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Abstract—The goal of this work is to estimate a vineyard’s
yield based on the visible area of grape bunches resulting from
an autonomous segmentation in a set of images of a vineyard.

Firstly the problem of autonomous segmentation is tackled by
the use of a FCN, trained with data from the ISA vineyard with
minor data augmentation, operation which increases the number
of images. The FCN is tested and its loss function adjusted to
compensate the imbalance present in the data set, where the
grape clusters only represent 3.5% of the entire images. This
is complemented by pre and post processing operations that
improve the segmentation’s score, the IOU. This metric evaluates
how well the segmentation overlaps the ground truth. The pre
processing is composed by a sliding window and a colour space
change that increased the test set score to 62%. As for the post
processing, the morphological operation ”open” is used and the
image rebuilt with the objective of removing false positives. The
combination of these efforts result in a IOU score of 64%.

In the second part of testing, the yield is estimated with the
use of two models, one that predicts the percentage of grape
bunches hidden in the image according to the porosity of the
vine, and another that transforms the total area of bunches
into volume. Four different cases are presented, two varieties,
encruzado and arinto, from the same to stages, harvest and
veraison. The veraison results achieve the desired metric score of
an error less than 10% for both varieties, 3% for encruzado and
just under 10% for arinto. Although some aspects of the overall
process need improvement, in order to make it more robust, the
results were satisfactory for this part.

Index Terms—Computer vision, Precision Viticulture, Yield
estimation, Machine learning

I. INTRODUCTION

Since automation of systems began to be a standard in
every area of human production, it has increased crop output
in agriculture, reduced manual labour and created an overall
improvement in quality of life, according to [1]. Also, the
more frequent use of robotics in agriculture is due to the
lack of human resources relative to manual labour and to the
increasing business competitiveness.

These developments include harvesting, seeding, irrigation
and other type of robots related to the basics of agriculture
activity. Along with the new possibilities that technology
brings, also new strategies have been developed in relation
to agriculture, one of which being Precision Agriculture(PA).
PA has been the trend in most crops. The idea is that each
parcel of field is different, and as such, should have different
needs. With PA, new challenges are brought to attention. This
more detailed information over a field, in this particular case a
vineyard, allows for a more precise control over the plantation

over more precise techniques related to yield estimation,
quality analysis or post harvest production.

The first and foremost issue with yield estimation is the
vine’s natural variability. Any vine may give significantly
different yields depending on the year (temporal variability),
soil or weather conditions, biotic or abiotic stresses, variety
or agriculture practices [2], [3]. Given the difficulties exposed
and with the advancements of robotics, especially sensor-based
technology, some works have been made in order to be able to
develop an automated system of yield estimation. One of the
paths pursued is the use of computer vision. Having images
as data, Machine Learning(ML) applied to image processing
is one of the most common trends [4]–[7].

These activities have taken a prominent importance in the
current agriculture research. That being said, the study of an
accurate yield estimation system, regardless of the crop in
question, has increasingly become a necessity. In the specific
case of viticulture, an accurate yield estimation brings signifi-
cant advantages such as: correct estimation of cellar needs,
the possibility of developing targeted marketing strategies,
knowing in advance the amount of machinery and manpower
needed for harvest, allocating cellar space and equipment and
managing stock prices for both the grapes and the produced
wine [8].

In ML, with the development of processing units and new
open-sourced programming libraries, the difficulty of applying
not only classical methods, such as statistical models, but
Neural Networks(NN) as well, has decreased.

A. Problem formulation

ISA is developing a project with the goal of estimating a
vine’s yield without invasive operations. This project is based
on a moving robot with sensors that collects data along their
vineyard’s lines. At the moment, no part of this process is
automatic. That being said, the main goal of this work is to
create an algorithm that has as an output the visible area of
grape clusters in any given image provided by the mobile
platform, in order to automatise this step of the process.
This first step in automation has additional problems other
than the main one of creating a system to replace the hand
segmentation.

B. Outline

In Chapter II, the main practises in precision viticulture
referring to yield estimation will be presented, alongside a



2

few projects that also relate ML to the problem and a brief
review of image segmentation techniques.

In Chapter III, the system that will be used in solving
the problem is presented and described in detail, starting
with the necessary image pre-processing, passing through the
grape bunch segmentation, followed by the prediction post-
processing and yield estimation.

In Chapter IV, experiments are made on the encruzado vari-
ety in order to better understand which variables of the system
are best for the task. The results analysed and discussed.

Finally in Chapter V, tasks and ideas that could improve the
overall of this process and provide continuity are proposed and
the project’s conclusions are shown.

II. RELATED WORK

A. Yield estimation

As a generalised practise [9], the way to estimate yield
requires a deep knowledge of the vineyard variability in space
and time, combined with years of expertise in viticulture.
Firstly, a set of samples is taken from several parts of the
vineyard where the producer knows to be different from one
another. Following the sampling, the producer weighs the set
and extrapolates for the patch where it was taken from and,
finally, the estimates are added, resulting in the final prediction.
The way the extrapolation is made varies from producer
to producer since it also takes into consideration empirical
knowledge. These sort of methods are time consuming and
can be destructive to the crops.

For PA, yield estimation has been not only a commodity but
a necessity. For this specific problem, new alternative methods
have been developed and used commercially. Usually these
methods present some limitations, the main one being that
they rely on invasive techniques such as defoliation, as shown
in Figure 1, or that they are aimed at yield estimation at a
larger scale.

Fig. 1: Example of a defoliated vine

Given the utmost importance of being able to estimate the
yield , several efforts have been made to develop new strategies
and technology that support this area. Some methods are
already in use, like the aeropalynological forecast models [10],
although this is more directed at a regional scale production
estimate. This method is based on vineyard pollen readings
and correlates the amount of pollen concentration in the air of

a certain region which increases with the number of flowers
and, consequently, the number of future grapes. So, the current
trend has been in sensor based technology. Another method
that is still under development is the one proposed by [11],
where is said the tensile strength of the vineyard’s supporting
wires is adjusted to be proportional to the weight of the
existing bunches. This method has the limitation of requiring
large investments in sensors that will also require regular main-
tenance. Although quite a few different approaches have been
made, the main trend has been visual-based methods. There are
some currently under development and others already tested.

B. Computer vision in the viticulture and agronomic context

Computer vision has become one of the most common
strategies adopted in the yield estimation problem, not only
regarding bunch recognition [8], [12], but also shoots [13],
flowers [14], [15] and berries [16], [17]. Using computer
vision, it is reasonable to assume that a more correct iden-
tification of the yield components(bunches, berries, flowers or
shoots) will provide a more accurate estimation.

C. Image Segmentation

Consequently, looking at reviews from the recent years,
the main work effort has been oriented towards computer
vision, more specifically in ML [18]–[20]. In particular, NN
have demonstrated to outdo expectations in several fields, in
particular the FCN, presented in [21], when trained end-to-end,
pixels-to-pixels on semantic segmentation exceed the previous
best results without further machinery. Another approach to
this problem is the technique of transfer learning. Having the
problem of lack of data, it is possible to adapt a existing pre-
trained classifying NN, changing the fully connected layers
into a deconvolution, as proposed by [21]. This utilises the
feature learning part of the network, being that the only trained
part is the deconvolution or upsampling part, with the data
specific to the problem(Figure 2). This structure is further
explained in Chapter III.

Fig. 2: FCN architecture
(Source: [21])

Of course the limitations to any NN solution revolve around
the lack of direct control over the classification process and
feature learning, the possibility of over fitting and the inability
to be certain when a minimum of the loss function is reached,
that it is the global minimum that will solve the problem
optimally. Also, the amount of data that is usually required is
significantly more than the amount used for traditional image
segmentation methods.
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Another important work done in image segmentation based
on Convolutional Neural Networks(CNN) is [22]. The U-
Net (Figure 3) proposed, is comprised of two stages: firstly
the compression stage that is dedicated to feature extracting
resulting in a multi-channel feature map; and in the second
stage, it is added a usual contracting network by successive
layers, replacing the pooling layers with upsampling operators,
increasing the output’s resolution. This network provides the
possibility of end-to-end training with a reduced data set,
obtaining satisfying results.

Fig. 3: U-Net architecture
(Source: [22])

Regardless, to opt for a classic approach in segmentation
through computer vision would also be an option, with the
advantages of having a greater control of the overall process,
resulting in an easier feature tweaking, on one hand, but
on another this process may be more time consuming and
difficult. That being said, some works combine the two ap-
proaches in separate steps of the process, like [7], [23], the first
using a combination of FCN with the application of a Hough
Transform based method and the second using descriptor
vectors that combine Histogram of Oriented Gradients(HOG)
and Local Binary Pattern (LBP) followed by a Support Vec-
tor Machine (SVM). Another work that combines classical
methods with more recent ones, is [24]. With the objective
of immature green citrus fruit detection, it performs fruit
detection through booth Region-Based Convolutional Neural
Networks (F-RCNN) and a multi-level Hough circle method.

D. Yield components recognition

Taking a NN approach to this problem, there are already
projects who tackle the same problematic with a similar
backbone idea [4], [5], [7], [24] that show promising results.

One of the most interesting strategies is described in
[5]. In this paper transfer learning is applied. A pre-trained
Classifying Neural Network, the Inception-V3 [25] is used as
a base for the localisation algorithm. To be able to correctly
classify and localise the bunches in the images, the last
layer was replaced by what the authors entitled ”localisation
head”. This head takes the information from the second to
last layer and uses it to produce an outcome of probability of
a certain area in the image having or not a bunch. Through
this probability map, a bounding box is created around the
areas with the largest probability value. The ”localisation

head” was trained separately from the remaining network
with images labelled with containing bunches or not. For this
training, the algorithm split the images into areas of interest
and could correctly classify 99% of them as for containing or
not grape bunches.

In [4], the last layer of the NN is replaced with a clas-
sification layer made by five neurons, one for each possible
classification, bunch, wood, pole, leaves and background. This
last layer can be described as a maxpool layer, in which the
classification is given through the most likely probability of the
patch in analysis. The algorithm was tested with four different
NN: Alexnet [26]; VGG16 and [27]; VGG19 [27]; GoogLeNet
[25].

With the different goal of simply counting the amount of
bunches in a given image, this strategy was based on a 80x80
pixel sliding window. The 80x80 size was selected from a
mean size of a bunch in an image in their specific data set.
This window would be then resized and fed to the NN.
The accuracy results for each NN are: Alexnet (81.03%);
VGG16 (83.05%); VGG19 (91.52%); GoogLeNet (79.66%).

Another approach to the identification of yield components
is the one presented in [7]. Their aim is one that is very similar
to the work of this dissertation, with the difference that the data
collection is performed during the flowering stage of the grape
vine. Their process is divided into two stages: localisation of
inflorescences in the image and single flower extraction. The
first step is done through the use of a FCN, with a encoder part
adapted from the AlexNet [26] and a decoder with only two
up-convolutions. This architecture is derived from the U-Net
[22]. They train the network with labelled images of the vines,
with the classes of inflorescences and not-inflorescences.

Focusing on the inflorescence detection, since they use a
process based on the Hough transform for the flower extraction
part, 5292 608x608 pixel images were used to train the
network. Given the nature of the problem, the detection and
localisation of inflorescences results in regions of interest
(ROI) and, as such, mean Intersection Over Union (IOU) was
used as a quality measure.

The best results were after the 285500th epoch, which
resulted in a mean IOU of 87.6%, with a class-specific IOU
of 76% for the inflorescence class.

E. Limitations

The previously mentioned methods, with the exception of
[7] lack practicality in some sense. For example, part of them
used a data set with vineyards that have had some of their
leaves removed, as in Figure 1. Also, for the specific goal of
this work, that is estimating yield, when recognising bunches
in an image, the objective is to segment them in the image,
not only count them, as it is done in [4]. The main limitation,
in general, is that to base a method of yield prediction on the
bunches that exist, the more of them that are occluded, either
by other bunches or leaves, the more uncertain the method is
going to be. This work aims to overcome these limitations,
starting with not being invasive. The data collection does
not interfere with the natural vine development or viticulture
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practises. Also, with the prediction models developed at ISA,
the occlusion problem is handled.

III. PROPOSED SYSTEM

A. Materials

The mobile platform used is the Vinbot robot (Figure 4),
that has in its mast a Red-Green-Blue(RGB) camera, at an
adjusted height so it matches the canopy height, that is used to
collect the image data. The robot is controlled by an operator
with a controller and collects the data to an external hard drive
directly connected to the robot.

Fig. 4: Vinbot robot

The software used for the image labelling and other small
tasks in the post processing is the ImageJ software. The
programming was done in its entirety in python and the NN
training was performed on the Google Colab online platform.

B. System Structure

The complete system is as described in Figure 5. Firstly,
the robot passed through the vineyards with the RGB camera
and takes approximately 1 meter wide images, meter by meter.
These pictures are automatically pre processed, segmented and
post processed. After the information is ready to be extracted
from the images, this area of grape clusters in pixels is
converted into cm2 and then into weight, estimating the yield.

Fig. 5: Complete system overview. In blue are the blocks that con-
cern this work, in grey the system provided by ISA

C. Pre Processing

The objective with pre processing, in this case, is to
transform the image data into a format that is more prone to
learning, either by accentuating shapes or colours in images,
for example so it would be easier for feature learning, or by
simply formatting the image so it complies with the specificity
of the segmentation algorithm.

The pre processing of the image data can be summarised in
the following flowchart (Figure 6):

Fig. 6: Pre Processing operations from the raw image to the pro-
cessed network’s input

1) Colour space: Although RGB is one of the most
commonly used models in computer vision [28], it presents
some disadvantages. The model produces a nonlinear and
discontinues space, which makes the changes in colour hue
difficult to pursue. This combined with the fact that the colour
hue is also easily affected by illumination changes, makes that
colour tracking and analysis a nontrivial task.

That being said, another colour space was considered to
replace the RGB model, CIELAB (Figure 7). Firstly, there
is a model, RGB normalised, that dealt with one of the
major problems, the sensitivity to illumination changes of
RGB. The principle that guides this model is that a certain
colour is formed using a certain proportion of three primary
colours from the model and not a defined amount of each one.
However, although it removes the aforementioned negative
illumination effect, it also reduces object detection capability,
due to the loss of contrast that the same illumination provides
[28].

Fig. 7: CIE Lab colour space
source: [29]

The CIELAB model is based primarily on the physics aspect
of light. CIELAB is based of the CIE XYZ model. This
model is calculated using the light wavelength from the physic
representation of any specific colour. The L∗ component for
this model encapsulates the illumination effect on the colours,
providing a way to only remove the unwanted consequences
of lighting changes. The CIELAB model can represent colours
that are not handled by other models and, theoretically, it could
represent an infinite number of chromatic combinations [28].



5

2) Image formatting: The next step in the system is the
actual segmentation of grape clusters in the images. The
algorithm selected has as input 572x572 pixel images, but
produces an output of 388x388 pixel mask. Due to the nature
of the algorithm, the frame pixels(from 388 to 572) will not
be classified, since there is a resulting loss in border pixels
from the convolutions in the NN. In order to not lose any data
two steps were taken.

Firstly, a 388x388 pixel sliding window was passed through
the image with minimum overlap, resulting in an image that
will have to be enlarged to correctly correspond to the input
size of 572x572 pixel. In order to do that a 92 pixel mirror
frame was applied, resulting in an image as Figure 8.

Fig. 8: Final image after sliding window and mirror framing

D. Segmentation

The image segmentation step of this system consists of a
FCN that will take as input the previously processed images
and will have as an output a binary mask of what is, or not,
a grape cluster in the provided image. This specific format
of NN was chosen due to the fact that its output, in this
context, is the area of visible clusters for any specific image.
By segmenting the image into bunch and background an area
can be calculated by counting the number of pixels classified
as bunch. This is a necessity for the final yield estimation
model, that takes as one of its inputs an area of visible grape
bunches. The architecture chosen for the task was the one used
in [22], that will be studied in further detail in this section,
along with a brief introduction to FCN. Another issue besides
the one presented is that the classes that the networks aims to
classify are imbalanced in the data set. In order to correct this
imbalance the loss function was adapted.

1) Fully convolutional networks: In general, a FCN can be
comprised of two types of layers, convolutional layers and
pooling layers.

The convolutional layer is the filter that, when passed
through the input, defines what are the feature locations in
a feature map. This is the main task of the network [30].

As stated in [31], this type of layer is composed of, essen-
tially, a kernel that slides across the input feature map with a
certain stride (distance between two consecutive positions of
the kernel). In each position, the dot product is calculated. The
resulting products are concatenated producing a new feature
map as an output.

Another parameter that can be chosen, is the padding.
Padding is the border pixels dimension that can be applied
in the convolutional layer that can contribute to altering the
size of the output. The output size is determined by Equation
1:

o =
i+ 2p− k

s
+ 1 (1)

Where o is the output size, i the input size, p the padding
and k the kernel size.

As for pooling layers, as said in [31], [32], the objective in
using them is to reduce space dimension and, consequently,
computational power needed to process, to provide invariance
to small translations of the input and to minimise overfitting.

The principal behind the pooling layer is from a set of
numbers create one that can be representative, according to
the desired outcome. For example, one of the most used types
of pooling is max pooling. Much like a kernel slides on an
input map, this operation also has pre defined pooling window
size and stride.

As described in [21], the structure of these networks are di-
vided into two parts, the downsampling and upsampling. Both
use convolutional layers, although with different purposes.
The downsampling part is the only to use pooling layers.
Firstly, the downsampling part extracts features from the input,
reducing the input size at each layer. The upsampling part is
where the final feature map that was calculated, combined
with spatial data from the downsampling, reconstructs the
input with the new learned information. This reconstruction
is made possible through the use of transposed convolutions
or up convolutions, which has the advantage of being able
to carry out trainable upsampling. It provides as an output a
reconstructed input of spatial dimension equal to the input
of the correspondent layer in the downsampling part. The
combination of these types of layers is the basis of a FCN.
Considering this type of network for this system, the U-Net
[22] was chosen due to its positive results.

2) U-Net: Considering the existing FCN, the U-Net stood
out. It showed positive results obtained with a similar defi-
ciency of training data, which was solved with data augmen-
tation. The U-Net network, as seen in Figure 3, was used in
[22] for biomedical image segmentation.

This network is composed by two phases, a contracting and
an expansive side, as the FCN described before. In total there
are 23 convolutional layers to this network.

3) Loss function: In order for the network to consider the
imbalance between classes it needs to have a weight factor in
it. Using binary cross entropy just as is, was proven not to
be enough, as shown in Chapter IV, due to the fact that the
set is highly imbalanced, with a ratio of 3.5% bunch pixels
to 96.5% background. As such, it was transformed into a
weighted binary cross entropy (Equation 2):

Hb(p) = − 1

N

N∑
i=1

wc(yi·log(p(yi)))+wb((1−yi)·log(1−p(yi)))

(2)
Where yi is the label(1 or 0) and p(yi) is the predicted

probability of that label. The weights wc and wb represent
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the weights relative to the class cluster and class background,
respectively. It is the objective for the loss function to favour
”1” classifications. Therefore, the weight related to the cluster
class must be higher than the weight related to the background
class.

The values chosen must reflect the nature of the imbalance.
Logically the weights should be an inversion of the relevance
of each class in the image. Then the weights wc and wb will
be chosen inversely, with wc = 96.5 and wb = 3.5.

E. Metrics

There will be two types of metrics. In a first stage is
important to assess how well the segmentation is made and
then, in a later stage, the areas of bunches predicted, after
being put through the models that convert them into grape
weight, should be rated against the correspondent ground truth.
Regarding the first stage, this implies, as stated before, a pixel-
wise classification. Therefore, the metric that evaluates the
success of the prediction must be one that is not binary but
with an associated percentage. That being said, the metric
used was the IOU, also known as the Jaccard index(3). It
provides a ratio of how much of the predicted class in question
is correctly overlapping the corresponding ground truth. The
second stage of the evaluation is further explained in Section
III-F3.

IOU =
Area of Overlap

Area of Union
(3)

F. Post Processing

Given the presence of some noise in the image, i.e. small
false positives clusters, post processing operations were made.
They removed very small clusters of false positives through
the use of morphological operations. Following the operations,
the image was reconstructed. In this step, false positives are
also eliminated due to the overlapping areas that resulted from
the sliding window, which allow for two or more predictions
for some part of the image. With the reconstructed image, with
the help of a scale in the image, the area of visible bunches
in pixels was converted to cm2.

This being said, the post processing can be divided into
three smaller steps (Figure 9).

Fig. 9: Post processing

1) Morphological operations: These operations consist of,
firstly, convolving the binary image with a structuring element.

The standard morphological operations are (Figure 10)
dilation, erosion, majority, opening and closing.

As it is possible to observe from Figure 10, dilation thickens
the object, while erosion thins it. The last two operations,
”close” and ”open”, are a dilation followed by an erosion
and the reverse. They tend to leave large regions and smooth
boundaries unaffected, while removing small objects or holes

Fig. 10: Examples of morphological operations: (a) original image;
(b) dilation; (c) erosion; (d) majority; (e) opening; (f)
closing.
source: [33]

and smoothing boundaries. It was these characteristics that
made the ”open” operation the chosen for the first step of the
post processing.

2) Image reconstruction: As stated before, the existence
of overlapping areas in the predicted images allows for an-
other mean of dealing with false positives. The way to take
advantage of this situation is by creating a decision system for
the different areas of overlapping in the reconstructed images
regarding what is or not a grape bunch. The image presented
in Figure 11 illustrates the overlapping segments, where the
number in each segment indicates how many images overlap:

Fig. 11: Regions of overlap in the reconstructed image:”1” is where
there is only one sliding window image that classifies
that segment; ”2” represents that the segment in question
is classified by two images;”4” is where the segment is
classified by 4 different images

For the ”1” regions, the prediction of that image stand for
the final reconstruction. For the ”2” regions, both predictions
must agree on a pixel level, so a logical and operation is
applied. As for the ”4” regions, a 75% certainty is believed
to be enough to classify a certain pixel as part of a bunch.
Although the problem is an excess of false positives, false
negatives also occur. The three out of four approach provides
some robustness against false negatives in the reconstruction
in opposition to a strategy that is simply based on a logical
and approach.

3) From counting pixels to yield estimation: After the
reconstruction, the following step in the process is to account
for the number of pixels classified as grape bunches in each
image in order to transform that number into kg. This process
starts with calculating the ratio from pixel to cm2. Since
the Vinbot project has not been fully automated, this task is
performed by hand, image by image. With the ratio, it is just
a matter of transforming the area in pixel into an area in cm2.
These models, developed in [34] and also used in [35], [36],
take part in two stages of this process (Figure 12):

The first model is used to estimate the visible bunch per-
centage of the total existing bunches, taking into consideration
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Fig. 12: Yield estimation diagram from the Vinbot output until
the final estimation of yield per image. %Por=bunch zone
canopy porosity (in percentage); BAV = visible bunch
projected area; %VB = percentage of visible bunches; B̂A
= estimated bunch projected area (total per image); Ŷ = final
yield estimation per image.

the porosity of the vine. The porosity is correlated with the
percentage of visible bunches, since the major cause for bunch
occlusion is leaves from the vine. Therefore, the higher the
porosity percentage (more empty spaces in the canopy) the
lesser the leaf occlusion. Knowing the area of visible bunches
and the percentage to which it corresponds, due to the porosity
correlation, it is possible to make a projection to the total
bunch area, visible and covered. This projection is then fed into
the second model to calculate the final weight, transforming
cm2 to kg through a polynomial fit where the bunch area is
the independent variable and the weight the dependent one.

This second evaluation is important since there are steps in
between the output of the segmentation network and the final
estimation, as previously explained. This metric provides an
overview of how good is the data set, evaluates the robustness
of the models with different sourced data and suggests a path
for the project to take moving forward.

IV. EXPERIMENTAL RESULTS

A. Data set

The available images for training, testing and validating
were taken in 2018, with a total number of 174 540x960
pixel images, corresponding to the last two phases of the
grape’s maturation, veraison and harvest. As for the data
distribution, 80% was used for training, 10% for test and 10%
for validation. After dividing the images between the different
sets, data augmentation and image formatting operations were
performed on the training set. The aforementioned operations
were different for the training and the remaining sets, since no
data augmentation could be applied to the latter, tainting the
results. So, for the training set, a siding window, as mentioned
before, was passed trough the image, creating 6 images for
each original image which turned into 12 with the inversion of
each image around the vertical axis. Besides the pre processing
of the training set, the other two sets could only generate 2
388x388 images per original image. With this information, the
data can be summed in Table I:

For the second part of testing, the yield estimation evalu-
ation, the 2019 data set was made available. This data set is
comprised of 4 different testing conditions, 2 grape varieties,
encruzado and arinto, at two stages of maturation, veraison and
harvest, with a total of 40 meters per combination, resulting
in 160 meters of vine over 197 540x960 pixel images.

TABLE I: Number of images of each data set before and after data
augmentation and image formatting operations: training,
test and validation

Number of images(pixel area)
Data set Before data augmentation After data augmentation
Training 140 1680

Test 17 34
Validation 17 34

B. Segmentation Experiments

1) Naive Baseline: As mentioned before in Chapter II, the
U-Net neural network has as perks to its use the fact that it
can be trained end-to-end with smaller data sets such as the
one available and present satisfying results [22]. This was one
of the main reasons behind its choice as the segmentation
network for this work. This baseline experiment used the
U-Net as it is presented in Chapter III, trained with binary
cross entropy as the loss function, since that in [37] is stated
that cross entropy may be more robust in maintaining its
performance advantage for problems with limited data when
compared to a squared-error function, no data augmentation,
no pre or post processing of any kind and for 100 epochs.

This experiment resulted in all the images being 100%
classified as background, with a mean of 96% accuracy and
0% IOU. From this, several hypotheses were made regarding
the failure of the experiment, namely: the loss function is not
taking into consideration the existing class imbalance in the
images; there is not enough data for the machine to learn from;
the images may need some previous processing before being
used for training.

2) Loss function: As explained in Chapter III, the loss
function was tweaked. Although there is a rationale behind the
combination proposed previously, other weight combinations
were tested. The results for the validation set during the 100
epochs of training are shown in Figure 13, which prove that
best combination for the weights it is the inversion of the ratio
of their imbalance, as was expected:

Fig. 13: Evolution of the validation IOU over 100 epochs for three
different sets of weights

3) Data augmentation: As previously done in [22], to
solve the problem of insufficient data, data augmentation was
performed. The image was then inverted over the vertical axis.
This data augmentation technique led to better values in the
metrics used, especially during the first 50 to 60 epochs. Using
the weighted binary cross entropy with the weight set defined
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in the last section(IV-B2), there was a clear improvement
(Figure 14).

Fig. 14: Evolution of the validation IOU over 100 epochs for the set
with and without data augmentation

The use of data augmentation resulted in a score that was
higher than the previously best, achieving 62% validation IOU
over the 57% obtained without the augmentation. Following
the augmentation operations, the next step of experimentation
is focused on the stages before and after the segmentation. As
for the pre operations, the colour space is changed. After the
segmentation, the morphological operations are tested.

4) Colour space: As stated before in Chapter III, the used
colour space for this work was the CIELAB. Besides the
advantages of the use of this colour space that were already
described, testing was also performed for empirical confirma-
tion. The results showed that when using this colour space, for
the same test set, the results improved when compared to the
RGB colour space, going from 49% IOU to 62%. It is possible
to assume that this improvement comes from discarding the
negative effect of illumination, as explained before in Chapter
III.

5) Morphological filters: The use of morphological filters,
as it is mentioned before in Chapter III, is mainly to reduce
the number of false positives in the image, mostly related to
small miss identified clusters. The ”open” operation was able
to remove a significant part of these clusters and smoothed
the grape bunch boundaries, also increasing the IOU. In
the example, Figure 15, the IOU increases from 70% to
72%. Although the amount of pixels removed may be small,
the difference in the metric is notorious, demonstrating the
sensible nature of the problem.

(a) Original image (b) Resulting mask (c) ”Open” operation

Fig. 15: Example of the morphological operation applied on a pro-
cessed image

6) Segmentation results: After all the testing, the overall
process was changed according to the results. The test set
produced the following scores for the described experiments
(Table II):

TABLE II: IOU scores for the grape bunch class in the test set in
every experiment

Experiment Test set IOU results
Naive Baseline 0%
Loss function 47%

Data augmentation 49%
Colour space change 62%
Morphological filters 64%

C. Yield estimation experiments

With the testing made for the first stage of evaluating
the system, the next step is evaluating the whole system
regarding yield estimation. For this purpose another data set
is available for evaluation, the 2019 set. In 2018, the project
group used a different model than the one used in 2019.
This model did not take into consideration the vine’s porosity
and as a consequence no porosity data is available. Without
this data, it is not possible to use this 2018 set for yield
estimation. As for the 2019 data set, it was not possible
to use it for the segmentation evaluation since it does not
have a complete segmentation ground truth, only the final
weights. For this experiment, four situations were examined,
two varieties, encruzado and arinto and two stages, veraison
and harvest, the last two stages of the maturation process.

All data sets, for both arinto and encruzado, are composed
of several images of four Smart Points(SP), each a set of ten
consecutive meters. The SP are the same between maturation
stages. It was expected that the harvest results would be more
precise than the veraison, since the data was taken closer to
the actual harvest, inducing less error in the models. This
was proven not to be true with the veraison sets showing
promising results, and the harvest sets resulting in a complete
miss estimation. The possible reasons behind the results are
explained in the end of this chapter.

1) Veraison: As for the veraison analysis, the results are
very satisfactory. As it is possible to observe from Figure
16, the lighting conditions are similar to the training data set
and constant through out the canopy. Although there are some
discrepancies in the meter wise analysis, the final result shows
that the overestimation compensates the underestimation, re-
sulting in Table III, where the encruzado variety has only 3%
relative error, just over 2kg over the yield and the arinto variety
has 10% relative error, 13 kg less than the ground truth.

TABLE III: Final results for the yield estimation in veraison stage
with the associated relative error between parenthesis

Encruzado Arinto
Actual yield 69,2 123,4

Hand segmentation 67,6(2%) 121,3(2%)
Automatic segmentation 71,0(3%) 110,6(10%)

2) Harvest: The summed results that make the final yield
estimation are given in Table IV.

With the data from the four data sets, it is possible to
understand the importance of the data collection conditions,
for them to be consistent and aware of environmental factors
such as lighting. For both the encruzado and arinto the results
were not satisfactory, especially considering that the manual
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(a) Original image

(b) Resulting mask

Fig. 16: Example of an image of the encruzado variety in veraison
stage

TABLE IV: Final results for the yield estimation in harvest stage
with the associated relative error between parentheses

Encruzado Arinto
Actual yield 69,2 123,4

Hand segmentation 68,6(1%) 122,5(1%)
Automatic segmentation 143,50(107%) 209,68(70%)

segmentation produced equally good results as before when
estimating in the veraison stage. This phenomena has several
possible explanations.

Firstly, these were not the expected results, especially
taking into consideration the veraison estimations. The light
conditions were a significant factor in the segmentation errors.
Starting with the encruzado set, when compared to the veraison
images, there are some noticeable differences. Although the
mean light intensity in both sets is similar, the standard
deviation is not for some of the images. Taking as an example
the first SP in both sets, the average standard deviation of light
intensity in 3 different representations, all normalised to 255,
CIELAB, HSV and grey scale are of 81 points, for the harvest
set and of 58 for the veraison. The difference is of 23, which
is almost 10%.

This indicates that the network may not be robust enough
to handle significant differences in lighting conditions, even
though part of the pre processing was design to do just so.
Other than the light distribution in the image, another issue is
the light source and its position. Until the start of this work,
the data collection was made with no specific rules regarding
illumination. It was made without taking into consideration
that different times of day and positions relative to the robot
may interfere in the automatic segmentation. This is not the
case for the veraison data, since it was taken either with the

light source behind the canopy or on a cloudy day where the
light is constant from any side, as is in Figure 16a. Other than
the light issue, another correlation that was found was between
the porosity values, the yield’s ground truth and the absolute
error in kg. Even though there is a general overestimation ate
each SP, there are specific meters that stand out. There are
two factors that most of these points share, a low porosity
percentage and low yield. Since the network is prone to have
false positives, any overestimation caused by the segmentation,
which in turn was influenced by the data set’s conditions,
would be amplified by the model, overestimating the yield
based on the overestimation of visible grape bunches. In
general, the main conclusion that can be taken from these
experiments is that the network is not robust enough to handle
conditions that are significantly different from the ones it was
trained on, because the training set is not diverse enough to
be representative of those different conditions.

V. FUTURE WORK AND CONCLUSIONS

A. Future work

One of the most important stages in this process is the
data collection. As it was seen previously, a lack of care
can result in data that the network is not able to segment.
Therefore, there are two aspects that need to be improved
in this context: data collection conditions and the diversity
of the training set. Firstly, the light conditions for the future
data sets should match the conditions in the training set,
as much as it is possible to control. Secondly, to handle
discrepancies, the network should be retrained, this time with
a more representative data set, possibly including the 2019
images when an appropriate ground truth is available. Also, in
the next years, the network should be retrained with new data
in order to understand if there is a significant improvement
with time variability.

B. Conclusions

o address the main goal of this dissertation, a system
described in Chapter III was proposed and presented. It was
comprised of different parts, the main one for this work being
the automatic segmentation. This part, isolated from the others
of the project, was tested achieving satisfying results of up to
64% of IOU in the test set. This testing resulted in the adding
of other components in the process, namely a pre and post
processing, that were essential for the score of 64%.

After obtaining reasonable results in the segmentation evalu-
ation, the final test is to use the models used on the hand made
segmentation to estimate the yield for the same areas, the 40
meters of SP. The ideal stage to perform this estimation is in
the veraison stage of the grape, around three months before the
harvest. Experiments were made for both the veraison stage
and the harvest stage, for two varieties, encruzado, that was
used for training, and arinto. The harvest results, although not
satisfactory, were useful to learn the importance of correct
and consistent data collection and to expose fragilities in
the segmentation network, more specifically, the inability to
handle significantly different conditions to the ones present in
the training data set.
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The results for the veraison stage were significantly more
promising, with relative errors to the actual yield in the
accepted interval of 0 to 10%.
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