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Abstract

The various phases and mechanisms that happen sequentially during a life of a cell form the cell
cycle and the correct progression along this cycle is essential for the maintenance of life. For a typical
eukaryotes cell this cycle can be separated into 2 main phases: interphase, during which the cell is
growing, and mitosis, where the cell separates into two daughter cells. The interphase can be further
divided into 3 main phases, G1, where the cell is growing, the S phase, where the DNA is replicated and
the G2 phase during which the cell continues growing in preparation for mitosis. Due to the importance
of the cellular cycle, the correct staging of a cell (i.e. correct classification of its current phase) is of
the utmost importance for biological and pharmacological research. However, current methods for
cell staging have traditionally relied on fluorescent microscopy and the analysis of cell population and
present some drawbacks such as the need for specific biological markers or the destruction of the cell
culture to determine its stage. As such, in this project, a new method that relies on the use of DAPI
stained cell cultures (one of the most common cell imaging techniques) and deep learning techniques
is proposed. By using deep learning algorithms, this method is capable of staging single data points
without relying on cell population analysis and will not require specific biological markers, resulting in
fairly simpler process to achieve cell staging.
Keywords: Deep learning, DAPI staining,Fluorescent Microscopy, Cell Cycle, Convolutional Neural
Network

1. Introduction

The cell cycle is one of the essential mechanisms
that allow the maintenance of life. The correct pro-
gression along the cell cycle makes cell growth and
reproduction possible by achieving its separation
into two daughter cells with equal genome.

Across the cell cycle genome stability is main-
tained by regulation that establishes not only the
correct genome duplication, but also the appropri-
ate chromosomal distribution to each daughter cell.
Failure to regulate may cause genome instability
which has been linked to abnormal cellular behav-
ior, such as unscheduled proliferation, and to dis-
eases, one such example being cancer.

As such, the study of cell cycle progression is of
the utmost importance as is the ability to determine
at which stage a cell is, i.e the ability to stage a cell.
Most cell staging methods rely on population-based
analysis making them incompatible with single-cell
staging.

Recently, approaches to this problem developed
methods that can accurately stage a single cell or
track its progression throughout the cell cycle. Even
tough useful, most of these methods require the use
of specific cell markers or the use of stage specific re-

porters meaning they are still incapable of tracking
a cell’s progression through the cell cycle or are in-
compatible with modern high resolution biological
techniques. [1, 2, 3]

As such, the need for an inclusive method capa-
ble of determining any cell cycle stage that is com-
patible with modern biological techniques is still
present.

This project aims to evaluate cells through 40,60-
diamidino-2-phenylinodole (DAPI) staining with
fluorescence microscopy images and classify them
by identifying the corresponding cell cycle phase,
considering intracellular features. While some ap-
proaches have been developed they relied on the
clustering classification and as such could only clas-
sify a sufficiently large set of data points. By uti-
lizing deep learning methods, this project hopes to
develop a method that can successfully identify sin-
gle data points after careful training is performed
with the original dataset.

2. Background

The following section will provide an overview of
essential concepts from both biology and machine
learning required to understand the work proposed.
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2.1. Biological Background
2.1.1 The Cell

Cells are the basic unit of life and are consid-
ered the building blocks of all living organisms.
Much like these organisms, cells have evolved and
adapted to various environments and functional
roles. Nonetheless, all cells rely on, basically, the
same structures to perform the set of tasks that is
essential for their own survival.

One of these common structures that all cells pos-
sess are nucleic acids, the molecules responsible
for containing and helping to express a cell’s ge-
netic code). These acids can be classified in two
major classes deoxyribonucleic acid (DNA), that
contains the essential information for the creation
and maintenance of the cell and ribonucleic acid
(RNA), that possesses several roles associated with
the expression of genetic material. The DNA is
packaged differently in different cells which resulted
in a form of cell classification, if the DNA presents
itself separated from the cytoplasm by a membrane,
than the cell is eukaryote. In contrast, if the DNA
is in contact with the cytoplasm, without any bar-
rier, than the cell is prokaryote. Eukaryotic cells
form all animals and plants. As such, since the data
used on this thesis refers to human cells, these will
be the only ones of interest. Consequently, every
time the term cell is used, it is in reference to eu-
karyotic cells.[4]

2.1.2 The Cell Cycle

As every living being, cells possess a life cycle. This
life cycle, or the cell cycle, describes all the pro-
cesses that a cell goes through to replicate its com-
ponents, particularly its genome, to successfully di-
vide into two daughter cells. [5]

Clearly, the cell cycle includes and orderly se-
quence of events to achieve this end and can be
divided into four phases: gap 1 (G1), synthesis (S),
gap 2 and mitosis (M), which occur in this order. A
fifth state exists, named G0. This state corresponds
to a non-dividing and resting stage and, as such, is
not part of the cycle. Each of the stages possess
a specific role and the entire process is controlled
by a set of enzymes, the cyclin dependent kinases
(CDK’s). As the name sugests, these enzymes are
regulated by cyclins, a protein group that appears
and disappears during the cell cycle in a cyclic man-
ner and that enables or inhibits the enzymes action.

To control the transition between phases, cells
also developed a set of checkpoints along their cy-
cle. These control the sequence and timing of the
cycle, in addition to ensuring that essential events
are completed successfully. As such, these check-
points function as hold points and, in the event
that a vital task is not performed correctly, they

will delay the cycle’s progression until the task is
completed. [5]

G1 phase Along with G0, this stage of the cell
cycle is the only one in which the cells respond to ex-
tracellular stimuli. As such, this phase is commonly
a target for mitogenic signals (cell cycle inducing
signals). At this phase, cells ”decide” to enter a
new round of the cellular cycle or opt to transition
into a resting, quiescent state (the G0 phase). This
decision is based on various intra and extra cellular
signals and represents one of the previously men-
tioned checkpoints. If a ”decision” of entering a
new round is made, the cell becomes unresponsive
to external signals until the end of the cellular life
cycle.[6]

S phase After G1, cells enter the synthesis phase,
or the S phase, so called due to the DNA replica-
tion which occurs during this stage, a process that
starts after DNA replication proteins achieve a sat-
isfactory level.

To ensure that DNA replication occurs in a rea-
sonable time-frame, the process is initiated in mul-
tiple ”origin points” of the chromosomes simultane-
ously. Nonetheless, control mechanisms have to be
employed to ensure that the cells DNA content is
duplicated only once and that it only restarts after
the complete cell division. This is achieved by the
so-called ”replication licensing system”.

This mechanism ensures that the thousands of
”origin points” are utilized efficiently and safely,
since even a small mistake during the DNA repli-
cation, be it over-replication or under-replication,
could result in severe consequences for the cell. Af-
ter the complete DNA replication the cell enters the
Gap 2 phase. [6]

G2 Phase The G2 phase is the last step ahead of
actual cellular division. As such, before progressing
any further the cell must ensure that not only the
genetic material is correctly duplicated, in the form
of sister chromatids, but also that essential cellular
structures, such as centrossomes, are too.

Incomplete DNA replication or damaged DNA
will trigger checkpoint pathways that will cause cel-
lular arrest in the G2 phase. [6]

2.1.3 M Phase

The M phase is the final stage of the cell cycle,
after which 2 daughter cells will have been gener-
ated from 1 parent cell. This is done through two
processes, mitosis and cytokinesis, that, combined,
constitute the M phase. [6].

Mitosis is the process responsible for the separa-
tion of the cell’s nucleus in two and it is comprised
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by 5 different stages, Prophase, Prometaphase,
Metaphase, Anaphase and Telophase. Each in-
volves characteristic steps to align and separate the
cell’s chromosomes.

When the last stage of mitosis has ran its course,
the cell possesses two nucleus with identical genetic
material and it is time to split the parent cell into
two identical daughter cells, a process called cy-
tokinesis.

This physical mechanism begins with the cell
pinching itself at the equator forming a cleft called
cleavage furrow. This cleft is formed by the ac-
tion of a contractile ring consisting of overlapping
actin and myosin filaments. As the ring tightens, it
eventually reaches its smallest point. At this mo-
ment, the cell bisects itself forming two daughter
cells of equal size. [7]

2.1.4 Cell Imaging

The cell cycle is a complicated process, driven
and regulated by an intricate system of protein
complexes that trigger specific events at specific
times.[8] Being able to observe the changes in cel-
lular structure caused by these mechanisms plays
a key role in understanding how they operate. As
such, the technology to observe cells needs to con-
stantly improve producing techniques such as fluo-
rescent microscopy.

Fluorescen microscopy Fluorescent mi-
croscopy is a technique that attempts to only
reveal the objects of interest on an otherwise
black background. To do so, it is required that
the objects of interest fluoresce, which is achieved
through the fluorescence phenomenon. Strictly
speaking, fluorescence describes photoluminescence
that occurs when materials photons at a certain
wavelength and then emit photons on a different
band of wavelength.

Nonetheless, the fluorescence phenomenon is only
useful if the target molecules ”light up”. Whereas
many organic substances possess natural fluores-
cence, the common approach from fluorescent mi-
croscopy is to use synthesized compounds that bind
to a specific biological molecule and have great fluo-
rescent properties. These compounds are known as
fluorophores and provide a targeted approach since
they grant the ability to only mark relevant biolog-
ical molecules. [9]

DAPPI Stain One of the more relevant afore-
mentioned fluorophores is the 4’,6-diamidino-2-
phenylindol or DAPPI stain. This staining com-
pound is widely used to mark DNA with a high
sensibility that allows for the observation of even
small DNA quantities.

The staining process associated with this fluo-
rophore is simple and requires no hydrolysis, with
the stain being manually applied by pores made in
the cellular membrane. When excited by light it
emits a strong white blueish fluorescence. [10]

2.1.5 Current cell staging techniques

Cell staging techniques have changed and advanced
along the years. Among the more recent ones, one
is of particular relevance for this work since it pro-
vided the base biological classificaiton utilized.

Represented in [11], this method called FUCCI
(fluorescent ubiquination cell cycle indicator)relies
on the use of biological markers and fluorescent mi-
croscopy to identify the stage of any given cell.

Identifying antiphase oscilating proteines that
mark cell-cycle transition and encoding them with
fluorescent probes made visualizing a cell’s current
stage possible. Each color represented a different
stage, cells in the G1 phase presented a red nucleus
while the cells in S, G2 or M phase presented a green
nucleus, as shown in figure 1.

Figure 1: FUCCI staining process:Cells appear
green if they are in phase G1 and red if they are
in phase S/M/G2.

2.2. Machine Learning
The search for patterns in data is a fundamental
problem that has a long and successful history, one
that culminated in Machine Learning (ML). Ma-
chine Learning consists of classification and predic-
tion algorithm that adjust their parameters accord-
ing to the properties of a training set, giving com-
puters the ability to learn without specific program-
ing. [12]

ML problems can be divided into two, super-
vised and unsupervised problems, depending on the
shape of the training set. In unsupervised learning
problems, the training data consists only of input
examples. It’s lacking a corresponding target value
that, in classification problems, corresponds to the
intended class of the input. In unsupervised learn-
ing problems, a typical problem consist of finding

3



similar examples amongst the data, a process called
clustering. On the other hand, supervised learning
problems possess a training set with examples of
inputs and their corresponding target output. [12]

For this thesis, the training set possessed a classi-
fication for each input example, as such, supervised
learning was adopted.

2.2.1 Deep Learning

Most artificial intelligence problems can be solved
with the correct set of features extracted from the
data and analyzed by a machine learning algorithm,
the difficulty lies in choosing the relevant features
and how to extract them, in other words how to
represent the data in meaningful way.

Deep Learning presents a solution by introduc-
ing representations that result from automated pro-
cesses. That is, deep learning provides a system
built with a cascade of trainable modules. By train-
ing this system end to end, each module will adjust
itself to produce the correct answer. This method
allows the system to learn how to represent the raw
data and how to solve the problem provided. [13]

Artificial Neural Networks Artificial Neural
Networks (ANNs) are the quintessential deep learn-
ing model and receive their name from being a net-
work of connected neurons, not unlike the brain.

Each neuron, receives inputs signals ,xi, from var-
ious other units and computes its own output. Each
input is regulated by the connection weights, wi,
which emulate biological synapses. Thanks to a
transfer function, f(z), the neurons possess a non-
linear behavior, which is limited by a threshould β.
As such, the output of a neuron can be computed
as follows: [14]

O = tf(net) = tf(

n∑
i=1

wixi + b) (1)

Clearly, in 1 the variable net represents the scalar
product of the weight vector and input vectors:

net = wT z = w1z1 + w2z2 + ...+ wnzn (2)

From equation 1 it is also obvious that the trans-
fer function will determine the neural output. The
simplest case is to consider tf as a boolean step
function, in which case the output can be described
as:

O = tf(net) =

{
1, ifwT z > β

0, else
(3)

In addition to the transfer function, the connect-
ing weights also determine the output value. It is by
adjusting the weight vector that each neuron is ca-
pable of learning. Since the neurons are connected

amongst themselves in a network, this learning abil-
ity is inherited by the network. Artificial neural
networks are organized in distinct layers. The in-
put layer receives the network’s input vector while
the output layer produces the intended output. Be-
tween these two layers, a model can have multiple
hidden layers, depending on its depth. Each neu-
ron connects only to the neurons in the previous
and next layer, each connection having a respective
connecting weight. To adjust these weights, effec-
tively training the network, a common method is to
use back propagation [15]

The weight update rule can be defined as:

∆wij = −η ∂E
∂wij

∑
α∆wij(m− 1) (4)

Where η corresponds to the learning rate which
determines the rate of change in the networks
weight and α corresponds to the momentum which
determines the effect the past m−1 weight changes
on the current direction of movement in the weight
space. E corresponds to the error function, here the
mean squared error function was used:

E =
1

2

n∑
i=1

(Oij − Tij)2 (5)

Where O is the network’s output vector and T is
the target output vector for a specific input.

As expression 4 clearly demonstrates, the appro-
priate selection of the learning rate and the mo-
mentum plays a crucial part in both the speed and
success of the training.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) present
themselves as an evolution of ”traditional” neural
networks. Essentially, CNNs are neural networks
that use possess at least one convolutional layer.
That is, at least one layer that uses the mathemat-
ical convolution operation instead of a general ma-
trix multiplication. [16] Mathematically, the con-
volution expresses the amount of overlap a function
g produces as it is shifted over another function f ,
the product function being a ”blend” of the two.

Commonly, convolution is noted using an asterisk
operator. As such it can be expressed as follows:

[f ∗ g](τ) =

∫
f(τ)g(t− τ)dτ (6)

When applying convolution to machine learning,
the first argument (f in equation 6) is called input,
the second (g in equation 6) is called kernel and the
output is commonly called feature space. Also, in
machine learning the discreet definition of convolu-
tion is used:
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[f ∗ g](τ) =

inf∑
τ=− inf

f(τ)g(t− τ) (7)

In most CNN models, the input is multi-
dimensional and the kernel is a multi-dimensional
array of parameters tuned by the learning method.
Figure 2, gives a visual representation of how the
convolution operations works in 2-D arrays, as is
the case of images.

Figure 2: An example of a 2-D convolution without
kernel flipping. Source:[14]

In addition to the convolutional operation, the
convolutional layer of a network has two more
stages. A detector stage, where each linear acti-
vation is transformed by a non-linear function and
the pooling stage, where a pooling function further
alters the output. Pooling functions replace the
output with the a summary statistic of neighbor-
ing outputs, merging semantically similar features
into one.

Convolutional neural networks have enjoyed rel-
ative success in detecting, segmenting and recog-
nizing objects since the early 2000’s. Nonetheless,
they were largely forgotten by the computer vision
community until the ImageNet competition. In this
competition (which consists in using machine learn-
ing algorithms to classify a large image dataset in
one thousand classes) CNNs performed remarkably,
achieving extraordinary results and thus becoming
the standard approach for computer vision prob-
lems. [17]

3. Implementation
In this section a brief explanation on the processed
biological data that was the basis of the work per-
formed in this thesis will be given. Most of the work
was performed prior to this master thesis and pro-
vided the initial data utilized during this project.

Additionally, an explanation of the deep learning
methods utilized during this project will be pro-
vided. All of the artificial intelligence methods were
implemented in Python utilizing the Keras and Ten-
sorflow libraries.

3.1. Biological Material and Data
3.1.1 Cell culture and imaging

Even tough only the DAPI stain information was
utilized to identify the features that reflect the cells
progress along the cell cycle, fluorescent imaging
provided the basis for this work. In total, 836
images were obtained from 12 samples comprising
5873 cells from NMuMG-Fucci2 in-vitro cultures
were obtained from Riken institute Japan.

To extract all the information contained of the
DAPI stained nuclei, multiple images were taken
along the z axis and merged together by projecting
into a single image.

3.1.2 Image Pipeline

The images obtained from the fluorescent imaging
were then processed to produce the data utilized
as starting point for this thesis. The preprocessing
work was performed before this project and a brief
explanation will be provided based on [18].

The image preprocessing pipeline consists of two
steps, an initial application of a denoising algorithm
and contrast/ intensity adjustments followed by the
segmentation of each nucleous.

Nuclei plane image denoising Denoising is uti-
lized in image processing to reduce the effect of
noise generated by the instrumentation systems into
the samples and to emphasize the underlying rele-
vant data.

The noise introduced in fluorescent microscopy
follows the poison distribution, with a probability
function that can be defined as:

Pr(X = k) =
λkexp−k

k!
(8)

where λ is the distribution parameter.
A Bayesian algorithm was employed to remove

the noise with maximum-a-posterior optimization
criterion:

Ẑ = argminzE(Z, Y ) = argminz(Ey(Z, Y )+Ez(Z))
(9)

where Ey(Z, Y ) is the data fidelity term and
Ez(Z) the prior term regularizing the solutionm re-
quired to introduce some apriori information about
the solution. Assuming observations are indepen-
dent and the noise compliant with a Poisson distri-
bution, the data can be described as:[19]

Ey(Z, Y ) = − log
[
ΠN−1,M−1
i,j=0 p(Yi,j |zi,j)

]
=

N−1,M−1∑
i,j=0

|zi,jyi,j log(zi,j+C|)

(10)
where C is constant.
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The distribution in 10 is denominated by a log
total variation potential function:

TV log =

√
log2 z

ς
(11)

where z and ς are neighboring pixels.

The function described in 11 has efficient high fre-
quency noise removal in homogeneous regions and
a smaller penalization in sharp transitions, useful
for biological images who possess abrupt transitions
that are desired.

Segmentation With the segmentation process,
the cell culture images were divided into multiple
images, each containing a nucleous of a cell. This
process has a typically low accuracy and inconsis-
tent output when applied to most images, and is
crucial to ensure the success of the final analysis.

For this data, the segmentation strategy was uti-
lized in the denoised and contrast/ intensity DAPI
plane (blue channel) of the FM images, and con-
sisted in the application of Otsu thresholding and
morphological operators to each image [18].

3.2. Deep learning

To determine the cellular stage of each cell and have
the ability to classify each nucleous independently
(i.e. not rely in clustering methods), machine learn-
ing algorithms were employed. Namely artificial
neural networks (ANN) and convolutional neural
networks (CNN).

3.2.1 Neural Networks

Feature extraction The first step in using an
ANN to learn the cellular stage, was to select and
extract relevant features from the dataset. The fea-
tures identified were the nucleous area and total
intensity. which reflect the changes that happen to
a cell nucleous during the cellular cycle.

Each feature was expressed mathematically. The
area was defined as the total number of pixels con-
tained in a nucleous (NP) such as:

Area =
∑

npn (12)

The total intensity was defined as the sum of the
intensity of each pixel in the nucleous (as shown be-
low) and, theoretically, reflects the amount of DNA
contained in each cell.

Area =

∫
A

intensitydA =

N∑
i=1

Intensity (13)

Data normalization After extracting the fea-
tures, data normalization was applied to the data
set, namely, z-score normalization.

Data normalization is a common pre-processing
technique to minimize the impact features with dif-
ferent ranges have in the final outcome. Potentially,
features with larger ranges would have a higher con-
tribution for the final outcome than the features ex-
pressed in a smaller range. Furthermore attributes
should be dimensionless so that the unit of measure
does not impact the final output. As previously
stated the method utilized was the z-score normal-
ization, which can be defined as [20]:

x∗ij =
xij − τij

σj
(14)

where x∗ij is the normalized attribute value, xij
represents the raw data and τj and σ represent the
mean and standard deviation (STD) for the values
of the jth attribute. Z-score normalization return
with 0 average and standard deviation of 1 and is
the most commonly used employed standardization
technique. [21]

Designing and training the ANN With the
features extracted and the visual classification from
the FUCCI method, a supervised learning method
was employed to train an ANN.

To size the required network it was first created
a network that could ”memorize” the problem, i.e.
overfit the dataset, and then over-fitting prevention
methods were applied. For this, the drop-out tech-
nique was employed.

In this method the term dropout refers to ”drop-
ping” units in a neural network along with incoming
and outgoind connections. The choice of which fig-
ures to drop is random, with a fixed independent
probability of p for each unit to drop. p can be
selected form a test dataset, however a probability
of 50%, i.e. p=0.5 seems to be optimal for most
neural network problems [22].

By dropping units, essentially a thinned network
is trained each time and is formed by all the re-
maining units. As such, training a network with
elements can be seen as training a set of 2n thinned
networks with weight sharing.

A good approximation for the resulting thinned
network is to use a neural network without the
dropout where the weights of each hidden unit is
multiplied by p at validation time [22].

To adjust the training of the designed network 3
parameters were adjusted, nuber of epochs, batch
size and learning rate. These parameters are cor-
related among them, for example, smaller learning
rates require more training epochs since each up-
date has a smaller effect on the weights. On the
other hand, batch size determines the number of
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times the error function is determined per epoch
and subsequently the number of times the model
weights are updated in each epoch.

3.2.2 Convolutional Neural Networks

Image generation Contrary to ANN’s, CNNs
are capable of feature detection and selection. As
such, instead of extracting the features, as done for
the ANN method, 150×150 pixel images were pro-
duced from the information generated by the pre-
processing pipeline previously explained in this sec-
tion.

Data augmentation The use of CNNs for image
classification requires a large amount of data to pre-
vent over-fitting. Unfortunately, the original data
set only presented 5873 nucleous and, as such, data
augmentation, a data-space solution to the prob-
lem of limited information for deep learning, was
employed during this work.[23].

While not the only solution to overfitting in deep
neural networks, data augmentation addresses the
problem at its root, the training data set by as-
suming more information can be extracted from
the original data through augmentation. To ex-
tract this additional information, data augmenta-
tion methods typically inflate the training dataset
size by either data warping or oversampling, with
techniques from geometric and color transforma-
tions to random erasing, adversarial training or neu-
ral style transfer.

During this project, only data warping was em-
ployed. However, the main goal of data augmenta-
tion is to inflate the available data while still keep-
ing the label of each data point valid. Since the two
most relevant features for describing the progres-
sion in the cell cycle are area and intensity a careful
selection of the techniques employed is required to
ensure these features are not perturbed and nega-
tively affect the outcome. After some initial testing,
the best results were achieved by utilizing only ro-
tation, flipping and translations in the training and
in the test set.

Designing and training the CNN While data
augmentation prevents overfitting and helps the
network ”learn” more robust features, it is not
the only overfitting prevention method available.
In addition to the dropout method previously de-
scribed, early stopping was utilized to ensure the
designed network would be perform optimally. This
method consists of monitoring the validation accu-
racy and loss to detect over fitting and training is
then stopped before convergence.

3.3. Validation

To validate the training and designing methods ex-
plained previously, both the ANN and CNN net-
work were tested against the modified National
Institute of Standards and Technology (MNIST)
data set [24]. This dataset contains images from
handwritten digits and is one of the most common
starting points for neural networks with the per-
formance of various types of networks well docu-
mented.Testing both the ANN and CNN networks
designed for this project with this data set, a vali-
dation error of ¡ 8% was achieved for both of them.

In addition to using the MNIST data set for val-
idation, a pre-trained VGG [25] network was as a
benchmark for the convolutional neural network.

4. Results

In this section, the results obtained during this work
are presented. First, the results for the aritificial
neural network are shown with a demonstration of
the over fitting prevention methods followed by the
demonstration of the results obtained utilizing the
convolutional neural network.

4.1. Artificial Neural Network

After extracting the selected features from the bio-
logical dataset, area and intensity, these were sub-
jected to classification using an artificial network.
The designed network was capable of over fitting
the problem, evidenced by the separation between
the validation loss and the training loss represented
in figure 3(a). Figure 3(b) represents the accu-
racy evolution of the same training, and while the
initial weights loaded into the network provided a
good starting point, without over fitting prevention
methods, the validation accuracy was unstable and
it did not increase, showing the models inability to
generalize the information acquired during training

Figure 4 shows the training evolution of the same
network with over-fitting prevention methods uti-
lized, namely the use of dropout. As is evidenced
by 4(a), in this case, while not exactly converging ,
the training loss and the validation loss do not di-
verge as the network is trained with stabilization of
the accuracy validation around 70%

To simulate early stopping, the best performing
network was saved and then tested against a val-
idation set that was not used during training and
evaluated across 3 metrics: sensitivity, specificity
and accuracy.

Senstivity Specificity Accuracy
73,13% 78,81% 76,21%

Table 1: ANN validation results.
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(a) Loss evolution per epoch

(b) Accuracy evolution per epoch

Figure 3: Training and validation metrics for ANN
without dropout method.

(a) Loss evolution per epoch

(b) Accuracy evolution per epoch

Figure 4: Training and validation metrics for ANN
with dropout method.

4.2. Convolutional Neural Network
On this section, the results obtained from the use
of convolutional neural networks will be demon-

strated.

Figure 5 represents the evolution of the CNN
metrics during training. As shown in figure 5(a),
the loss started reducing, however from approxi-
mately epoch 75 onwards it is clear the training
is resulting in some over fitting. This is also evi-
denced in figure 5(b) where the validation accuracy
starts decreasing while training accuracy evolves.
As such, training was interrupted and the parame-
ters were fine tuned to improve the performance of
the network. Figure 6, shows the evolution of this
training.

(a) Loss evolution per epoch

(b) Accuracy evolution per epoch

Figure 5: Training and validation metrics for CNN
trained with synthetic data.

Once again, the weights of the best performing
CNN were utilized to assess the network perfor-
mance across the same metrics as the ANN. Below
are the results:

Senstivity Specificity Accuracy
78,31% 90,88% 86,93%

Table 2: CNN validation results.

As stated previously, the VGG network was uti-
lized as a benchmark for the CNN performance and
was trained on the same data set with the same data
augmentation conditions of the designed CNN. Be-
low are the results:
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Senstivity Specificity Accuracy
98,23% 73,17% 82,95 %

Table 3: VGG validation results.

(a) Loss evolution per epoch

(b) Accuracy evolution per epoch

Figure 6: Training and validation metrics for CNN
fin tuned with synthetic data.

5. Conclusions
The following section will present the achievements
of this thesis and delineate a path for future work.

Based on FM images obtained of in vivo cell cul-
tures, the primary goal of this thesis was to develop
a simple way of correctly identifying the cell phase
of a particular cell.

Currently, FM based methods for accessing the
cell status of individual cells are only capable of
probing specific parts of the cell cycle [26], or are
very laborious since they evolve the growth of cul-
tures with phase specific identifiers, such as the
FUCCI method utilized as validation for this work.
While these second methods are capable of monitor-
ing all phases in the cell cycle, this approach results
in a very complex process which requires the use of
multiple imaging channels and inhibit the capability
to visualize other cell features in the same culture.

By contrast, the method suggested in this the-
sis relies on the use of a inexpensive and commonly
used compound, the DNA dying die DAPI. This
compound, allows the extraction of information rep-
resenting both the nucleus area and the amount of
DNA, two intrinsic features who provide a good de-
scription of the cell status along its cellular cycle.

While some other machine learning methods that
really on the information gathered from the DAPI
stain have already been proposed [18], they relied
on the use of clustering algorithms which not capa-
ble of classifying a single data point. The method
proposed for this work implemented the use of deep
learning techniques, were capable of identifying the
cell phase from a single data point.

The ANN method relied on the manual extrac-
tion of the intrinsic features of the nucleus, area and
intensity, that should translate adequately the cell
phase of a single nucleus. By utilizing this method
an accuracy of ≈ 76% was obtained when classi-
fying cells in either the G1 or the S/G2/M phase.
A result which, while lower than the accuracy ob-
tained in clustering methods, still demonstrates a
clear correlation between the selected features and
the cell phase.

In addition to the ANN method, two CNNs were
also utilized in this thesis in conjunction with data
augmentation techniques. The first network was a
self designed simple CNN with two convulational
layers which produced an accuracy of ≈ 87% while
the second network utilized resorted to the archi-
tecture of a VGG netowrk which produced an ac-
curacy of ≈ 83%. Both of these networks relied on
the automatic identification of features that trans-
lated the cell phase. While the results achieved are
still below the ones obtained with clustering algo-
rithms, the increase in accuracy compared with the
ANN still demonstrates that the use of a CNN to
adress image based cell classification is a promising
solution.

While below the results achieved in previous
work, the results achieved with the methods
proposed were very satisfactory and represent a
promising solution to the problem of image based
cell classification for a single nucleus. However,
a more complex CNN should be utilized and fine
tuned with a larger dataset than the one currently
available to try and improve the results obtained
during this work.
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