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Abstract

The management of user attention is becoming a crucial challenge in the development of modern
user interfaces, both in the Human-Computer Interaction and Human-Robot Interaction fields. User
interfaces are shifting from being information-hungry devices to being attentive systems that consider
their user’s needs upon interaction. The interfaces developed for robot teleoperation can be particularly
complex, often displaying very high amounts of information on their screens, which can induce a great
deal of cognitive overload on the operators during life-critical missions. In this dissertation, a prototype
for a Physiologically Attentive User Interface is presented, which is applied to an Urban Search and
Rescue robot that provides a complex user interface. The system analyses physiological data, facial ex-
pressions, and eye movements to classify three emotional states (rest, stress, and workload) during robot
teleoperation tasks. An attentive user interface is then assembled, which is modified dynamically ac-
cording to the predicted emotional state in order to manage the user’s focus during mentally demanding
situations. This work contributes with the design of a user experiment, comprising emotion induction
tasks that successfully trigger high and low cognitive overload states, along with effective strategies of
managing user attention. Results from a user evaluation revealed no statistically significant differences
in terms of the task performance and usability achieved when comparing this system to a classic user
interface. The results were limited by the small number of subjects available for the study and the poor
performance of the emotional state classifier.
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1. Introduction

Throughout the last few decades, society has wit-
nessed a sharp rise in the level of technology avail-
able to humans. Not only the number of displays
per human has increased substantially, but also the
computational capabilities of our devices, such as
PCs, laptops, smartphones, tablets, amongst many
others, are now greater than ever. As the general
population is becoming more and more surrounded
by numerous interfaces that constantly distract us
with pop-ups, such as notifications or messages, the
attention span of users is getting reduced to the
point where they have to filter information from
multiple sources, often with the drawback of doing
it at a superficial level, effectively limiting their abil-
ity to interact properly with each system [1]. This
problem brings in the need for smarter interfaces
that understand human needs and adapt to them,
namely in the Human-Computer Interaction (HCI)
field.

In order to tackle this problem, Vertegaal (2003)
suggested a model for an Attentive User Interface
(AUI), designed to be sensitive to the user’s atten-
tion and act accordingly. These attentive user in-

terfaces take advantage of overt properties of user
attention, such as user presence, proximity and gaze
direction, to determine which task or device the user
is focused on and, consequently, his availability for
interruptions [2]. However, while these measure-
ments can help the understanding of the current
visual focus of the user, they do not provide infor-
mation about the state of mind, which can be just
as or more relevant, since the user’s physical activ-
ity is not necessarily an indicator of mental engage-
ment. Fortunately, due to scientific advances in the
field of Psychophysiology, it is possible to establish
links between the human body and mind in order
to acquire more reliable information about human
cognitive and emotional states [3]. Therefore, the
measurement of physiological signals allows the per-
ception of covert states of mind that are not visible
to an AUI. With this in mind, Chen (2006) pro-
posed a framework for a Physiologically Attentive
User Interface (PAUI) that resorts to physiological
measures to respond actively to the user’s needs.
The use of a PAUI effectively extends the reach of
an AUI, in the sense that it enables a deeper un-
derstanding of the emotional state of the user [4].
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With the evolution of robotics and the increased
extent of interactions between humans and robots,
the problem of managing user attention also ex-
panded to the field of Human-Robot Interaction
(HRI), particularly in the robot teleoperation area.
The ever-growing sophistication of the tasks per-
formed by robots often comes with the drawback of
requiring operators to deal with very complex inter-
faces that can potentially submit them to a great
deal of stress and workload, effectively compromis-
ing their focus and performance on the given task.
This issue is especially problematic in fields like Ur-
ban Search and Rescue (USAR) operations, where
it is essential to guarantee that the operator’s focus
remains at its best, which would otherwise leave a
person’s life at stake.

In recent years, with the growth of computa-
tional power, the analysis of data and its employ-
ment in the development of artificially intelligent
systems has led to increasingly effective algorithms
for data classification that yield a vast array of ap-
plications, from self-driving cars, to medical diag-
nosis assistance, and even emotion recognition. The
growing burst of available data is giving these algo-
rithms more potential than ever, particularly in the
field of Machine Learning (ML) and, more specifi-
cally, Deep Learning (DL). This promotes the de-
velopment of intelligent systems that can accurately
learn useful properties of data that are often not de-
tectable by humans.

This article presents the development of a PAUI
that aims to tackle the problem of managing user’s
attention and focus during robot teleoperation
tasks. The PAUI retrieves physiological signals in
real-time with the intent of classifying the emo-
tional state of an operator during the teleoperation
of a robot. The interface is then changed dynami-
cally with respect to the user’s predicted emotional
state. The PAUI is developed over a pre-existing
robot’s Graphical User Interface (GUI) in order to
reduce its complexity and increase the flexibility of
the system. In this case, the PAUI was specifically
applied to a USAR robot developed in 2005 called
RAPOSA [5], and was elaborated upon the frame-
work defined by Singh et al. (2018) [6] for a PAUI
applied to this specific robot.

The objective of this work is to understand if the
employment of a PAUI in this specific context can
improve the usability of the interface when opera-
tors are under high cognitive stress and workload
conditions, while improving their ability to stay fo-
cused when compared to a classic GUI approach.
Taking this into account, the research aims to prove
the following hypotheses:

H1: The employment of a PAUI in robot teleopera-
tion tasks improves the efficiency of operators
in comparison with a classic GUI approach.

H2: The employment of a PAUI in robot teleop-

eration tasks improves the effectiveness of op-
erators in comparison with a classic GUI ap-
proach.

H3: The employment of a PAUI in robot teleoper-
ation tasks improves the operator’s ability to
remain focused during missions in comparison
with a classic GUI approach.

H4: The employment of a PAUI in robot teleopera-
tion tasks improves the level of usefulness and
satisfaction experienced in comparison with a
classic GUI approach.

This work’s contributions include: a prototype of
the PAUI applied to the robot teleoperation field;
the presentation of three emotion induction tasks
that stimulate different emotional states on users;
a USAR simulator that enables the re-creation of
USAR environments; a report of the results ob-
tained during the user study carried out for the
evaluation of the system.

2. Related Work

The literature review presented in this article fo-
cuses on two different areas: the design of attentive
user interfaces and the estimation of mental states
with regard to covert and overt signals of user at-
tention. The approaches adopted by researchers in
these fields that are relevant to this work are further
described.

2.1. Attentive User Interfaces

The concept of an AUI has been target of signifi-
cant concern as the years go by. Vertegaal (2003)
[2] proposed a framework for the development of an
AUI, i.e. an interface that is sensitive to the user’s
necessities, which can be achieved through the mea-
surement of covert characteristics of user attention,
such as user presence, gaze direction, proximity and
speech. These interfaces can then act on this infor-
mation and decide when the user is available for
interruptions, delivering them in a progressive way
instead of forcing the information upon the user,
potentially leading to a decrease in the user’s focus.

Bulling (2016) [1] considered the management
of user attention as a ”critical challenge for next-
generation human-computer interfaces”. Human
attention and focus is a limited resource that can
play a very important role in the performance of
the interfaces themselves [7]. Bulling addressed
the problem of continuous partial attention, stating
that the shifting of focus between various sources
of information can effectively lead to a reduction
in the overall focus of the user, since it limits the
ability to concentrate on a specific task. Bulling de-
fined Unobtrusiveness, Accuracy, Large scale, Long-
livedness, Seamlessness and Context awareness as
important categories that should be taken into ac-
count in the development of a new generation of
pervasive attentive user interfaces.
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While AUI’s can accurately detect if a user is pay-
ing attention to a certain device, they cannot de-
termine the actual level of engagement of the user
with that device, since they rely on overt means
of measuring a user’s attention. For this reason,
Chen and Vertegaal (2004) [8] proposed a proto-
type for a PAUI that is based on the use of LF
(Low Frequency) spectral components and Elec-
troencephalography (EEG) analysis. These signals
allowed the classification of the user’s mental and
motor activity in order to differentiate four distinct
user states that can be used to predict the user’s
availability for interruptions.

Significant research has also been done in im-
proving user experience in the HRI field. Guo and
Sharlin (2008) [9] developed a technique for captur-
ing human arm movements and hand gestures that
were used as input to control a robot in naviga-
tion and posture tasks, revealing an improvement
in task performance when compared to the origi-
nal keypad controls. Millan et al. (2004) [10] em-
ployed a Brain-Machine Interface (BMI) based on
non-invasive electroencephalogram analysis in con-
junction with advanced robotics to achieve brain-
actuated control of a robot. Similarly, the Honda
Research Institute Japan, Advanced Telecommuni-
cations Research Institute International (ATR), in
cooperation with the Shimadzu Corporation [11],
developed a BMI for the operation of a robot by
human thoughts only, through the measurement of
electric potential differences on the scalp through
EEG and brain blood flow changes with near-
infrared spectroscopy.

The necessity of an improvement of user in-
terfaces and the simplification of the respective
user interaction style has also been manifested in
USAR operations. Baker et al. (2004) [12] studied
more than a dozen USAR robot interfaces used in
the American Association for Artificial Intelligence
(AAAI) and the RoboCup Robot Rescue competi-
tion, concluding that these interfaces contain large
amounts of information, most of which is disre-
garded by the operators for most of the time due
to its irrelevance to the specific task at hands. Ri-
ley and Endsley (2004) [13] also expressed a concern
for the lack of situational awareness in USAR oper-
ations. This study identified the workload induced
due to a visually demanding task and poor integra-
tion of data on interfaces as some of the most prob-
lematic causes of degradation of task performance
in search and rescue operations.

2.2. Mental State Estimation

The recognition of a user’s emotional state can be
a very useful input in the design of modern HCI
and HRI systems, as it enables the development of
affective computing strategies. Significant research
has been done in using facial expressions to distin-
guish different emotions [14][15]. With the growth
of more accurate means of measuring physiological

signals, the employment of such measurements is
proving to be a another good source of information
on the emotional state of a person [16][17].

A study carried by Kim et al. (2004) [18] per-
formed emotion prediction on 50 subjects in order
to classify four emotional states (sadness, anger,
stress and surprise) while acquiring data from
Electrocardiography (ECG), Electrodermal Activ-
ity (EDA) and skin temperature variation. This
study showed the clusters formed by each class
had large variance within themselves, and signifi-
cantly overlapped each other. A Support Vector
Machine (SVM) was chosen as the classifier, ob-
taining a prediction accuracy of 61.76% for 4 classes
and 78.43% when classifying only three classes (sad-
ness, anger and stress). Wang et al. (2014) [19]
investigated the potential use of EEG features for
emotion classification by conducting a series of ex-
periments that induced positive or negative emo-
tions in six subjects who watched movie clips that
targeted specific emotions. The extracted features
were smoothed and dimensionality reduction meth-
ods were applied, which led to a classification ac-
curacy of 91.77%. Zheng et al. (2014) [20] stud-
ied the usage of advanced DL models to classify
emotional data from two classes (positive and neg-
ative) relying on extracted 62-channel EEG signals
from subjects exposed to emotion-inducing video
clips. This study concluded that Deep Belief Net-
works outperformed other common approaches such
as SVM, KNN and GELM, obtaining an accuracy
of 87.62%.

The works presented above show that a new gen-
eration of user interfaces that take in consideration
their user’s needs are emerging. The problem of
managing user attention is manifesting itself in a
wide range of areas, and has affected particularly
the performance of USAR teams that use robots
in their missions, whose interfaces can prove to be
very complex and create a high visual demand on
its users. With the rise of more sophisticated ar-
tificially intelligent systems, emotion recognition is
becoming possible to perform with relatively high
precision due to the extraction of physiological sig-
nals and facial expressions. It is believed that this
information can be used to improve the operator’s
experience by updating the robot’s interface with
respect to his/her emotional state, leading to a de-
crease of the workload induced and an increase of
the usability of the system.

3. Approach

In this work, a Physiologically Attentive User In-
terface (PAUI) was designed for application in the
robot teleoperation field. The objective of the PAUI
is to employ an artificial intelligent system trained
to classify the operator’s emotional state between
three different emotional states (Rest, Stress and
Workload). The emotional state prediction is then
used to dynamically change the interface in real-
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time in order to improve the user’s focus during high
cognitive stress moments. The PAUI is established
over the preexisting robot Graphical User Interface
(GUI) with the purpose of reducing its complexity
and displaying information in a clearer way, thus
decreasing the emotional overload of the operator.
Furthermore, the PAUI interacts with the old GUI
by means of an automation tool (SikuliX ) and ex-
tracts its image in order to render an AUI based on
the original interface, thus eliminating the need to
develop a new interface or a completely new solu-
tion from scratch when the source code is not avail-
able. Here, the PAUI is developed over the pre-
existing RAPOSA’s user interface, which is a 15
years old interface with a complex display of infor-
mation that can potentially overload the operator.
Nonetheless, the solution presented offers flexibility
to be adjusted to other interfaces.

3.1. System Architecture

The development of the PAUI comprises the com-
bination of three different modules that worked to-
gether to make the concept of a PAUI applied in the
robot teleoperation field feasible: the Signal Extrac-
tor, the Emotional State Classifier and the Atten-
tive User Interface. Figure 1 presents the overall
architecture of the system.

Figure 1: PAUI Architecture.

3.1.1 Signal Extractor

The signal extractor is responsible for the acqui-
sition of data that can potentially yield valuable
information about the mental state of a person.
The extracted data is of three types: physiolog-
ical signals; facial expressions and emotions; eye
movements. For reading physiological signals, the
Bitalino (r)evolution Plugged Kit BT by Plux was
used to extract biosignals picked up by three sen-
sors, namely EEG, EDA and ECG. For detecting
eye movements, the device used was the Tobii Eye

Tracker 4C by Tobii Technology. Finally, for fa-
cial expressions and emotions, the laptop integrated
webcam was used alongside the AFFDEX SDK by
Affectiva [21].

The extracted data is then processed in order to
obtain a wide range of parameters that can later be
used as input for training a classifier. Data process-
ing was performed with the aid of the pre-existing
PAUI framework developed by Singh et al. (2018)
[6], which processes the extracted raw analog sig-
nals into more refined parameters. During execu-
tion, each device has a thread responsible for man-
aging its data: the Bitalino thread which extracts
physiological analog signals at 1000 Hz; the Tobii
thread which monitors eye movements and fixation
information at 90 Hz; and the Camera thread which
extracts facial expressions and emotions at 30 Hz.

3.1.2 Emotional State Classifier

This module takes charge of classifying the user’s
emotional state based on the signals received from
the signal extractor. As referred in the previous
section, the system runs a thread for each data ex-
traction device that is in charge of acquiring and
processing its respective signals. Likewise, the emo-
tional state classification also has a thread responsi-
ble for its management, which runs above the three
signal extraction threads. This thread receives the
processed signals from the Bitalino, Tobii and Cam-
era threads and makes an average of the signals re-
ceived during 1 second. The thread then uses the
averaged signals as input for the classifier, which
predicts the operator’s emotional state.

In this work, the classifier used was an artificial
neural network. Since the model’s objective is to
predict the user’s emotional state from three differ-
ent classes, where each instance must be assigned
to only one class, the problem can be defined as
a single-label multiclass classification problem. As
the dataset collected in this work is class-balanced,
the metric chosen to measure the success of the
model was accuracy, and a K-fold cross validation
with K = 4 [22] was adopted as the validation pro-
tocol, since the dataset acquired is small. Consider-
ing the data collected for the purposes of this work
is time-series data, where the user’s signals were
collected over the course of time for each class, the
data was split before shuffling [23] in a 75/25 ra-
tio, using the first 75% of each class for the training
set and the remaining 25% for the test set. A sim-
ilar procedure was adopted for the validation test
split. Additionally, the data was normalized with
the mean and standard deviation computed for the
training set, given that the features present in the
dataset used for this work take up values in signifi-
cantly different ranges.

Regarding the configuration of the model, the loss
function used for the optimization of the model was
categorical cross-entropy, using the softmax func-
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tion as the activation function of the output layer
of the model, as is common in multiclass classifica-
tion problems [23]. The activation function cho-
sen for the hidden layers was the rectified linear
unit (ReLU), which is a popular choice of activa-
tion function that usually shows better convergence
performance than the sigmoid and hyperbolic tan-
gent activation functions, while also providing a so-
lution to the vanishing gradient problem [24]. In re-
lation to the stochastic optimization of the model,
a state-of-the-art optimizer called Adam was used,
which is an efficient optimization method that has
low memory requirements and has been shown to be
advantageous in practice for most problems, when
compared to other stochastic optimization methods
[25].

3.1.3 Attentive User Interface

The AUI module is responsible for managing the
user’s attention and ease the process of operating
the robot in high cognitive stress situations. The
AUI carries out this task by redefining the pre-
existing interface, reducing its complexity and dis-
playing only the relevant information at any given
time. For this purpose, the AUI extracts image data
(screenshots) from the old interface and uses it to
render the new interface, which can be modified
depending on the predicted emotional state. The
AUI also issues requests to the old interface with
the aid of a task automation tool called SikuliX,
which enables the automation of mouse and key-
board operations, effectively allowing the AUI to
interact actively with the old interface. With the
aim of hiding the old interface from the user’s view
while maintaining the interaction between both in-
terfaces, the old interface runs on a virtual machine
that is connected to the host machine, where the
AUI operates. The connection between both ma-
chines is established through a host-only network,
allowing the transfer of screenshots from the old
GUI to the AUI through the TCP communication
protocol.

Depending on the predicted emotional state, the
AUI can take different actions. If the predicted
state is rest, the original GUI is rendered, since
the operator can still manage his/her attention well
enough to handle the complexity of the original in-
terface and stay focused during the robot teleoper-
ation task. Figure 2 shows the appearance of the
original RAPOSA’s graphical interface.

When the classifier predicts the emotional state
of the operator as stress, the rendered interface re-
mains to be the original GUI, but the AUI issues
a request to the old GUI for an increase of the
maximum speed of the robot. This request is exe-
cuted by a SikuliX script that automates a series of
clicks programmed to change the maximum speed
value setting in the old GUI. This attentive mea-
sure can be helpful in situations where some areas

Figure 2: Original RAPOSA’s GUI.

of the environment are clogged with difficult obsta-
cles, which can cause the operator to lose precious
time and enter a stressful state. For this reason,
an increase in the maximum speed of the robot can
help the operator compensate for these moments
when the environment is easier to traverse, where
he/she can make use of the extra speed without hav-
ing to manually change it in the Setup tab of the
interface. While its value could theoretically be set
to the limit at all times, doing so leads to significant
overheating of the robot at the hardware level. For
this reason, the AUI takes up the responsibility of
managing the robot’s maximum speed, allowing it
to reach values closer to the limit when the user is
under stress, while alleviating the robot when the
user does not need its full potential.

In case the predicted state is workload, the inter-
face is redefined to a simpler format that emphasizes
the camera view of the robot and only shows the
most relevant elements of the old interface. Fur-
thermore, some elements are only displayed when
the values they present go beyond a certain level.
In this case, the battery levels are only shown when
their values drop below 40%, and the sensor read-
ings are shown when their values cross the danger
zone. These measures contribute to maintaining the
user’s focus on the task, since the interface only de-
mands more attention when it is absolutely essen-
tial. Figure 3 shows the new interface displayed in
workload situations.

The AUI is the only module of the PAUI that
needs to be tuned for each specific interface, since
the procedures adopted for the management of
user’s attention are specific to the interface in ques-
tion. As such, the procedures presented previously
are specific to the RAPOSA’s interface.

4. Evaluation

In order to evaluate the proposed solution, two ex-
perimental sessions were carried out: a data collec-
tion session and an evaluation session. The neces-
sity of acquiring a new dataset arises from the fact
that physiological data varies significantly from per-
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Figure 3: Redefined AUI rendered in workload sit-
uations.

son to person (see section 4.7.1). This means that
the system could only be evaluated on the same sub-
jects from whom data was collected, which made
the use of the dataset collected previously by Singh
et al. (2018) [6] unfeasible. Moreover, the high
variability inherent to physiological data would re-
quire an extensive work to overcome the difficulty
of training a classifier using data from all subjects.
Even though the usage of person-specific classifiers
requires the training of a model for each operator, it
was the approach adopted since the emotional state
classification is not the main focus of this work.

On a separate note, RAPOSA was not available
for usage in this work due to the need of heavy
maintenance. This led to the development of a
USAR environment simulator using Unity, making
the evaluation of the proposed solution possible.
The simulator allowed the creation of a mock-up
of the RAPOSA’s original interface and controls,
simulating the robot’s operation as close as possi-
ble to reality. Apart from maintaining the main
functionalities of the original system, the simula-
tor enabled the development of custom Search and
Rescue scenarios that were used to induce stress and
workload to users while performing a robot teleop-
eration task.

4.1. Subject Grouping

For the purposes of the second experimental ses-
sion (evaluation session), the subjects were split in
two independent groups, where one group tested the
PAUI approach and the other group tested the GUI
approach. Although this method leads to higher
variance in the results obtained, it would be un-
feasible to have each subject test both approaches,
due to the influence of carryover effects. In order
to mitigate the variance in the results as much as
possible, the Immersive Tendencies Questionnaire
(ITQ) [26] was used, which reliably reflects each
subject’s tendency to become more involved in vir-
tual environment tasks. The scores obtained in the
questionnaire were then used to split the subjects

in two balanced groups, where each group tested a
different approach in the second experimental ses-
sion.

4.2. Apparatus Used and Setup

The devices used to extract data from users in the
experimental sessions were referred in section 3.1.1.
Regarding the attachment of electrodes, the best
suggested placement by Němcová et al. (2016) [27]
was used for ECG: positive lead under right clav-
icula, negative lead under left musculus pectoralis
major and reference lead under left clavicula. For
EEG, the positive and negative leads were placed at
forehead and the reference lead at the left earlobe.
For EDA, only two electrodes are required, which
were placed in the left hand palm [6]. Apart from
the data acquisition devices, a gamepad was used
to control the robot.

4.3. Performed Tasks

In order to evaluate the proposed solution, a task
meant to induce each of the three targeted emo-
tional states was designed using the USAR simula-
tor. All three tasks required the subject to drive the
robot in a home-like setup while attempting to com-
plete a certain objective, where the home is adapted
to fulfill the needs of each task.

During the rest task, each participant was re-
quired to drive along a room inside an empty house
environment for five minutes. This task did not re-
quire great mental or physical effort, thus leaving
the participant in a restful state, possibly with win-
dows of boredom.

In the stress task, participants were asked to find
four victims inside a house on fire before a timer ran
out. With the aim of triggering a stressful state, a
loud beep was played as each second passed, there
were numerous obstacles spread around the house
that made the teleoperation of the robot much more
difficult, and the user suffered a time penalty if
the robot’s batteries discharged completely or if the
robot’s temperature got too high.

In the workload task, participants were required
to find 10 objects (represented by red cubes) inside
a house while answering workload inducing ques-
tions. These questions included basic arithmetic
operations, requests to read values of sensors in the
interface, questions about the surroundings of the
robot and basic logic problems. It should also be
noted that participants were reminded that there
was not a time limit to answer each question, in
order to avoid inducing unnecessary stress.

4.4. Metrics

In order to evaluate the hypotheses formulated, two
types of metrics were considered: task performance
metrics and user experience metrics. Task perfor-
mance refers to the quality of the tasks achieved by
users, where speed and accuracy are typically the
most important metrics. Additionally, it was also of
interest to measure the level of attention that users
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retained when performing the tasks. Therefore, the
task performance metrics defined were:

• Completion time of the stress task;

• Number of objects found during the workload
task;

• The relative change of the mean engagement
values from the rest task to the workload task,
in percentage. According to McMahan et al.
(2015) [28], the engagement index that is ex-
tracted from the EEG sensor reflects a person’s
ability to sustain attention and gather informa-
tion.

Regarding user experience metrics, the USE
Questionnaire [29] was used to measure the level of
usefulness and satisfaction reported by the subjects
towards each approach.

It should be noted that, even though it does not
contribute as a metric, the Discrete Emotions Ques-
tionnaire (DEQ) [30] was also filled by the partici-
pants for purposes of discussion, which was aimed
at understanding what type of emotions were felt
by the user over the course of each task.

4.5. Procedure

Both experimental sessions had a very similar pro-
cedure, which took aproximatelly 1 hour to com-
plete. Upon arrival to the testing office, the partic-
ipant was given a description of the experimental
procedure. Additionally, an overview of the robot’s
GUI, its controls and its capabilities was presented.
Subsequently, the participant proceeded to fill a de-
mographics questionnaire, followed by the ITQ (this
step was exclusive to the first experimental session).
Afterwards, the eye tracking device was calibrated
and the ECG, EEG and EDA electrodes were at-
tached to the subject according to the configura-
tions referred in section 4.2.

After going through all the necessary prepara-
tions, the subject went through a training session
in order to get acquainted with the teleoperation
of the robot, which usually took 10 to 15 minutes
to complete. After leaving the training session, the
rest, stress and workload tasks were executed in a
random order. Upon the completion of each task,
the user went through a 2 minute break period, in
order to relax and come back to a normal mental
state.

Regarding the second experimental session, after
finishing the teleoperation tasks, the subject was
also asked to fill the USE Questionnaire and the
DEQ, followed by questions relative to the attentive
elements of the interface, in case the subject be-
longed to the PAUI group. It should also be noted
that, in case the subject belonged to the group that
tested the classical GUI approach, the emotional
state classifier still predicted the emotional state of
the subject in real-time for the purposes of evaluat-

ing the classifier itself, but the system did not act
on this information.

4.6. Participants

The subject group used in this study included 6 vol-
untary participants (4 male, 2 female) aged between
20 and 24 years old (M = 22.833, SD = 1.472). All
participants were Portuguese university students,
with a background in engineering.

4.7. Results

This section presents the measures adopted to visu-
alize the data acquired, as well as the comparison of
the classification accuracies obtained from different
neural network model iterations. Furthermore, the
ITQ results that led to the group division are also
presented, as well as the statistical test results ob-
tained from the metrics recorded in the evaluation
session.

4.7.1 Model Training

After collecting the parameters extracted in the first
experimental session, a visualization of the data
was carried out in order to understand better the
patterns present in the data. In conformity with
the findings of other researchers [17] [19], it was
found that there is an inherently high variability in
the extracted physiological data, particularly from
subject to subject, which arises from the fact that
different subjects might be prone to different emo-
tional reactions due to their personalities and expe-
riences. The variance of physiological data between
subjects was made evident through the application
of a t-distributed Stochastic Neighbour Embedding
(t-SNE) to a dataset formed by the acquired data
of all six subjects, which formed clusters that tend
to group the data from each subject separately (see
figure 4).

Figure 4: Embedded space that results from the ap-
plication of t-SNE to the data collected from each
user during the stress task, where each user is rep-
resented by a different color.

It should also be noted that the eye tracking fea-
tures were not considered in the emotional state
classifier training, due to its high percentage of
missing values and low correlation with the classes.

Given the high dimension of the feature space
(45-dimensional array), a Principal Component
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Analysis (PCA) was applied to the dataset in or-
der to reduce its dimensionality. Due to the in-
herent tendency of physiological signals to contain
large amounts of noise [20], it was decided that it
would be best to keep most of the explained vari-
ance present, in order to retain most of the valuable
information. With this purpose, 95% of the total
variance in the data was kept, which is explained
by the first 31 principal components.

After projecting the dataset on the new feature
space, a neural network model was trained for each
user. The fine-tuning of the hyper-parameters led
to the optimal values of 0.0001 for the optimizer’s
learning rate and 32 for the batch size. The opti-
mal architecture achieved was a network with three
hidden layers (40, 30 and 20 hidden neurons), where
three different regularization methods were tested:
L1 regularization, L2 regularization, and dropout.
With the application of early stopping, L2 regular-
ization proved to be the method that yielded the
highest accuracy, with a model trained over 500
epochs. The training of a model for each user and
respective evaluation on the test set yielded an av-
erage accuracy of 80.9%. When the models were
tested in real-time during the second session, the
classification performance dropped significantly for
each participant, to an average of 50.3% (a dis-
cussion on the decrease of the classification perfor-
mance is presented in section 5). The accuracies
obtained for each participant in the test set and in
real-time are compared in table 1.

User ID Test Set (%) Real-Time (%)

1 87.9 51.1
2 81.9 49.8
3 77.3 48.3
4 81.6 52.3
5 83.1 51.7
6 73.6 48.5

Table 1: Comparison of the classification accuracies
obtained in the test set and in real-time classifica-
tion, for each user.

4.7.2 Group Division

Regarding the division in groups for the second ex-
perimental session, a score was given to each sub-
ject based on the ITQ results, following the au-
thor’s scoring recommendations. A set containing
the scores of all subjects (M = 74.167, SD = 10.496)
was then partitioned into two subsets, where the
sum of each subset’s scores was as close as possible,
in order to generate two balanced groups that con-
tain subjects with both high and low ITQ scores.
The group with the highest classification accuracy
(on average) was chosen to test the PAUI approach,
since the focus of this work is to gain insight on the
advantages of using a PAUI against the usage of a
traditional GUI approach.

4.7.3 Statistical Tests

With the aim of analysing the gathered data on the
task performance obtained under both approaches,
the Shapiro-Wilk test was employed to check data
for normality. In case the data was normally dis-
tributed, an independent t-test was employed to de-
termine if statistically significant differences were
observed between both groups. For non normally
distributed data, a Mann-Whitney U test was car-
ried out.

The execution of a Shapiro-Wilk test for the com-
pletion time and relative changes of the engagement
levels revealed that both are normally distributed.
As the number of objects found is a discrete value,
it is assumed that the distribution that generates
the data is not normal. An independent t-test was
applied to the completion time, showing no statis-
tically significant differences between the PAUI ap-
proach (M = 743.3, SD = 55.7) and the GUI ap-
proach (M = 773.3, SD = 5.8) (t(4) = -0.541, p
= 0.617). Similarly, the independent t-test applied
to the relative changes of the engagement levels did
not reveal any statistically significant differences in
the values obtained in the PAUI approach (M =
175.8, SD = 149.2) and the GUI approach (M =
41.6, SD = 40.4) (t(4) = 1.504, p = 0.207). Further-
more, the application of a Mann-Whitney U test
showed that there were no statistically significant
differences in number of objects found by partici-
pants using the PAUI approach (M = 6.0, SD =
1.0) or the GUI approach (M = 5.67, SD = 2.08)
(U = 3.5, p = 0.658).

Regarding the USE Questionnaire, it was as-
sumed that the results it yielded did not follow a
normal distribution, since they were drawn from
7-point Likert scales. The execution of a Mann-
Whitney U test showed a tendency towards statis-
tical significance on the sensation of effectiveness
perceived by the participants (U = 0.5, p = 0.072),
as well as the ease of use of the interface (U = 0.5,
p = 0.077), where both elements have shown an im-
provement in the PAUI approach, when compared
to the GUI approach. All the other questions led
to statistically insignificant differences.

Additionally, the results from the DEQ revealed
that users reported strong feelings associated with
relaxation during the rest task, while obtaining
higher scores for emotions related to anxiety dur-
ing the stress and workload tasks. Furthermore, all
three participants that tested the PAUI approach
reported that, even though the system could show
more robustness (in terms of classification accu-
racy), the changes performed by the interface were
helpful and eased the performance of the tasks.

5. Discussion

The results presented show a significant drop in
terms of performance of the emotional state classi-
fiers in real-time in comparison to the accuracies ob-
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tained in the test set, from 80.9% to 50.3%. This de-
cline of the classification accuracy can be explained
due to the inherently high variability present in
physiological signals not only between subjects, as
stated previously in section 4.7.1, but also within
each subject. Additionally, the low signal-to-noise
ratios exhibited in physiological data may have con-
tributed to the loss of the model’s generalization
power, along with the difficulty of attributing the
correct class label to each data point.

Regarding the task performance metrics, the re-
sults obtained from the statistical tests were not
conclusive. Still, the relative change of the engage-
ment levels was higher for the PAUI users, which
could be indicative that the attentive properties of
the system improved the users’ ability to remain fo-
cused. Nonetheless, the small number of subjects
that were available for the experimental sessions
makes it difficult to draw conclusions regarding hy-
potheses H1, H2 and H3.

When it comes to the USE Questionnaire, a ten-
dency towards statistical significance was verified
for the improvement of the feeling of effectiveness
and ease of use felt by the PAUI users, in compari-
son with the GUI users. These results indicate the
effectiveness of the attentive strategies adopted by
the PAUI, since they focus on enhancing the effec-
tiveness of the users by presenting information on
the interface in a clear and easy way to understand.
However, the lack of statistical significance cannot
assure the check of the hypothesis H4.

Although not statistically significant, the small
improvements obtained in the task performance
metrics are indicative that more significant differ-
ences could be achieved with the aid of a more pow-
erful classifier, preferably trained with a larger and
more refined dataset collected over the course of
a longer teleoperation session. Moreover, the lack
of statistical significance was expected due to the
very small number of subjects available for the ex-
periment (only 3 subjects for each condition). This
presented a major limitation in the results obtained,
which can be improved in future studies that rely
on a larger number of subjects. Furthermore, the
design of the experiment proved to be effective in
replicating the pretended emotional states on all the
participants. The sensations reported by the par-
ticipants clearly show the effectiveness of the emo-
tion induction tasks, which can be used in the fu-
ture for studies that use both the USAR simulator
or the real robot. Additionally, all three partici-
pants that tested the PAUI approach were able to
experience moments where the classifier was pre-
dicting the correct emotional state. Despite the in-
consistency caused by the poor classification perfor-
mance, the PAUI users observed that the changes
performed by the PAUI were helpful and allowed a
better understanding of the environment, indicating
that the attentive measures adopted by the system

can lead to the improvement of the user’s focus in
difficult situations.

Summing up, the small number of subjects avail-
able and the poor classification performance were
the main limitations of results obtained, leading to
their statistical insignificance. The success of both
the emotion induction strategies adopted and the
attentive measures of the PAUI is indicative of po-
tential improvements in future works that compre-
hend a significant number of subjects, along with
enhanced classifiers. However, due to the lack of
significance found in the statistical tests carried out
for this study, the initial research statement cannot
be validated.

6. Conclusions

Through the execution of a user study with 6 peo-
ple, it was possible to analyze quantitative and qual-
itative measures of the user’s task performance and
preference towards the usage of a physiologically
attentive system in comparison to the classic inter-
face approach. The study carried out did not find
any significant differences in terms of task perfor-
mance between both groups, although there was a
tendency for an improvement in the feeling of effec-
tiveness and ease of usage, as reported by users in
the questionnaires.

The major contribution of this thesis was the
development of the first prototype of the PAUI
applied to the pre-existing RAPOSA’s interface,
where a great emphasis was placed on creating ef-
fective methods of managing user’s attention in mo-
ments of cognitive workload, taking into account
not only the concerns expressed by previous re-
search in the design of attentive user interfaces, but
also the problems that are recurrent in interfaces
developed for USAR robots. The planning of tasks
designed to induce specific emotional states (rest,
stress and workload) was also an important step
in realizing what types of strategies can be imple-
mented in re-creating real life USAR environments
and successfully inducing the sensations felt by op-
erators when going through these situations. The
development of a USAR simulator also contributed
largely to the success of the previous point, by al-
lowing the modelling of custom 3D environments
and the implementation of a large set of features
that simulate the teleoperation process of the real
robot, thus producing a faithful representation of
the reality that can be used in the future studies.

Furthermore, the results obtained considering the
small number of subjects available, allied with the
limited capabilities of the emotional state classifier
are indicative of potential improvements in future
work. The achievement of a robust emotional state
classifier is by itself a challenging task, and the re-
sults clearly show the need of obtaining a larger
dataset that can accurately represent the underly-
ing distribution that generates physiological data.
Additionally, new strategies for managing user at-
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tention can be implemented by giving emphasis to
the eye tracking device, which can give insight into
the regions of the interface where users tend to stare
at the most. Moreover, it could be beneficial to
ease the process of adapting the system to other
case studies in order to increase the flexibility of
the solution. Finally, the execution of future evalu-
ation studies with the real robot could be helpful
in providing users an improved understanding of
the robot teleoperation process, allowing the em-
ployment of attentive measures that offer a greater
contribution to the task performance achieved.
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