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Lisbon, Portugal

daniela.s.duarte@tecnico.ulisboa.pt

Manuel Lopes
Instituto Superior Técnico
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ABSTRACT
Vessels are often intermittently observed when at sea, either
because the monitoring systems are shut down or the cover-
age link can’t reach the sailed region. These gaps represent a
severe threat in terms of safety at sea. The present work pro-
poses to address this problem by predicting ships movement
when there is no available information. The movement data
of past behaviors is clustered into groups of similar movement
patterns, from which is extracted a representative trajectory
for each cluster. Ultimately, they will represent each main
route and be used to identify the route membership of up-
coming trajectories and predict future movements by query-
ing the function at a given point. The evaluation is made with
a real-world AIS dataset to demonstrate the viability of this
approach.

Author Keywords
Automatic Identification System; Longest Common
Subsequence; Trajectory Clustering; Movement Prediction.

INTRODUCTION
The maritime environment is a great source of economic
growth, providing natural resources and access to trade and
transport. This places the world’s oceans and seas sustain-
ability and security a high concern for many nations and in-
ternational organizations.

The incorporation of the Automatic Identification System
(AIS) technology on vessels, an automated on-board track-
ing device, has supported maritime surveillance authorities
by broadcasting among AIS systems (e.g.: vessels, on-ground
base stations) information stating who they are, where they
are and their movement details. Although it was initially
conceived for vessel collision avoidance, its use has been ex-
tended as means to achieve a deeper and broader knowledge
of maritime situations since its mandatory deployment by the
IMO on a significant range of vessels in 2004 [5]. However,
it’s not always possible to have a continuous observation of
vessels at sea: the device may stop working or transmit wrong
data due to some malfunction, the crew can turn off the de-
vice, and the 20 nautical miles depth of the transmission link
may not cover part of the sailed area [12]. These coverage
failures clearly represent high risks, such as collision situ-
ations, maritime pollution, piracy or unauthorized maritime
arrivals [22].

The large amounts of available near-real time AIS data
emerges as a valuable source of information for the creation

of methods to automatically transform raw data into meaning-
ful information and easily support operational decision mak-
ers. A broad area of trajectory data mining is devoted to ad-
dressing this issue, known as trajectory uncertainty [26]. A
common approach is to find in the midst of a set of trajec-
tories, one or more samples that follow the same (apparent)
path as the uncertain one and are more complete, where the
gaps can be filled with the information retrieved from the se-
quences of high extent. This concept is nothing but route pre-
diction, as the movement of trajectories on the same route and
observed as a whole serve as basis for the next positions of the
(yet) partial ones.

In this context, the present work proposes to tackle the prob-
lem of long-term vessel position estimation, which comprises
the process of predicting ship movements well beyond any
available positioning data, based on the movement of past
vessels on the same route [9]. More specifically, this cov-
ers trajectory pattern mining tasks and methods of Machine
Learning (ML), namely clustering, to discover motion pat-
terns – routes — from historical AIS data collections. From
the clusters a compact representation is extracted to model
each of the existing paths, ultimately used to forecast future
positions.

RELATED WORK
This section presents the state-of-the-art research made to un-
derstand the two main topics of the scope of this thesis: tra-
jectory learning and route prediction.

Trajectory Learning
As a group pattern mining task, the learning of trajectories
seeks to capture the existing but unknown motion-patterns
from trajectory data. The approaches are divided into the fol-
lowing categories [16]: distance-based; feature-based; and,
model-based. When examining the literature, we join the
feature-based into distance-based approaches, because they
both directly compare trajectories when clustering.

Distance-Based Clustering
They comprehend the set of methods that groups trajectories
by directly comparing how similar they are. Clustering algo-
rithms are employed, as they are able to automatically infer
the hidden structure of data and allocate the data into classes
of similar objects [4]. In essence, the approach is reduced to
a) choosing a clustering algorithm that determines how tra-
jectories are gathered and b) choosing a similarity measure
that establishes the candidates to be in the same group.

Similarity Measure The notion of (dis)similarity is given ac-
cording to a measure quantifying how close the data points



are. Regarding trajectory data, the popular Euclidean Dis-
tance fails to work with unequal-length sequences, since
it compares points of common indexes one by one with a
straight line; even when there is a same number of points, the
measure performs poorly if they are unaligned in time, due to
different sampling rates/speeds. Measures allowing to pair up
elements that are not in the same index in the data sequence
have been introduced in the literature, and are classified into
two broad groups [3]: shape-based distances, which only take
into account spatial information (e.g., Hausdorff); and warp-
ing based distances, that integrate both the spatial and tempo-
ral dimensions (e.g., Dynamic Time Warping, Longest Com-
mon Subsequence).

Clustering Methods A myriad of clustering algorithms are
available, but not all are suitable for trajectories. For example,
K-means and Birch use Euclidean distance as metric, thus re-
quire fixed-dimensional vectors. Other algorithms offer more
flexibility by allowing to represent the data with a matrix (as
known as affinity matrix), where each of its elements are the
similarities between samples. This is not only useful for us-
ing tailor made metrics, but to overcame the problem of not
having a suitable matrix representation with unequal-length
data. In this context, some of methods that are able to deal
with trajectory data Affinity Propagation, DBSCAN and Hi-
erarchical methods.

Aiming to reduce computation time and improve model ef-
ficiency, Sheng P. and Yin J. [24] use characteristic points
from vessel trajectories having a wider change on SOG and
COG and with the minimum description length (MDL). DB-
SCAN clustering is used for latitude, longitude data, speed
and course, for which a tailor made measure is used for sim-
ilarity measurement. Finally, the representative trajectory is
calculated with the sweep line approach. Also using a com-
pact representation of trajectories, Pallotta G. et al. [9] pro-
posed the ”TREAD”, focused on clustering waypoints (e.g.,
entry, exit and stoppage). Thrdr are incrementally activated
upon vessel traffic and clustered with DBSCAN based on the
event type and scene features, originating routes when the
vessels with matching start and end waypoints reach a cer-
tain threshold. Route objects are statistically described by the
kinematic features of the vessels that originated them. This
approach can easily tackle the problems of unequal-length
trajectories, incomplete paths or with gaps. Another popu-
lar framework is called ”TRACLUS” [14], that aims to find
groups of similar sub-paths. The trajectories are partitioned
into a series of meaningful parts through the Minimum De-
scription Length principle, which are then grouped with a tai-
lored density-based clustering algorithm and a metric based
on the Hausdorff distance.

Model-Based Clustering
They enclose the clustering techniques where the data is char-
acterized through a given model or as a mixture of probability
distributions [16]. This category is further divided into statis-
tical models and neural networks [16]. A common technique
used in neural network approaches is Self-Organizing Maps
(SOM), whose clustering process is based on a projection to
a lower-dimensional space. The authors in [23] apply it to

cluster simulated vessel data and use speed and heading for
that purpose. SOM is not able to work with variable-length
time-series [1]. On the other hand, Gaffney S. and Smyth P.
[8] presented a probabilistic model based clustering by repre-
senting trajectory data with a mixture of regression models,
where the Expected-Maximization (EM) is used to estimate
the cluster’s parameters. Aiming to simplify the choice of an
appropriate model to fit the data, Zhong S. and Ghosh J. [27]
proposed a unified framework for model-based clustering.

Route Prediction
The approaches regarding this topic can be categorized into
three types [25]: physical models, based on physical laws that
consider the various aspects affecting the motion (e.g.: force,
mass); learning model based methods, which consider that
the aspects that physical models include can be estimated au-
tomatically by creating movement models of past behaviours;
and hybrid methods, that either combine the hybrid and learn-
ing models or use multiple learning methods.

Physical Models are useful for simulation systems, but re-
quire strict environmental and state conditions that are hard to
obtain in practice. Kalman Filters are a widely used technique
in this category [10]. In [15], Long-Short Term Memory Net-
works (LSTMs) were used as a learning-based approach for
path modelling, after conducting a distance-based clustering.
The LSTMs are applied to each unravelled route, where an
iterative forecasting process is made to get the future values
of both position, speed and course, given the current ones.
further applies BI-LSTMS and shows better results. Also
through a learning-based approach, Giuliana et al. [9] use
the Bayes Rule is used to get the posterior probability of fol-
lowing one of the existing routes, given the current position
and velocity, from which the future positions of the route
with highest probability are extracted with kinematic equa-
tions. Perera L. et al. [20] exploit a hybrid approach with
Extended Kalman Filters (EKF), a variation able to handle
nonlinearities, to estimate position, velocity and acceleration.
The method is incorporated in a Curvilinear Motion Model,
that is used to describe the movement.

DATA ANALYSIS AND CLUSTERING

Data Sample
The dataset used in this project is composed by a real-world
AIS dataset1 from the region of Brittany, in France. It cov-
ers a period of 6 months, from 01-10-2015 to 31-03-2016.
The following subset of attributes was used: MMSI, longi-
tude, latitude, speed over ground, course over ground, time
and ship type.

Regarding the vessel’s trajectories, it was assumed that a new
trip was made when the delta time between 2 broadcasted
messages by a given vessel was greater than 24 hours or when
the vessel’s position was less than 5 km from a port. All
records with duplicated values for both longitude, latitude,
and date from a given vessel were removed, as well as all
vessels with the ship type field not filled. Unfeasible speed
or infeasible position messages were removed from the set.
1http://datacron-project.eu/



Tracks whose speed is lower than 0.1 knots for more than
80% of the time (at anchor or moored vessels) were also re-
moved. All trips were required to have at least 3 data points.
After the data cleaning, the data sample contains a total of 1
461 000 records, 2 045 vessels, and 5 157 trips.

In this thesis, we’re interested in studying long and repetitive
movements that characterize the main global routes, thus we
will only work with the cargo and tanker AIS messages. This
subset contains a total of 3187 trajectories. It makes sense
to always include trajectories of a greater extent since we’re
interested in finding part of main global routes. On the other
hand, most of the trajectories have less than 200 km sailed,
which is a small distance for a ≈ 500 × 800 km area regard-
ing long-term paths, so we excluded those with less 100 km
because they were not a meaningful portion of the data. To
sum up, the data sample was further divided into three sets
according to the sailed distance: the 1st contains trajectories
with more than 100 km (total of 1381 trajectories); the 2nd

contains trajectories with more than 200 km (total of 754 tra-
jectories); and the 3rd contains trajectories with more than
300 km (total of 183 trajectories).

Data Treatment
For the purposes of forecasting movement in regular time-
intervals, it is required for trajectories to have observations
of fixed and uniform frequency. Moreover, the gaps between
two consecutive sampling points can be wide enough to fail
in capturing the trajectory movement, which may introduce
errors when measuring distances. The dataset contains ir-
regularly sampled messages, so a pre-processing step is thus
needed, namely resampling. A natural way of resampling
data is to fit the data with a mathematical function that in-
tersects the set of discrete points, and where new new points
are easily retrieved [7]. Splines were used in this work, more
specifically linear splines. Trajectory data can have multiple
dimensions, so each individual dimension’s sequence was fit-
ted separately, and the resulting vectors joined in the end. It
is required that both dimensions have the same independent
variable, which in this work was time. Under the interpolation
module from the Python-based SciPy library2, the method
UnivariateSpline was used to create linear spline represen-
tations, and evaluate new points with a step size of 300 (5-
minute interval) regarding the latitude, longitude and speed
dimensions. Finally, the heading and speed was then manu-
ally re-calculated, given the new set of points.

Clustering Method
Choosing a clustering method is highly dependent on the
data’s characteristics, so the technique must satisfy the fol-
lowing requirements: no size uniformization needs to be
made; the clusters can have different densities; the clusters
can have an irregular shape. On this note, from the meth-
ods that are able to work with trajectories, three were cho-
sen: Agglomerative Clustering, DBSCAN, and OPTICS. Un-
der the Python’s machine learning framework scikit-learn3,
which provides implementations of all methods in the clus-
tering module, the algorithms were further compared.
2https://www.scipy.org/
3https://scikit-learn.org/

Figure 1. Dataset visualization and statistics.

(a) ≈ 500× 800 km area. (b) AIS positions in the covered
area.

(c) Positions heatmap. (d) Trajectory duration distribu-
tion.

(e) Trajectories length distribution per ship type.

From each of the obtained clusters, a representative trajectory
was retrieved that provides the underlying baseline movement
of the cluster and materializes one of the main routes. In
technical terms, this trajectory is the cluster centroid and in
the present work is the one with the lowest sum of distances
to all its respective cluster members. At a later point, a re-
classification was made to evaluate the routes assignment.

Similarity Measure
The first step towards applying any clustering method is the
definition of the similarity measure. To accurately measure
the distance between the trajectories at hand, the method must
be able to assess the affinity between the pair of trajectories
even if: the number of points differs; the sampling are dif-
ferent; the starting and ending positions are not the same.
Given that there is no agreement on what method is the best,
we tested and compared the two most used measures in the
literature, namely Dynamic Time Warping and the Longest
Common Subsequence, which are both able to work with the
above points.



Longest Common Subsequence Let dist(xn, yn) represent
the function measuring the distance between two data points,
the Longest Common Subsequence LCSS(X,Y ) between
two trajectories X and Y is recursively defined as follows
[13]:

0, if Xor Y is empty
1 + LCSSδ,ε(Rest(X), Rest(Y )), if dist(xi, yj) ≤ ε

and |j − i| ≤ δ

max

{
LCSSδ,ε(Rest(X), Y )

LCSSδ,ε(X,Rest(Y ))
otherwise

(1)

To retrieve a meaningful dissimilarity value from the length
of the longest common subsequence, the percentage of that
value regarding the length of the shortest trajectory is re-
turned. Let min length represent the number of points of
the shortest trajectory, the distance lcss dist(X,Y ) between
two trajectories X and Y is therefore obtained by:

lcss dist(X,Y ) =
LCSS(X,Y )

min length(X,Y )
× 100 (2)

Position Data Initially, LCSS was tested with positional
information (longitude, latitude). Since we are dealing with
points on the surface of a sphere, the haversine formula was
adopted, which determines the distance between geographic
coordinates on the globe. Let R represent the average radius
of the earth, the distance between points p1 and p2 along
its two dimensions (longitude and latitude) is as follows:
d(p1, p2) = 2Rarcsin(

√
sin2(

p12−p11
2 ) + cos(p11)cos(p12)sin2(

p22−p21
2 ))(3)

The implementation of LCSS from the traj-dist library4 devel-
oped in Python was used with the spherical option, which em-
ploys the haversine distance between 2D-coordinates. Sev-
eral tests were made to choose the best distance threshold that
can only be evaluated by visually checking the values for each
pair of trajectories. Based on data visualizations of the routes,
the value was based on the average width of the routes, and it
was chosen a value of 19 km. The results showed that work-
ing only with this type of data does not allow us to identify
trajectories in different directions.

Angle Data For the directional component, expressed by the
COG attribute, the distance was measured by the cosine simi-
larity, which is a widely used measure for assessing the affin-
ity between angles. The cosine distance between two angles
a1 and a2 is thus represented as:

cosine distance(a1, a2) = 1− cosine(a1 − a2) (4)

The code from Python’s traj-dist library regarding LCSS was
adapted to incorporate the cosine distance instead. Regard-
ing the distance threshold, a value of 10o was set for both
datasets, estimated once more by visually checking different
values until they were acceptable according to the trajectories
at hand. In this case, only angle data is not able to determine
that trajectories are far apart.
4https://github.com/bguillouet/traj-dist

LCSS Joint Distance Measure A natural conception of the
final measure is the average values of both position and an-
gle. Taking the example where we have two trajectories close
together (e.g., position distance to 0%) but with opposite di-
rections (e.g., angle distance to 100%), the resulting distance
is 50%, which is too optimistic for such difference. So, for the
cases where one of these values is too low, this should be a
straight indication that the trajectories differ greatly. For this
reason, it was assumed that when either the distance with po-
sition or direction is greater than 60% then that was the value
returned by the joint measure, while the remaining cases took
the average. The pseudo-code is as follows:

Algorithm .1: LCSS Joint distance
Input: Trajectory1, Trajectory2
Output: Percentage representing how much the
trajectories match

begin
position sim←−
lcss(trajectory1.positions, trajectory2.positions)

direction sim←−
lcss cosine(trajectory1.angles, trajectory2.angles)

max value←−
max(position sim, direction sim)

if max value > 60 then
return max value

else
return(position sim+ direction sim)/2

Dynamic Time Warping
Let dist(xn, yn) the function measuring the distance between
two data points, the Dynamic Time Warping DTW(X,Y) be-
tween two trajectories X and Y is defined as follows [17]:

0, if X and Y
is empty;

∞, if X or Y
is empty;

dist(x1, y1) +min


DTW (Rest(X), Rest(Y ))

DTW (Rest(X), Y )

DTW (X,Rest(Y ))

, otherwise.

(5)

DTW requires all points from two trajectories to be matched.
Hence when measuring two trajectories with different
lengths, an overflow is introduced from the remaining points
of the longest sequence, and the measure would perform
poorly. That being so, a subsequence from the longest tra-
jectory corresponding to the nearest points of the beginning
and end of the shorter trajectory was used.

DTW Joint Distance Measure Due to the same issues as
with LCSS, both position and direction data were used in an
averaged joint distance. The implementation of DTW from
tslearn5 (function dtw from metric) was used once more us-
ing the haversine distance, for positions, and the cosine dis-
tance, for directions. The pseudo-code is as follows:

5https://tslearn.readthedocs.io/



Algorithm .2: DTW Joint distance
Input: Trajectory1, Trajectory2
Output: Distance in km between trajectories

begin
shortest traj, longest traj ←−
find lengths(trajectory1, trajectory2)
longest subsequence←−
get longest subsequence(shortest traj, longest traj)

position sim←−
dtw from metric(shortest traj.positions,
longest subsequence.positions, haversine)
direction sim←−
dtw from metric(shortest traj.angles,
longest subsequence.angles, cosine distance)

return (position sim+ direction sim)/2

Results
Comparing the results of LCSS and DTW for the same sub-
set of samples, it is possible to conclude that both measures
were able to identify when the routes matched entirely (or
almost) (e.g., Figures 3(a) to 3(b)), and when they were far
apart (e.g., Figure 3(f)). On the one hand, Dynamic Time
Warping did not give fair values when the routes were close
but with different shape or direction, as seen in Figure 3(e),
since it attributed higher to partially identical trajectories, in
Figure 3(c). This can be explained by the fact that DTW sim-
ply calculates the distances between aligned points. So, when
trajectories are too close, this makes it enough to dictate that
the routes might be similar. In spite of the fact that using
a subset from the longest trajectory helps to tackle the sum
excesses from unequal-length sequences, this distance may
become even shorter because there are even less points to
add. On the other hand, Longest Common Subsequence pro-
vided reasonable values for all examples, and they are easier
to understand than those from DTW. Furthermore, this allows
to attribute automatically higher values for opposite courses,
which DTW did not. In conclusion, the Longest Common
Subsequence had the best results.

Figure 2. Representative sample of joint distance values.

(a) LCSS - 2%;
DTW - 480.

(b) LCSS - 17%;
DTW - 513.

(c) LCSS - 43%;
DTW - 3416 .

(d) LCSS - 67%;
DTW - 5073 .

(e) LCSS - 100%;
DTW - 3061 .

(f) LCSS - 100%;
DTW - 10810.

Agglomerative Clustering
Hierarchical Agglomerative Clustering (HAC) falls into the
hierarchical methods category, which builds a tree, also
known as a dendrogram, where each node contains a set of
samples that are merged or split repeatedly [4]. The root
node contains all the samples, and the leaf nodes group each
sample individually. In a bottom-up approach, as in HAC, it
starts with all samples in individual clusters, merging nodes
that minimize one of the following linkage criteria: the mean
of the distances between each pair of observations from both
nodes (average); the maximum distance between the observa-
tions of both sets (complete); the minimum of the distances
between observations of both sets (single).

It was used the function AgglomerativeClustering from
scikit-learn. The linkage criteria needs to be set, and, when
the number of clusters is unknown, a distance threshold is
required to establish up until when clusters are merged.

Model Selection
A standard evaluation measure for finding the best linkage
criteria is the CPCC [18]. The cophenetic distance is equiv-
alent to the minimum distances between any of the samples
that are to be included in the same node. A matrix is cre-
ated with this distance and is further correlated with the data’s
distance matrix to quantify how accurately the pairwise dis-
tances were preserved. The common approach to find an ideal
distance threshold is to analyze the resulting dendrogram for
a given link and look for groups that combine at a higher den-
drogram level.

DBSCAN
This technique incorporates the notion of density, where clus-
ters are high-density areas followed by low-density areas [6].
These higher density areas are obtained by retrieving the data
points that have at least k neighbors in an ε radius — core
points —, each one of them formalizing a cluster. These sam-
ples are further grouped with the neighbors that are core as
well — density reachable core points —, along with their
neighborhood. This verification is made for every sample in
the ε-neighborhood of every core sample, allowing to create a
network of density connected core points. A cluster emerges
as a set of core points and the points that are close to one
of the cores but are not themselves core — non-core points.
The low-density areas — noise/outliers — are then the non-
core samples that are not close to any core [19]. The func-
tion DBSCAN from scikit-learn was used, and it requires the
minimum number of neighbors and the maximum distance
between samples to be set.

Model Selection
For a given k, the respective ε can be automatically extracted
by taking the distance from the kth-nearest neighbors of every
point, sort them increasingly, and plot the points in the so-
called k-dist plot [18]. The ideal ε is evaluated at the point
where the distance has a sharper rise. There is no technique
for finding the k, but values between 3 and 24 have been used
with most datasets in the literature, for density-based methods
[21]. In this work, values in [3,6,9] were tested.



OPTICS
OPTICS [2] closely follows DBSCAN but relaxes the ε and
takes it as a value range (0 ≤ εi ≤ ε), exploring clustering
with multiple εi to find different densities. In practice, OP-
TICS requires only the minimum number of neighbors; the
parameter ε can be fixed to its maximum value to find clus-
ters across all scales [19]. The function OPTICS was used
from scikit-learn’s clustering module, and the same values for
ε in DBSCAN were tested. The default setting of ε to∞ was
adopted, to explore all possible ranges.

Results
Using 70% of each one of the data samples, the data was
clustered with the Longest Common Subsequence, because
it provided better results and allows to easily interpret the
distances. The representative trajectories are shown in red,
together with the trajectories’ end point. For each set, we
illustrate the best results from each clustering method, and
enumerate the following remarks:

• HAC was the only clustering method to obtain reasonable
clusters for the 1st set, even though many of the clus-
ters had misplaced trajectories. It could unravel groups of
movements from the two big clusters that DBSCAN and
OPTICS extracted. This was due to the cutoff to nodes that
exceed the distance defined by the linkage criteria.

• For set 2, while the number of trajectories was reduced,
working with longer trajectories proved to achieve better
results with OPTICS; HAC had few clusters, but their qual-
ity was improved in terms of finding local behaviors from
the clusters for set 1, and providing paths with more in-
formation; the parameters yielded by the model selection
of DBSCAN did not provide reasonable clusters, grouping
most of the data into two big clusters (upwards and down-
wards movements).

• A decrease in the number of clusters was seen in all clus-
tering algorithms for the 3rd, with the exception of DB-
SCAN that had the same and rendered useless clusters
again. Indeed this set is much smaller than the previous
ones; nonetheless the quality of the clusters for HAC and
OPTICS was better than of set 1, and a good compromise
between the data size and the clusters representation was
achieved.

• Regarding the influence of route lengths, it was concluded
that the 1st set had many small trajectories that provided an
easy gateway to unwanted merges between clusters. The
2nd set delivered more clusters with reasonable represen-
tation, although the best compactness was achieved in the
3rd set.

Figure 3. 4 out of 65 HAC Clusters with average link and distance
threshold=70, for set 1.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Figure 4. 4 out of 8 DBSCAN clusters with k = 3 and ε=13, for set 1.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Figure 5. 4 out of 15 OPTICS cluster with k = 3, for set 1.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Figure 6. 4 out of 39 HAC clusters with average link and distance thresh-
old = 70, for set 2.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Figure 7. 4 out of 5 DBSCAN clusters with k = 3 and ε=22, for set 2.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Figure 8. 4 out of 22 OPTICS clusters with k = 3, for set 2.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Figure 9. 4 out of 22 HAC clusters with average link and distance thresh-
old=70, for set 3.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

Figure 10. 4 out of 5 DBSCAN clusters with k = 3 and ε=30, for set 3.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

PREDICTION



Figure 11. 4 out of 15 OPTICS clusters with k = 3 , for set 3.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

The route prediction was approached through a probabilistic
measure over the nearest routes’ positions. In short, the es-
timation for a given ∆t is the weighted sum of the positions
with respect to t of the three most probable paths. The soft-
max function was used to acquire the weights distribution for
each route.

Algorithm Description
For an incoming trajectory, a radius is centered in the obser-
vation’s end point to trace the area where the nearest routes
should be. If no routes are inside that radius, the route is con-
sidered as an ”outlier”. Likewise, if none of the routes found
have a similar direction. The same distance threshold used
in LCSS was set to represent the radius (19 km). Given the
intersecting routes, it is calculated the hierarchy of the three
closest ones to feed the softmax function. The LCSS joint
distance fails in computing this hierarchy, so the DTW was
used. Finally, the nearest points between the current observa-
tions’ end point and the closest routes are calculated, aiming
to define the location from where the prediction will start in
each route. In order for the extracted movement to be made
with a same speed as the incoming trajectory, the same ap-
proach used for resampling was employed to interpolate the
data points. To accomplish this, it is calculated the average
speed of the incoming trajectory for the last 6 points (equiva-
lent to 30 minutes), assuming that it provides a good estimate
of future speed. With both the speed and the five-minute in-
terval between each data point, it is extracted the average dis-
tance sailed per point, which is used as the new resampling in-
terval. The independent variable was the accumulative sailed
distance. An overview of the algorithm is shown in fig. 12 .

Softmax
Softmax is a commonly used function to express the proba-
bility distribution of a discrete variable with n different val-
ues (classes) [11]. In the present work, it was chosen due to
its simplicity and usefulness to convert the vector of distance
scores to a vector of probabilities, that serves as the mixture
of weights for the path prediction. The procedure is shown in
Figure 13.

Results
The clusters that did not render reasonable clusters were re-
moved from the evaluation. Thus, the prediction was per-
formed with the following settings: for the 1st, only HAC
was used; for the 2nd and 3rd set, both HAC and OPTICS
(with k = 3) were used. The remaining 30% of each data
sample was used as the testing set. Each trip was divided
into two sets in order to simulate a moving vessel: one rep-
resenting the current observation and the other serving as the
ground truth of the future movement, to which the system’s

Figure 12. Iterative route prediction.

Figure 13. Route prediction with softmax for t+ 1.

estimate will be compared. This split was done according to
25%, 50% and 75% of the beginning of the trajectory, and it
corresponds to the current observation. The average lateral
deviation per km is used to evaluate the prediction accuracy.
Let L be the prediction distance in km and N the number of
predicted points, for the set of points pi and its estimates p′i
the error,in km, is defined as follows:

error =
1

L

N∑
i=1

haversine(p
′

i, pi)| (6)

A parametric test was performed to evaluate the effect of
the β parameter, in softmax’s transformation, on the result-
ing prediction. This allows to select the best setting for β,
for which the considerations regarding each observation size
were made.



Set 1
The evaluation for HAC clusters is exhibited in Figure 14 and
Table 1. The results showed the following:

• The number of outliers increases directly with the amount
of observation that is being used, meaning that while we
get more positional information, the main routes do not
have for more information to keep up with predictions. In
fact, the representative paths was small (see Figure 3), so
the area is not well represented. This also explains why the
performance did not necessarily improve with increasing
observations.

• There was no overall agreement on what is the best setting
for β, in order to achieve lower average deviation per trip.

• Bearing in mind that 19 km were established for the width
of a maritime corridor, then if a vessel has approximately
10 km of lateral deviations, it would still belong to that
corridor. This was achieved for short times, in any of the
observation sizes.

• The predictions’ average deviations were not stable, and,
looking back at the trajectories duration, in Figure 2(d),
we conclude that more than a half has less than 15 hours,
so, the error might be made according to fewer trajectories
along the way and the results can suffer variances. Yet,
this demonstrates that the deviation could keep up with an
increasing distance for those trajectories.

Table 1. Outliers for HAC clusters, for set 1.
Observation Outliers

25% 36%
50% 41%
75% 52%

Figure 14. Comparative analysis of different beta values for each obser-
vation size – HAC clusters, on set 1.
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(a) 25% of observation.
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(b) 50% of observation.
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(c) 75% of observation.

Set 2
The prediction evaluation made with the representative routes
from HAC clusters is demonstrated in Figure 15 and Table 2.
It was possible to verify that: the number of outliers revealed
again a lack of movement information; the higher the β the
lower the average deviations, showing that following the only
the closest route leads to lower deviations; the mean devi-
ations were kept below 10 km for a longer amount of time
(e.g., for a 75% observation, it was maintained for most of
the prediction).

Table 2. Outliers for HAC clusters, for set 2.
Observation Outliers

25% 22%
50% 34%
75% 50%

Figure 15. Comparative analysis of different beta values for each obser-
vation size – HAC clusters, on set 2.
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(a) 25% of observation.
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(b) 50% of observation.
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(c) 75% of observation

In relation to OPTICS main routes, the results showed, once
more, that the number of outliers increased for bigger sizes
of observation, but less than HAC. Effectively, the prediction
window was extended up to 19 hours, while HAC provided
12 hours, for observations of 50%. Still, for that extra time
window, there was high average deviations per trip. The out-
performing β did not reach a general agreement, but with β=
3 in a 75% observation, the prediction achieved low average
deviation for all the time window.

Table 3. Outliers for OPTICS clusters, for set 2.
Observation Outliers

25% 25%
50% 32%
75% 46%

Set 3
Similarly as in set 2, HAC had the lowest errors with β=11,
providing low deviations throughout all the prediction, for a
75% observation.



Figure 16. Comparative analysis of different beta values for each obser-
vation size – OPTICS clusters, on set 2.
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(a) 25% of observation.
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(b) 50% of observation.
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(c) 75% of observation.

Table 4. Outliers for HAC clusters, for set 3.
Observation Outliers

25% 23%
50% 37%
75% 46%

Figure 17. Comparative analysis of different beta values for each obser-
vation size – HAC clusters, on set 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Time (hours)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

Av
er

ag
e 

de
vi

at
io

n 
pe

r t
rip

 (k
m

)

 = 1
 = 3
 = 5
 = 7
 = 9
 = 11

(a) 25% of observation – aver-
age deviation of km.
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(b) 50% of observation.
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(c) 75% of observation.

OPTICS also found β=11 to be the best setting, and had
lower deviations errors than HAC with a 25% observation,
but equivalent performance, for a 75% observation. For a
50%, it was able to provide a bigger prediction window.

Table 5. Outliers for OPTICS clusters, for set 3.
Observation Outliers

25% 21%
50% 28%
75% 42%

Figure 18. Comparative analysis of different beta values for each obser-
vation size – OPTICS clusters, on set 3.

(a) 25% of observation.
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(b) 50% of observation.
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(c) 75% of observation.

Figure 19. Example of movement prediction with OPTICS clusters, for
set 3.

(a) 25% of observation – aver-
age deviation of 5 km.

(b) 50% of observation – aver-
age deviation of 2 km.

(c) 75% of observation – aver-
age deviation of 3 km.

CONCLUSION AND FUTURE WORK
This thesis focused in providing a study for the problem
of route prediction, exploring three different clustering al-
gorithms (Hierarchical Clustering, DBSCAN and OPTICS),
along with two similarity measures (Dynamic Time Warp-



ing and the Longest Common Subsquence) to extract mar-
itime routes. The tests showed that LCSS was the outper-
forming measure, providing a more comprehensive view on
the distance values. DBSCAN did no render useful clusters.
The prediction based on the weighted movement of the three
nearest routes showed that the lowest average deviations are
achieved using mainly the information from the nearest route,
and as more information is received the more accurate the es-
timates can be.

Possible future work includes enriching the clustering with
others types of information (e.g.; origin and destination), and
compare the prediction approach to other methods.
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