
Crowdnet: crowd-powered network

Nuno Miguel Ribeiro Silva
nuno.m.ribeiro.silva@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2020

Abstract

The Arduino platform has gained popularity and is used to teach students about microcontrollers and
embedded systems in laboratory environments. To connect various Arduino boards together, a wired
connection, such the I2C bus, can be used. However, wired connections require running wires between
each device, complicating the setup of many devices, and only allow connecting devices in the same
room. Moreover, due to the recent COVID-19 pandemic, allowing students to work remotely and out of
a laboratory is becoming an important consideration for schools and universities. In this case, a simple
wireless interface would also not be sufficient to allow communication between devices in different rooms
or homes, as it would offer a complicated interface, among other issues. Crowdnet intends to provide a
middleware for communication between Arduino boards, supporting communications both in the same
room and in different rooms over the Internet, while offering a simple I2C-like programming interface. It
consists on an Arduino library that connects to an Android application via BLE. In turn, the smartphone
connects to an MQTT Broker via the Internet. This creates a logical network that allows sketches running
on various Arduino boards to exchange messages with each other. Evaluation showed that Crowdnet is
able to achieve reasonable throughput speeds up to 4.4 kB/s and latencies of 25–136 milliseconds, even
though results varied depending on the smartphones that were tested. Nonetheless, the achieved results
are adequate for simple laboratory projects, and using MQTT in conjunction with BLE provides greater
throughput than just BLE.

Keywords: Communication middleware, Arduino library, Android smartphone, BLE, MQTT, I2C

1. Introduction

With the expansion of the Internet of Things
(IoT), the Arduino platform has gained popular-
ity, arguably because it enables beginners to de-
velop simple projects using a microcontroller, and
because it is a great tool to teach students about
embedded systems in laboratory environments.

Communication in IoT devices is crucial. For de-
vices close to each other, one solution is to use a
wired connection, such the Inter-Integrated Circuit
(I2C) bus, which is one of the easiest communi-
cation solutions supported in the Arduino environ-
ment. However, these require wires between each
device, which is particularly cumbersome when
more than a few devices need to be connected,
and even more so in laboratory environments in-
volving many students. A wireless network such
Wi-Fi, Zigbee, etc, could be used, but would offer a
very different and complicated interface than what
beginners are used to, among other problems.

Due to the COVID-19 pandemic (Rahiem, 2020),
allowing students to work remotely is becoming an
important consideration for schools and universi-
ties. Using a wired bus, students could work at
home, but would be unable to have their projects
interact with each other. In this case, a simple
wireless interface would also not be sufficient to
allow communication between devices in different
homes, and a more elaborate solution is needed.

At the same time, most people own a smart-
phone. Therefore, we have built a middleware
that uses the communication interfaces of smart-
phones and uses them as a means of communi-
cation between Arduino boards, as per Figure 1.
By connecting Arduino boards via Bluetooth Low
Energy (BLE) to smartphones and enabling smart-
phones to communicate with each other via the In-
ternet, Crowdnet effectively allows Arduino boards
to exchange arbitrary messages with each other
indirectly using a wireless interface, while also of-
fering a familiar I2C-like programming interface that

1



Figure 1: Components of the Crowdnet middleware

Broker

Smartphone Smartphone

Internet Internet

Arduino

BLE

ArduinoArduino

BLE BLE

Crowdnet
middleware

is not limited to a single room, allowing students to
test and integrate their work with other students re-
motely.

1.1. Context and motivation
This work is primarily intended to be used in lab-

oratory classes at Instituto Superior Técnico (IST),
though its applications are not limited to this. At
IST, Arduino Uno boards are used for teaching in
courses attended by Computer Science students.

In the Applications and Computation for the In-
ternet of Things (ACIC) course1, students are
given an Arduino board to be used in their projects
(Cunha, 2017). After a few introductory exercises,
students are assigned a larger project which con-
sists on implementing a traffic lights system.

Students can take the Arduino board home dur-
ing project development. However, since the ex-
ercises and project they need to complete focuses
on communicating using the I2C bus and integrat-
ing projects of different students together, students
are not able to properly test their project at home
or outside the laboratory, and are limited by its tight
schedule. Moreover, connecting many Arduino
boards together using I2C quickly becomes im-
practical, for example, when 10 groups of students
are in the same laboratory. Crowdnet solves these
problems by allowing Arduino boards to communi-
cate with each other in the same room or remotely
via the Internet, using the students’ smartphones.
This allows students to test their projects at any
time, in their homes, and requires no wires.

Crowdnet may also be useful in the Ambient
Intelligence (AI) course2, where students develop
a project of their choosing, and many choose to
use the Arduino platform. Therefore, they could
use Crowdnet to provide them with more advanced
communication between various Arduino boards,
for example in a Smart Home application.

1 https://fenix.tecnico.ulisboa.pt/disciplinas/
ACPIC7/2020-2021/1-semestre, accessed on 1st Sep, 2020

2 https://fenix.tecnico.ulisboa.pt/disciplinas/
AI514/2019-2020/2-semestre/, accessed on 2nd Sep, 2020

Since these courses already use the Arduino
platform, Crowdnet was developed using Arduino.

1.2. Requirements and Objectives
Crowdnet aims to create a logical network that:

• enables Arduino boards to exchange arbitrary
messages between each other: a) in the
same room or in a laboratory environment,
and b) in different rooms, buildings, or homes;

• offers a simple API for Arduino sketches;
• is compatible with the Arduino IDE;
• uses the smartphones of the students to avoid

needing additional hardware and to enable fu-
ture expansion of the system.

In terms of communication parameters, and hav-
ing in mind the use cases for which Crowdnet is
intended, the requirements of the system are: a)
latencies in the order of a few hundred millisec-
onds, but less than one second, and b) speeds in
the order of a few kilobytes per second.

These requirements mean that Crowdnet may
not be suitable for critical real time communica-
tions. In particular, since it is intended to be used
by students in a laboratory environment, the flex-
ibility of the system is more important than the
performance that could be achieved using a wired
communication bus such as I2C.

This document is organized as follows: Sec-
tion 2 describes a few communication methods we
considered. In Section 3, the architecture of the
system is described. Then, Section 4 describes
the system implementation and communication in
the various components. Section 5 describes the
system evaluation and results. Finally, Section 6
concludes the paper.

2. State of the Art
In this Section the state of the art is described.

2.1. Arduino communications
This section presents some existing alternatives

for communicating with an Arduino board.

2.1.1 I2C bus

I2C is a low-speed serial communication bus that
is widely used to connect microcontrollers to pe-
ripheral Integrated Circuits (ICs) or to other micro-
controllers within a maximum distance of a few me-
ters (Leens, 2009).

Devices in the bus are identified by a 7-bit ad-
dress, and the typical raw bit speed is 100–400
kHz, depending on device support.

I2C is simple, widely supported, and easy to use
in the Arduino Integrated Development Environ-
ment (IDE), since it is supported by the official Ar-

2

https://fenix.tecnico.ulisboa.pt/disciplinas/ACPIC7/2020-2021/1-semestre
https://fenix.tecnico.ulisboa.pt/disciplinas/ACPIC7/2020-2021/1-semestre
https://fenix.tecnico.ulisboa.pt/disciplinas/AI514/2019-2020/2-semestre/
https://fenix.tecnico.ulisboa.pt/disciplinas/AI514/2019-2020/2-semestre/


duino Wire library 3. However, because it requires
short physical connections, I2C is limited to a sin-
gle room. Since we want to support students work-
ing in different rooms, outside the lab, or even from
their homes, a central bus such as I2C is not ap-
propriate. Nonetheless, since Arduino users are
mostly already familiar with the Wire interface, the
Crowdnet Arduino library was based on it, as de-
scribed in Section 3.1.

2.1.2 Wi-Fi

Wi-Fi is a standard for Wireless Local Area
Networks (WLANs) intended to replace traditional
wired Local Area Networks (LANs) in some cases
(Lee et al., 2007). Reaching speeds in the order
of hundreds and even thousands of megabits per
second, it is most commonly used to provide Inter-
net access to users connected to a central Access
Point (AP) located within a range of few meters,
though it also supports ad hoc communications.

In our project, using Wi-Fi would require a com-
plex and relatively heavy Internet Protocol (IP)
stack implementation to run on the Arduino. More-
over, connecting an Arduino and smartphone to
the same network would require connecting them
to the same AP or using an ad hoc connection,
which may leave them without access to other net-
works. Therefore, another wireless communication
method is preferred.

2.1.3 BLE

BLE is a low-power Wireless Personal Area Net-
work (WPAN) aimed at short-range communica-
tions for IoT applications (Dian et al., 2018), oper-
ating in the 2.4GHz radio frequency with a max-
imum application layer throughput of about 221
kbps. Nowadays, both BLE and classic Bluetooth
are implemented in most smartphones (Gomez
et al., 2012). BLE support on Arduino is possible
either using modules such as the Bluefruit LE from
Adafruit 4, or the more recent and cheap ESP32
System on Chip (SoC) from Espressif Systems.

In a BLE connection, exactly two devices com-
municate with each other. To keep the connec-
tion alive, devices must periodically exchange a
packet. These periods where devices talk to each
other are known as a connection event. To mini-
mize power usage, BLE allows tuning the time be-
tween each connection event — the connection in-
terval — in a range between 7.5 milliseconds and

3 https://www.arduino.cc/en/reference/wire, ac-
cessed on 6th Jul, 2020

4 https://www.adafruit.com/product/1697, accessed
on 11th Aug, 2020

4 seconds (Gomez et al., 2012). A higher value
will use less power, but will result in higher latency
and lower throughputs.

There are several advantages to using BLE:

• in a laboratory setting, the BLE interface could
be used for other applications, such as having
the Arduino interact with user interfaces run-
ning on a smartphone;

• BLE uses less energy than other methods;
• contrary to Wi-Fi, BLE does not depend on an

existing or central AP to operate; this allows
students to work remotely and, using only lo-
cal Nodes, they can still work without an Inter-
net connection;

• also contrary to Wi-Fi, a complex IP stack is
not necessary to use BLE;

• finally, BLE is present on most smartphones.

Therefore, BLE was used in this work.

2.2. Internet communications
This section describes a few ways to communi-

cate with other devices over the Internet. Though
some of these methods can also be used for com-
munication between Arduino boards using an ap-
propriate shield, our main goal is to discuss some
of the existing options for smartphones to commu-
nicate with each other.

2.2.1 HTTP

Hypertext Transfer Protocol (HTTP) is an appli-
cation protocol designed primarily for transferring
information in the World Wide Web. It uses a
client-server model and runs on top of the Trans-
mission Control Protocol (TCP) protocol.

When HTTP is used for communication in IoT
applications it suffers from the following issues
(Yokotani and Sasaki, 2016):

• its text-based nature requires more bandwidth;
• it requires more processing power and is more

complex to encode and decode requests;
• since it uses a new short-lived TCP connection,

the TCP 3-way handshake for connection estab-
lishment is potentially repeated for every appli-
cation data block that needs to be transferred.

2.2.2 MQTT

Message Queuing Telemetry Transport (MQTT)
is a lightweight network protocol based on a
publish-subscribe communication pattern (Yassein
et al., 2017). Every device establishes a Transmis-
sion Control Protocol over IP (TCP/IP) connection
with a central Broker, which delivers messages to
their final destinations.

3

https://www.arduino.cc/en/reference/wire
https://www.adafruit.com/product/1697


The publish-subscribe pattern provides a sim-
ple, flexible and efficient method of exchanging
messages. MQTT organizes messages in topics,
on which a client device can publish messages
consisting of arbitrary binary data. These mes-
sages are sent to the Broker, which distributes
them to other clients that have previously sub-
scribed to the topic. This is done without clients
being aware of which clients are subscribed to
which topics. Clients do not need to connect di-
rectly to each other, eliminating the need for ad-
dress discovery when publishing Messages. Fur-
thermore, the publish-subscribe pattern combined
with a long-lived TCP/IP connection eliminates the
need to periodically poll the server.

These characteristics make MQTT very suit-
able to support efficient communications between
smartphone devices in this work.

3. Architecture

This Section presents the architecture of Crowd-
net. This system consists of three main compo-
nents, as depicted in Figure 2: an Arduino library,
an Android smartphone application (App), and a
server back-end.

Figure 2: Overview of the system architecture

Internet

Arduino
Node

BLE stack
Crowdnet library

User sketch

Android
Smartphone

BLE stack
Android OS

Crowdnet app

MQTT
client

BLE
library

Android
Smartphone

   

MQTT Broker

BLE

Arduino
Node

Arduino
Node

The Arduino library connects to a smartphone
via BLE. In turn, the smartphone connects to the
server (Broker) via the Internet. This creates a log-
ical network that allows sketches running on the
various Arduino Nodes to communicate with each
other.

Using this architecture, we are able to sup-
port two main message delivery strategies, as de-
scribed in Figure 3:

A) Local Nodes – two or more local Nodes
communicating with each other via a single smart-
phone. Nodes can not communicate directly with
each other via BLE. This is because Nodes are
acting as BLE peripherals, which can only estab-
lish a connection with a single device at a time, as
further explained in Section 4.2. The smartphone,
however, is acting as a BLE central and is able to
connect to multiple peripherals at the same time.
Nodes are connected to the same smartphone,
which is able to forward messages between the
Nodes using only BLE communication, and with no
intervention from the server.

B) Remote Nodes – one Node (5) communi-
cating with a remote Node (3) via their two corre-
sponding smartphones. In this case, smartphones
connect, via the Internet, to a common server in
order to forward messages between each other.
When Nodes are not in reach of the same smart-
phone — because they are in different rooms or
belong to different students — their corresponding
smartphones can still communicate indirectly with
each other via the Internet, enabling communica-
tion between remote Nodes.

Figure 3: Main Crowdnet use cases

A)

Phone

Node Node

BLE BLE

B)

Broker

Phone Phone

Internet
Internet

Node

BLE

NodeNode

BLE BLE1 2

3 4 5

I

II III

A combination of both use cases is also sup-
ported. This is represented by the dashed Node
(4) in Figure 3, which is able to communicate with
both the local Node (5) that is connected to the
same smartphone, and, via the Broker, with the re-
mote Node (3) connected to another smartphone.
In this case, smartphone II would subscribe to
messages destined to Node 3, while smartphone
III would subscribe to messages destined to Nodes
4 and 5. As explained in Section 2.2.2, to send a
message to a remote Node, a smartphone does
not need to be aware of which smartphone the re-
mote Node is connected to. It simply sends the
message to the Broker.

4



3.1. Arduino Library
The first component of the system is an Arduino

library which users can include while developing
their own sketches using the Arduino IDE5.

The Crowdnet Arduino library sits on the edge of
the Crowdnet middleware, as per Figure 1, com-
municating with the Android App via BLE. An Ar-
duino board running a user sketch that communi-
cates using this library is called a Node. The li-
brary allows a Node to indirectly communicate with
another Node via the Crowdnet middleware, and
uses an Application Programming Interface (API)
which closely matches the interface offered by the
Arduino Wire library 6 for the I2C protocol. This is
because the target users are already familiar with
Wire and will be able to easily port their sketches
to use Crowdnet instead of Wire. It also hides the
complexities of using BLE away from users.

For I2C compatibility, Nodes are assigned a 7-bit
identifier (ID), similar to the device address used
by I2C. This is further detailed in Section 4.2.

3.2. Android smartphone application
The Android App supports communication be-

tween local Nodes, which are within range of the
BLE signal of a smartphone; and remote Nodes,
which are not directly accessible by a given Node
or smartphone, but can be reached via the server.

Therefore, the Android App serves as gateway
in the following ways:

• it receives packets from local Crowdnet-enabled
Nodes, containing a message and the address
(or ID) of a destination Node; if the destination
Node is a local Node, the message is sent to it
without server intervention; otherwise, it is sent
to the server;

• using the server, it subscribes to messages that
are destined for local Nodes;

• when notified by the server of a new message
from a remote Node, it receives and sends the
message to the corresponding local Node.

Communication with the Arduino library running
on the Nodes is done using BLE, while communi-
cation with the server is done via the Internet using
the MQTT protocol, as described, respectively, in
Section 4.2 and Section 4.3.

3.3. Server back-end
To communicate with each other, instances of

the Android App on each smartphone interact with
a server back-end: an MQTT Broker that receives,

5 https://www.arduino.cc/en/main/software, accessed
on 8th Sep, 2020

6 https://www.arduino.cc/en/reference/wire, ac-
cessed on 6th Jul, 2020

temporarily stores, and forwards messages be-
tween smartphones. The implementation of the
server is described in Section 4.3.

4. Implementation
This Section explains the implementation details

of the Crowdnet architecture and its components.

4.1. Arduino library
The Crowdnet Arduino library was implemented

to run on an ESP32 SoC, which is available in a
number of form factors (Maier et al., 2017), such
as the ESP32-WROOM-32 module that we used.

The ESP32 was chosen instead of an Arduino
board with an additional shield because it was not
possible to acquire a BLE shield for the existing
Arduino boards in a timely manner due to budget
and stock constraints. The ESP32, though, is very
cheap and was readily available to be acquired by
the author. It also incorporates both functionalities
in the same board, simplifying the setup.

To use BLE hardware available on the ESP32,
the library depends on a BLE wrapper library7

that is part of the Arduino core for ESP32. How-
ever, other BLE APIs are not 100% compatible
and therefore, even though we are using the Ar-
duino environment, our implementation will natu-
rally need some porting if another BLE shield or
module is to be used. Nonetheless, the protocol
we implemented on top of BLE can be used.

Note that these implementation details are com-
pletely transparent to users of the Crowdnet Ar-
duino library, since all they need to do on their
sketches is to interface the library using the I2C-
like API it offers.

4.2. BLE communication
To enable the Arduino library to communicate

with the Android App, and vice versa, a custom
protocol was developed on top of BLE.

Using the Crowdnet BLE protocol, the Nodes
and the Android App are able to send arbitrary
messages to each other. The length of the mes-
sages is limited by the underlying BLE protocol
to 512 bytes, minus the length of the Crowd-
net meta-data (2–8 bytes). For this to work, the
App changes the BLE Maximum Transmission Unit
(MTU) from the default of 20 bytes (Dian et al.,
2018) to 512 bytes.

In the Crowdnet middleware, Nodes are identi-
fied by the EUI-48 Media Access Control (MAC)
address of their BLE interface. However, for I2C
compatibility, a 7-bit Node identifier (ID) is also
supported and is mapped to the corresponding
MAC address. When an Arduino sketch uses the

7 https://www.arduino.cc/reference/en/libraries/
esp32-ble-arduino/, accessed on 25th Aug, 2020

5

https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/reference/wire
https://www.arduino.cc/reference/en/libraries/esp32-ble-arduino/
https://www.arduino.cc/reference/en/libraries/esp32-ble-arduino/


Crowdnet library, the user can choose to send a
message using either the ID or the MAC address.
Since Nodes only communicate directly with the
smartphone they are connected to, Nodes do not
need to be aware of the ID to MAC mappings in or-
der to transmit a message. Smartphones, though,
may receive messages destined to a given ID, and
need determine which BLE device to forward the
message to. Therefore, smartphones keep track of
the ID to MAC mappings of their local Nodes. Map-
ping for remote Nodes is handled by the smart-
phones and the server, as per Section 4.3.

BLE devices can serve one of two Connec-
tion Roles: the Central Role, used by the device
that scans for advertisements and initiates con-
nections; the Peripheral Role, used by the device
which advertises itself and accepts connections
from Central devices. A Central device can con-
nect to multiple Peripherals, but one Peripheral can
only connect to one Central. The way two BLE de-
vices transfer data back and forth is governed by
the Generic Attribute Profile (GATT), which defines
a few concepts that enable communications (Dian
et al., 2018). Independently of the Connection
Roles, a device can act either as a GATT Server
or Client. The Server stores data locally, while
the Client accesses or sends data to the Server.
In Crowdnet, Nodes act as a Peripheral with one
GATT Server, while the smartphone, to be able to
connect to multiple devices, assumes the Central
Role as a GATT Client. Upon user request, smart-
phones scan for, and connect to, Nodes that ad-
vertise the Crowdnet Service.

4.2.1 Packet structure

The Crowdnet Arduino library and the Android
Application exchange messages by sending pack-
ets with a well-defined structure. A packet, as per
Fig. 4, is a Crowdnet message, plus some meta-
data, that is sent over the Node Tx and Node Rx
characteristics described in Section 4.2.2.

Figure 4: Crowdnet BLE Packet structure
byte 0 byte 1 byte 2 byte 3

reserved Node ID
48-bit MAC Address

}
Header
(8 bytes)hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

Binary data

 Message
Payload
(variable size)

The packet begins with one byte that is reserved
for future use and must be zero. The next byte
stores an I2C-like Node ID. An ID equal to zero
means that no ID was assigned. The next 48-bits
(6 bytes) encode a MAC address. The Node ID
and MAC address fields correspond to:

• the destination address, when the packet is
transmitted from an Arduino; In this case, the
MAC address field is omitted when the ID is
not zero and the payload starts at byte 0x002.

• the source address, when the packet is trans-
mitted to an Arduino. In this case, the MAC
field is always present.

Next are the actual message contents — the pay-
load — which can have a variable size between 0
and 512 − 8 = 504 bytes. The exact size of the
payload field is not part of the packet, as it can be
derived in runtime from the total size of the packet,
as received by the BLE stack.

Since Nodes can only communicate directly with
a smartphone, our BLE packets only need to carry
one address (source or destination) at a time, as
the missing address is always the Node itself.

4.2.2 GATT Service

In BLE communications, devices serving the
Server Role offer one or more GATT Services iden-
tified by a Universally Unique Identifier (UUID).
These services can then expose one or more
Characteristics.

A disconnected BLE peripheral device can send
BLE advertisements of a few bytes, which are
broadcast to whichever devices are listening.
These advertisements include the device’s name,
MAC address and, among other things, a list of
custom UUIDs identifying the Services offered by
the peripheral.

Crowdnet Nodes offer and advertise one Ser-
vice — the Crowdnet GATT Service, which is as-
signed a 128-bit UUID hard-coded in the library. If
a device is advertising this Service UUID, then the
Crowdnet App knows that it is a Crowdnet Node
and can connect to it. Therefore, this UUID is
used by the smartphone to scan for, and connect
to, BLE devices which are running the Crowdnet
GATT Service. During the scan, Nodes can also
be filtered by a Group ID, as per Section 4.2.3.

GATT Characteristics The Crowdnet GATT Ser-
vice is created by the Crowdnet Arduino library
to enable communication with the smartphone via
BLE. Each Characteristic is identified by a UUID
and contains a value. The following GATT Charac-
teristics are exposed by the Crowdnet Service:

Node Tx – Node to Gateway communication. A
Node writes to this characteristic when it needs to
transmit a packet to the smartphone. This char-
acteristic supports notifications, meaning that the
smartphone does not need to poll it for new data.

6



Node Rx – Gateway to Node communication.
A smartphone writes to this characteristic when it
needs to send a packet to the Node.

Node Attributes – Contains read-only informa-
tion about the Node, such as its I2C-compatible ad-
dress — the Node ID — and its Group ID .

Values passed in the Node Tx and Node Rx
characteristics use the Crowdnet packet format de-
scribed in Section 4.2.1.

4.2.3 Group ID filtering

When using the Arduino library, users can as-
sign a Group ID to the Node. Not to be confused
with the Node ID, the Group ID is not related to
the workings of I2C or BLE, but it is used by the
smartphone to filter Nodes found during a scan,
allowing the Android App to only connect to Nodes
belonging to a Group ID that was previously cho-
sen by the user in the App. This allows multiple
smartphones and Nodes to operate in the same
room without trying to connect to Nodes belonging
to another group. This is useful in a laboratory set-
ting involving various groups of students, each with
a different smartphone and set of Nodes.

Because the Group ID needs to be read by
the smartphone during scanning and before ac-
tually connecting to the device, it is concatenated
to the device name, which is part of the BLE ad-
vertisements. To facilitate parsing, the Group ID
is encoded as a string in base-10, prefixed by a
space and the letter “G”. For example, a Node given
Group ID 123 would advertise the name “Node
G123”. To double check that the ID was parsed cor-
rectly, it is also included in the Node Attributes,
which can only be read after a connection is made.

4.3. Server communication
The Android App instances, running on various

smartphones, communicate with each other using
an MQTT client that connects to an MQTT Broker.

MQTT uses a lightweight publish-subscribe
model to deliver arbitrary messages via TCP, as
explained in Section 2.2.2. Crowdnet messages
are organized by the Broker in topics. A client
can subscribe to topics it is interested in or pub-
lish messages on a given topic in the Broker.
These messages are sent to, or published on, the
server (Broker), which distributes them to clients
that have previously subscribed to the topic. This
is done without clients being aware of which clients
are subscribed to which topics.

In Crowdnet, two topics are reserved for each
destination Node: one topic for sending mes-
sages to a Node addressed by MAC ("crowdnet
/messages/mac/<MAC>") and another topic for ad-

dressing Nodes by ID ("crowdnet/messages/id/<
ID>"), where <MAC> and <ID> correspond, respec-
tively, to the BLE MAC address or I2C-compatible
ID of the Node to which the message should be for-
warded to. By organizing topics in this manner, the
Broker is able to deliver messages to the correct
smartphone, which in turn delivers it to the Node.

Whenever the smartphone receives a message
for an unknown Node, the message is published
to the server on one of the topics corresponding
to the destination Node. Similarly, when the smart-
phone connects to a Node via BLE, the former sub-
scribes to the topic corresponding to this Node’s
ID, if one was assigned, and MAC address. This
way, the smartphone is notified whenever a new
message for this Node is published in the server
by another smartphone, allowing smartphones to
forward messages between each other and deliver
them to the corresponding Nodes.

Additionally, since smartphones subscribe to
both ID and MAC topics belonging to their local
Nodes, the former need not be aware of the ID
to MAC mapping of remote Nodes: they can sim-
ply use the ID topic to publish a message without
knowing the corresponding MAC address, and the
message will be delivered.

The Crowdnet MQTT Broker server is imple-
mented by an instance of Eclipse Mosquitto (Light,
2017), a Free and Open-Source Software (FOSS)
lightweight MQTT Broker implementation.

4.4. Android application
This section describes the components of the

Crowdnet Android application (App). It runs on An-
droid 6.0 Marshmallow — API level 23 — or newer,
which, at the time of writing, should cover 85% of
devices that are active in the Google Play Store.

The App is separated into a few separate Java
packages or components: the Crowdnet domain,
an Android Service, and the User Interface (UI).

4.4.1 External dependencies

The Crowdnet Android App depends on the fol-
lowing external libraries, which are bundled with
the App and are automatically installed: the MQTT
client implementation provided by the Eclipse
Paho project8, used to create a separate Android
Service to handle the MQTT connection to the Bro-
ker; the BLESSED9 library, a wrapper around the
standard Android BLE classes used for interfac-

8 https://www.eclipse.org/paho/, accessed on 12th

Aug, 2020
9 https://github.com/weliem/blessed-android, ac-

cessed on 1st Sep, 2020

7

https://www.eclipse.org/paho/
https://github.com/weliem/blessed-android


ing the BLE adapter; and the Android Jetpack10

library, which is used to make the application code
compatible with older Android versions.

4.4.2 Domain

The Crowdnet domain is a separate Java pack-
age that abstracts all the details of the Crowd-
net middleware in the Android App. It interfaces
with both BLE and MQTT using, respectively, the
BLESSED and Paho libraries mentioned above.

The domain contains the following main classes,
as per Figure 5:

Figure 5: Simplified UML Class diagram of the Crowdnet Do-
main in the Android application

Note: some classes and methods are omitted for simplicity.

<<abstract>>

NodeState

+ deliver(Msg)

 Disconnected MQTT Connected

 BluetoothPeripheral 

1

Node

+ deliver(Msg)

1

Message

- payload

Crowdnet

+ deliver(Msg)

+ scan()

0..*

Crowdnet is a Singleton Facade class for the
domain, which is used by the Crowdnet Service.

Message represents a message that needs to
be forwarded to a Node. It contains the source ad-
dress, destination, and payload. Can either be cre-
ated from a packet received via BLE or when data
is received from the MQTT Broker.

Node represents an Arduino Node, either remote
or local, that the App is aware of; Node instances
are created either by performing a BLE scan or by
sending Messages to an unknown destination.

NodeState is an abstract class implementing
the State and Strategy Patterns; each Node is as-
sociated with one NodeState; the operation of de-
livering a Message to a Node is delegated to the
Node’s concrete NodeState:

Connected Nodes transition to this state when
connected via BLE to the smartphone, and if
the MQTT Broker is connected, the Node is
subscribed to its MAC and ID topics, as per
Section 4.3. This state stores a reference to
a BLE Peripheral and can deliver Messages by
generating a BLE packet that is sent over the
Node Rx Characteristic, as per Section 4.2.

10 https://developer.android.com/jetpack/, accessed
on 4th Sep, 2020

MQTT used by remote Nodes when the smart-
phone is connected to the Broker and the Node
is not connected via BLE. This state delivers
Messages by publishing them to the Broker.

Disconnected used by Nodes found in a BLE
scan that are not connected, or by remote
Nodes if the MQTT connection dies.

To deliver a Message, Crowdnet tries to find
the corresponding destination Node instance by
MAC or ID. If one is not found, it is assumed
to be a remote Node, and a new Node in-
stance is created and transitioned to the MQTT
state. Once Crowdnet finds the Node instance, its
deliver(Msg) method is called, which delegates
the Message delivery process to the current Node
State. Then, depending on the State, the Message
is delivered via BLE or MQTT. The advantage of
this delegation using the Strategy pattern is that
the delivery algorithm is automatically selected de-
pending on the current state of the Node.

To receive Messages from remote Nodes, the
MQTT Node State first subscribes to topics for the
corresponding Node, as explained in Section 4.3.
Since it is the Node class itself that receives call-
backs for these topics, in this case there is no need
for intervention from the Crowdnet class: when a
Message is published to the topic, the Broker no-
tifies the smartphone and a callback is received
by the corresponding Node instance, which deliv-
ers the Message using its own state.

5. Evaluation
This Section describes a few tests that were per-

formed to evaluate the performance of Crowdnet.
We begin by evaluating the speed throughput of
Crowdnet using BLE and then both MQTT+BLE.
Then the latency of Crowdnet is evaluated and the
results are compared with reference values for I2C.

5.1. Communication throughput
This section describes various tests using two

separate setups to compare the throughput of
Crowdnet using both BLE and MQTT, using dif-
ferent payload sizes. Two ESP32 Nodes were pro-
grammed to communicate with one another under
different conditions. One Node is configured to
send packets, while the other receives packets.

In each setup, one Node sent a burst of 9 pack-
ets. Each burst is one sample, and each sam-
ple uses a different payload size. Samples in the
graphs were computed by the receiver Node by
measuring the total number of bytes it received in
the payloads and then dividing by the difference
between the timestamp (in milliseconds) when the
last and first packets were received in each burst.
The value is then multiplied by 1000, resulting in

8

https://developer.android.com/jetpack/


the average speed in bytes per second. Since the
time measured by the receiver corresponds to the
instant when the transmission of the packet ended,
the payload size of the first packet is excluded from
the measurements, as it was exclusively transmit-
ted before the measurement started. Also, since
the time between packets is also included in the
measurement, the computed value also accounts
for the packet processing time in the smartphone
(and server), not only the air time of the packets.

5.1.1 BLE only

First, we tested the throughput of Crowdnet
while using two local ESP32 Nodes connected to
a single smartphone via BLE.

The same test was ran a few times on each of
three different smartphones, using the same setup.
These particular devices were chosen simply be-
cause they are the only ones we had access to:

1. an OnePlus One with Android 6.0.1, BLE 4.1;
2. an Asus ZC520TL with Android 8.1, BLE 4.0;
3. an Asus ZC520TL with Android 7.0, BLE 4.0.

The results are show in Figure 6. Each sample
(dot, triangle, or cross) in the graph is the average
speed of a burst of 8 packets of equal payload size,
calculated as explained above.

Figure 6: Average receiving speed vs payload size for BLE

packet payload size (bytes)

av
g 

sp
ee

d 
fo

r 8
 p

ac
ke

ts
 (k

ilo
 b

yt
es

/s
)

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400

1. BLE 4.1 2. BLE 4.0 on Android 8.1
3. BLE 4.0 on Android 7.0

As expected, the throughput increases when us-
ing greater payload sizes. This is likely because
greater packet sizes help reducing periods of ra-
dio silence, which are considered in our average
calculation. Maximum measured speed was about
2353 bytes/s while using a payload size of 500
bytes per packet using phone number 3. This cor-
responds to a speed of about 294 kbps (kilobits
per second), which is about 1.3 times faster than
the maximum BLE 4.2 application layer through-
put of about 221 kbps measurement by Dian et al.
(2018). Note that Android does not let us change
or read the connection interval value directly, so we

can not be certain that the value we used matches
the one used by Dian et al. (2018).

Using the other two smartphones, however, the
maximum observed speed is significantly lower,
and contrary to what was expected, BLE 4.1 per-
formed worse than 4.0. It is therefore clear that, in
practice, the throughput of BLE will depend on the
devices that are used. This is even more evident
in the two Asus ZC520TL that were tested, which,
despite using the exact same hardware, achieved
a very different throughput.

5.1.2 BLE and MQTT

Next we tested how Crowdnet performs when
using MQTT in conjunction with BLE. In this test
we used the two best performing devices (1 and 3)
from the BLE-only test, each connected to its own
ESP32. Results are shown in Figure 7.

Figure 7: Average Crowdnet receiving speed versus payload
size for BLE and MQTT

packet payload size (bytes)

av
g 

sp
ee

d 
fo

r 8
 p

ac
ke

ts
 (k

ilo
 b

yt
es

/s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 100 200 300 400 500

MQTT+BLE BLE only (best)
BLE only (2nd best)

The red line corresponds to the smartphone that
better performed in the BLE-only test. The blue
line is the speed over BLE+MQTT measured by
connecting each Node to a different smartphone
in different rooms. Smartphones were connected
to an MQTT Broker running on the same LAN via
the same Wi-Fi AP. These two setups correspond,
respectively, to use cases A) and B) in Figure 3.

As expected, when using MQTT+BLE, the max-
imum achieved speed is about 2–3 times greater
than when using only BLE.

5.2. Communication latency
This section compares the latency of Crowd-

net while communicating via BLE. In order to ac-
curately measure time intervals, an accurate and
synchronized clock is needed. Since it is not trivial
to synchronize clocks in multiple Nodes, only one
Node was used in these tests.

A single ESP32 Node was programmed to send
packets destined to itself via Crowdnet, and was

9



connected to a single smartphone via BLE. La-
tency values for each packet include the total air
time of the packet for two round trips, and process-
ing time on the smartphone and Arduino.

For each payload size that was tested, 16 pack-
ets were sent. Each test was repeated on each
of the three smartphones used to evaluate the
throughput of BLE in Section 5.1.1, respectively
numbered 1–3. For each smartphone, the test was
repeated using different connection priority val-
ues on Android: (a) CONNECTION_PRIORITY_BALANCED,
which uses the connection parameters recom-
mended by the Bluetooth Special Interest Group
(SIG); (b) CONNECTION_PRIORITY_HIGH, which re-
quests a low latency connection.

Figure 8: Average Crowdnet latency vs payload size using BLE

packet payload size (bytes)

av
g 

la
te

nc
y 

fo
r 1

6 
pa

ck
et

s 
(m

s)

0

20

40

60

80

100

120

0 20 40 60 80

1.a.

2.a.

3.a.

1.b.

2.b.

3.b.

Results are shown in Figure 8. As expected,
the latency is reduced when using a high connec-
tion priority. The minimum observed latency value
was 25 ms using a payload size of 10 bytes on the
OnePlus One (1.b). However, just like in the BLE
throughput tests in Section 5.1.1, results start to
show significant variations between devices when
larger payload sizes are used.

From these tests we can conclude that, in prac-
tice, the expected latency between Nodes using
BLE will be in the range of 25 to about 136 mil-
liseconds, depending on the smartphone, the con-
nection priority, and the payload size that is used.
These values are well above what is expected of
an I2C bus, which, at 400 kHz, is able to reach a
maximum theoretical throughput of 316 kbps and,
using 10 byte packets, a latency of 0.5 millisec-
onds. Crowdnet, though, using the same payload
size, only achieved a throughput of 96 bytes/s (768
bps) when using MQTT+BLE, and a much higher
round-trip latency of 25 milliseconds.

However, the performance offered by Crowdnet
is still suitable for the use cases for which Crowd-
net is intended, and the conveniences offered by
the system when compared to I2C are a trade-off
that users must consider.

6. Conclusion
This work introduced a middleware for commu-

nication between Arduino boards using BLE and
Internet connectivity of smartphones. It enables
communication between both local and remote
Nodes, allowing students to work in and out of
the laboratory, as well as from their homes. The
Crowdnet Arduino library API is similar to that of
I2C, making it simple to use. It was implemented
and evaluated using the ESP32 SoC, an Android
smartphone App, and the Mosquitto MQTT Broker.

Evaluation showed Crowdnet can achieve rea-
sonable speeds and latency, even though results
vary considerably depending on the smartphone
that is used. Nonetheless, the achieved through-
put is adequate for the use cases for which Crowd-
net is intended, and using MQTT in conjunction
with BLE provides greater throughputs.

Future improvements to Crowdnet include port-
ing the Arduino library to additional BLE shields on
Arduino boards other than the ESP32, and adding
more features to the Android App, such as the abil-
ity to send sensor or input data to the Arduino.

References
Cunha, A. R. (November 2017). Software for Embedded Systems Lab-

oratory Guide. Lisbon. Instituto Superior Técnico.

Dian, F. J., A. Yousefi, and S. Lim (2018). A practical study on Bluetooth
Low Energy (BLE) throughput. In 2018 IEEE 9th Annu. Inf. Tech-
nol. Electron. Mob. Commun. Conf. (IEMCON), Inf. Technol. Electron.
Mob. Commun. Conf. (IEMCON), 2018 IEEE 9th Annu., pp. 768–771.

Gomez, C., J. Oller, and J. Paradells (2012). Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology.
Sensors (Switzerland) 12(9), 11734–11753.

Lee, J.-s., Y.-w. Su, and C.-c. Shen (2007). A Comparative Study of
Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In IECON
2007 - 33rd Annu. Conf. IEEE Ind. Electron. Soc., pp. 46–51. IEEE.

Leens, F. (2009, 02). An introduction to I2C and SPI protocols. Instru-
mentation & Measurement Magazine, IEEE 12(1), 8–13.

Light, R. A. (2017). Mosquitto: server and client implementation of the
MQTT protocol. Journal of Open Source Software 2(13), 265.

Maier, A., A. Sharp, and Y. Vagapov (2017, 09). Comparative analysis
and practical implementation of the ESP32 microcontroller module
for the Internet of Things. In 2017 Internet Technologies and Appli-
cations (ITA), pp. 143–148. IEEE.

Rahiem, M. D. H. (2020, June). The Emergency Remote Learning Ex-
perience of University Students in Indonesia amidst the COVID-19
Crisis. International Journal of Learning, Teaching and Educational
Research 19(6), 1–26.

Yassein, M. B., M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi (2017,
May). Internet of Things: Survey and open issues of MQTT protocol.
In 2017 International Conference on Engineering MIS (ICEMIS), pp.
1–6. IEEE.

Yokotani, T. and Y. Sasaki (2016, 09). Comparison with HTTP and MQTT
on required network resources for IoT. In 2016 International Confer-
ence on Control, Electronics, Renewable Energy and Communica-
tions (ICCEREC), pp. 1–6.

10


	Introduction
	Context and motivation
	Requirements and Objectives

	State of the Art
	Arduino communications
	I2C bus
	Wi-Fi
	BLE

	Internet communications
	HTTP
	MQTT


	Architecture
	Arduino Library
	Android smartphone application
	Server back-end

	Implementation
	Arduino library
	BLE communication
	Packet structure
	GATT Service
	Group ID filtering

	Server communication
	Android application
	External dependencies
	Domain


	Evaluation
	Communication throughput
	BLE only
	BLE and MQTT

	Communication latency

	Conclusion

