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Abstract

This work explores the optimization of a proposed system, that generates trade signals based on
statistical arbitrage principles, using machine learning techniques, in particular, the Genetic Algorithm.
This work begins by reviewing the growing literature on statistical arbitrage origin, evolution, and
strategies followed by a review in the Engler-Granger cointegration testing and a review on genetic
algorithms. The proposed system is presented in the next chapter. The system uses historical market
data from 2012 to 2018 to perform the backtests, with the optimized results generating an average
return of 12% per anum and a Sharp Ratio of 1.82. The backtest returns were independent from the
overall market direction given by the S&P 500 confirming the returns are uncorrelated with the overall
market. In this work it is possible to conclude that the genetic algorithm can be used to optimize

statistical arbitrage trading strategies.
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1. Introduction

Due to the strong correlation between a country’s
stock market and its economy and the potential fi-
nancial opportunities it generates, predicting the
price movements have become one of the main fo-
cuses on the interest in this area. Due to the nature
of the markets, these are highly noisy systems under
the influence of various forces, either economic, po-
litical, or natural disasters. This makes predicting
price movements extremely hard.

Investors with large pools of capital face difficult
challenges in deploying and allocating it across in-
vestments with uncorrelated risk since most prod-
ucts and investments available have some level of
correlation to the economy and global indexes re-
turns. Global index returns are cyclical by nature as
they tend to indicate the general health of the econ-
omy or industry they represent. Having a portfolio
tied to these returns mean the portfolio will oscillate
with the economy. Beta-neutral strategies, such as
arbitrage strategies, have the advantage of having
its returns uncorrelated from the general market
direction. This allows investors to safely diversify
their portfolios and have their returns independent
from the overall market.

With the advent of computer trading and the evo-
lution of quantitative strategies, there has been a
big attraction from the Artificial Intelligence com-

munity to explore possible applications in this area.

Pairs trading focuses on the principle of using a
collection of stocks to create various legs of a single
trade. Some of these legs are betting on an increase
of the price of the share while others are doing the
opposite, working as a hedge. The pair’s selection is
based on co-integration testing to check for the exis-
tence of shared hidden variables between the pairs.

It is of interest to explore how we can apply ma-
chine learning optimization techniques, such as the
genetic algorithm, to optimize and create new trad-
ing strategies based on these market-neutral princi-
ples.

In this work, I have architecture and developed
a system that is capable of taking in market data
and generate trading signals based on a series of
parameters provided. The system works by com-
bining informative signals from a simple statistical
arbitrage strategy based on technical analysis and
co-integration testing to generate a tradable index,
and then trade this index based on a trend-following
strategy.

Since there are millions of possible different com-
binations to configure the system, I use an artifi-
cial intelligence technique, the genetic algorithm, to
find an optimal calibration. This process involves
performing several backtests with different possible
calibrations in separate training and validation sets.



I have used the sharp ratio as the ranking function.
The training set is used to determine the best indi-
viduals, while the validation set is used to validate
the results and control for over fitness.

The main contribution from this work is the cre-
ation of this trading system based on technical anal-
ysis and pairs trading that is capable of generating
profitable, beta-neutral, trading signals. A second
contribution is the study of the genetic algorithm to
perform optimizations over this system inputs. The
results from this study allowed me to conclude that
the genetic algorithm remains useful in calibrating
and optimizing trading strategies.

2. Background

Arbitrage is, in theory, a risk-less trading strategy
consisting of the buying and selling of equivalent
goods in different markets to take advantage of a
price difference. Any situation where it is possible
to make a profit without taking any risk or making
an investment is called an arbitrage opportunity.
[15]

Arbitrage is a practice of historical importance
since it contributed to the development of society
by increasing liquidity where it is most in need con-
tributing to a more efficient market and in the de-
velopment of important principles such as the Law
of One Price.[13]

2.1. Technical Analysis

Technical analysts believe that, due to human na-
ture, certain prices might generate a net increase
in buying or selling. In this section I explore some
concepts that are used to define these prices.

Moving Averages - Moving averages are a time-
series of the average price of a security in over the
last t elements. Moving averages can be weighted,
such as the exponential moving average that is
weighted based on how close the elements of the
series are to the present, or just simple moving av-
erages [4]. The averages are also levels of interest
that might signal price reversals.

Supports and Resistances - Changes in the
direction of the price naturally create these levels
of interest that should be taken into consideration
since they are potential points for a reversion of
a trend. Some examples of these prices are round
numbers or local and global maximum and mini-
mum values of prices in the past. Suppose the price
of a stock is falling and fails to go lower than a cer-
tain price, then that price has become a support [5].
Resistances are the opposite of supports. They are
created when prices fail to go higher than a certain
level.
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Figure 1: Support in Ford - The stock has repeat-
edly reverted when approaching 118.

2.2. Cointegration

According to [14], stocks might share a weakly de-
pendence over a certain time period. This is based
on Bossaerts work [17], which finds evidence of price
co-integration for US stocks. This interpretation
implies that certain stocks move together not be-
cause of coincidence but because they are a product
of individual integration (in the time series sense),
and some linear combination of them have a lower
order integration. We can also have an intuitive
approach on this matter: On a fundamental level,
stocks in the US share identical underlying variables
or share a determined sector, so there is expected to
exist some level of correlation. This interpretation
implies that certain assets are weakly redundant,
and when there is a deviation of their price from
the linear combination of prices in other assets, it
is expected to be temporary and reverting.

Vidyamurthy in his book [7] provides us a the-
oretical framework for co-integration based pairs
trading, his work is one of the most cited in the area.
The author suggests a selection of financial instru-
ments based on fundamental and statistical analy-
sis followed by a tradeability assessment based on
Engle-Granger [3] co-integration test. Their trade
signals are generated with non-parametric methods.

Other authors have studied and compared the us-
age of other co-integration tests. They have shown
is possible to achieve similar and even better results
depending on a case-to-case basis.

I briefly explain Engler-Granger co-integration
test and how Boassaerts applied it to stocks since
it is the most used in the approaches I reference:

According with this method, if two time-series
are non-stationary and integrated of order 1, then
a linear combination of them must be stationary:

Yr — P = uy (1)

In this case,

Uy (2)



is a stationary time-series. Bossaerts [17] applies
this principle to stocks, he supposes that prices obey
a statistical model of the form:

pit =Y Bupn+eu, k<n (3)

Where

(4)

Eit

denotes a weakly dependent error

(5)

is weakly dependent after differentiating once.
Under these assumptions and according with En-
gle and Granger [3] and Bossaerts [17], the price
vectors
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is co-integrated of order 1 with co-integrating
rank r=n-k, thus, there exists r linearly indepen-
dent vectors
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are weakly dependent.

2.3. Genetic Algorithm

Some authors have suggested the usage of evolution-
ary algorithms, such as the genetic algorithm, in the
optimization of trading strategies [2] [8] [1]. The
principle of these algorithms is that the strongest,
or in this case, best performing, individuals survive
and seed the next generation. As such, each consec-
utive generation is closer to full-filling the require-
ments and thus becoming a solution.

According to these principles [19], each individual
(chromosome) is a collection of variables (genes),
each group of individuals is called a population.
The goal is to find the best collection of variables
that solve our problem. As such, it is first necessary
to encode the variables that we want to optimize
into genes. In the next step, a random population
is generated based on the available genes. To find
the solution, I apply a simple principle based on
natural selection until the new population perfor-
mance is considered satisfactory for the problem by
following three steps iteratively:

1. Evaluating the best individuals - The pro-
cess begins by decoding each individual’s genes into
the corresponding collection of variables. We use
these variables to attempt to solve the problem at
hand and measure its performance using what is

called an evaluation function. After each chromo-
some is tested for its ability to solve the problem,
they are ranked.

2. Generate a new population - Using the
best individuals from our current population, we
want to generate a new population. We want to
introduce variations in the variables with the ob-
jective that each proceeding population is overall
better at solving our problem. There are two ways
in nature that variations are generated that we can
use: Crossover and Mutation.

Crossover corresponds to recombine the genes
from parents to create a new chromosome. It is
then a binary operation. This is shown in the im-
age below, where the offspring inherit a part of each
parent.

Mutation, a process in which each gene is slightly
changed, as exemplified below where only one bit of
each individual has mutated. It is a unitary oper-
ation as it corresponds to a random change in the
variables [6].

Parents 00000000 11111111
(Crossover) l ><
Offspring OOUUO}.\ 11 000‘1 1111
(Mutation) [ l
Offspring 01000111 00010111

w/ mutation

Figure 2: Crossover and mutation over one byte.

It is important to keep diversity across genera-
tions under the risk that only a concentrated por-
tion of the solutions is tested in the solution space.
This is done by spreading individuals across the
search space. This can be achieved by not gen-
erating new individuals that were previously tested
or that are present in our population. Secondly,
it is possible to increase diversity by introducing
random immigrants to each population. This is, in
each generation, a random set of individuals is cre-
ated similarly to the first population and introduced
in the current generation.

3. Population replacement - The newly gen-
erated population is used to substitute individuals
from the previous one. Not all individuals need to
be replaced. Different techniques can be used to
perform these selections, being the most common:

e Generational selection: No individuals from
previous generations are kept. The new gener-



ation is the new population generated at each
iteration.

e Steady-state selection: In this selection, all in-
dividuals that were generated, the offspring,
and the individuals that were used to gener-
ate the offspring, the parents, are selected for
the new generation. The individuals that were
not used are discarded.

e Elitist selection: Only the best individuals
from each generation are used in combination
with the newly generated ones. The best in-
dividuals are the ones that scored the highest
rank in the evaluation step. This selection has
the advantage of making sure that the best in-
dividuals are not lost between generations.

e Tournament selection [10]: The individuals are
randomly split into subgroups. The Elitist se-
lection is applied to each subgroup, and only
the fittest survive.

e Fitness proportional selection: Each individual
inside each population can be ranked on how
they fit relatively to its population. For exam-
ple, we could pick only individuals who are one
standard deviation above from the mean. We
can apply different ranking functions, calling
this a ranking selection.

3. Implementation

I have created a trading system intending to back-
test the generation of consistent beta-neutral trad-
ing signals that make steady returns with accept-
able risk levels independent of the overall direction
of significant equity indexes. An arbitrage strategy
is particularly challenging to backtest due to the
necessity of massive computing power to generate
trades across combinations of instruments instead
of single ones.

The system takes in a series of calibration inputs
plus the open, high, low, and close trading data of
US stock prices and indexes on a minute interval.
It then generates a list of trade signals to be taken
at specific prices in specific quantities. Half of the
signals are buying signals, while the other half is
selling ones. This information is used to create a
beta-neutral index that can be traded by replicating
the underlying trades. A trend-following strategy is
then used to trade this index both in good periods,
when the trade pairs converge by longing the index.
and in bad periods, when the trade pairs diverge by
shorting the index. The genetic algorithm is used
to calibrate the inputs for this system.

The system divides into three modules: the al-
gorithmic trading, which composed of four sub-
modules and responsible for creating and backtest
the trading signals, the optimization module which

is responsible for optimizing the algorithmic trading
inputs, and the visualization module which displays
the generated signals and intermediary steps in hu-
man readable way.

3.1. Algorithmic Trading Module

I begin by describing the algorithmic trading mod-
ule and its five sub-modules, inspired by Prado’s
framework [16]: market data curation, feature anal-
ysis, strategy and backtest.

The market data is fed to the Data Curation sub-
module on a minute by minute basis, which is then
resampled into different intervals depending on the
calibration that is provided. The minimum interval
for trading signals is on a daily scale. This mod-
ule is capable of finding irregularities in the data,
such as substantial variations in very short periods
of time and prevent using that instrument. This is
done so by highlighting and filtering out datapoints
with unrealistic values. An unrealistic value is cat-
egorized as a twenty percent change in values both
before and after this datapoint within a one-minute
period.

The curated data is exported to CSV files, which
are reused to save computational resources in future
runs. The processed that is then instantiated as a
list of vectors with information regarding the date,
high, low, open, and close of the instruments used.

Since I am exploring the trading of pairs of equi-
ties, it is also in this module where common trading
intervals between the pairs are computed and saved.
Trading pairs also means that each instrument will
be backtested with several other combinations of in-
struments; as such, this list of vectors is cached in
memory to reduce runtime duration significantly.
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Figure 3: Resampling of the historical market data.

As it can be seen in the image above, the minute
data of each dataset is resampled into higher time-
frames such as on the one day scale by combin-
ing 1440 minutes from the original set. Common
tradeable periods are found between the pairs of
instruments using the resampled data. I pass this
data to the Feature Analysis sub-module, in which
I used the transform output of the previous module



to create informative signals. I generate signals by
applying filters and simple strategies to the curated
datasets.
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Figure 4: Trading signals in the pair HOLX - FISV.

The signals generated come from breaking a sup-
port or resistance in one of the instruments in the
pair. In the picture above, I have identified three
signals, where one of the stocks made a new local
high/low, and the other did not. If a stock makes
a new high and its pair does not, then a signal is
generated: A buying signal for the stock that did
not make the new high and a selling signal for the
one that did. This strategy works in reverse as well,
buying an instrument that made a new low and sell-
ing the one that did not. The period used for the
highs and lows is defined by the calibration pro-
vided. In the case of contradictory signals, both
are invalidated.

For each signal, the beta coefficient between the
pairs within a certain time window is calculated.
This coefficient is determined by performing a lin-
ear regression between the two prices. Using this
coefficient, the spread between the instruments can
be determined as explained in the literature re-
view. Following this determination, stationary tests
are performed using the Augment Dickey-Fuller
test, this process follows the Engler-Granger’s co-
integration test. The window duration for the co-
integration tests, along with the cut-off threshold,
is defined in the calibration provided. Using the
remaining signals, an index is calculated. This in-
dex is calculated by simulating a portfolio of 1000
dollars, which evenly exposes its capital between all
the signals generated. The quantities of capital al-
located to each share are defined by performing a
linear regression between the trading instruments,
similarly to the beta-coeflicient estimation.

Next is, the Strategy sub-module in which the
informative signals are taken, and trades are gen-
erated. The strategy will provide indicative prices
and quantities for the instrument to be shorted or

longed along with holding periods based on pairs
combinations that are fed.

In the Strategy sub-module, two moving averages
are calculated for the index generated in the Fea-
tures Analysis. These moving averages correspond
to the average of the index over two periods of time,
which are passed by the calibration used. A slow-
moving average is the one that extends over a longer
period of time; it is called slow due to being less
sensitive to each individual point in time.
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Figure 5: The index generated by a random cali-
bration and its averages.

The image demonstrates the index generated by
the high lows strategy in green for a period of two
years.

In blue, the slow-moving average is used to de-
termine the overall trend of the signal. If the signal
is above this average, we consider it bullish, and we
should replicate the underlying trades of the index.
If the signal is below this average, we should do the
opposite that the underlying portfolio of the signal
is suggesting.

The red line is the fast-moving average, which
determines when to trade. I first start trading
the index portfolio once the index crosses the slow-
moving average, and we stop when the index crosses
with the fast-moving average in the opposite direc-
tion. This aims to exploit the mean-reversion na-
ture of the technical analysis in the underlying in-
dex, which tends to consist in a short burst of move-
ment after prices and spread have over-extended
during a large period of time.

The usage of a fast-moving average to exit the
positions helps mitigate losses during periods when
the direction of the movements in the spread of the
underlying stocks of the index is changing.

The Backtest sub-module uses the information
produced by the Strategy sub-module and the Data
Curation sub-module to reproduce an hypothetical
portfolio returns that would follow the strategy in
the pervious sub-module. This backtest also calcu-
lates risk metrics for the portfolio generated.



By using the curated data in combination with
the trading signals produced by the strategy, a port-
folio simulation of past returns is created. For each
trade, I have considered a round-trip commission of
0.2% of the total trade value. The period for this
backtest is between the year 2013 and the year 2018.
Due to a lack of historical price data, it was not pos-
sible to perform backtests over other periods. The
backtest results are used to calculate risk and return
metrics: growth, drawdown, winning/losing rates,
sharp ratio. The backtest sensitivity to S&P 500
price, beta risk, is determined and is used to vali-
date that our portfolio is beta neutral as statistical
arbitrage systems should.

3.2. Optimization module

The optimization module is responsible for calibrat-
ing the algorithmic trading module. This is done by
applying the genetic algorithm over several back-
tests for different possible calibrations. Each cali-
bration input is considered a gene. An individual’s
performance is compared using the sharp ratio gen-
erated by the backtest. In total, there are 5 040
000 different possible combinations for the calibra-
tion; thus, finding the ideal one is a challenging and
computational intensive task.

The calibration process is separated into genera-
tions and epochs. Each generation is composed of
six epochs, and each epoch is composed of eight in-
dividuals. Initially, these individuals are generated
by randomly selecting the dominant genes from the
gene pool shared across all chromosomes. In each
epoch, a backtest is run for every single individual
with a limited set of the available data. Each indi-
vidual and its backtest result are cached and reused
in future epochs. At the end of an epoch, the indi-
viduals are ranked based on sharp ratio. The sharp
ratio is defined as the difference between the returns
of the investment and the risk-free return, divided
by the standard deviation of the investment [18]. I
have consider the risk-free return to be 0%. The
standard deviation is the volatility of the invest-
ment.

In the selection step, I followed a steady-state se-
lection. Since I generate the offspring using the two
individuals with the best sharp ratio, only they get
to carry their genes to the next epochs and genera-
tions while all the others are discarded.

The number of offspring resulted from these two
individuals is dependent on the generation. In the
first generation, to ensure that enough variety of
possible solutions are tested, the best individuals of
the epoch only produce one offspring, which con-
sists of a crossover of the parent individuals and
the introduction of slight mutations. The remain-
ing individuals are again randomly generated. This
is done to make sure there is enough genetic diver-

sity across generations, effectively constituting an
implementation of the immigrant technique. In the
next four generations, the number of offspring in-
creases by one, which allows a breath search for the
solution at the beginning of the algorithm and an
increasing depth search to be made as generations
progress. At the end of each epoch, the population
evolves using a mutation ratio of 30% and gener-
ating g, where g equals the current generation, of
offsprings from the best individuals in the popula-
tion.

These calibrations are then tested against a dif-
ferent dataset. This set is taken from the same pool
of companies, however, its market information is in
the future in comparison to the previous set. The
resulting sharp ratio of each calibration is saved and
used later in analysis to control for over-fitness of
the calibration and validated the results.

Each calibration is saved in a separate file with a
name that facilitates the translation to the inputs
of the system, which we can see in the following
example:

7200 _120_3_10_2_-3.5_15_50

A B C€C D E F G H

Figure 6: Each input of the system encoded in its
name.

Each section is divided by an underscore. We can
map each section to its respective input:

e A. Number in minutes for the resampling. In
this case, 7200 minutes equal to five days, or
one week.

e B. The number of periods to be used in the
co-integration test window. In this case, 120
periods or 120 weeks.

e C. The number of periods each trade is held.
In this case, 3 weeks.

e D. Number of periods to consider in the win-
dow for the new high and new low values of
each instrument in the trading pairs, 10 weeks
in this case.

e E. Max-lags for the testing of serial correlation
in the Augmented Dickey—Fuller test. In this
case 2, but could be instead determined using
significance tests.

e F. The cut-off for the p-value in the co-
integration test. In this case, -3.5 corresponds
to 1% [12].

e G. Fast-moving average in tradable days. In
this case, 15.



e H. Slow-moving average in tradable days. 50
weeks in this calibration.

Besides the leverage, which is not coded as a
gene of the calibration along with the market
data, these are all the inputs that are needed
to perform a backtest.

3.3. Visualization module

Finally the visualization modules consist of a
python library that is able to parse the computa-
tional artifacts generated in the Algorithmic Trad-
ing and Optimization Modules into objects in mem-
ory and transform them into pandas datasets that
are loaded in a Jupyter [11] notebook, making
it possible to render these objects into human-
readable graphics and tables using an open-source
visualization: mathplotlib [9]. T have used this mod-
ule to manually validate the results on each compu-
tational step during development, facilitating de-
bugging in case of errors, and allowing the study of
each separate component in the system.

3.4. Computational Optimizations

Pairs trading strategies deal with an increased
amount of data when compared with strategies that
are used on single instruments. The combinatory
explosion means it is required that the system im-
plements several computational optimizations in or-
der to process the large amounts of data in a timely
fashion. When performing a backtest, only 113
stocks would be introduced into the system if we
were not performing a pairs trading strategy. How-
ever, by generating all possible pairs of 2 of this
number increases to 6434. Splitting calculations be-
tween processes was one of the first optimizations
performed, but I was still limited by the CPU — 16
virtual processors.

This could be further improved by making im-
provements in the code in a way it is able to dis-
tribute the computing workload across various ma-
chines in the cloud. However, the high costs in-
volved in keeping a grid of servers operating did
not make this improvement a viable option.

The next approach was to use the caching of pre-
viously calculated tasks in future backtests. After
analyzing the execution time of separate parts of
the code, it was determined that loading and re-
sampling the market data was consuming about half
of each backtest. I have optimized the system by
keeping in RAM the market data of each individ-
ual stock in different sampling rates. Caching the
market data provided a significant improvement of
about 7-10 seconds on each backtest (average dura-
tion was 16-18 seconds). To be able to run the cal-
ibration uninterruptedly, I have configured a cloud
web server to run the optimization module and later
secure copied the results. Since I had to test differ-
ent providers, I have created shell scripts that au-

tomatically perform the configuration for Ubuntu
18.0 servers to be able to run the proposed system.

Finally, to ensure reproducibility and as a safety
mechanism for events that might disrupt or inter-
rupt the calibration, there are several checkpoints
where objects that resulted from lengthy compu-
tations are exported and written in the disk along
with the logs of the application. In case of fail-
ure, when resuming the calibration process, the ex-
istence of already previously calculated objects is
checked before performing computationally inten-
sive parts and loaded into memory.

4. Results

I explored the main problem-question: if it is possi-
ble to use machine learning techniques to optimize a
simple statistical arbitrage strategy. To do so, I use
the previously described system and collect its back-
test performance using random calibrations. I then
attempt to optimize the calibrations using the op-
timization module and compare the results against
several risk metrics.

4.1. Hypothesis
The main problem question I am tackling in this
section is if it is possible to use artificial intelligence
techniques to optimize a statistical arbitrage strat-
egy. As such, this statement should hold as truth
if I can find and measure the results of a statistical
arbitrage strategy and if later, I can generate im-
proved results by optimizing some part of the sta-
tistical arbitrage strategy, or it’s whole. If I am able
to generate improved backtest results by calibrating
the system using the genetic algorithm, then I can
conclude it is possible to use artificial intelligence
techniques to optimize these types of strategies.
However, if I am not able to determine with con-
fidence that the results have been improved due to
the usage of the genetic algorithm, or if the results
are not improved by the usage of the genetic algo-
rithm, then the hypothesis remains open as it is still
possible that there are other systems or other artifi-
cial intelligence optimization techniques that could
be used to improve the results.

4.2. Results Generation
I began by generating random calibrations for the
system within a range of parameters where these
calibrations would still make sense (for example,
the slow-moving average could not be faster than
the fast-moving average). Next, I have separated
the available market data into two sets: a test set
and a validation set. I have then performed back-
tests over the validation set for each of the randomly
generated calibrations and collected the results.
After this, I have proceeded to feed the randomly
generated configurations as the first population of
the optimization module. I have run the algorithm



for eight generations with six epochs each. Each
epoch had eight individuals. Instead of using the
validation set, the optimization applied the genetic
algorithm over these individuals using the market
data in the test set. This is done in order to not
bias the training towards the same set of data from
where I will extract the performance. Having this
separation also allows me to check for over-fitness
of the training.

Since the system uses information up to 200
weeks prior to the current day to generate the sig-
nals and perform co-integration tests, the historical
data in the validation set also contains data from
the training set. However, no trades are performed
under the same period. As such, the data from
the training set in the validation set is only used
to calculate indicator data in the feature analysis
sub-module of the algorithmic trading module.

Training Set Validation Set

Figure 7: Overlapping of historical data in the sets.

The image above shows the data that is used to
generate the trading signals and the separation be-
tween the training, letters A and B, and validation
set, letters C and D. Each set is broken and cat-
egorized into two other sets, indicator calculation,
letters A and C, and trading set, letters B and D.

The optimization module feeds on data that
spans from the beginning of the set in 2014 un-
til a cut-off in late 2016 to find the best calibra-
tions. The results are validated against the data
that spans from mid-2016 until the end of the set
in 2018, identified by the letters C and D. There-
fore, there is one year of data where both sets are
overlapping, which happens due to C being partially
contained in B.

While the co-integration tests and indicator data
use information from the past days that are used
in the training set, it should be noted that the core
trigger for a trade signal generation does not have
information contained in this previous set. This is
because the trigger is given by the technical analy-
sis/arbitrage signal resulting from a break of a lo-
cal support or resistance in one of the pairs being
watched, and the overlapping only exists during in-
dicator calculation of the validation set: There is
no overlapping between the trading periods.

4.3. Results Interpretation

The results from the experiments were collected and
displayed in Jupyter [9] using the visualization mod-
ule. Backtesting the first randomly generated cal-
ibration under the validation set, I arrived at the
following results:

Name Returns (%) Max Drawdown(%) Sharp Ratio
Random 1 2.000 -11.000 0.004024
Random 2 1.000 -8.000 -0.020731
Random 3 -6.000 -14.000 0.017443
Random 4 9.000 -26.000 0.006485
Random 5 3.000 -17.000 -0.068782
Random 6 -18.000 -26.000 -0.033517
Random 7 -32.000 -49.000 -0.033517
Random 8 18.000 -6.000 0.044985
Average -2.875 -19.625 -0.010452

Table 1: Random calibrations portfolio statistics.

From this table, we can see that the best individ-
ual, named Random 8, has a daily sharp ratio of
0.044985, roughly 0.71 annually. The average daily
sharp-ratio under the validation set was of only
0.005. The rest of the individuals show far worst
returns. The average daily return of the strategy
using a random calibration is around -0.9%. The
average sharp ratio is also negative. These indicate
that random calibrations lose money.

Since the optimization module uses the genetic
algorithm to find better calibrations, if I can find
a better calibration using this optimization mod-
ule, then I can validate the hypothesis under study.
The optimization module must be able to generate
better returns than random calibrations by show-
ing a clear trend of improved performance across
the training and validation sets, with eventually a
decline in the validation set due to overfitting. If
by using the genetic algorithm, I can beat these re-
sults, then I can affirm it is possible to use artificial
intelligence techniques to optimize statistical arbi-
trage systems. After iterating the genetic algorithm
over a total of 155 populations, it has become ap-
parent the new populations were getting more and
more overfit.

In the following figure with the green line, we
see the average sharp-ratio of the population of a
specific generation and epoch over the training set.
This line is getting higher and higher with each it-
eration, indicating that the system is getting im-
provements under the training data. The red line
indicates the average sharp-ratio of the same pop-
ulation, only this time over the validation set. It
is possible to see that the red line begins to track
the green line until iteration 27, coinciding with the
fifth epoch of the fourth generation. After this iter-
ation, it begins to decrease sharply, an indication
that the calibrations are beginning to overfit to-
wards the training set.
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Figure 8: Average population sharp-ratio evolution
over generation and epoch by dataset.

This analysis is not enough to determine what is
the best calibration to use. However, we can vali-
date the performance of the optimization module,
clearly increasing the performance of the calibra-
tions until the calibrations start to enter in over-
fitting. To find the best candidate, I have ordered
each calibration by the training sharp-ratio plus val-
idation sharp-ratio. The top 8 calibrations can be
found in this table and are indicated by the column
INDIVIDUAL:

Individual Total Training Validation
7200-120-3.10_-2_-3.5_15.50  0.205 0.091 0.114
7200-120.5.10-2_-3.5-15.30  0.198 0.040 0.158
7200-45-2_.50_2-3.5.70_120  0.187 0.071 0.117
7200-120-3.6-2-3.5.5_20 0.177 0.054 0.124
7200-200-4-40-1-3_-70_20 0.174 0.047 0.127
7200-120-3-8_1-3.5_.5.50 0.173 0.058 0.116
7200-120-3.10_-2_-3.5.40.50  0.143 0.039 0.104
7200-200-3.6.2-2.5.15.20  0.137 0.089 0.048

Table 2: Ranks of the best calibrations found by
the optimization module.

The TRAINING and VALIDATION columns are
the corresponding sharp-ratio for training and val-
idation sets. The TOTAL is the sum between the
training sharp-ratio and the validation sharp-ratio.

From this table, we can conclude that we should
use one of the calibrations in the top 3. We can see
that the two calibrations on the top are extremely
similar, being the only difference in the speed of
the fast-moving average and the number of holding
periods. Although I decided to pick the top config-
uration, the second one had a better performance in
the validation set. The training set was far worst.
In the top calibration, the validation set surpassed
the training set slightly, which is a sign that there
is no overfit.

Finally, I am interested in understanding if this
strategy’s returns remain independent from the
overall market direction after applying the trend-
following strategy to the signal index generated by

applying the high-lows strategy described before.
To do so, I plotted the best calibration returns
against the S&P 500 returns and calculate the beta
coefficient of the portfolio as can been seen in the
following image:
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Figure 9: Portfolio returns compared to S&P re-
turns.

The beta coefficient of this strategy is only 0.05,
contrasting with values close or above one as seen
in individual stocks, meaning that the beta neu-
tral properties are present in the strategy. The
portfolio returns are highly uncorrelated from the
S&P 500 returns. This result was expected since
every trade his composed by one long and a short.
Since the amounts of each instrument are controlled
based on the volatility of each, the signals gener-
ated by the high-lows strategy described in the pre-
vious section are beta-neutral. From this analy-
sis, we can also conclude that after applying the
trend-following strategy optimization over the gen-
erated index, this same beta-neutral property has
been preserved.

5. Conclusions
This study attempted to optimize a pairs-trading
strategy using the genetic algorithm.

After the usage of the optimization module, the
performance of my statistical arbitrage strategy has
increased as shown by the increase in sharp ratio,
and since the beta-neutrality properties of the sta-
tistical arbitrage strategy were preserved, these re-
sults allow me to conclude that it is possible to use
artificial intelligence techniques to optimize trading
strategies based on statistical arbitrage principles,
in particular, using the genetic algorithm in order
to find the best calibrations for the strategies.

For further work, I suggest the exploration of this
system under a larger dataset of historical market
prices to further validate the results. I believe it
is of interest to explore the backtesting of the sys-
tem using different asset classes and across other
markets besides the U.S.
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