problem with c0 = 1, however the solutions diverged and the simulation crashed

every time.
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Figure 5.30: Interface displacement between 0 and 20 seconds in the N2 sloshing cell for different
temporal discretization schemes.

Figure 5.30 shows the interface displacement for the N2 sloshing cell using these three discretization

schemes. The Crank Nicolson scheme with c0 = 0.9 yields unphysical results, leading to a rapid increase

of the interface displacement as time progresses. On the other hand, c0 = 0.5 shows good agreement

with the expected response, with a gradual damping of the wave amplitude until the periodic sloshing

condition is reached. Moreover, the rate at which the signal is damped appears to be lower than with the

implicit Euler scheme, indicating that numerical dissipation is reduced in this approach.
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In order to verify these statements regarding numerical diffusion, the free damping results are shown

in Figures 5.31 and 5.32. For c0 = 0.9 the flow continues to amplify its motion even though no excitation

is present. However, for c0 = 0.5 the damping characteristics are recovered, and the damping rate yields

much lower values than with the first-order implicit Euler scheme (71.7% reduction).
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Figure 5.31: Logarithmic decrement for the lateral
sloshing force in the N2 container for different tem-
poral discretization schemes.

0 5 10 15 20 25 30
Number of peaks

4.0

3.5

3.0

2.5

2.0

ln
(F

)

2D N2 Lateral force peaks (free damping)

Euler = 6.22e 03
CN0.5 = 1.76e 03

CN0.9 = 9.94e 04
theor. = 2.79e 03

Figure 5.32: Lateral sloshing force for free damp-
ing conditions in the N2 container for different tem-
poral discretization schemes.

Comparing the numerical damping rate of c0 = 0.5 with the theoretical expression from Equation 2.35

(γtheor = 2.79e − 3), it can be seen that now this numerical estimate is 36.9% lower than the theoretical

value. This highlights the difficult nature of modeling viscous damping effects in sloshing problems, and

demonstrates why experimental results are required in order to validate the numerical approach.

5.2 Non-isothermal sloshing

The non-isothermal analysis is decomposed in two steps. First, the thermal stratification problem is

assessed using the simplified model detailed in Chapter 3. Then, utilizing this thermal field as an input,

the non-isothermal sloshing simulations are performed in order to evaluate the similarity of the thermal

mixing process in the full-size H2 facility and in N2 sloshing cell.

5.2.1 Thermal stratification

The thermal stratification simulations were performed by assuming an initial state where both the gas

and the liquid regions have uniform temperatures, Tgas and Tliq, respectively (refer to Table 3.5). Fixed

temperature boundary conditions were used for the top and bottom faces, whereas the lateral walls

were considered to be adiabatic. The top face was considered to be at temperature Tgas and the bottom

Tliq. Then, the system was allowed to evolve towards equilibrium, allowing heat transfer to take place

between the two phases. The stopping point for these preliminary simulations was based on the Fourier

number of the liquid phase:

Foliq =
αliqt
h2 . (5.9)

53



0.0 0.2 0.4 0.6 0.8 1.0
(T Tliq)/(Ti Tliq)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
z/

R
Dimensionless thermal field (liquid)

H2 N2

Figure 5.33: Dimensionless H2 and N2 thermal
profile in the liquid for Foliq = 7.16E − 5.
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Figure 5.34: Dimensionless H2 and N2 thermal
profile in the gas for Foliq = 7.16E − 5.

Where h is the liquid height inside the container. This parameter characterizes transient heat con-

duction problems by relating the rate of diffusive transport with the rate of energy storage [33]. The

H2 thermal stratification simulation was executed for a total of 33 minutes and 20 seconds of physical

simulation time, resulting in Fo = 7.16E − 5. To achieve the same result, the N2 case only needed to be

executed for 1.35 seconds.

Figures 5.33 and 5.34 show the dimensionless thermal profiles for H2 and N2 in both the liquid and

gas phases at the same liquid-based Fourier time. Good similarity is observed for these fields, however

it must be noted that for the full-size H2 facility, the thermal field was changing very slowly from time-step

to time-step. This was not the case for the N2 sloshing cell, where the fluid experienced fairly drastic

changes beyond the 1.35 second mark and only stabilised after t = 100s (Figures 5.35 and 5.36).
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Figure 5.35: Evolution of the thermal fields in the
full-size H2 facility.
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Figure 5.36: Evolution of the thermal fields in the
full-size H2 facility.

This is attributed to the large difference between the container dimensions which causes the thermal
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information to propagate significantly slower in the full-size facility. The Fourier number scales with 1/h2,

which means that in order to keep this parameter similar across both cases, the physical time must be

kept over two orders of magnitude smaller in N2 sloshing cell. This is shown in Figures 5.37 and 5.38 for

both the liquid-based and gas-based Fourier numbers.
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Figure 5.37: Fourier number evolution for the H2
and N2 containers in the liquid.
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Figure 5.38: Fourier number evolution for the H2
and N2 containers in the gas.

Starting the N2 thermal mixing simulations at t = 1.35s guarantees similarity in terms of the liquid-

based Fourier number. Moreover, the dimensionless temperature fields obtained for this point are very

similar between the N2 and H2 facilities. However, as demonstrated in Figure 5.36, for that instant,

the system is still evolving very quickly and very far from equilibrium conditions. As a result, in order

to provide additional insights on the effects of the duration of the thermal stratification process on the

sloshing-induced mixing, the N2 thermal field at t = 460s was also be considered as an additional test

case.
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Figure 5.39: Dimensionless thermal fields in the
liquid, tH2 = 2000s (FoH2liq = 7.16E − 5) and tN2 =
460s (FoN2liq = 2.54E − 4).
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Figure 5.40: Dimensionless thermal fields in the
gas, tH2 = 2000s (FoH2liq = 7.16E − 5) and tN2 =
460s (FoN2liq = 2.54E − 4).

Therefore, three distinct thermal fields were considered as inputs for the thermal mixing simulations:

1. H2 thermal field with Foliq = 7.16E − 5
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2. N2 thermal field with Foliq = 7.16E − 5

3. N2 thermal field with Foliq = 2.54E − 4

5.2.2 Thermal mixing in the chaotic sloshing regime

5.2.2.1 Effect of the wall boundary conditions

These thermal mixing simulations were performed using thermal fields 1 and 2 obtained in the previous

section, as the initial conditions. The chosen numerical grid was the three-dimensional ‘02’ configuration

(refer to Table 5.1), and unlike previous cases, the simulations were performed in the chaotic sloshing

regime with Ω/ω11 = 0.9 and A0/R = 0.045. This allows for the highest degree of mixing to be observed

inside the container, thus serving as an indication of the worst-case scenario that might be expected in

real world conditions.

Since the solid container is not modeled in the numerical approach of the non-isothermal problem,

the effect of different wall boundary conditions is assessed in two different configurations. The two test

cases are defined as A and B, and they model two extreme situations for the thermal response of the

lateral walls.

(a) (b)

Figure 5.41: Sketch of both sets of boundary conditions to be tested in the thermal mixing analysis. a)
Test case A b) Test case B.

Case A considers the lateral walls to be adiabatic, while case B assumes that these are at fixed

temperatures. The portion originally in contact with the gas is fixed at Tgas, whereas the liquid region is

at Tliq. In both cases, the upper and the bottom tank walls are assumed to remain at uniform temperature

Tgas and Tliq respectively. The initial thermal fields used for this analysis were the ones obtained for the

same liquid-based Fourier number shown in Figures 5.33 and 5.34 (tH2 = 2000s and tN2 = 1.35s).

The sloshing motion observed for these excitation conditions is decomposed in three main stages:

1. Initial lateral oscillatory displacement of the gas-liquid interface, with a growing wave amplitude

until the top of the container is reached. The intensity of the thermal mixing between the gas and

liquid phases grows as the wave amplitude increases.
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2. High amplitude lateral motion, with the sloshing wave repeatedly reaching the top of the container.

This leads to the highest observed rate of thermal mixing between the gas and the liquid, and as

a result the thermal fields become more homogeneous.

3. As the high amplitude waves decrease in amplitude, a swirling wave motion sets in the contain-

ers. The exact starting point for this behaviour varies on a case-by-case basis, depending on the

working fluid and the thermal field.

The average dimensionless temperature of the interface, given by:

T ∗i =
Ti − Tliq

Tgas − Tliq
(5.10)

was monitored throughout the simulation, and its evolution is plotted alongside the dimensionless time

t∗ = tA0Ω/R in Figure 5.42. The solid lines correspond to the case where the side-walls are adiabatic

(case A) and the dotted ones are for the fixed temperature situation (case B). An initial temperature drop

is observed until t∗ ≈ 0.82 for both H2 cases and for the N2(A) configuration, after which point a strong

oscillatory behaviour is registered. The N2 case with the fixed temperature side-walls (B) experiences a

very sharp drop in interface temperature until t∗ = 0.19 followed by a slight increase until t∗ ≈ 0.82.

In spite of the registered oscillations, the interface temperature tends to decrease in both H2 configu-

rations (A and B) over time. However, for the N2 case, two different behaviours are observed depending

on the side-wall boundary conditions. For the N2(A) configuration, the start of the oscillatory period is

accompanied by a considerable increase of T ∗i until t∗ ≈ 1.48. After this point and until t∗ ≈ 5.32 the

oscillations appear to be centered around a fixed value. Then after t∗ ≈ 5.32, a steady decrease of T ∗i
is observed. On the other hand, for the N2(B) configuration the oscillatory behaviour persists throughout

the full simulation duration, with an overall increase of T ∗i as time progresses.
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Figure 5.42: Dimensionless interface temperature evolution for the H2 and N2 containers in chaotic
sloshing conditions. Case A: adiabatic tank side-walls, case B: fixed-temperature tank side-walls.
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These diverging results for the evolution of the interface temperature between the H2 and N2 facilities

are problematic because, as mentioned in Chapter 2, the interface is considered to be at saturation

conditions Tsat = Ti. Following the Clausius-Clapeyron law (Equation 2.17), the saturation temperature

of the system directly affects the pressure of the vapour phase, which means that a decrease in Tsat

causes a decrease in pvap and vice-versa. This means that for the current scaled-down configuration, this

mechanism is not working accordingly to what was expected from the full-size facility results. Therefore,

condensation and evaporation effects would likely differ significantly between the full-size and scaled-

down facilities if they were taken into account in this analysis.

The relative pressure drop p/p0, where p0 is the initial tank pressure prior to sloshing, is shown

in Figure 5.43 for all tested cases. As mentioned previously, condensation or evaporation effects are

not taken into account in this modeling approach. Therefore, the drop in pressure is only attributed to

the decrease of the gas’ density due the cooling down of this region promoted by the sloshing-induced

thermal mixing.
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Figure 5.43: Relative tank pressure evolution for the H2 and N2 containers with different wall boundary
conditions applied.

Figure 5.43 shows that the sloshing-induced thermal mixing causes a steady drop in pressure both

tested configurations of the full-size H2 facility (A and B). The main difference lies in the first instants of

sloshing up to t∗ ≈ 1.07. For this period, case (B) registers a lower relative vapour pressure than case

(A). This is in agreement with the results from Figure 5.42 since it corresponds to the initial stage where

the dimensionless interface temperature decreases very rapidly, which suggests that the ullage is being

cooled down at a high rate. Figures 5.44 and 5.45 show the interface position and the dimensionless

temperature fields for configurations H2(A) and H2(B) for the first instants of sloshing. The dimensionless

temperature field is obtained as:

T ∗ =
T − Tliq

Tgas − Tliq
. (5.11)
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Figure 5.44: Dimensionless thermal fields and interface position for the H2(A) case at t∗ = 0.27 (far left),
t∗ = 0.40 (center left), t∗ = 0.53 (center right) and t∗ = 0.81 (far right).

Figure 5.45: Dimensionless thermal fields and interface position for the H2(B) case at t∗ = 0.27 (far left),
t∗ = 0.40 (center left), t∗ = 0.53 (center right) and t∗ = 0.81 (far right).

These figures show that the H2 gas phase is cooled down more efficiently in case (B) than (A) during

the initial instants of sloshing. The existence of two fixed-temperature regions in the container side-walls

causes the fluid to warm up while passing through the portion at Tgas and to cool down in portion at Tliq.

For the H2(B) configuration, the sloshing-induced thermal mixing and the choice of values for Tgas and

Tliq are such that the cooling down of the ullage due to thermal mixing is more effective.

Figure 5.46 shows the velocity field generated by the sloshing-induced thermal mixing that takes

place below the interface. This process allows for the warmer liquid at the free-surface to mix with the

colder bulk, hence decreasing the value of Ti.
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Figure 5.46: Dimensionless thermal and velocity fields for the H2(A) case at t∗ = 0.26.

These are the mechanisms which trigger the large pressure drop, and decrease in interface temper-

ature observed in the initial stages of Figure 5.43 and 5.42. After this point, the amplitude of the sloshing

wave grows to the point where it reaches the top of the container at fixed temperature Tgas. This period is

observed until t∗ ≈ 5.84 and is characterized by high amplitude waves which very quickly and effectively

mix the thermal field. At this stage, as shown by Figure 5.43, although the relative vapour pressure

evolution is nearly identical between both H2 configuration, the pressure drop is slightly stronger for test

case (A). Once again this is in agreement with Figure 5.42, which shows that T ∗i is higher for test case

(B) throughout the high amplitude sloshing stage.

Figure 5.47: Dimensionless thermal fields and interface position for the H2(A) case at t∗ = 0.96 (far left),
t∗ = 1.08 (center left), t∗ = 1.13 (center right) and t∗ = 1.21 (far right).

The start of the swirling motion in both cases of the H2 facility starts at t∗ ≈ 5.84. At this point, the

thermal fields are already de-stratified and the vapour pressure achieves a very stable value (≈ 56%

of the initial pressure). The high intensity lateral waves gradually decrease their amplitude and adopt

an axial rotating motion. After some periods, the interface becomes approximately flat and the swirling

motion becomes much better defined. The de-stratified fields and the swirl waves are shown in Figure

5.49 between t∗ = 6.09 and t∗ = 6.26 for case H2(A). For clearer visualization purposes, as the thermal
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Figure 5.48: Dimensionless thermal fields and interface position for the H2(B) case at t∗ = 0.96 (far left),
t∗ = 1.08 (center left), t∗ = 1.13 (center right) and t∗ = 1.21 (far right).

field is very homogeneous at this point, the dimensionless temperature scale was adjusted to be between

0 and 0.025.

Figure 5.49: Dimensionless thermal fields and interface position for the H2(A) case at t∗ = 6.09 (far left),
t∗ = 6.14 (center left), t∗ = 6.20 (center right) and t∗ = 6.26 (far right).

Regarding the two N2 configurations, Figure 5.43 shows that the relative pressure drop is slightly

higher for case N2(B) during the initial sloshing period. This is in accordance with the dimensionless

interface temperature evolution shown in Figure 5.42, which indicates T ∗i to be higher for case N2(B).

Figures 5.50 and 5.51 show the dimensionless thermal fields for case N2(A) and N2(B) in the initial

moments of sloshing until the rising wave reaches the top of the container. Appreciable differences are

not found between both sets of images, which is in agreement with the fact that the pressure evolution,

although slightly higher in case N2(B), is very similar between both configurations.

After the sloshing wave reaches the top of the container, the high amplitude lateral displacement

stage is reached. Similarly to what was observed in the H2 facility, the thermal mixing effect is very

strong in this period, leading to the rapid homogenization of the thermal field between t∗ = 0.82 and

t∗ = 1.7. This can be observed in Figures 5.52 and 5.53.

However, unlike what was observed in the full-size facility, after t∗ ≈ 1.7 the presence of the warmer

walls at Tgas coupled with the high amplitude sloshing leads to a gradual increase in the ullage tempera-

ture which in turn causes the pressure in the tank to steadily increase (Figure 5.43). This is particularly

noticeable for case N2(B), where not only the top is at temperature Tgas but also the upper portion (20%)

of the side-walls. This is attributed to the smaller container scale, which makes it so that thermal infor-

mation travels more quickly throughout the domain due to diffusion compared to the full-size facility. This
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Figure 5.50: Dimensionless thermal fields and interface position for the N2(A) case at t∗ = 0.27 (far left),
t∗ = 0.40 (center left), t∗ = 0.53 (center right) and t∗ = 0.81 (far right).

Figure 5.51: Dimensionless thermal fields and interface position for the N2(B) case at t∗ = 0.27 (far left),
t∗ = 0.40 (center left), t∗ = 0.53 (center right) and t∗ = 0.81 (far right).

is the same effect that was discussed in the thermal stratification simulations performed in Section 5.2.1.

As a result, the N2 sloshing cell is found to be much more sensitive to the wall-boundary conditions than

the full-size H2 tank.

The swirling motion is observed in case N2(A) at t∗ ≈ 4.52 and t∗ ≈ 5.99 for N2(B). Thermal mixing

is still observed near the interface, as evidenced by the evolution of T ∗i in Figure 5.42. However, the

top section of the tank is not mixed as effectively as in the previous stages. As a result, warm gas can

be seen travelling downwards from the heated walls at Tgas. This partly undoes the mixing that was

performed previously in the high amplitude stage and leads to an additional increase in vapour pressure

due to the warming up process of the ullage. Figures 5.54 and 5.55 show the swirling motion in the N2

alongside the warmer gas travelling downward from the walls at fixed temperature Tgas.

In summary, the results of this section reveal that although an initial pressure drop is observed

in all test cases, the behaviour observed for these excitation conditions in scaled-down N2 facility is

considerably different than one that takes place in full-size H2 tank. The N2 sloshing cell appears to be

significantly more sensitive to the presence of the warmer walls, leading to a gradual heating up of the

gas and liquid phases during the high amplitude sloshing stage.

The non-isothermal scaling approach was based on the buoyancy of the liquid through the (π3)liq

parameter, which is the main mechanism for thermal mixing only in the initial sloshing moments until the

wave reaches the top of the container. Up until this point, cases H2(A), H2(B) and N2(A) operate quite

similarly, as shown in Figures 5.42, 5.43, 5.44, 5.45 and 5.50. However, after that, the heat transfer
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Figure 5.52: Dimensionless thermal fields and interface position for the N2(A) case at t∗ = 0.96 (far left),
t∗ = 1.08 (center left), t∗ = 1.13 (center right) and t∗ = 1.7 (far right).

Figure 5.53: Dimensionless thermal fields and interface position for the N2(B) case at t∗ = 0.96 (far left),
t∗ = 1.08 (center left), t∗ = 1.13 (center right) and t∗ = 1.7 (far right).

mechanisms become more complex due to the active participation of the fixed temperature walls, and

due to stronger convective gas fluxes in the ullage volume. Thus, since these are not directly accounted

for in the scaling approach, the current model is not well equipped to deal with this.

5.2.2.2 Effect of the initial temperature field

The goal of this section is to compare the effects of considering different thermally stratified thermal fields

as inputs for the thermal mixing simulations. As a result, three cases are compared in this analysis:

• N2 with adiabatic side-walls and initial thermal field 2 (Foliq = 7.16E − 5) (A2)

• N2 with fixed temperature side-walls and initial thermal field 2 (Foliq = 7.16E − 5) (B2)

• N2 with fixed temperature side-walls and initial thermal field 3 (Foliq = 2.54E − 4) (B3)

The longer thermal stratification duration considered in simulation (B3) leads to a thermal field which

is closer to equilibrium conditions than cases (A2) and (B2) (refer to Figure 5.36). As a result, the ther-

mal gradients in gas and liquid phases are smaller in case (B3). Therefore, during the initial sloshing

moments before the rising wave reaches the top of the container, the thermal mixing that takes place

below the interface, and that is responsible for the initial pressure drop and decrease in interface tem-

perature, is not as effective in case (B3). This is confirmed in Figure 5.56, where the dimensionless

interface temperature in case (B3) only suffers a very gradual decrease compared to the sharp drop

seen for initial instants in cases (A2) and (B2).
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Figure 5.54: Dimensionless thermal fields and interface position for the N2(A) case at t∗ = 5.56 (far left),
t∗ = 5.64 (center left), t∗ = 5.7 (center right) and t∗ = 5.78 (far right).

Figure 5.55: Dimensionless thermal fields and interface position for the N2(B) case at t∗ = 6.5 (far left),
t∗ = 6.55 (center left), t∗ = 6.63 (center right) and t∗ = 6.71 (far right).

Moreover, Figure 5.57 shows that the pressure drop is not as severe for the case with the more

developed initial thermal field. Once again, this is explained by the smaller difference in temperature

between the gas and the liquid, which causes the mixing near the interface to not be as effective as in

the other cases.

As the high amplitude sloshing stage sets in, the interface temperature and vapor pressure evolutions

in case (B3) are identical to the ones observed in (A2) and (B2). The high amplitude mixing, alongside

the initial thermal field are shown in Figure 5.58 for case N2(B3). As the wave height starts to decrease

at t∗ ≈ 4.52, the interface adopts a swirling motion. This causes the interface temperature to gradually

stabilize (Figure 5.56), while also allowing for heat to travel from the walls at Tgas, hence warming up the

ullage and leading to a greater rate of pressure increase (similar to case (A2)).

5.2.3 Thermal mixing in the planar waves sloshing regime

With the objective of analysing the validity of the non-isothermal scaling approach for different sloshing

regimes, the thermal mixing simulations were also performed for the planar waves regime with dimen-

sionless excitation parameters: A0/R = 0.045 and Ω/ω11 = 0.7.

5.2.3.1 Effect of the wall boundary conditions

The tested boundary condition configurations are the same ones that were described in Section 5.2.2.1.

Once again, initial thermal fields 1 and 2 are used for the full-size facility and small-scale model, respec-
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Figure 5.56: Dimensionless interface temperature evolution for the H2 and N2 containers in chaotic
sloshing conditions for different durations of initial thermal stratification.

tively. The only difference in terms of setup lies in the dimensionless excitation conditions, and on the

observed sloshing regime. For this section, only linear sloshing and planar waves are expected.

For these conditions, thermal mixing between the gas and liquid phases is mainly achieved through

the mechanism shown in Figure 5.46. The fluid in the downward side of the planar wave is pushed to

the bottom of the container, where it is cooled down by the bulk, and the fluid in the upward side of the

planar wave receives colder liquid from the bottom, thus decreasing its temperature.

Figure 5.59 shows the evolution of the dimensionless interface temperature as the sloshing motion

evolves throughout time. Cases H2(A) and H2(B) are characterized by an overall decrease in interface

temperature, which slows down as the time thermal field approaches equilibrium. Case N2(A) presents a

very sharp initial temperature drop until t∗ ≈ 0.1, then it increases slightly until t∗ ≈ 0.76, and afterwards,

a very gradual decrease is observed until the end of the simulation. On the other hand, case N2(B)

presents a behaviour that is very different from all other tested situations. For this situation, there is an

initial sharp drop until t∗ = 0.08, which is followed by a progressive increase of T ∗i until the the end.

The relative pressure evolution for the H2 and N2 test cases is shown in Figure 5.60. The behaviour

shown in this plot is in agreement with the observations made regarding the T ∗i evolution. Cases H2(A),

H2(B) and N2(A) all show an overall decrease in T ∗i during this simulation. This suggests that the

sloshing-induced thermal mixing promotes a general cooling down of the ullage due to the presence of

the colder liquid. As a result, these three cases are all characterized by a steady pressure drop. The

biggest decrease in pressure takes place in the N2(B) facility (87% of the initial value). It should be noted

that the pressure drops observed in this sloshing regime are significantly lower than the ones observed

for the chaotic regime from Figure 5.43. This is attributed to higher mixing rate that is promoted by the

higher amplitude waves in that situation.

On the other hand, case N2(B) shows an overall increase in T ∗i as well as p/p0 during the simulation.

This case models the extreme scenario in which the portion of the side-walls initially in contact with the
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Figure 5.57: Relative tank pressure evolution in the H2 and N2 containers for different durations of initial
thermal stratification.

Figure 5.58: Dimensionless thermal fields and interface position for the N2(B3) case at t∗ = 0.01 (far
left), t∗ = 1.08 (center left), t∗ = 1.13 (center right) and t∗ = 1.2 (far right).

gas (top 20%) has fixed temperature Tgas, and the remaining portion (bottom 80%) is at Tliq. These

results suggest that, for the current excitation conditions, the presence of the warmer walls overcomes

the sloshing-induced thermal mixing, causing an increase in the ullage temperature. This is the opposite

of what is expected from the full-size facility results.

Figures 5.61 and 5.62 show the thermal fields and the gas-liquid interface for the N2(A) and N2(B)

cases, respectively, for different time instants. The N2(A) sequence of images shows the gradual cooling

down of the ullage due to the presence of the colder liquid. The thermal mixing that happens below the

interface allows for the free surface to remain cold, while gradually exchanging heat with the gas to

decrease its temperature. On the other hand, in case N2(B), the presence of the lateral and top walls at

Tgas counteracts the cooling mechanism of the liquid, leading to a gradual increase in temperature from

the top of the container to the bottom.

This section reveal that for planar sloshing conditions, reasonable results are obtained in terms of the

similarity of the thermodynamic evolution of the system except for case N2(B) due to the extreme wall

boundary conditions. The scaling approach adopted in this work seems to be more well suited to these
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Figure 5.59: Dimensionless interface temperature evolution for the H2 and N2 containers in planar slosh-
ing conditions.

lower excitation situations. The logical next step would be to perform this same analysis while modeling

the solid tank walls in order to account for conjugate heat transfer, and thus determine the true impact

of the wall’s properties in real life conditions.

5.2.3.2 Effect of the initial temperature field

With the objective of comparing the effects of considering different thermally stratified thermal fields as

inputs for the thermal mixing simulations, the same test cases from Section 5.2.2.2 (A2,B2,B3) were

considered.

The dimensionless interface temperature for cases N2(A2), N2(B2) and N2(B3) is shown in Figure

5.63. The plot reveals that the more developed initial thermal field of case N2(B3) leads to a higher

increase in T ∗i as time progresses. Moreover, from Figure 5.64, the relative tank pressure in this case

doesn’t show a drop at all. Instead the ratio p/p0 tends to increase since the start of the simulation.

Figure 5.65 shows the evolution of the dimensionless thermal fields and interface position as time

progresses in the N2(B3) case. From these images, it is clear that, similarly to what happened in case

N2(B2), the presence of the warmer walls at Tgas is overcoming the cooling effect of the thermal mixing

below the interface. Moreover, since the initial thermal field started from a more developed situation, the

thermal gradients near the interface are lower, which translates to a reduction of the mixing effect. As

a result, the cooling of the ullage due to the liquid mixing is reduced, meaning that the heating effect of

the warm walls is felt with more intensity.
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Figure 5.60: Relative tank pressure evolution for the H2 and N2 containers, in planar waves conditions,
with different wall boundary conditions applied.

Figure 5.61: Dimensionless thermal fields and interface position for the planar N2(A) case at t∗ = 0.16
(far left), t∗ = 1.23 (center left), t∗ = 3.05 (center right) and t∗ = 5.53 (far right).

Figure 5.62: Dimensionless thermal fields and interface position for the planar N2(B) case at t∗ = 0.16
(far left), t∗ = 1.23 (center left), t∗ = 3.05 (center right) and t∗ = 5.53 (far right).
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Figure 5.63: Dimensionless interface temperature evolution for the H2 and N2 containers in planar slosh-
ing conditions for different durations of initial thermal stratification.
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Figure 5.64: Relative tank pressure evolution for the H2 and N2 containers in planar sloshing conditions
for different durations of initial thermal stratification.

Figure 5.65: Dimensionless thermal fields and interface position for the planar N2(B3) case at t∗ = 0.16
(far left), t∗ = 1.23 (center left), t∗ = 3.05 (center right) and t∗ = 5.53 (far right).
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Chapter 6

Conclusions and Future work

6.1 Conclusions

The purpose of the work developed in this master thesis was to study the scaling problem for non-

isothermal sloshing with the OpenFOAM CFD code. This was achieved by scaling down a full-size

facility with dimensions comparable to the cryogenic stages of launch vehicles in order to recreate the

system’s response in laboratorial conditions.

As a first step in the numerical analysis, isothermal simulations were performed in order to better

understand the effect of the numerical discretization on the dynamics of the flow, and to study the

isothermal scaling problem. Both 3D and 2D simulations were conducted in the planar waves sloshing

regime, with a moving numerical grid to excite the system. The planar waves response of the system

was found to be composed by an initial transient regime, which is gradually damped until a steady

harmonic motion is achieved. The duration of this transient regime was found to depend on the temporal

and spatial resolution of the numerical grid, as well as on the temporal discretization scheme. Moreover,

due to the moving contact problem explained in Chapter 4, the placement of the first cell adjacent to

the wall also affected the measured numerical damping rates of the system. Good similarity was found

between the full-size facility and the scaled-down model for the steady periodic regime in planar sloshing.

However, the initial transient state could not be truly compared between both cases due to the presence

of excessive numerical dissipation in the three-dimensional grids tested. A great deal of computational

resources are required in order to spatially and temporally refine the numerical grids in order match the

theoretical damping rates of the systems.

The non-isothermal problem was split in two different components. First, the thermal stratification

problem was approached with simplified model detailed in Chapter 3. Then, the thermal fields obtained

in this step were used as inputs for the thermal mixing simulations. For these simulations, only the

fluids were modeled, and the effect of the solid lateral walls was treated with two extreme cases of

boundary conditions (adiabatic or fixed temperature). The thermal mixing problem was analysed in both

the chaotic and planar waves regimes. For each of these regimes, similarity between the full-size facility

and the scaled-down modeled was assessed with: different wall boundary conditions; different thermally
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stratified fields as inputs.

The results of the non-isothermal sloshing analysis reveal that the scaling approach adopted in Chap-

ter 3 is not adequate for the chaotic sloshing regime since it relies too heavily on the liquid being the

driving force for the thermal mixing. High amplitude waves are observed in the chaotic regime, which

interact directly with the warmer container walls, hence adding complexity the heat transfer mechanisms

that take place in the system. Moreover, strong convective fluxes are also observed in the gas, which

further contribute to the thermal mixing effect. Thus, the small-scale simulations revealed a greater

sensitivity towards the presence of warm walls in the container.

The results of the planar waves simulations show that when adiabatic conditions are used for the

container’s side walls, the thermodynamic evolution of the system is similar between the full-size facility

and the scaled-down model. Due to the sloshing-induced thermal mixing, the pressure decreased ≈ 6%

in H2 tank and ≈ 12% in the N2 sloshing cell. For both these cases, a continuous cooling of the

ullage was observed throughout the duration of the excitation. This is attributed to the fact that, for

these conditions, the scaling approach takes into account the driving mechanisms for the thermal mixing

(i.e. mixing between the warmer interface and the colder liquid from the bulk). However, when the

fixed temperature boundary conditions are considered in the small-scale sloshing cell, the similarity is

negatively affect and the effect of the warmer walls dominates the problem.

6.2 Future work

The work performed in this master thesis should be further developed by incorporating the effect of the

solid walls and the gas into the scaling approach. Moreover, the computational modeling should be

extended in order to account for conjugate heat transfer between the fluid phases, the solid walls and

any exterior heat fluxes which might be present.

Another aspect which should be considered is the modeling of mass transfer effects between the

liquid and the vapour in order to obtain a more complete understanding of the thermodynamic evolution

of the system, namely the pressure drop.
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Appendix A

Theoretical derivations

A.1 Constitutive relation for incompressible fluids

For incompressible Newtonian fluids, the shear stress tensor can be expressed through Equation A.1

[29]. This expression is the ‘constitutive relation’ that relates local velocity gradients in the flow with the

fluid’s dynamic viscosity, µ.

T = µ
[
∇⊗ u + (∇⊗ u)T

]
= µ
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∂z

 (A.1)

If the dynamic viscosity is constant in space, the shear stress term can be developed by applying the

divergence operator on the tensor field [29, 30].

∇ · T = µ


2∂

2ux
∂x2 + ∂

∂y

(
∂uy
∂x + ∂ux

∂y

)
+ ∂
∂z

(
∂uz
∂x + ∂ux

∂z

)
∂
∂x

(
∂ux
∂y + ∂uy

∂x

)
+ 2∂

2uy

∂y2 + ∂
∂z

(
∂uz
∂y + ∂uy

∂z

)
∂
∂x

(
∂ux
∂z + ∂uz

∂x

)
+ ∂
∂y

(
∂uy
∂z + ∂uz

∂y

)
+ 2∂

2uz
∂z2

 (A.2)

Developing the terms above for an incompressible fluid, where ∇ · u = 0, leads to the vectorial

Laplacian shown in Equation A.3.

∇ · T = µ


∂2ux
∂x2 + ∂2ux

∂y2 + ∂2ux
∂z2

∂2uy

∂x2 + ∂2uy

∂y2 + ∂2uy

∂z2

∂2uz
∂x2 + ∂2uz

∂y2 + ∂2uz
∂z2

 = µ∇2u (A.3)

A.2 Linearised potential equation of motion

This section contains the derivation of the linearised equation of motion for potential flow based on the

approach from Ibrahim (2005) [36] and Lance (1966) [35]. Neglecting the viscous term, the momentum
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balance from Equation 2.5 is simplified into:

ρ

(
∂u
∂t

+ u(∇ · u)
)

= −∇p + ρg. (A.4)

Consider the decomposition of the total fluid velocity, u, such that:

u = ũ + U0. (A.5)

Where ũ is the fluid velocity with respect to the moving container, and U0 = Ẋ0ex is the container

velocity relative to the inertial reference frame. The material derivative is developed taking this decom-

position into account:

Du
Dt

=
Dũ
Dt

+
DU0

Dt
=
∂ũ
∂t

+ (ũ · ∇)ũ +
dU0

dt
. (A.6)

The convective term is neglected due to assumptions (1) and (4):

ũ(∇ · ũ) =
1
2
∇(ũ · ũ)

=0, 2nd order term

− ũ× (∇× ũ)
=0, irrotational flow

≈ 0. (A.7)

Thus, combining Equations A.4, A.6 and A.7 results in:

∂ũ
∂t

+
dU0

dt
= −1

ρ
∇p + g. (A.8)

The introduction of the potential function to describe the local fluid velocity, ũ, leads to:

∇∂Φ
∂t

+
dU0

dt
= −1

ρ
∇p + g. (A.9)

Now, noticing that the container and gravitational accelerations can, respectively, be written as

dU0/dt = ∇(Ẍ0x), and g = ∇(gz), Equation A.9 is rewritten as:

∇
(
∂Φ

∂t
+ Ẍ0x +

p
ρ
− gz

)
= 0 (A.10)

Equation A.10 is always satisfied provided that the terms inside the brackets are invariant in space.

As a result, they should be equal to a certain function of time, C(t).

∂Φ

∂t
+ Ẍ0x +

1
ρ
∇p − gz = C(t) (A.11)

Absorbing this temporal function in the definition of the velocity potential leads to the linearised

equation of motion for lateral sloshing (Equation A.12).

∂Φ

∂t
+

p
ρ
− gz + Ẍ0x = 0. (A.12)

Given the shape of the container, cylindrical coordinates are used. As a result, by setting x = r cos(θ)
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Equation 2.19 is obtained.

∂Φ

∂t
+

p
ρ
− gz + Ẍ0r cos(θ) = 0 (A.13)

A.3 Natural frequency derivation

The natural frequencies are determined by studying the equation of motion of the free surface without

external excitations, Ẍ0 = 0. For this, consider Equation 2.19 written around the originally undisturbed

surface, at z = 0.

(
∂Φ

∂t
+

p
ρ

)
z=0
− gη = 0 (A.14)

Where η is the free surface displacement with respect to the originally undisturbed interface. At the

free surface, the fluid pressure can be considered equal to the vapour pressure if surface tension effects

are neglected (i.e. pliq = pgas). However, if surface tension effects are present, the Young-Laplace

equation must be introduced in order to account for the pressure difference between the liquid and

vapour phases [31].

(
∂Φ

∂t
− σκ

ρ

)
z=0
− gη = 0 (A.15)

Consider now the free surface boundary condition, ∂z/∂t = − (∂Φ/∂z)z=0 and differentiate Equation

A.15 with respect to time:

(
∂2Φ

∂t2 −
σ

ρ

∂κ

∂t
+ g

∂Φ

∂z

)
z=0

= 0. (A.16)

According to the work of Ibrahim (2005) [36], the temporal derivative of the free surface curvature is

given by:

∂κ

∂t
=
(
∂3Φ

∂z3

)
z=0

. (A.17)

Thus, the free surface kinematic condition is given by Equation A.18.

(
∂2Φ

∂t2 +
σ

ρ

∂3Φ

∂z3 + g
∂Φ

∂z

)
z=0

= 0 (A.18)

Assuming a harmonic shape for the velocity potential function, Φ ∼ Φeiωt , the equation above is

solved directly to find the free surface natural frequencies.

ω2
mn =

(
gξmn

R
+
σ

ρ

ξ3
mn

R3

)
tanh

(
ξmnh

R

)
(A.19)
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A.4 Forced lateral sloshing potential function

For forced lateral excitation conditions, the velocity potential function can be assumed to be of the form

Φ(r , θ, z, t) ∼ Φ(r , θ, z)eiΩt , where Ω is the imposed oscillation frequency.

Φ(r , θ, z, t) =
∞∑

n=1

αmn cos(mθ)Jm

(
ξmnr

R

)
cosh [ξmn(z + h)/R]

cosh (ξmnh/R)
eiΩt (A.20)

The free surface kinematic condition is written identically to Equation A.16, with the addition of the

forced oscillation term on the right hand side of the equation:

(
∂2Φ

∂t2 +
σ

ρ

∂3Φ

∂z3 + g
∂Φ

∂z

)
z=0

= −
...
X 0r cos(θ). (A.21)

Where
...
X 0 = −A0Ω

3 cos(Ωt). Then, combining Equations A.20 and A.21 leads to:

∞∑
n=1

(ω2
mn − Ω2)αmn cos(mθ)Jm

(
ξmnr

R

)
cos(Ωt) = A0Ω

3 cos(Ωt)r cos(θ). (A.22)

Equation A.22 can be solved to determine the modal amplitude αmn for m = 1. This is done by

expanding the radial coordinate, r , through a Bessel series, as is shown in Equation A.23 [18, 35]:

r =
∞∑

n=1

2R(
ξ2

1n − 1
) J1 (ξ1nr/R)

J1 (ξ1n)
(A.23)

Thus, the potential amplitude for the first sloshing mode m = 1 is given by:

α1n =
2R

(ξ2
1n − 1)J1(ξ1n)

A0Ω
3

(ω2
1n − Ω2)

. (A.24)

Finally, the complete expression for the velocity potential of the first asymmetrical sloshing mode is

provided in Equation A.25.

Φ(r , θ, z, t) =
∞∑

n=1

2R
(ξ2

1n − 1)
A0Ω

3

(ω2
1n − Ω2)

J1(ξ1nr/R)
J1(ξ1n)

cosh [ξ1n(z + h)/R]
cosh (ξ1nh/R)

cos(θ) cos(Ωt) (A.25)
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Appendix B

Numerical algorithms

B.1 The interFoam algorithm in OpenFOAM

Algorithm 1 interFoam solver algorithm in OpenFOAM-v1912

1. Create fields for the initial flow conditions
2. Start runtime loop

(a) Update solution time

(b) Update mesh (if using dynamic mesh)

(c) Correct cell face fluxes for the new mesh

3. PIMPLE loop until nOuterCorrectors iterations are performed. This loop combines the SIMPLE
(SIMPLEC) and PISO algorithms in order to solve the pressure-velocity coupling problem that is
characteristic of incompressible fluids [29].

(a) Solve α equation with the MULES scheme

(b) Update mixture properties for the α field (density and kinematic viscosity)

(c) If momentumPredictor option is enabled, solve the momentum predictor equation to obtain a
new momentum-satisfying velocity field

4. PISO loop until nCorrectors iterations are performed.

(a) Solve pressure correction equation for nOrthogonalCorrectors iterations. The purpose of
this step is to correct for non-orthogonality in the numerical grid.

(b) Correct pressure field

(c) Correct cell face fluxes based on the new pressure field

(d) Correct turbulence properties

5. Return to Step (2.a) until the final solution time is reached

B.2 The compressibleInterDyMFoam solver

The pressure-based compressibleInterDyMFoam solver handles compressibility effects in the flow through

Equation B.1.

ρi = ρi,0 + ψip (B.1)
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Where ρi ,0 is the nominal density of phase i , and ψi = (RT )−1
i . The ideal gas law is obtained by

setting ρi ,0 = 0 [69]. The compressible volumetric phase fraction advection equation for phase i is given

by:

D
Dt

(ρiαi) =
∂ρiαi

∂t
+∇ · (ρiαiu) = 0. (B.2)

Splitting the terms inside the material derivative with the product rule yields Equation B.3, which is

the volumetric phase fraction advection equation solved by OpenFOAM:

∂αi

∂t
+∇ · (αiUi ) = −αi

ρi
· Dρi

Dt
(B.3)

Dρi

Dt
= ψi

Dp
Dt

(B.4)

Inserting Equation B.4 in B.3 yields:

∂αi

∂t
+∇ · (αiu) = −αiψi

ρi
· Dp

Dt
(B.5)

Summing Equation B.5 for α1 and α2:

D
Dt

(α1 + α2) + (α1 + α2)∇u = −
(
α1ψi

ρ1
+
α2ψi

ρ2

)
· Dp

Dt
(B.6)

Recalling that for a two-phase flow α1+α2 = 1, the mass conservation equation solved by OpenFOAM

is obtained:

∇u = −
(
α1ψi

ρ1
+
α2ψi

ρ2

)
Dp
Dt

(B.7)

Then, keeping this result in mind, the volumetric-phase-fraction advection equation that is solved is

the following:

∂α1

∂t
+∇(α1u) +∇(α1(1− α1)ur ) = α1(1− α1)

(
ψ2

ρ2
− ψ1

ρ1

)
Dp
Dt

+ α1∇u. (B.8)
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