
Deep Learning for automatic target recognition in synthetic

aperture radar images

Nuno Ferreira
nuno.barros.ferreira@tecnico.ulisboa.pt
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Abstract

Automatic target recognition (ATR) in satellite images is an important application in maritime
surveillance. Annually, thousands of refugees lose their lives in the sea; illegal fishing highly contributes
to the over-exploitation of fish resources, perturbing ecosystems; besides, other activities, such as
drug and firearms trafficking, are conducted through the sea. Hence, it is clear that a good maritime
surveillance is key to mitigate these problems.Usually, ATR from satellite images is performed by
supervised machine learning algorithms, making use of labels during training. However, the daunting
process of labelling images is often expensive and time consuming. On the other hand, unsupervised
learning techniques allow the extraction of relevant information from data, without making use of
labels, being particularly interesting for the analysis of satellite images, given the huge amount of
available data, and its constant increase. This work addresses anomaly detection in synthetic aperture
radar (SAR) images, using Variational Autoencoders (VAEs), in an unsupervised manner. In the
proposed framework, the encoder of the VAE is trained to map normal images in a latent space. To
perform classification of a given set of images, with and without anomalies, these are encoded in a
latent space by the encoder, where normal images are clustered together and the anomalous images are
spread across the space. Finally, a clustering algorithm is applied to this generated space, being able
to identify the anomalous images among the set.
Keywords: Deep learning, Variational autoencoders, Anomaly detection, Unsupervised learning, SAR

1. Introduction

Maritime surveillance is an important activity for
many countries. From the early detection of oil
spills to the identification of clandestine vessels, the
relevance of an effective monitoring of the sea is ev-
ident. Annually, thousands of refugees lose their
lives in the sea. According to [1], from 2015 to
2018, over 14000 deaths of migrants trying to reach
Europe by crossing the Mediterranean were con-
firmed. Illegal, unreported and unregulated (IUU)
fishing highly contributes to the overexploitation of
fishing, perturbing ecosystems and fish populations.
According to [2], there is a correspondence between
the regional estimates of illegal and unreported fish-
ing and the number of depleted stocks in those re-
gions. Several other illegal activities are conducted
by sea, such as cocaine trafficking, which, according
to the United Nations Office on Drugs and Crime,
is trafficked to Europe mostly by sea.

It is self-evident that a good sea monitoring is
crucial in the prevention of the aforementioned
events and in the control of the impact of their con-
sequences, and it is within this scope that remote

sensing image scene classification comes into play.

Traditional target recognition methods in SAR
images are based on constant false alarm rate
(CFAR) methods, which use a threshold to keep
the false alarm rate constant [3]. In these meth-
ods, the sea clutter background is modeled accord-
ing to a suitable distribution and a threshold is set
to achieve an assigned probability of false alarm
(PFA) [4]. One issue of CFAR algorithms is that
they are not able to detect targets with intensity
values close to the sea clutter and the threshold
computation can represent a time-consuming pro-
cedure [4]. Moreover, this methods perform poorly
in rough sea conditions. Variations of the CFAR al-
gorithm have also been proposed, such as the bilat-
eral CFAR algorithm [5], which uses a combination
of the intensity distribution and the spatial distri-
bution of the SAR images.

Other novel ship detection methods that also
rely on the modeling of the clutter and/or the sig-
nal backscattered from the ship - such as a detec-
tor based on the generalized-likelihood ratio test
(GLRT) [4] and the depolarization ratio anomaly
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detector using dual-polarization SAR images [6] [7]
- have been proposed.

In accordance to the emerging paradigm toward
data intensive science, machine learning techniques
have become increasingly important. In particular,
deep learning has proven to be both a major break-
through and an extremely powerful tool in many
fields, namely in the field of computer vision, where
deep learning algorithms have managed to equal or
even surpass human-level performance in tasks that
computers used to struggle when trying to solve
them. Object recognition, for instance, a seemingly
effortless and rapid task for humans to perform,
was very challenging for computers up until the ap-
pearance of deep neural networks (DNNs). Prior
to the usage of such algorithms, traditional ma-
chine learning algorithms for object detection were
roughly divided into region selections, such as scale-
invariant feature transform (SIFT), and histogram
of oriented gradients (HOG), and classifiers, such as
support vector machines (SVMs). The beginning of
the deep learning booming is often credited to the
Image Net’s image classification challenge winner
in 2012, where a deep convolutional neural network
called AlexNet surpassed all other contestants’ al-
gorithms, winning the challenge with impressively
high accuracy and performance [8].

In the wake of the success of deep learning, in
conjunction with the increasing availability of data,
deep learning algorithms naturally started to take
off in remote sensing. A series of supervised deep
learning methods for ship detection as well as for
ship classification have been proposed. Among the
most successful methods are the you only look once
v2 (YOLOv2) [9, 10], the faster region-based convo-
lutional neural network (Faster RCNN) [11, 12, 13]
and ResNet [14]. Despite the good results achieved
by these methods, they are supervised methods
which require large amounts of labelled data to
be trained. Since the annotation process is time-
consuming and requires domain knowledge from
SAR experts, these methods do not take advan-
tage of the huge and increasing amount of accessi-
ble SAR data. For instance, the Sentinel satellites,
launched in 2014, had already collected about 25
PB of data, as of December 2017 [15].

It is clear that an algorithm able to process SAR
images and perform target recognition regardless of
annotation is highly important in order to take ad-
vantage of this incredible amount of data. And it is
upon this reasoning that this thesis is developed.

The goal of this thesis is to develop an unsuper-
vised deep learning framework for anomaly detec-
tion in SAR ocean imagery, without resorting to
image annotations during the training phase of the
algorithm. The main idea is to learn image fea-
ture representations through a deep convolutional

variational autoencoder, then followed by anomaly
detection performed by a clustering algorithm.

It is expected that, after training, the developed
model will be able to separate images with anoma-
lies from images without anomalies (normal im-
ages), by learning key feature representations inher-
ent to the images that comprise the training data.

2. Materials and methods
2.1. Autoencoders
Autoencoders [16] are feedforward neural networks
trained to reconstruct their inputs at the outputs,
in an unsupervised manner. Unsupervised learning
is the process of training a neural network without
using the labels of the training set. An autoencoder
network is usually composed of two parts: an en-
coder and a decoder. The encoder is responsible to
map the input data x ∈ Rdx to a hidden space rep-
resentation z ∈ Rdz , through some encoding func-
tion, such that z = f(x). The decoder part of
the network then maps back from the hidden code
z to input space, producing a reconstruction of x,
x̂ = g(z). A regulariser term can be added to en-
sure that the model does not overfit the training
set, and effectively learns a useful representation of
the data.

Typically the hidden code z has a lower dimen-
sionality than the input space x, which forces the
autoencoder to learn a compressed representation
of the input data. When an autoencoder possesses
a hidden code with dimensions smaller than the in-
puts, it is called undercomplete.

Using a compressed code with lower dimensions
can make the autoencoder learn the most salient
features of the data. However, if the encoder and
decoder of the model are given too much capac-
ity, they can learn how to map the inputs to the
outputs, regardless of the dimensionality reduction
observed in the network. The same goes to archi-
tectures with hidden code dimensions equal to or
higher than the input dimensions, cases in which
even a linear encoder and a linear decoder could
learn to mimic the inputs without learning anything
useful. These situations can be avoided by applying
regularisation to the autoencoder. Instead of limit-
ing the power of the model by capping the capac-
ity of the encoder and decoder, a regularising term
that encourages the network to learn other proper-
ties can be added to the loss function, leading the
model to optimise the cost taking into account a
trade-off between good reconstruction and success-
ful achievement of the goal set by the regularising
term. The properties imposed by this term include
sparsity of the representation, size of the derivative
of the representation, and robustness to noise or
missing inputs [17].

Generative models such as the variational autoen-
coder and the generative stochastic networks, on
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the other hand, can learn useful encodings with-
out resorting to regularisation, although they can
naturally learn high-capacity, overcomplete repre-
sentations of the inputs. This is made possible be-
cause these models are trained to approximately
maximise the probability of the training data, in-
stead of copying it.

2.2. Variational autoencoders
As mentioned before, autoencoders are prone to
overfitting if they are not regularised, meaning that
they might fail when trying to build a meaning-
ful encoded space, because their main goal is to
learn the parameters that best reconstruct the in-
put data, regardless of the encoding structure.

Variational autoencoders (VAEs) are built in a
way so that they encode the inputs into latent vari-
ables, that exhibit a meaningful structure. With an
architecture similar to the one of a standard autoen-
coder, it is composed by an encoder and a decoder.
However, contrarily to a standard autoencoder, a
VAE does not encode the data into points, encod-
ing it into distributions instead, with a process that
works as a form of regularization. The steps for
training a VAE are the following:

• Encode input data as distributions over the la-
tent space.

• Sample a point from the latent space.

• Reconstruct the data from the sampled point.

• Backpropagate the reconstruction error over
the network in order to update the network pa-
rameters.

The VAE is a deep generative model composed of
a stochastic encoder and decoder, that models the
relationship between the input random variable x
and the low-dimensional latent random variable z
[18].

The marginal distribution over the inputs x and
the latent variables z can be obtained with the joint
distribution pθ(x, z):

pθ(x) =

∫
pθ(x, z)dz , (1)

where pθ(x) is an approximation of the true distri-
bution of the data, p∗(x).

When the distributions of a latent variable model
pθ(x, z) are parameterised by neural networks, the
term deep latent variable model (DLVM) is used.
One important feature of DLVMs is that the
marginal distribution pθ(x) can be very complex re-
gardless of the complexity of the conditional distri-
bution in the directed model, allowing good approx-
imations for potentially complicated underlying dis-
tributions p∗(x). One downside of DLVMs, how-

ever, is the intractability of the marginal probabil-
ity of data under the model, which makes maximum
likelihood learning very difficult. This is due to the
lack of an analytical solution or an efficient esti-
mator for the integral in equation 1, which makes
it indifferentiable with respect to its parameters.
Considering the relation:

pθ(z|x) =
pθ(x, z)

pθ(x)
, (2)

and the fact that pθ(x, z) is efficient to compute,
pθ(x) could be computed through this relation.
However, this is not possible since the posterior
pθ(z|x) is also intractable in DLVMs.

To address the problem of calculating the pos-
terior, the VAE framework provides a way to effi-
ciently optimize DLVMs along with a corresponding
inference model, using an optimiser such as stochas-
tic gradient descent.

The encoder is a parametric inference model with
parameters φ, trained to learn qφ(z|x), an approx-
imation of the intractable true posterior distribu-
tion pθ(z|x), where φ are the parameters of the net-
work (weights and biases) and θ are learned param-
eters. On the other hand, the decoder is trained to
learn an approximation of the posterior distribution
pθ(x|z).

To evaluate the approximation qφ(z|x) of the
true posterior, the Kullback-Leibler (KL) diver-
gence DKL (qφ(z|x)||pθ(z|x)) is used. Although it
cannot be computed directly, it can be minimized
by maximizing the sum of the Evidence Lower
Bound (ELBO) on the marginal likelihood of the
data points xi. The ELBO for each data point is
given by

ELBOi = Eqφ(z|xi) [log pθ(xi|z)]−
DKL(qφ(z|xi)||p(z)) ,

(3)

where p(z) is a prior distribution of z.
The loss function used to train the VAE is then

given by

L = −
∑
i

ELBOi

= −
∑
i

[Eqφ(z|xi)[log pθ(xi|z)]

−DKL(qφ(z|xi)||p(z))] ,

(4)

where the summation is calculated over all images
in the training set. The first term in (4) is seen as
a reconstruction error between the inputs and out-
puts, whereas the second term is a regulariser that
prevents the network from assigning to each input a
distribution in a different region of the latent space.

In order to use an optimiser to optimise the
ELBO with respect to the parameters θ and φ, one
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needs to compute its gradients with respect to these
parameters. Because the gradient of the ELBO with
respect to the parameters φ is difficult to obtain, a
reparameterisation trick is used. For the reparame-
terisation trick, the random variable z ∼ qφ(z|x) is
represented as a differentiable and invertible trans-
formation of an introduced random variable ε, given
z and φ:

z = g(ε, φ, x) (5)

where ε is a random noise sample ε ∼ p(ε). As a
result, it can be shown that

ẼLBOi = log pθ(xi, z)− log qφ(z|xi) (6)

is an estimate of the ELBO of the individual data
point [19].

The operations of sampling ε, transforming z into

g(ε, φ, x) and calculating ẼLBOi are differentiable
with respect to the parameters θ and φ, and the
resulting gradient is used to optimize the ELBO
using SGD or other optimisation algorithm, with
minibatches of data.

2.3. β-VAE
β-VAE [20] is a modification introduced to VAEs
with the goal of discovering disentangled latent fac-
tors among the data. It does so by introducing an
hyperparameter β that regularises the contribution
of the KL divergence term in the loss function used
to train the VAE. The resulting loss function is the
following:

L = −
∑
i

ELBOi

= −
∑
i

[Eqφ(z|xi)[log pθ(xi|z)]

−β DKL(qφ(z|xi)||p(z))] ,

(7)

Evidently, a β − V AE with β = 1 is a regular
VAE. When this parameter is increased above 1, it
encourages the model to learn a more efficient latent
representation of the data, that is disentangled if it
contains some underlying factors of variation that
are independent. One resulting caveat is that the
model is pushed to focus more on the distributions
learnt, creating a trade-off between reconstruction
ability and disentanglement quality.

2.4. Convolutional Neural Networks (CNNs)
Convolutional neural networks (CNNs) or convnets
are the standard go-to choice for computer vision
tasks since 2012 [21], because of their ability to ex-
tract meaningful features from images, diminishing
the need for feature engineering. In a CNN, the
most important layers are the convolutional and
the pooling layers. The convolutional layers have
the ability to learn local patterns in the images

and recognize them anywhere. The pooling lay-
ers are designed to reduce the size of the feature
maps. By stacking several convolutional and pool-
ing layers interleaved, CNNs can learn spatial hi-
erarchies of patterns. Another key feature of this
type of network is that they need fewer training
samples to learn representations that have general-
ization power, when compared to dense feedforward
neural networks. Since we wish to process SAR im-
ages and extract sufficient information in order to
categorize them, CNNs were our choice.

3. Implementation

In this section, the implementation details of our
proposed approach are presented. First, the main
characteristics of the dataset are discussed, as well
as the processing it had to undergo before being
used in our experiments. Subsequently, all the de-
tails of the process required to achieve the final re-
sults, from model training to testing are presented.

3.1. Dataset

The dataset used throughout this work is described
in [22], and consists of 43,819 256x256 SAR im-
ages, all of them containing one or more ships, ex-
tracted from 102 Chinese Gaofen-3 images and 108
Sentinel-1 images, that vary in terms of polarisa-
tion, resolution, incidence angle, imaging mode and
background complexity.

Figure 1 contains two samples of the aforemen-
tioned images, with one example obtained by the
Gaofen-3 satellite and one example obtained with
the Sentinel-1.

(a) Gaofen-3 image (b) Sentinel-1 image

Figure 1: Images from the original dataset [22].

To build a no-ship image dataset, we randomly
cropped portions of these images, all of which con-
tained no ships, which was possible since the ships
location and size were labelled. This process re-
sulted in a total of 43,789 images without ships -
42,789 images for the training set and 1,000 images
for the test set - all with varying width, height, and
aspect ratio. To complete the test set, 500 images
with ships were cropped using the ship labels, re-
sulting in a test set composed of 1,500 images: 500
with ships and 1,000 without ships. Figure 2 con-
tains some examples of the resulting dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Examples of images with ships (a, b,
c), and without ships (d, e, f), from the resulting
dataset.

3.2. Representation learning

The first part of the experimental setup consisted
in building the VAE network. As stated before, the
job of the VAE is to extract features relevant enough
so that the resulting low-dimensional latent space
for each sample provides sufficient information for
the clustering algorithms to assign each image to its
respective cluster.

3.2.1 VAE architecture

The chosen architecture for the encoder part of the
network is shown in table 1, whereas the architec-
ture for the decoder part is shown in table 2, with
each layer’s specifications.

Regarding the encoder specifications, Conv2D
corresponds to the convolutional layer, whereas
MaxPool2D corresponds to the max pooling opera-
tion, and dz is the desired size of the latent space.
The outputs of layer 6 are wired to both layers 7 and
8, which output the sets of means and log variances,
respectively. Layer 9 is a custom layer (or lambda
layer) that performs the reparameterization trick to
sample a point z from the latent space, that is as-
sumed to generate the input image, and will feed
it to the decoder part of the network. This sam-
pling layer should be regarded as an intermediate
layer between the encoder and the decoder, clev-
erly placed to allow the usage of gradient descent
over the network.

After sampling from the latent space, the point
z is fed to the decoder, that attempts to recon-
struct the original input image based on the sam-
ple. Regarding the details of the decoder archi-
tecture, Conv2DTranspose layers are convolutional
layers that also learn the best way to upsample their

inputs, although here the dimensions are kept con-
stant. The upsampling job is conducted by the
UpSampling2D layers, using nearest-neighbor up-
sampling to scale the image up. One should note
that for the last layer, the activation function im-
plemented is the sigmoid, since we wish to output
an image with pixel values between 0 and 1.

3.2.2 VAE training

The network was trained with the Adam optimiser,
with a learning rate of lr = 3 × 10−4 and a mini-
batch size of 128. The reconstruction error function
chosen was the mean squared error (MSE).

In order to study the influence of varying the
penalty associated with the KL divergence term,
the network was trained several times with differ-
ent values of β. In the end, it is expected that the
set of different results for each value of β, evaluated
on the test set, will allow us to draw some con-
clusions about the behaviour of the representation
learning task in situations in which optimisation fo-
cuses more on the reconstruction versus situations
in which the optimisation objective is more oriented
towards learning a good distribution for the data.

Additionally, for each different value of β, the
network was trained with multiple values for the
latent space dimensions, in order to analyse how the
dimensionality of the generated space influences the
results of the model. Table 3 summarises the set of
values used in each training routine.

3.3. Anomaly detection
After the aforementioned process, we had our model
trained with 35 different configurations of hyperpa-
rameters, ready to be tested with the test set of 1500
images with and without ships, and try to cluster
them based on the features extracted by the result-
ing trained encoder. For this task, two clustering
methods were used to automatically separate our
data into two groups.

3.3.1 Data visualisation

As was shown in previous sections, each input image
will generate a set of dz means and a set of dz vari-
ances, with dz ranging from 4 to 256. Since visual-
ising each dimension of such high-dimensional data
would be infeasible, we opted to employ PCA with
two components to the generated space, in order to
visualise the resulting data in two dimensions.

3.3.2 Clustering in the generated space

After training, the 1500 images put aside for testing
are passed through each trained encoder to gener-
ate their corresponding sets of means and variances.
Then, K-means clustering with nclusters = 2 and
GMMs clustering with ncomponents = 2 are used to

5



Index Type Kernel size Filters Stride Padding Activation Output shape

1 Conv2D (3,3) 16 1 Same ReLU (56,56,16)

2 MaxPool2D (2,2) - 2 Valid Linear (28,28,16)

3 Conv2D (3,3) 32 1 Same ReLU (28,28,32)

4 MaxPool2D (2,2) - 2 Valid Linear (14,14,32)

5 Conv2D (3,3) 64 1 Same ReLU (14,14,64)

6 MaxPool2D (2,2) - 2 Valid Linear (7,7,64)

7 Dense - dz - - Linear (dz)

8 Dense - dz - - Linear (dz)

9 Custom - - - - - (dz)

Table 1: Encoder architecture.

Index Type Kernel size Filters Stride Padding Activation Output shape

1 Dense - 3136 - - ReLU (3136)

2 Conv2DTranspose (3,3) 64 1 Same ReLU (7,7,64)

3 UpSampling2D (2,2) - 2 - Linear (14,14,64)

4 Conv2DTranspose (3,3) 32 1 Same ReLU (14,14,32)

5 UpSampling2D (2,2) - 2 - Linear (28,28,32)

6 Conv2DTranspose (3,3) 16 1 Same ReLU (28,28,16)

7 UpSampling2D (2,2) - 2 - Linear (56,56,16)

8 Conv2DTranspose (3,3) 1 1 Same Sigmoid (56,56,1)

Table 2: Decoder architecture.

split the data into two clusters. The smallest clus-
ter assigned by these algorithms is categorized as
a cluster of images with ships (anomalies), whereas
the biggest cluster is labelled as a cluster of images
without ships, or normal images.

3.4. Results evaluation

To evaluate the performance of the framework, F1-
score and accuracy are used as evaluation metrics to
compare the labels assigned by the clustering algo-
rithms with the original labels of the test set. More-
over, a CNN with an architecture similar to the en-
coder is built and trained with the 42789 images
used for training the VAE, plus 58536 images with
ships cropped from the original dataset, in order
to compare the performance of a supervised model
with the proposed unsupervised framework.

4. Results

4.1. Results of anomaly detection on the test
set

In this section, we perform an evaluation of the
framework in terms of its ability to detect anoma-
lies in the test set. The results obtained by apply-
ing the two chosen clustering algorithms to the 35
mean spaces generated by the trained models are
presented.

4.1.1 K-means clustering in the approximate pos-
terior mean space

Table 4 presents the accuracy of the models for ev-
ery pair of β and dz, using K-means clustering in
the approximate posterior mean space. The high-
est accuracy (lowest error rate) for each value of β
is highlighted in bold, whereas the best accuracy
values for each value of latent dimensions dz are
underlined.

Inspecting table 4, it is evident that clustering
had the most success using the space generated by
the model trained with β = 0.3, outperforming all
the other models trained with different values of β
in terms of accuracy, with the highest value of all
being the one obtained with dz = 256. Increasing
β above 0.3 makes the accuracy drop consistently
for almost all values of dz. The effect of decreasing
β below 0.3 cannot be determined properly, since
no intermediate values between this number and 0
were tested. We can, however, conclude that setting
it to 0 has a very negative impact on the classifi-
cation accuracy, since all models trained with this
value of β report the highest error rate, except for
the one trained with dz = 4. Further testing could
be conducted with values of β within the interval
[0, 0.7], since there might be a value in this range
that leads to better accuracy results. It is possible
to observe that for values of β = {0.3, 0.7, 1}, the
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Optimiser lr β dz Loss Batch
size

Adam 3× 10−4 {0, 0.3, 0.7, 1, 2, 4, 10} {4, 16, 64, 128, 256} MSE+KL Divergence 128

Table 3: Training hyperparameters.

Accuracy (%)

dz

4 16 64 128 256

β

0 82.80 64.67 66.20 63.73 63.40

0.3 93.80 95.67 95.60 96.20 96.53

0.7 92.67 94.87 95.33 95.60 95.87

1 93.73 93.87 94.60 94.53 95.07

2 92.47 94.07 93.13 92.13 92.80

4 73.20 92.93 91.60 90.40 89.60

10 76.33 76.87 77.53 77.33 75.60

Table 4: Accuracy of anomaly detection obtained
with K-means using generated mean space.

increase in latent space dimensions promotes an in-
crease in the accuracy, having its highest value for
dz = 256. Additional studies could be done with
dz > 256, in order to check if there are latent space
dimensions that produce better results, since the
obtained values suggest that training with higher
dimensions would possibly improve accuracy. Since
clustering of the mean space generated by the model
trained with β = 0.3 and dz = 256 showed the high-
est F1-score too, it was considered the best among
the 35 tested.

In Figure 3 are depicted two plots of the 2-
component PCA for dz = 256 and β = 0.3, one
with the ground truth labels (a) and another with
the labels assigned by the K-means algorithm (b).
It is noticeable how data points further away from
the cluster of images without ships were classified
as positive (”contains ship”), whereas data points
closer to this cluster were classified as negative (”no
ships”).

Figure 4 contains a few examples that were mis-
labelled as not containing ships by the algorithm,
that actually contained ships. Inspecting these im-
ages, it is hard to identify a clear ship shape, and
for that reason the model may have struggled to
find enough features to trigger detection.

4.1.2 GMMs clustering in the approximate poste-
rior mean space

To facilitate the reading of this part of the section,
we will denote the model trained with β = 0.3 and
dz = 256 by model A, and the model trained with

β = 1 and dz = 256 by model B.
Table 5 presents the accuracy results using

GMMs clustering applied to the generated latent
space for each parameter pair (β, dz), with the high-
est accuracy for each value of β highlighted in bold,
and the best accuracy values for each value of latent
dimensions dz underlined.

Accuracy (%)

dz

4 16 64 128 256

β

0 89.07 86.40 67.00 63.73 63.53

0.3 77.60 68.80 80.47 86.33 96.73

0.7 64.80 77.67 86.40 89.67 96.53

1 71.60 79.33 88.20 92.27 96.67

2 74.20 84.27 92.07 93.67 92.73

4 82.80 88.60 93.73 93.87 88.93

10 87.00 89.87 92.87 91.60 85.80

Table 5: Accuracy of anomaly detection obtained
with GMMs using generated mean space, with the
highest value highlighted in bold.

Similarly to what occurred with K-means, the
encoded z spaces that showed the best error rate
with GMMs were the ones obtained by the models
trained with dz = 256 and β = {0.3, 0.7, 1}, with
considerably higher accuracy than the others. Fur-
thermore, for these values of β there was the same
tendency of increasing the accuracy as we increased
the latent space dimensions dz. The overall top ac-
curacy value was again obtained by applying the
clustering algorithm to the mean space generated
by model A, reaching the 96.73% mark, a slightly
better value than the one obtained by applying K-
means.

There was, however, a slight deterioration in the
error rates for smaller values of dz, specially for dz =
4 and dz = 16. Also, as opposed to the previous
case, β = 0.3 does not yield the best accuracy values
for all the latent space dimensions.

The tendency of decreasing the accuracy for val-
ues of β above 0.3 verified for K-means clearly does
not hold for GMMs. Instead, it increases for the
majority of the latent space dimensions, except for
dz = 256. Namely, for the models trained with la-
tent space dimensions dz = {16, 64, 128}, the high-
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(a) PCA with ground truth labels (b) PCA with K-means labels

Figure 3: Comparison between ground truth and K-means generated labels for β = 0.3 and dz = 256.

(a) (b) (c)

Figure 4: Examples of K-means missed detections
for the model trained with β = 0.3 and dz = 256.

est accuracy values emerge when they are trained
with values of β of 4 or 10. This suggests that the
GMMs algorithm is probably taking better advan-
tage of the disentanglement promoted by these val-
ues of β than the K-means algorithm. In addition,
the fact that K-means assumes spherical clusters,
while GMMs has more flexibility in terms of clus-
ter shape, might justify these results. Nevertheless,
these properties did not enable the algorithm to sur-
pass the results obtained by the models trained with
β values of 0.3, 0.7 and 1. Although model A has
a slightly higher accuracy than model B, this dif-
ference is rather small to be used as a criterion of
choice to elect the best between the two. Looking
at precision and recall values, despite having lower
precision (0.9611 as opposed to 0.9808 for model A),
model B shows a considerably higher recall value
(0.938 as opposed to 0.920 shown by model A),
which is important if we want to minimise the num-
ber of missed detections. Since the main goal of this
framework is to detect anomalies, we consider that
trading off some precision (meaning it will produce
more false alarms) for better anomaly detectability
is very reasonable (considering the magnitude of the
difference), so this is the model chosen as being the
best when applying GMMs among the 35 models.

The two plots in Figure 5 depict the 2-component
PCA applied to the mean space generated by model
B, one with the ground truth labels (a) and another
with the labels assigned by the GMMs algorithm
(b). In Figure 3 (b) (depicting the two-component
PCA representation with K-means labels) it was
possible to observe that the separation made by the
K-means algorithm was heavily expressed along the
first dimension (x-axis in the figure) of the PCA
representation. In Figure 5, this is not observed so
evidently with the GMMs labels. Instead, it ap-
pears the model was able to make use of additional
features to perform its classification, since it was
capable of finding normal images that are further
away from the main cluster, and ship images which
are closer to it, which might justify its better per-
formance when compared to K-means.

Figure 6 contains 3 examples of ship images with
incorrect labels assigned by GMMs applied to the
mean space generated by model B. The model might
have failed to identify these shapes due to the dim-
ness of the pixels that compose the ships, probably
mistaking them with noise.

4.2. Comparison with a supervised CNN

Table 6 shows an overview of the results for the sug-
gested framework and the results of the supervised
CNN. As expected, the supervised CNN performs
better, but the results obtained by the proposed
unsupervised method are very close.

5. Conclusions

The presented thesis aimed at developing a com-
pletely unsupervised machine learning framework
to detect anomalies in SAR images, resorting to
the representation learning ability of variational au-
toencoders. By the time we engaged in this endeav-
our, we believed that unsupervised learning tools
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(a) PCA with ground truth labels (b) PCA with GMMs labels

Figure 5: Comparison between ground truth and GMMs generated labels for β = 1 and dz = 256.

(a) (b) (c)

Figure 6: Examples of GMMs missed detections for
the model trained with β = 1 and dz = 256.

Table 6: Results of ship detection

Evaluation Clustering Model
Metric K-means GMMs CNN

Accuracy 0.9653 0.9697 0.9760
F1-score 0.9452 0.9494 0.9641

were especially important in the field of remote
sensing, namely in the field of SAR image analysis,
given the huge and ever-increasing amount of data
available. This work came to confirm our belief.
Since very few previous works were found on the
application of VAEs to SAR images, arriving at the
final model was no easy task. A lot of experiment-
ing was conducted, often led by trial and error, in
order to achieve satisfying results. Nonetheless, the
final model achieved very interesting results, with
a performance very close to the one of a supervised
CNN, so it is fair to conclude that the proposed
objective for this thesis was reached with success.

Despite the good results obtained, there are a
few things that should be considered for possible
future developments. As previously mentioned, the
network should be trained with dz > 256, in or-

der to check for possible improvements. Regarding
the applicability of the solution to real case sce-
narios, further testing should be conducted to eval-
uate other performance metrics, such as the time
needed to classify each image, in order to perform
a benchmark with current state of the art methods,
and assess the feasibility of applying the framework
in a live surveillance system. This would also re-
quire a study of possible optimisations to be applied
to the classification pipeline, in order to achieve
minimum classification time. This work focused
on analysing the generated mean spaces of each
trained model. Future developments could try to
also take advantage of the generated sets of vari-
ances, that could possibly contain useful informa-
tion to help the model perform even better. Further
studies could also include training the model using
the triplet loss [23], and the usage of adversarial
VAEs [24]. Finally, it would be interesting to train
and test the network in other scenarios, such as in
land surveillance applications, in order to analyse
how the model would behave in those conditions.
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