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Resumo

O reconhecimento automático de alvos em imagens de satélite é uma tarefa fundamental na vigilância

marı́tima. Anualmente, milhares de refugiados perdem a vida no mar; a pesca ilegal contribui significati-

vamente para sobreexploração dos recursos marinhos, que leva ao desiquilı́brio de ecossistemas; além

disso, outras atividades, tais como o tráfico de armas e drogas, são levadas a cabo pelo mar. Portanto,

é essencial haver uma boa monitorização das águas, de modo a mitigar estes problemas. Tipicamente

usam-se técnicas de aprendizagem automática supervisionadas para realizar tarefas relacionadas com

a deteção de objetos, recorrendo a etiquetas durante o treino dos algoritmos. No entanto, o processo de

labelling pode ser moroso e dispendioso. Técnicas de aprendizagem não supervisionadas, por outro

lado, possibilitam a extração de informação relevante dos dados sem recorrer ao uso de etiquetas,

sendo particularmente aliciantes na análise de imagens de satélite, dada a enorme disponibilidade de

dados existente, e o seu constante aumento. Neste trabalho foi abordado o estudo da possibilidade da

deteção automática de anomalias em imagens de radar de abertura sintética (SAR), utilizando Varia-

tional Autoencoders (VAEs), de uma forma não supervisionada. No modelo proposto, o encoder do VAE

é treinado para mapear imagens normais num espaço latente. Para se realizar a classificação de um

conjunto de imagens, com e sem anomalias, estas são codificadas pelo encoder num espaço latente,

onde as imagens normais (sem anomalias) ficam aglomeradas, e as imagens anómalas dispersas no

espaço. Finalmente, um algoritmo de clustering é aplicado ao espaço gerado, permitindo identificar as

imagens anómalas.

Palavras-chave: Aprendizagem profunda, Variational Autoencoder, Deteção de Anomalias,

Aprendizagem não supervisionada, SAR
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Abstract

The automatic target recognition (ATR) in satellite images is an important application in maritime surveil-

lance. Annually, thousands of refugees lose their lives in the sea; illegal fishing highly contributes to the

over-exploitation of fish resources, perturbing ecosystems; besides, other activities, such as drug and

firearms trafficking, are conducted through the sea. Hence, it is clear that a good maritime surveillance

is key to mitigate these problems. Usually, object detection tasks are performed by supervised machine

learning algorithms, making use of labels during training. However, the daunting process of labelling

images is often expensive and time consuming.

On the other hand, unsupervised learning techniques allow the extraction of relevant information

from data, without making use of labels, being particularly interesting for the analysis of satellite im-

ages, given the huge amount of available data, and its constant increase. This work addresses the

possibility of automatically detect anomalies in synthetic aperture radar (SAR) images, using Variational

Autoencoders (VAEs), in an unsupervised manner. In the proposed framework, the encoder of the VAE

is trained to map normal images in a latent space. To perform classification of a given set of images,

with and without anomalies, these are encoded in a latent space by the encoder, where normal images

(without anomalies) are clustered together and the anomalous images are spread across the space.

Finally, a clustering algorithm is applied to this generated space, being able to identify the anomalous

images among the set.

Keywords: Deep learning, Variational autoencoders, Anomaly detection, Unsupervised learn-

ing, SAR
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Chapter 1

Introduction

1.1 Motivation

Maritime surveillance is an important activity for many countries. From the early detection of oil spills to

the identification of clandestine vessels, the relevance of an effective monitoring of the sea is evident.

Annually, thousands of refugees lose their lives in the sea. According to [1], from 2015 to 2018, over

14000 deaths of migrants trying to reach Europe by crossing the Mediterranean were confirmed. Often

travelling on inappropriate and overcrowded vessels, the smugglers who transport these people can

abandon the boat and leave them to be found by international navies [2]; illegal, unreported and unreg-

ulated (IUU) fishing highly contributes to the overexploitation of fish resources, perturbing ecosystems

and fish populations. The fraction of fish stocks within biologically sustainable levels in 2015 was 66.9%,

meaning that 33.1% of fish stocks were fished at an unsustainable level, a number that has been fol-

lowing an increasing trend since 1975 [3], and, according to [4], there is a correspondence between the

regional estimates of illegal and unreported fishing and the number of depleted stocks in those regions.

IUU also contributes to the destruction of crucial components of the maritime ecosystem [5]. Several

other illegal activities are conducted by sea, such as cocaine trafficking, which, according to the United

Nations Office on Drugs and Crime, is trafficked to Europe mostly by sea. Oil spills are also a major

concern. When an oil slick is detected, the responsible authorities must quickly activate appropriate

protocols to control their damage and ecological impact.

It is self-evident that an adequate sea monitoring is crucial in the prevention of the aforementioned

events and in the control of the impact of their consequences, and it is within this scope that remote

sensing image scene classification - an active research topic in the field of aerial and satellite image

analysis, that aims to categorize scene images into a set of meaningful classes, based on the image

contents [6] - comes into play.

Synthetic Aperture Radar (SAR) is a form of radar, used to create images. It has some drawbacks

such as being only suitable for stationary and slow moving targets, and being affected by speckle, a

granular disturbance, usually modeled as a multiplicative noise, that affects SAR images and other

coherent images. Nevertheless, SAR is regarded as one of the most suitable sensors for object detection
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and environment monitoring as it showcases a wide coverage range and important advantages when

compared to other data acquisition methods commonly used in remote sensing, namely the ability to

acquire data regardless of daylight and weather conditions, making the analysis of SAR images a very

important field of research in remote sensing, more specifically in the field of automatic target recognition

(ATR).

Traditional target recognition methods in SAR images are based on constant false alarm rate (CFAR)

methods, which use a threshold to keep the false alarm rate constant [7]. In these methods, the sea

clutter background is modeled according to a suitable distribution and a threshold is set to achieve an

assigned probability of false alarm (PFA) [8]. One issue of CFAR algorithms is that they are not able to

detect targets with intensity values close to the sea clutter and the threshold computation can represent

a time-consuming procedure [8]. Moreover, these methods perform poorly in rough sea conditions.

Variations of the CFAR algorithm have also been proposed, such as the bilateral CFAR algorithm [9],

which uses a combination of the intensity distribution and the spatial distribution of the SAR images.

Other novel ship detection methods - such as a detector based on the generalized-likelihood ratio

test (GLRT) [8] and the depolarization ratio anomaly detector using dual-polarization SAR images [10]

[11] - have been proposed.

In accordance to the emerging paradigm toward data intensive science, machine learning techniques

have become increasingly important. In particular, deep learning has proven to be both a major break-

through and an extremely powerful tool in many fields, namely in the field of computer vision, where

deep learning algorithms have managed to equal or even surpass human-level performance in tasks

that computers used to struggle when trying to solve them. Object recognition, for instance, a seem-

ingly effortless and rapid task for humans to perform, was very challenging for computers up until the

appearance of deep neural networks (DNNs). Prior to the usage of such algorithms, traditional ma-

chine learning algorithms for object detection were roughly divided into region selections, such as scale-

invariant feature transform (SIFT), and histogram of oriented gradients (HOG), and classifiers, such as

support vector machines (SVMs). The beginning of the deep learning booming is often credited to the

Image Net’s image classification challenge winner in 2012, where a deep convolutional neural network

called AlexNet surpassed all other contestants’ algorithms, winning the challenge with impressively high

accuracy and performance [12].

In the wake of the success of deep learning, in conjunction with the increasing availability of data,

deep learning algorithms naturally started to take off in remote sensing. A series of supervised deep

learning methods for ship detection as well as for ship classification have been proposed. Among the

most successful methods are the you only look once v2 (YOLOv2) [13, 14], the faster region-based con-

volutional neural network (Faster RCNN) [15–17], and ResNet [18]. Despite the good results achieved

by these methods, they are supervised methods which require large amounts of labelled data to be

trained. Since the annotation process is time-consuming and requires domain knowledge from SAR

experts, these methods do not take advantage of the huge and increasing amount of accessible SAR

data. For instance, the Sentinel satellites, launched in 2014, had already collected about 25 PB of data,

as of December 2017 [19].
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It is clear that an algorithm able to process SAR images and perform target recognition regardless of

annotation is of highly importance in order to take advantage of this incredible amount of data. And it is

upon this reasoning that this thesis is developed.

1.2 Objectives

The goal of this thesis is to develop an unsupervised deep learning framework for anomaly detection

in SAR ocean imagery, without resorting to image annotations during the training phase of the algo-

rithm. The main idea is to learn image feature representations through a deep convolutional variational

autoencoder, then followed by anomaly detection performed by a clustering algorithm.

It is expected that, after training, the developed model will be able to separate images with anomalies

from images without anomalies (normal images), by learning key feature representations inherent to the

images that comprise the training data.

1.3 Thesis outline and contributions

This document is comprised of six chapters. In the second chapter, an overview of the state of the art

for target detection and representation learning in SAR images is provided, including literature review

on some of the most common traditional methods, as well as more recent works. Given the vastness of

the available literature, it is no easy task to make a comprehensive review. Nevertheless, we attempt to

provide the reader a solid foundation around the topic, by touching the major key points in this matter.

In the third chapter, we dive into the theoretical and mathematical frameworks that are essential to

understand and construct the main building blocks used to achieve the goal of this thesis. In addition,

an explanation of how and why these building blocks are put together to build the proposed framework

is provided.

The fourth chapter contains all the details of the implementation of the approach delineated in the

previous chapter, including the steps to build and pre-process the dataset used to train the models, the

specifications of the models, and the details of the training process.

Chapter five contains a detailed presentation and discussion of the results, with relevant figures and

tables, so that the reader is able to understand how the framework performed during the whole process.

Finally, in chapter six, the main conclusions from this work are presented, along with the most relevant

achievements, as well as possibilities of future developments.
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Chapter 2

State-of-the-art

Modern SAR data acquisition systems can generate large amounts of data in a short period of time,

verifying an obvious need for automatic target detection systems. In the context of sea ship monitoring,

this is especially true, since much of the imagery contains only open ocean.

With the launch of the Seasat SAR system - a satellite SAR system specially designed to image

the ocean - back in 1978, the possibility of imaging ships with spaceborne SAR systems was revealed

and, since then, several other space-based SAR systems have been launched, reinforcing the need for

this automatic tool. This led to a great interest in developing SAR ship detection systems, being the

Ocean Monitoring Workstation (OMW), the Alaska SAR Demonstration (AKDEMO) system, the Euro-

pean Community Joint Research Center (JRC) system, and the Qinetiq’s MaST system some examples

of these systems [20].

The ongoing interest in SAR ship detection systems propelled a great amount of research around

the topic, resulting in an extensive literature on algorithms designed to perform this task.

In this chapter we delve into the current state-of-the-art of target detection in SAR images, covering

the modern techniques that present the best results for target detection in SAR imagery, as well as a

brief overview of some traditional methods that have played an important role in this field of research.

There are numerous strategies for implementing detection algorithms, evidenced by the vast literature

around the topic. Different researchers tend to approach the problem of detecting targets from different

perspectives, making it difficult to split the different methods into categories. Nonetheless, we divide

the existing state-of-the-art methods into two distinct groups: traditional and modern, where the former

category includes methods that have been used since the 90s, as well as their variations. The latter

includes methods that make use of artificial intelligence algorithms to perform detection.

Afterwards, an overview of representation learning methods using autoencoders applied to SAR

images in the literature is presented.
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2.1 Target detection with traditional algorithms

Most of the traditional ocean target detection algorithms include some or all of the following stages: land

masking, preprocessing, prescreening and discrimination. Hereby we briefly approach each of these

stages, followed by some of the most used algorithms in this category.

2.1.1 Land masking

Land masking is the step where portions of land that may be present in the image to be processed

are masked. This is an important step of the detection system, since the target detectors can produce

high numbers of false alarms when applied to land areas, and dealing with false alarms can overtax the

detector systems [7].

Land masking is commonly conducted through two methods: geographic registration and coastline

detection.

Geographic registration consists of taking geographic maps and matching them with the given image.

Although being one of the easiest approaches, this method is subject to errors. In the case of satellite

imagery, the orbital parameters are not known precisely and registration errors can occur. Moreover,

tidal variations can occur and small islands may not be marked on the maps. Hence, some land areas

can be marked as ocean and vice-versa [7]. This method of land masking is applied to Radarsat data

in [21] and to ERS-1 data in [22–24]. The initial step is to calculate geodetic longitude and latitude for

the images obtained by the satellite, through its orbital parameters and other quantities [7]. Correlation

techniques can be used to enhance the accuracy of this method from hundreds of meters to less then

100 meters [23, 24].

Automatic detection of coastlines overcomes the problems associated with the aforementioned geo-

registration errors, the possible unavailability of satellite orbital data, inaccuracies in existing maps, shift-

ing coastlines, and the missing mapping for small islands and rocks, as well as the tidal variations upon

which the exposure of some rocks and shoals depend on [7]. One of the first SAR imagery target

detection systems to mention this type of land masking was the Alenia Areospaczio ship detection sys-

tem [25]. The used algorithm is based on [26], and the main steps involved are: filtering to remove

speckle, application of an edge operator, edge map dilation with a mean filter, thresholding of the edge

map histogram, and lastly applying a contour following algorithm. A terrain minimum area threshold is

included to avoid masking ships. Another kind of segmentation approach is based on mature mathe-

matical theory. Markovian random field is applied to detect the coastlines in [27], comparing the pixels

to their surroundings and generating a rough coastline. Over the years, many other automatic coastline

detection algorithms have been proposed [28–31].

2.1.2 Preprocessing

The preprocessing step has the objective to make latter stages of detection easier. This is a step that

greatly depends on the methods used on the subsequent steps of the detection algorithm. For instance,
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although the despeckling process - a process of filtering the speckle noise in SAR images - enhances

the visual appearance of a SAR image, there is no guarantee that it will facilitate the achievement of

good target detection, unless the detection algorithm is designed to take into account this preprocessing

step [7]. This step of speckle filtering for target detection is mentioned in [22, 32–35].

There are other preprocessing algorithms, such as image normalization, used in [36], which consists

of dividing each pixel value by its local mean, calculated over a window of 30x30 pixels, with the intention

to remove large image structures while retaining small local features. This step is used in a common

detector algorithm, the cell-averaging CFAR (CA-CFAR) detector, which will be analysed in more detail

later in this chapter.

Spatially variant apodization (SVA), a non-linear technique to suppress SAR processor sidelobes

without reducing the image resolution or altering the phase information, is another example of a prepro-

cessing algorithm reported to improve the detector performance in [37].

2.1.3 Prescreening/detecting

Prescreening algorithms search the whole image for potential target pixels. These algorithms often have

adjustable parameters which control a tradeoff between missed detections and false alarms and are set

to maximize the probability of detection, but present a high probability of false alarm. In addition, they

must be fast to be applied in real time or near-real time systems. For these reasons, a further step of

discrimination is needed [7].

There are several prescreening algorithms, and their choice depends much on the type of SAR

image that is being processed. The resolution, complexity, intensity, amplitude and the number of looks

are some important factors to take into account when choosing a prescreening algorithm. Most ship

detection algorithms are based on statistical modelling of the background and then finding individual

pixels or small groups of neighbouring pixels whose brightness values are statistically unusual.

One of the simplest prescreening algorithms for single channel SAR images is the global threshold

algorithm, that searches for bright pixels in an image and declares pixels with values above a defined

threshold as targets of interest, as used in [38, 39]. The brightness of the pixels is dependent on the

target radar cross section (RCS), which, by its turn, is dependent on many factors including the target’s

material, the viewing aspect angle and the radar resolution. In low resolution SAR imagery, the target

may only occupy part of a pixel, hence having a RCS lower than expected. Therefore, when building a

detector, it is more common to opt for an adaptive threshold [7].

Adaptive threshold algorithms are among the most commonly used algorithms for target detection

in SAR images. A key difference relatively to global threshold algorithms, is that the adaptive threshold

algorithms look for bright pixels in the image, comparing them to their surroundings instead of the global

picture. The threshold is defined according to the statistics of the surrounding area of the pixel being

evaluated, that gets classified as a sample from a potential target if its value is above the threshold.

The most common adaptive threshold detectors for SAR images are the CFAR detectors, and will be

explained in a later section.
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We will explore CFAR-based methods more thoroughly, since they are by far the most popular meth-

ods. Nevertheless, some context on non-CFAR methods will be provided.

CFAR-based methods

CFAR detectors are designed in a way that ensures a constant probability of false alarm, by selecting

a threshold so that the percentage of background pixels with values above it is constant, resulting in a

likewise constant false alarm rate (number of false alarms per unit area of imagery).

The various CFAR methods can vary on the type of the sliding window (usually referred to as stencil),

that can be of fixed-sized or adaptive. Regarding the implementation technique, the various possible

strategies include cell-averaging CFAR (CA-CFAR), smallest of CA-CFAR (SOCA-CFAR), greatest of

CA-CFAR (GOCA-CFAR), and order statistics CFAR (OS-CFAR), among others. They can be further

divided into two subclasses: parametric and nonparametric, depending on the method used to estimate

the threshold (for the desired PFA) in the boundary ring or the approach taken to estimate the target

signature (for the desired probability of detection (PD)). Two approaches are possible for the parametric

subclass: background modelling only or background and target modelling. The non-parametric ap-

proach, on the other hand, does not assume any form for the background and target models. This

designations are based on the taxonomy suggested by El-Darymli et al. [40].

Ideally, a CFAR detector should utilize a Bayesian approach, which for a zero-one cost reduces to

the maximum a posteriori (MAP) criterion as

ΛMAP (x) =
P (ωT |x)

P (ωB |x)
≶ωBωT 1 , (2.1)

where ωT is the target class, ωB the background or clutter class, and P (ωT |x) and P (ωB |x) the posteriors

of the target class and background class, respectively [40].

This is a binary classification problem, with x being a feature vector, containing the pixel values of the

boundary ring of the sliding window, with guard cells centered in the region of interest (ROI). An example

of a 9x9 sliding window, with a boundary ring represented in green, is depicted in Figure 2.1[40]. One

should notice here that the center-most region in black is the target window size, with the pixels under

test (PUTs), which, in the figure, is simply one pixel.

Figure 2.1: CFAR sliding window. From [40].

The target window size should be about the size of the smallest object that is expected to be detected,
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the guard ring window size should be about the size of the largest object expected to be detected, and the

boundary ring window size should be sufficiently large to estimate the local clutter statistics accurately

[7, 40], although choosing the dimensions of the stencil based only on the prior knowledge of target size

yields a detection loss, due to the fact that the backscatter of the target is weakly linked with the target’s

geometry [41].

Parametric CFAR

As stated before, parametric CFAR models perform the detection threshold calculation based on the

statistical modelling of either the background only, or based on the target and background statistical

modelling altogether.

In the former approach, the CFAR algorithm performs one-class classification (anomaly detection)

by assigning PUTs to the background if it finds that they are consistent with the modelled background

distribution, otherwise the PUTs are labeled as detected. The threshold scaling factor α is adaptively

computed based on the boundary ring of the sliding window, in order to attain a desired PFA. This

computation is based on the likelihood or probability density function (PDF) of the background class and

is given by

PFA =

∫ ∞
α

p(x|ωB) dx , (2.2)

where p(x|ωB) is the chosen likelihood of the background class. The threshold is obtained by solving

2.2 for α.

In the latter approach, α is computed in order to achieve a desired probability of detection, resorting

to the target likelihood p(x|ωT )

PD =

∫ ∞
α

p(x|ωT ) dx . (2.3)

When a parametric CFAR algorithm uses an exponential distribution or a Rayleigh distribution to

model the background clutter, it is referred to as a one-parameter CFAR, since it is characterized by only

one parameter: the mean [40]. On the other hand, methods that utilize more complex distributions, char-

acterized by two parameters, such as mean and variance or scale and shape parameters, are referred

to as two-parameter CFAR. Examples of such distributions used in CFAR methods are the Weibull dis-

tribution [42], K-distribution [43], alpha-stable distribution [44, 45], and beta-prime (β
′
) distribution [46],

among others.

Most strategies applied in one-parameter CFAR algorithms can be applied in two-parameter CFAR.

One of the possible strategies is the cell-averaging CFAR, or simply CA-CFAR. It was the first CFAR

test, proposed in 1968 by Finn [47]. The adaptive threshold is the product of two components: Z and α,

such as

Threshold = αZ , (2.4)

where Z is estimated from the boundary ring. The processed SAR image is complexed valued, with

the form I + jQ. The CA-CFAR detector can be performed on the magnitude SAR image (i.e., A =

9



√
I2 +Q2) known as envelope detector or linear detector, on the power image (i.e., P = A2), known

as square-law detector or on the log-domain image (i.e., L = 10 log A2), known as a log detector. The

choice of a Rayleigh distribution or an exponential distribution to model the clutter depends on whether

the image is magnitude or power, respectively. The details for the estimation Ẑ of Z will be omitted,

since it is not considered relevant for this literature review. We simply state that it is obtained through

the maximum likelihood estimate (MLE) of the arithmetic mean of the pixels in the boundary ring in the

CFAR sliding window. The CA-CFAR then compares this mean with the pixels under test. The detection

decision is contingent upon the threshold scaling factor α [40]. In CA-CFAR the targets are assumed

to be isolated by at least the size of the sliding window, so that the number of targets in a stencil is, at

most, one. Moreover, it assumes that the pixels in the boundary ring are independent and identically

distributed and have a probability density function similar to that of the pixels under test. Since these

assumptions do not hold in many real world scenarios, the performance of the method can suffer a great

CFAR loss under circumstances that differ from the design assumptions [40]. This loss can be viewed

as the required increase of in the signal to noise ratio (SNR) in order to maintain the desired PD [40].

There are variations of the CA-CFAR algorithm, such as the SOCA-CFAR and the GOCA-CFAR,

which split the boundary ring of the sliding window into four leading and lagging windows. This separa-

tion is depicted in Figure 2.2.

(a) (b) (c) (d)

Figure 2.2: Leading (a, b) and lagging (c, d) windows. From [40].

In SOCA-CFAR, the smallest of the four means obtained with each of the leading and lagging win-

dows is chosen for comparison with the PUTs. In GOCA-CFAR, the greatest of the means is chosen.

SOCA-CFAR is designed to handle strong clutter returns in the boundary ring, although being prone to

clutter edges. GOCA-CFAR outperforms CA-CFAR and SOCA-CFAR at clutter edges, but has weak-

ened performance when in presence of strong returns in the boundary ring. Both of these two variations

suffer from a greater CFAR loss, when compared to CA-CFAR, due to the fact that only part of the

boundary ring is used.

To counter the issue of multiple targets in a stencil, the order-statistics CFAR was proposed [48].

OS-CFAR orders the pixels in the boundary ring according to their values, in an ascending order. Ad-

ditionally, the Q’th percentile is chosen, instead of the average estimate used in CA-CFAR. The scaling

factor α is estimated based on the clutter statistics of the boundary ring, similarly to previously men-

tioned CFAR methods. The choice of the value Q depends on the SAR data that is being analysed.

For instance, in the original work [48], the value of Q that gives the best performance is Q = 3/4, while

in [49] the best results are achieved with a value of Q = 4/5. The OS-CFAR outperforms CA-CFAR in
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heterogeneous clutter backgrounds and for contiguous targets [50, 51]. However, the performance of

OS-CFAR degrades during clutter transitions. Switched order statistics CFAR (SWOS-CFAR), a variant

of OS-CFAR, was designed to handle detection in non-homogeneous clutter and multiple interfering tar-

get scenarios [52]. It is able to determine whether the cells in the boundary ring belong to homogeneous

or nonhomogeneous clutter and adaptively adjust the detection threshold for a desired PFA, being able

to outperform standard OS-CFAR [53].

Nonparametric CFAR

Nonparametric CFAR models are more flexible and can better fit the real data faced by the detectors,

since they do not assume any prior model for the background or the data [40, 54]. They use nonpara-

metric methods to infer the model from the data. In [54], kernel density estimation (KDE) is used to infer

the target and background models for CFAR detection, making use of the Parzen window kernel method

to estimate the underlying PDF of the SAR data. In [55], nonparametric CFAR is implemented also using

KDE to estimate maritime clutter distribution, using a target enhancement filter. Cui et al. [56] developed

an asymptotic optimal bandwidth estimation method, that adaptively estimates the bandwidth with man-

ually selected sub-regions. The method can be affected by wrongly selected training sub-regions and

requires a complex procedure to obtain the threshold by iteratively calculating the PFA at each prede-

fined pixel value level [55]. Leng et al. [9] proposed the bilateral CFAR algorithm, that performs detection

based on the combination of the intensity distribution with the spatial distribution for the kernel density

estimation, reducing the influence of sea clutter.

Non-CFAR methods

In this section, non-CFAR works for ship detection in SAR images are referenced. In the work of Ouchi

et al. [57], the detection is based on a coherence image produced from the multilook SAR image via

cross correlation between two SAR images extracted by two small-sized moving windows over the orig-

inal image. In [58], the detection is based on genetic programming. Marino and Hajnsek [59] imple-

mented a ship detection technique applied to fully polarimetric SAR data, based on the Geometrical

Perturbation-Polarimetric Notch Filter [60].

An inshore ship detection method based on saliency and context information was proposed in [61].

This novel method aimed at filling the difficulty of detecting ships in harbors, presented by the existing

algorithms. The method performs detection by generating superpixel region, followed by salient region

detection. To decrease the false alarm rate, a discrimination framework based on the target size and the

context information is applied.

A detection method using generalized likelihood ratio test (GLRT) in a K-distributed clutter is pro-

posed in [62]. Others methods involving the GLRT have been proposed. Iervolino et al. [63] proposed

a novel ship detection technique, composed of three steps: land mask rejection, detection and discrimi-

nation. Detection is performed using the GLRT, whereas discrimination is performed by rejecting some

targets by removing the azimuth ambiguities and by gathering the target pixels in clusters. Iervolino and
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Guida [8] implemented a ship detector using the GLRT, that takes into account both the sea clutter and

the signal backscattered from the ship, in order to improve the performance of the detector, showing

improvements when compared to CFAR algorithms, although computationally slower.

The Intensity Dual-Polarization Ratio Anomaly Detector (iDPolRAD) proposed by Marino and Ier-

volino [11] - initially developed for iceberg detection [10] - focuses on the improvement of the detectability

of small vessels, basing its rationale on the fact that small ships possess a stronger cross polarization

and a higher cross-over co-polarization ratio when compared to the sea.

2.2 Target detection with machine learning

In this section, a literature review on ship detection and discrimination with deep learning based methods

is presented. The mentioned works utilize the current most advanced techniques used in the realm of

computer vision, applied to the task of target detection in SAR images.

2.2.1 Deep learning

Deep learning for SAR automatic target recognition was first introduced by Chen and Wang [64], tested

on the standard Moving and Stationary Target Acquisition and Recognition (MSTAR) ATR dataset [65].

In this work, authors found that the data lacked sufficient samples to train the network, so they imple-

mented data augmentation techniques to reduce overfitting. This revealed to be a common problem in

subsequent works by other authors [66–69].

CNNs applied to the detection and discrimination of vessels also started to emerge. Bentes et al.

[70] applied a convolutional neural network (CNN) for ship-iceberg discrimination, tested on TerraSAR-X

StripMap images, comparing the results with the performance of support vector machines, outperforming

the latter with an average f1-score of 97%. The CNN was composed of two convolutional layers followed

by pooling layers and a fully connected layer. A custom nonlinear normalization function was also used

in order to reduce isolated, strong backscattering signals from targets. Schwegmann et al. [71] applied

highway networks [72] (a specific type of deep neural networks) for ship discrimination in a RADARSAT-2

and Sentinel-1 dataset, composed of 21x21 images with ships, with ship-like targets (false positives) and

ocean areas. The goal of using this type of network is to attenuate the problem of vanishing gradients

for very deep networks, by allowing the transfer of information across multiple layers. It achieved an

accuracy of 96.67%. In [73], a CNN with six convolutional layers, three pooling layers and two fully

connected layers is applied to potential targets detected by the Single Shot Multi-box Detector (SSD).

Bentes et al. [74] built a dataset consisting of ships, platforms and harbors, applying to it a CNN model

with four convolutional layers, four pooling layers and a fully connected layer, achieving an accuracy of

94%, a performance far superior compared to traditional machine learning models.

Several popular top performing detection methods are based on the region-based convolutional neu-

ral network (R-CNN) [75], as well as on the fast R-CNN [76] and faster R-CNN [77].

R-CNNs use selective search to extract region proposals, proceeded by a recognition technique such
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as a CNN to classify them, being characterized by a tedious and time-consuming process, as well as

slow training [14]. Fast R-CNNs reduce the computational complexity and improve the performance of

R-CNNs by directly using the softmax function instead of support vector machines. Moreover, region of

interest polling also improves the performance of R-CNNs [14]. Although presenting good results, they

have limited speed performance due to bottlenecks in the proposed areas [14]. Faster-RCNNs unify the

candidate area generation, feature extraction, classification and location refinement into a deep network

framework, and implement a complete end-to-end target detection model [14]. It consists of three main

networks: a convolutional network to extract feature maps, the region proposal network (RPN), and a

network using these proposals for object classification and bounding box regression.

Kang et al. [78] implemented a faster R-CNN and fused the deep semantic and shallow high-

resolution features in both region proposal network and region of interest layers, improving detection

for small-sized ships. In [16], a faster R-CNN based framework was used to carry out the detection

task in conjunction with a CFAR method to detect small targets, reevaluating bounding boxes with rela-

tively low classification scores in the detection network. In [79], a densely connected multiscale neural

network based on the faster R-CNN framework was proposed to solve multiscale and multiscene SAR

ship detection. Instead of using a single feature map to generate proposals, they densely connected

one feature map to every other feature maps from top to down to generate proposals from each fused

feature map. They also used a training strategy to reduce the weights of the easiest examples in the

loss function, so that the harder ones were given more attention in training, to reduce false alarms. Li

et al. [80] proposed multiple strategies in order to improve the results of the faster R-CNN applied to

ship detection, such as feature fusion, transfer learning and hard negative mining. They also provided

a new dataset called SAR ship detection dataset (SSDD). Lin et al. [81] propose a new R-CNN based

approach to improve ship detection, by using a squeeze and excitation mechanism [82]. First, the fea-

ture maps are extracted and concatenated to obtain multiscale feature maps with a VGG network [83],

pretrained with the ImageNet dataset. After RoI pooling, an encoding scale vector is generated from

subfeature maps. This vector is ranked and only the top values are preserved, setting the others to zero.

The subfeature maps are then calibrated using the scale vector, suppressing the redundant subfeature

maps, improving the detector performance. An improvement of 9.7% on the F-1 score compared to the

state-of-the-art method is claimed, along with an increase of 14% in speed.

The You Only Look Once (YOLO) method proposed by Redmon et al. [84], is a new approach for

object detection that uses a single neural network to predict bounding boxes and class probabilities

directly from full images in one evaluation. The method frames object detection as a regression problem

to spatially separated bounding boxes and associated class probabilities. YOLO presented a remarkable

speed and the reduced likeliness of predicting false positives on background. Moreover, since the whole

detection pipeline is a single network, it can be optimized end-to-end directly on detection performance.

An improved version of the YOLO, YOLOv2, was proposed by Redmon and Farhadi [85], using a novel,

multi-scale training method. This version could run at varying sizes, increased speed and allowed to

easily tune the tradeoff between speed and accuracy, outperforming the state-of-the-art methods at the

time, such as the faster R-CNN, ResNet [86] and the Single-Shot-Detector (SSD).
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YOLOv2 was first used for SAR ship detection in [13]. The framework was trained on three Sentinel-

1 datasets, two with images with ships and one with single ship images. They implemented transfer

learning by training the network on the third dataset and then dropping the last layer in order to further

train on the first two datasets. Chang et al. [14] implemented a ship detector using a YOLOv2 framework,

as a base to implement vessel detection and adjust the parameters to achieve high accuracy in near

real-time, on the SSDD dataset. They also propose a modified YOLOv2 network, the YOLOv2-reduced,

with less layers. The YOLOv2 method achieved a detection speed 5.8 times faster than the faster R-

CNN. The YOLOv2-reduced goal was to be more suitable for real-time detection, performing at a 2.5

times faster speed than the YOLOv2, whilst maintaing a decent detection accuracy.

Redmon and Farhadi [87] proposed an improvement on YOLOv2, the YOLOv3. It is composed of a

bigger network and more accurate than the previous one, achieving similar accuracy results compared

to SSD, but three times faster. However, to the extent of our knowledge, works using YOLOv3 applied to

SAR ship detection have not yet been published.

The SSD is another CNN-based method widely applied in detection in SAR images. This method,

proposed by Liu et al. [88], aims to discretize the output space of bounding boxes into a set of default

boxes, over different aspect ratios and scales per feature map locations. At prediction time, the model

ranks each default box for the presence of each object category, and adjusts the box to better match

the object shape. In the original work, it is claimed to outperform comparable faster R-CNN models.

Wang et al. [89] propose an SDD based method to simultaneously detect ships and their orientation, by

using rotatable bounding boxes, adding an attention module to the model’s six prediction layers. This

module takes into account the channel and space information of ships, helping in their detection. In

addition, angular regression is used to predict angles without increasing the computational load. In

[90], two SSD models are implemented: the SSD-300 and SSD-512, with input sizes of 300x300 and

512x512, respectively. The main goal pointed out by the authors is the training of an effective model

without much data, by using data augmentation and transfer learning. The model is built with a VGG16

network, pretrained on the PASCAL VOC dataset. In [73], a modified SSD with a multi-resolution input

(MR-SSD) is developed. The whole workflow includes several stages, such as sea-land segmentation,

cropping with overlapping, detection with the MR-SSD model, coordinates mapping and consolidation

of predicted boxes. The authors also highlight the ability of the model to classify several types of marine

targets, such as boats, cages, cargos, containers, towers, platforms, tankers and windmills.

Residual networks (ResNets), proposed by He et al. [86], were a major breakthrough for deep learn-

ing based computer vision algorithms. ResNets use residual connections, that consist of reinjecting

previous representations into the downstream flow of data by adding a past layer output to a later output

layer, which helps prevent information loss along the data-processing flow. These connections allow

increasing the accuracy of the network by increasing its depth.

In [91], a ship detection method based on an attention mechanism is proposed, with a backbone

network built with Inception-ResNet [92] modules to obtain multilevel target mapping features. The

saliency of the mapping features is enhanced with an attention mechanism to obtain saliency feature

maps. Then, these features expressed at different depths are fused. On the fused feature maps, the
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locations and confidence scores of the targets are predicted. The final step is to filter the predicted

boxes via Soft-Non-maximum Suppression (Soft-NMS) [93]. The main aspects of the built end-to-end

framework are the increased accuracy in detecting densely arranged ships, its capability to address

multiscale characteristics of ships and feasible real-time detection speed.

The RetinaNet [94] is a network architecture that consist of three components: a backbone network

and two subnetworks (one for classification and another for box regression). The backbone computes

a convolutional feature map over an entire input image and can be a commonly used CNN such as

ResNet, VGG, Inception [95] or DenseNet [96], followed by a Feature Pyramid Network (FPN). The FPN

is able to construct a multi-scale feature pyramid to be used for detection of objects at different scales

[94]. Wang et al. [97] built a ship detector using RetinaNet with VGG and ResNet for the tested backbone

networks. The FPN is used to extract multi-scale features for both ship classification and location. Focal

loss is used to address the class imbalance present in the data and to increase the impact of the harder

examples during training, obtaining good detection results, with over 96% of mean average precision.

2.3 Representation learning

In this section, we provide an overview of the literature related to the application of autoencoders to

the analysis of SAR images. As it will become apparent later, autoencoders have been playing an

increasingly important role in the feature extraction process of deep learning based frameworks for

classification in SAR imagery.

2.3.1 Autoencoders

Autoencoders (AEs) are neural networks trained in an unsupervised manner to reconstruct their inputs

at the outputs [98]. They are composed of two parts: an encoder and a decoder. The encoder maps

input data x ∈ Rdx to a latent space representation z ∈ Rdz and the decoder maps back from the latent

code z to input space. Tipically the latent code z has a lower dimensionality than the input space x which

forces the autoencoder to learn a compressed representation of the input data. Learning is conducted

by minimizing a loss function L(x, x̂) (such as the mean squared error), that measures the dissimilarity

between the inputs x and outputs x̂.

Kang et al. [99] proposed a feature fusion algorithm for SAR target recognition based on a stacked

autoencoder (SAE) [100]. SAE is a type of unsupervised learning network that converts raw data into

more abstract expressions through a non-linear model and fuses features by optimization algorithms

[99]. The framework implemented in [99] firstly extracts 23 baseline features and Three-Patch Local

Binary Pattern (TPLBP) [101] features, that describe the local and global aspects of the image with

less redundancy, providing richer information for feature fusion. The goal is to have distinctive low-

dimensional features to provide complementary information for the SAE. Those features are cascaded

and fed into an SAE, which is pre-trained by greedy layer-wise training and fine-tuned with a softmax

classifier. The model is applied to the classification of targets in the MSTAR dataset.

15



In [102], a deep convolutional AE (DCAE) is used to extract features and perform classification au-

tomatically. DCAE is a type of AE that uses CNNs in its architecture. The DCAE in [102] consists of

eight layers. It has a handcrafted first convolution layer, such as gray-level co-occurrence matrix and

Gabor filters, and a handcrafted second layer of scale transformation that integrates correlated neighbor

pixels. The four following layers are based on SAEs to optimize features and classify, and the final two

layers are for postprocessing. The method was applied to terrain surface classification on TerraSAR-X

images, with the objective to make up for the absence of effective feature representation and the pres-

ence of speckle noise in SAR images. Geng et al. [103] proposed a similar framework, with a deep and

contractive NN for SAR image classification. This method additionally includes the histogram of oriented

gradient descriptors as handcrafted kernels. The AE is trained with a penalty that important information

between features and labels, as well as a contractive restriction that enhances local invariance. In this

work, the authors found that speckle reduction yielded the worst results, suspecting that the smoothing

of the speckle might have hidden some relevant information.

In [104], a SAE combined with superpixels is proposed for terrain surface classification in PolSAR

images. In this line of work, multiple AE layers are trained on a pixel-by-pixel basis, and superpixels

are constructed based on Pauli-decomposed pseudocolor images. The outputs of the SAE are used

for k-nearest neighbor (KNN) clustering of the superpixels. In [105], stacked sparse AEs (SSAEs) are

applied to PolSAR data for classification of terrain surface, aimed to learn deep spatial sparse features

automatically.

Li et al. [106] propose the usage of a CAE as an unsupervised learning method to extract high-level

features, in conjunction with a shallow neural network that works as a classifier, presented as a fast

training method with little loss of recognition rate, tested on the MSTAR dataset.

In [107], denoising AEs are used for unsupervised feature learning, learning local and high-level

representations from the local neighborhood of the pixels. The proposed framework is used to detect

changes on multi-spatial-resolution images. Gong et al. [108] built a feature learning and change feature

classification for ternary change detection in SAR images. The method utilizes a sparse AE to transform

log-ratio difference image into a feature space that allows the extraction of key changes and the sup-

pression of outliers and noise. The learned features are clustered into three classes to be passed to a

CNN classifier to be used as pseudo-labels for training. The CNN works as a change feature classifier.

Deng et al. [109] developed a SAR ATR system with autoencoders, adding a supervision constraint

based on Euclidean distance in order to get the most out of a limited training set.

In [110], a novel approach using AEs and convolutional AEs to perform representation learning is

proposed. The framework, named Wishart-AE and Wishart-CAE, introduces novelty by using the coher-

ence matrix of POLSAR data as the input of the network and by applying the Wishart distance [111] to

measure the similarity between the inputs and outputs of the model.

Geng et al. [112] propose an end-to-end classification framework, named deep recurrent encoding

neural networks (DRENNs). They use a long-short term memory (LSTM) architecture to extract con-

textual dependencies of the image and learn contextual dependencies, using 2-D patches of the image

transformed into 1-D sequences. After the LSTM, non-negative and Fisher constrained autoencoders
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(NFCAEs) are proposed to improve feature discrimination and perform classification.

In [113], an unsupervised technique using variational autoencoders is used to detect avalanches in

Sentinel-1 SAR images. The VAE, proposed by Kingma and Welling [114], is a deep generative model

composed of a stochastic encoder and decoder, that models the relationship between the inputs and

outputs. In [113], a VAE is trained only on images without avalanches, to learn feature representation of

normal data, and treat avalanches as anomalies, that are very rare.

Xu et al. [115] propose the usage of VAEs, constructed with residual connections, to extract useful

features, and using the various dimensions of the obtained feature latent space, to feed into supervised

classifiers, such as SVMs and KNNs.
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Chapter 3

Materials and methods

In this chapter, we start by introducing the theoretical and mathematical frameworks that compose the

foundations of the methods used to achieve the goal of this thesis. Following this background analysis,

the delineated approaches to solve the problem at hand are briefly presented.

3.1 Theoretical background

In this section, we delve into the mathematical foundations of the several methods and algorithms used

throughout this work. First and foremost, convolutional neural networks are explained thoroughly, since

they are one of the main building blocks of the proposed framework. Next, the theoretical underpinnings

of autoencoders are explained, followed by a brief introduction to principal component analysis (PCA)

and the used clustering methods: K-means and Gaussian Mixture Models (GMMs).

3.1.1 Neural networks

Deep feedforward neural networks

Deep feedforward networks are the basis of deep learning models. Such networks have the objective

to learn an approximation of some function f∗. For instance, for a classifier that assigns a category to

some input data x, such that y = f∗(x), the neural network tries to learn the best function approximation

y = f(x; θ), mapping the inputs x along with some learned parameters θ. The convolutional neural

networks - which will be discussed in detail later in this chapter - are a special kind of feedforward neural

network, used in many different computer vision tasks, such as object recognition [116]. Feedforward

neural networks are typically represented by wiring together many different functions. A neural network

might have, for example, three functions f1, f2 and f3, connected in a chain, to form f(x) = f3(f2(f1(x))).

This kind of structure is the most commonly used in neural networks. In this example, f1 is called the

first layer of the network, whereas f2 is the second layer, and so on. The more layers the bigger the

network’s depth, hence the name deep learning for the process of learning with these structures.

The final layer of a neural net is called the output layer. At this level, it is usually ”shown” to the
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network what the values of its outputs should be, given some input, through training examples that

usually come in (x, y) pair values, where x are the inputs and y are the outputs, or the answers for

the input data. Training examples ”tell” the network what output values its final layer should produce.

However, they don’t specify what values the remaining layers must produce. Instead, during the process

of training, the learning algorithm must tweak the parameters of the other layers in order to use them

to achieve an output close to the examples that are shown to it, iteratively refining its approximation

of f∗. These layers are called the hidden layers. Each hidden layer is usually vector-valued and their

dimensionality determines the width of the network.

In a neural network composed of fully connected (FC) layers, also known as dense layers, the output

of each hidden layer is computed by applying a nonlinear function to the outputs of the previous layer,

multiplied by a set of weights W with an added set of biases b, such that

a(l) = g(W (l)T a(l−1) + b(l)) , (3.1)

where a(l) is the output value at the layer l, W (l) and b(l) are the set of weights and the set of biases for

the layer l, respectively, and g is a nonlinear function, commonly referred to as the activation function.

There are several options for the nonlinearity g and deciding what is the best one is an active field of

research, but the default recommendation in modern neural networks is the rectified linear unit (ReLU)

function [117, 118], defined by the function g(z) = max{0, z}. For the output layer, the activation function

usually varies in accordance to the problem at hand. a(0) is simply the input data x.

In Figure 3.1, the general architecture of a dense deep feedforward neural network is presented, for

a network with d layers, each with li hidden units, with i = 1, . . . , d, and input size k.

Figure 3.1: MLP general architecture.
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Convolutional neural networks

Convolutional neural networks, also known as CNNs or ConvNets, are a class of neural nets, special-

ized to process data that has a known, grid-like topology, that have proven to be very efficient in solving

computer vision tasks, such as image recognition and classification [12]. The name of these networks

comes from the mathematical convolution operation that is performed instead of general matrix multi-

plication, in at least one of the layers of the network. Technically, this operation does not correspond

precisely to the definition of convolution used in other fields such as pure mathematics, corresponding

instead to the cross-correlation function, which is very similar to the classical convolution function but

without kernel flipping. Since it is common among machine learning practitioners to simply call this op-

eration convolution, we will do it so throughout the rest of this work. For two-dimensional data I and a

two-dimensional kernel K, the convolution operation is given by

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(M,n) . (3.2)

This operation is illustrated in Figure 3.2.

Figure 3.2: Convolution without kernel flipping. The arrows point to the output formed by applying the
kernel to the upper-left element of the input. In this example, the outputs correspond exclusively to
positions where the kernel lies entirely within the image, often called ”valid” convolution. From [116].

The input data, however, has often more than two dimensions. One example are colored images,

which have three color values for each pixel, for red, green and blue channels. Each convolutional

layer accepts an input tensor with dimensions W1 × H1 × D1 (width, height and depth) and has four
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hyperparameters: the number of kernels (also referred to as filters or feature detectors) K, their size F

(assuming square filters), the stride S, which is the number of pixels by which the filter is slided, and

the amount of padding P . Padding consists in adding a frame of pixels around an image, usually zero-

valued. The filters’ depth is equal to the depth of the input data. The term hyperparameter is used in

machine learning to refer to values that are chosen or set before training.

After passing through such convolutional layer, the dimensions of the output data, W2×H2×D2, are

given by

W2 =
W1 − F + 2P

S
+ 1, H2 =

H1 − F + 2P

S
+ 1, D2 = K. (3.3)

Convolutional layers are useful because they have the ability to learn local patterns in the images

and recognize them anywhere, by learning linear transformations.

After the convolution operation, the produced set of linear activations are run through a nonlinear

activation function, such as the ReLU. The next stage is to use a pooling layer to further modify the

output data. Spatial pooling aims at reducing the dimensionality of each feature map, while retaining

the most relevant information, by replacing the values of the network at a certain point with a summary

statistic of the nearby outputs. Pooling helps in making the representation approximately invariant to

small displacements of the input, meaning that small translations of the input do not translate in great

variations of the pooled outputs [116]. By progressively reducing the spatial size of the data, it helps

reducing the number of parameters and the amount of computation in the network. For example, max

pooling takes the maximum value of a rectangular neighborhood of pixels, and is one popular pooling

method. The most common is a max pooling layer with filters of size 2x2 with a stride of 2, downsampling

every depth slice by 2 along both width and height, discarding 75% of the activations. This operation is

depicted in Figure 3.3.

Figure 3.3: Max pooling operation with a 2x2 filter and a stride of 2. From [119].

The last layer of a CNN is usually an FC layer, with an activation function chosen according to the

goal that the network is trying to achieve.
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Training a neural network

Having chosen the architecture of the network, it is then necessary to learn the parameters that give the

best results for a given dataset. This process of learning parameters that best fit the given data is called

training.

The available dataset is usually split into three sets: the training set, which usually contains most

part of the available data and is used to train the network; the validation set, that is used to evaluate the

performance of the model on unseen data during training and choose the set of hyperparameters that

lead to the best results; and the test set, which is usually used after the model is trained, to evaluate

its unbiased performance on unseen data. Although the model does not update its parameters directly

based on the validation set during training, since the final choice is based on the results on this data,

it would not be right to judge its generalization capability based on them. Consequently, a final step of

testing the results on the test set is performed.

During training, for each input example (x, y) in the training set, the network performs the forward

computations (forward pass), producing an output prediction ŷ. A chosen loss function is used to com-

pute the difference between the ground truth y and the prediction ŷ. The network parameters are up-

dated based on this value, in order to optimise the loss function, using an optimisation algorithm. Most

training algorithms split the whole data into minibatches of data, containing only a few examples. Each

time the training algorithm performs a complete pass through all the data in the dataset an epoch as

passed, and it is usual to train a neural network with several epochs, meaning the algorithm ”sees” the

training data many times.

Ideally, training would eventually lead to the set of parameters that correspond to the global minimum

of the loss function. However, since neural networks generally produce non-convex functions, finding

this global minimum is very difficult.

Optimisation

Neural networks are usually trained by using gradient-based optimisers, that iteratively drive the cost

function to a low value. The general idea behind these algorithms consists in using the negative gradient

of the loss function (that points in the direction in which the loss function decreases the fastest), with

respect to the parameters, and then taking small steps in that direction, repeating the process until a

local minimum is found. The cost function is often composed of a sum of per-example loss functions,

for all examples in the training set, leading to a computationally expensive gradient calculation. To

overcome this problem, optimisation algorithms, such as the stochastic gradient descent (SGD), typically

use small sets of examples (minibatches) at a time to compute an estimate of the gradient, treating it as

an expectation (as opposed to batch gradient descent, that uses all examples at once to compute the

gradient). Each minibatch B = {x(1), . . . , x(m′)} is drawn uniformly from the training set.

The estimate of the gradient in SGD is formed as

g =
1

m′
∇θ

m′∑
i=1

L(x(i), y(i), θ) , (3.4)
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where L is the loss function and θ the parameters of the network. The SGD algorithm then follows the

gradient downhill:

θ ← θ − ε g, (3.5)

where ε is the learning rate, a positive scalar that determines the size of the update step.

The size of the minibatches influences the performance of the network, and its choice is usually

driven by the following factors:

• Larger batches provide a more accurate estimation of the gradient.

• Very small batch sizes can lead to underutilisation of multicore systems.

• The amount of memory usage usually scales with batch size, usually being a limiting factor.

• It is common for graphics processing units (GPUs) to have better runtime using power of 2 batch

sizes.

• Small batches can offer a regularizing effect [120], improving generalization ability.

It is also of extreme importance to choose the minibatches randomly, so that the gradient estimate of

each batch is unbiased. For this, it is common practice to randomly shuffle the dataset before splitting it

into batches.

Although the computation of an analytical expression for the gradient might be feasible, evaluating

it numerically can be computationally expensive. The back-propagation algorithm [98], or backprop,

does this calculation using a rather simple and inexpensive procedure, allowing the information to flow

backwards from the end of the network, in order to compute its value. The gradient of the loss with

respect to each input variable is computed applying the chain rule, computing the gradient one layer at

a time and avoiding redundant calculations of intermediate terms.

The choice of the learning rate - often regarded more as an art than a science - is a crucial step in

the training process of a neural network. In practice, it is common to schedule a learning rate decay over

the course of training, defined as

εk = (1− α)ε0 + αετ , (3.6)

where εk is the learning rate at iteration k, ετ the learning rate at iteration τ , point from which the learning

rate is kept constant, and α =
k

τ
. Setting ε0 can be tricky. With a too small ε0, learning can get stuck

at a high loss value. If it is too high, on the other hand, the learning curve can show violent oscillations,

possibly leading to an increase in the loss value instead of a decrease, and get driven away from the

optimisation goal. Usually τ is set to a number of iterations that allows a few hundred passes through

the training set, and ετ should be set to roughly 1% of the value of ε0.

Since learning can sometimes be slow, the method of momentum [121] may be applied to acceler-

ate learning, specially when the algorithm of choice is faced with high curvature, small but consistent
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gradients, or noisy gradients. The momentum algorithm takes the past values of the gradients and accu-

mulates them on an exponentially decaying moving average, continuing to move in their direction. This

way, the size of each update step depends on the direction and size of a previous sequence of gradients,

being larger when many updates point in the same direction.

Parameter initialisation is also of key importance when training neural networks. The algorithms used

to train neural networks are iterative, meaning that a starting point must be chosen by the user. This

choice strongly influences the behavior of the algorithm, and it can determine whether the algorithm

converges at all. All the weights in deep learning models are almost always initialised randomly, drawn

from a Gaussian or uniform distribution. The scale of the initialised weights is also a major factor: larger

weights will help avoiding redundant units, while avoiding loosing signal along the network. However, if

weights are initialised with too large values, they may result in exploding values during forward propaga-

tion or backprop. The biases are typically set to constants based on some heuristic, usually initialised

with the value of 0.

A standard optimisation technique applied in deep learning is batch normalisation, proposed by Ioffe

and Szegedy [122]. The general idea is to force the activations throughout the network to take on a stan-

dard Gaussian distribution at the beginning of training, introducing both additive and multiplicative noise

on the hidden units during training, improving both optimisation and regularisation. This technique is

performed after the convolutional/dense layers, but before applying the activation functions, by applying

the following:

H ′ =
H − µ
σ

µ =
1

m

∑
i

Hi

σ =

√
δ +

1

m

∑
i

(H − µ)2i ,

(3.7)

where H is the mini-batch of activations of the layer to be normalised, µ and σ vectors containing the

mean and standard deviation of each unit, respectively, and δ a small positive value added to avoid

having σ close to zero, avoiding numerical issues. The subtraction and division applied in the first

equation of 3.7 are element-wise within each row of H, so Hi,j is normalised by subtracting µj and

dividing by σj

This technique allows the network to converge for a broader set of hyperparameters and makes it

more robust to poor weight initialisation.

Algorithms with adaptive learning rates

The learning rate is arguably one of the hyperparameters that is the most difficult to set, due to its

significant impact on the performance of the model. Naturally, algorithms with adaptive learning rates

have emerged.

The AdaGrad algorithm, proposed by Duchi et al. [123], adapts the learning rates of all model param-

eters individually, dividing them by the square root of the sum of all their past squared values, meaning
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that parameters with large partial derivatives of the loss have their learning rates greatly decreased,

whereas parameters with small partial derivatives have a small decrease in their learning rates. Although

the AdaGrad should theoretically converge well in convex scenarios, the square gradient accumulation

from the earlier stages of training can cause the learning rates to decrease too rapidly and excessively.

RMSProp [124] modifies AdaGrad by using an exponentially weighted moving average instead of

gradient accumulation. This modification allows RMSProp to converge rapidly after finding a convex

bowl, in a non-convex optimisation problem, whereas with AdaGrad, this convex bowl might never be

found, since the learning rate can quickly become too small. RMSProp has been one of the go-to

optimisation methods for training deep learning structures.

Adam [125], short for adaptive moments, is one of the most broadly used optimisation algorithms to

train neural networks, that combines the fundamentals of RMSProp along with momentum, with some

additional distinctions. In Adam, momentum is implemented with an estimate of the first order moment

of the gradient, applied to the rescaled gradients. In addition, bias corrections to the first-order and

second-order moments are included, to account for their initialization at the origin. This algorithm is

usually robust to hyperparameter choices, usually working well with the recommended learning rate.

The algorithm is described in Figure 3.4, with all operations on vectors being element-wise.

Figure 3.4: Adam algorithm. From [125].

Although there is no consensus on what is the best optimisation algorithm to opt for, popular choices

include SGD, RMSProp and Adam.

3.1.2 Regularisation

Regularisation consists in applying techniques to improve the generalisation capability of the model.

It is a key task to make the model perform better on unseen data, even if it means to increase its

training error. Regularisation techniques can put extra constraints on the model, such as restrictions

for the parameter values, add extra terms to the cost function, encode some kind of prior knowledge
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or even express a generic preference for a simpler model. Simpler models usually promote better

generalization, associated with a lower variance and a higher bias. Some methods can also combine

multiple hypotheses that explain the training data.

Many regularisation approaches limit the model capacity by adding a parameter norm penalty Ω(θ)

to the cost function. The resulting regularised cost function is given by

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ) , (3.8)

where α is a non-negative hyperparameter that defines the weight of Ω. Increasing α means increasing

regularisation. When applying regularisation to neural networks, it is usual to use a parameter norm

penalty that only penalises the weights, leaving the biases unregularised.

Next, some of the most common regularisation techniques used in neural network training are pre-

sented.

L2 regularisation

L2 regularisation, commonly known as weight decay, drags the weights w to the origin, by adding the

regularising term Ω(θ) =
1

2
αwTw to the objective function, directly penalising the squared magnitude of

all parameters. The resulting cost function is then given by

J̃(w;X, y) = J(w;X, y) +
α

2
wTw . (3.9)

This method heavily penalises high valued weights, giving preference to more diffused ones, encour-

aging the network to use all of its inputs instead of using only some of them.

L1 regularisation

L1 regularisation is another popular form of regularisation, that adds Ω(θ) =
∑
i |wi| to the cost function.

It has the property of leading the values of some weights to values very close to zero during optimisation,

making the regularised neurons of the network almost invariant to noisy inputs.

Max norm constraints

Enforcing an absolute upper bound on the magnitude of the weight vector for every neuron is another

regularisation method. The constraint is enforced using projected gradient descent. Since the weight

updates are always bounded, the network cannot explode even when using too high learning rates.

Dropout

Dropout, proposed by Srivastava et al. [126], is a simple yet very powerful technique to prevent deep

neural networks from overfitting, that complements other regularisation methods such as the L2 regu-

larisation. During training, dropout is implemented by keeping each neuron active with some probability
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p, a tunable hyperparameter. This way, each neuron has the probability p of staying active, being set

to zero otherwise. At each training iteration, a subnetwork is then sampled and only the parameters of

this subnetwork are updated based on the input data. This way, the network is impeded to heavily rely

on specific neurons, and learning interdependence amongst them is reduced, increasing generalisation

power. Dropout is depicted in Figure 3.5.

Figure 3.5: General idea behind dropout, taken from [126].

Batch normalisation

Although the primary purpose of batch normalisation is to improve optimisation, it also has a regularising

effect due to the additive and multiplicative noise that it introduces.

Early stopping

When the model that is being training has sufficient representational capacity, it is common to see its

training error steadily decreasing over each epoch, with the validation error starting to rise at some point

in time. Since the objective is to have the model that has the best generalisation power, the ideal set of

parameters is the one that produces the best validation error.

To keep these parameters, early stopping is used. It is a simple technique that keeps storing the

model parameters that have given the best results for the validation set until the most recent training

point. This way, When training has finished, the returned parameters are the ones for which the network

has performed better.

3.1.3 Autoencoders

Autoencoders [98] are feedforward neural networks trained to reconstruct their inputs at the outputs, in

an unsupervised manner. Unsupervised learning is the process of training a neural network without

using the labels of the training set. An autoencoder network is usually composed of two parts: an
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encoder and a decoder. The encoder is responsible to map the input data x ∈ Rdx to a hidden space

representation z ∈ Rdz , through some encoding function, such that z = f(x). The decoder part of

the network then maps back from the hidden code z to input space, producing a reconstruction of x,

x̂ = g(z). The general architecture of an autoencoder is depicted in Figure 3.6.

Figure 3.6: General architecture of an autoencoder.

A regulariser term can be added to ensure that the model does not overfit the training set, and

effectively learns a useful representation of the data.

Typically the hidden code z has a lower dimensionality than the input space x, which forces the

autoencoder to learn a compressed representation of the input data. When an autoencoder possesses

a hidden code with dimensions smaller than the inputs, it is called undercomplete.

Using a compressed code with lower dimensions can make the autoencoder learn the most salient

features of the data. However, if the encoder and decoder of the model are given too much capacity,

they can learn how to map the inputs to the outputs, regardless of the dimensionality reduction observed

in the network. The same goes to architectures with hidden code dimensions equal to or higher than

the input dimensions, cases in which even a linear encoder and a linear decoder could learn to mimic

the inputs without learning anything useful. These situations can be avoided by applying regularisation

to the autoencoder. Instead of limiting the power of the model by capping the capacity of the encoder

and decoder, a regularising term that encourages the network to learn other properties can be added to

the loss function, leading the model to optimise the cost taking into account a trade-off between good

reconstruction and successful achievement of the goal set by the regularising term. The properties

imposed by this term include sparsity of the representation, size of the derivative of the representation,

and robustness to noise or missing inputs [116].

Generative models such as the variational autoencoder and the generative stochastic networks, on
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the other hand, can learn useful encodings without resorting to regularisation, although they can nat-

urally learn high-capacity, overcomplete representations of the inputs. This is made possible because

these models are trained to approximately maximise the probability of the training data, instead of copy-

ing it.

Theoretically, the universal approximator theorem guarantees that the autoencoder can represent

the identity function along the domain of the data arbitrarily well, provided that it has enough hidden

units. Such shallow network, however, does not allow one to force arbitrary constraints such as sparsity

[116]. A deeper autoencoder, on the contrary, can approximate any input to code arbitrarily, provided

that it has at least one more hidden layer within the encoder and enough hidden units.

Variational autoencoders

As mentioned before, autoencoders are prone to overfitting if they are not regularised, meaning that

they might fail when trying to build a meaningful encoded space, because their main goal is to learn the

parameters that best reconstruct the input data, regardless of the encoding structure.

Variational autoencoders (VAEs) are built in a way so that they encode the inputs into latent variables,

that exhibit a meaningful structure. With an architecture similar to the one of a standard autoencoder, it

is composed by an encoder and a decoder. However, contrarily to a standard autoencoder, a VAE does

not encode the data into points, encoding it into distributions instead, with a process that works as a

form of regularization. The steps for training a VAE are the following:

• Encode input data as distributions over the latent space.

• Sample a point from the latent space.

• Reconstruct the data from the sampled point.

• Backpropagate the reconstruction error over the network in order to update the network parame-

ters.

The VAE is a deep generative model composed of a stochastic encoder and decoder, that models

the relationship between the input random variable x and the low-dimensional latent random variable z

[114].

The marginal distribution over the inputs x and the latent variables z can be obtained with the joint

distribution pθ(x, z):

pθ(x) =

∫
pθ(x, z)dz , (3.10)

where pθ(x) is an approximation of the true distribution of the data, p∗(x).

When the distributions of a latent variable model pθ(x, z) are parameterised by neural networks, the

term deep latent variable model (DLVM) is used. One important feature of DLVMs is that the marginal

distribution pθ(x) can be very complex regardless of the complexity of the conditional distribution in the

directed model, allowing good approximations for potentially complicated underlying distributions p∗(x).
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One downside of DLVMs, however, is the intractability of the marginal probability of data under the model,

which makes maximum likelihood learning very difficult. This is due to the lack of an analytical solution

or an efficient estimator for the integral in equation 3.10, which makes it indifferentiable with respect to

its parameters. Considering the relation:

pθ(z|x) =
pθ(x, z)

pθ(x)
, (3.11)

and the fact that pθ(x, z) is efficient to compute, pθ(x) could be computed through this relation. However,

this is not possible since the posterior pθ(z|x) is also intractable in DLVMs.

To address the problem of calculating the posterior, the VAE framework provides a way to efficiently

optimize DLVMs along with a corresponding inference model, using an optimiser such as stochastic

gradient descent.

The encoder is a parametric inference model with parameters φ, trained to learn qφ(z|x), an approx-

imation of the intractable true posterior distribution pθ(z|x), where φ are the parameters of the network

(weights and biases) and θ are learned parameters. On the other hand, the decoder is trained to learn

an approximation of the posterior distribution pθ(x|z).

To evaluate the approximation qφ(z|x) of the true posterior, the Kullback-Leibler (KL) divergence

DKL (qφ(z|x)||pθ(z|x)) is used. Although it cannot be computed directly, it can be minimized by maxi-

mizing the sum of the Evidence Lower Bound (ELBO) on the marginal likelihood of the data points xi.

The ELBO for each data point is given by

ELBOi = Eqφ(z|xi) [log pθ(xi|z)]−DKL(qφ(z|xi)||p(z)) , (3.12)

where p(z) is a prior distribution of z.

The loss function used to train the VAE is then given by

L = −
∑
i

ELBOi = −
∑
i

[
Eqφ(z|xi) [log pθ(xi|z)]−DKL(qφ(z|xi)||p(z))

]
, (3.13)

where the summation is calculated over all images in the training set. The first term in (3.13) is seen

as a reconstruction error between the inputs and outputs, whereas the second term is a regulariser that

prevents the network from assigning to each input a distribution in a different region of the latent space.

In order to use an optimiser to optimise the ELBO with respect to the parameters θ and φ, one

needs to compute its gradients with respect to these parameters. Because the gradient of the ELBO

with respect to the parameters φ is difficult to obtain, a reparameterisation trick is used. For the repa-

rameterisation trick, the random variable z ∼ qφ(z|x) is represented as a differentiable and invertible

transformation of an introduced random variable ε, given z and φ:

z = g(ε, φ, x) (3.14)
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where ε is a random noise sample ε ∼ p(ε). As a result, it can be shown that

ẼLBOi = log pθ(xi, z)− log qφ(z|xi) (3.15)

is an estimate of the ELBO of the individual data point [127].

The operations of sampling ε, transforming z into g(ε, φ, x) and calculating ẼLBOi are differentiable

with respect to the parameters θ and φ, and the resulting gradient is used to optimize the ELBO using

SGD or other optimisation algorithm, with minibatches of data.

β-VAE

β-VAE [128] is a modification introduced to VAEs with the goal of discovering disentangled latent factors

among the data. It does so by introducing an hyperparameter β that regularises the contribution of the

KL divergence term in the loss function used to train the VAE. The resulting loss function is the following:

L = −
∑
i

ELBOi = −
∑
i

[
Eqφ(z|xi) [log pθ(xi|z)]− β DKL(qφ(z|xi)||p(z))

]
, (3.16)

Evidently, a β − V AE with β = 1 is a regular VAE. When this parameter is increased above 1, it

encourages the model to learn a more efficient latent representation of the data, that is disentangled if

it contains some underlying factors of variation that are independent. One resulting caveat is that the

model is pushed to focus more on the distributions learnt, creating a trade-off between reconstruction

ability and disentanglement quality.

3.1.4 Principal component analysis

The principal component analysis is an unsupervised learning algorithm that learns a compressed rep-

resentation of the data, used in applications such as dimensionality reduction, lossy data compression,

feature extraction and data visualisation. It can be defined as the orthogonal projection that maximises

the variance of the projected data, onto a lower dimensional linear space called principal subspace

[129]. It can also be defined as the linear projection that minimises the mean squared distance between

the data points and their projections.

PCA provides a way to examine very high-dimensional data that may not provide very useful informa-

tion if unprocessed. Each dimension of the data may have only a small fraction of the total information

present in the whole dataset, so the PCA algorithm finds a low-dimensional representation of the data

that contains as much variation as possible, seeking the observations that vary more along each dimen-

sion.

Considering an n×p data matrixX, with n being the number of examples in the data and p the number

of features (dimensionality of the original data), the goal of the PCA algorithm is to project these data into

a space with dimensionality l, through a set of l p-dimensional coefficients w(k) = (w1, . . . , wp)(k), called

principal components, projecting each row vector x(i) of X, to a new vector of principal components

given by
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tk(i) = x(i) · w(k) , (3.17)

with i = 1, . . . , n and k = 1, . . . , l. Each element of t inherits the maximum variance from X and each

coefficient vector w is constrained to be a unit vector.

To maximise the variance, the coefficient vector of the first principal component satisfies the following

condition:

w(1) = arg max

{
wTXTXw

wTw

}
(3.18)

To further obtain any k-th component, it is necessary to subtract the k−1 previously obtained principal

components:

X̂k = X −
k−1∑
s=1

Xw(s)w
T
(s) , (3.19)

and then find the coefficients that extract the maximum variance from X̂k:

w(k) = arg max
{
wT X̂Tk X̂kw

wTw

}
. (3.20)

3.1.5 K-means clustering

K-means clustering [130] is an unsupervised algorithm that partitions the available data into K distinct

clusters. To apply K-means clustering, the number of cluster K must first be chosen. Then, K different

centroids µ(1),...,µ(K)

are initialised with different values, and each data point in the dataset is assigned

to the nearest centroid. After this assignment, each centroid is updated to the mean of all the examples

that were assigned to it.

The optimisation objective of K-means clustering is to minimise the within-cluster variation, that is,

the amount by which the data points within a cluster differ from each other. In other words, the objective

is to assign K clusters in a way that ensures that the within-cluster variation, summed over all the K

clusters, is as small as possible. A common choice of a metric for this variation is the squared Euclidean

distance, resulting in the following optimisation problem:

minimise
C1,...,CK


K∑
k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2
 . (3.21)

The problem of minimizing 3.21 precisely is very difficult, so an iterative algorithm that finds a local

optimum efficiently is used:

1. Randomly assign a number from 1 to K, to each of the observations, each number i corresponding
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to the cluster i. This is the initialisation process.

2. Iterate until cluster assignments stop changing:

(a) Compute the cluster centroids, given by the feature means for all the observations within the

cluster.

(b) Assign each data point to its nearest centroid (with smaller Euclidean distance).

The local minimum found by the algorithm depends on the initialisation values of the centroids, there-

fore it is usual to run the algorithm several times in order to look for the one that finds the smaller value

for the optimisation objective.

3.1.6 Gaussian Mixture Models clustering

Clustering with Gaussian mixtures aims at describing the available data through a linear superposition

of a set of K Gaussian distributions: a Gaussian mixture.

This mixture of Gaussians is given by

p(x) =

K∑
k=1

πkN (x|µk,Σk) , (3.22)

where N (x|µk,Σk) is the density of each Gaussian, called a component of the mixture, each having

their own mean µk and covariance Σk. The parameters πk are called mixing coefficients, and satisfy the

condition

K∑
k=1

πk = 1. (3.23)

Let z be a K-dimensional binary random variable, that has a 1-of-k representation in which a particular

element zk is equal to 1, and all other elements are zero-valued, that verifies the condition

p(zk = 1) = πk. (3.24)

It can be shown that the conditional probability of z given x, γ(zk), is given by [129]

γ(zk) = p(zk = 1|x) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

. (3.25)

πk shall be viewed as the prior probability of zk = 1 and γ(zk) as the corresponding posterior proba-

bility once x is observed, or the responsibility that component k takes for explaining x.

Having a dataset with N examples with dimension D each, the log of the likelihood function is given

by
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ln p(X|π, µ,Σ) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
. (3.26)

In order to find the optimal parameters for the mixture, one has to differentiate equation 3.26 with

respect to the parameters, in order to find the maximum likelihood. There are multiple obstacles faced

when trying to maximise 3.26, such as the presence of singularities, so the log likelihood function is not

a well posed problem [129]. Another issue arises from the fact that, for any solution, a mixture with K

components will have a total of K! equivalent solutions corresponding to the K! ways of assigning K sets

of parameters to K components.

A possible approach for finding the solutions for this problem is the Expectation-Maximisation (EM)

algorithm [131], that consists in the following steps:

1. Initialise µk, Σk and πk and compute the initial value of the log likelihood.

2. Expectation step: Evaluate the responsibilities using the current values of the parameters

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

(3.27)

3. Maximisation step: Compute new estimates of the parameters using current responsibilities

µnewk =
1

Nk

N∑
n=1

γ(znk)xn (3.28)

Σnewk =
1

Nk

N∑
n=1

γ(znk)(xn − µnewk )(xn − µnewk )T (3.29)

πnewk =
Nk
N

(3.30)

where Nk =
∑N
n=1 γ(znk).

4. Evaluate the log likelihood with equation 3.26 and check for convergence.

5. Return to step 2 if convergence criterion not met.

3.2 Approaches

The previous section served as an introduction for the key methods and frameworks that are of major

importance to achieve the proposed goal of this thesis. In this section we present our proposed approach

for ship detection in SAR images, which is based on two major steps: representation learning and

anomaly detection.
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3.2.1 Representation learning

The representation learning model is a Convolutional Variational Autoencoder. The encoder is param-

eterised by a convolutional neural network that has the objective to extract image features. CNNs were

chosen for their many advantages and their capabilities when it comes to analyse images, as was de-

tailed in section 3.1.1. The prior distribution over the latent variables, p(z), is defined as an isotropic

multivariate Normal distribution, N(0; I). The parameters µz and σz of the approximate posterior dis-

tribution ∼ q(z|x) are derived from the final encoder layers, that will output a set of means and log

variances. Each mean and variance corresponds to a generated latent distribution. Finally, a sampling

layer is added to perform the reparameterisation trick, as follows:

z = µ+ σ � ε , (3.31)

where ε ∈ N(0; I) is an auxiliary noise variable and � denotes an element-wise product.

The decoder is a transposed convolutional neural network, symmetric to the encoder CNN, that

receives as input a sample z, drawn from the approximate posterior, and outputs an image of the same

size as the input images.

The loss function used to train the VAE is composed of two elements: the KL divergence term and

the reconstruction error. The reconstruction error can be seen as a term that penalizes the model

for not faithfully reconstructing the inputs, which contributes to the maximization of the reconstruction

likelihood. The KL divergence term can be seen as a way of penalizing the model for not learning a

distribution q(z|x) similar to the true posterior p(z|x). In order to tweak the contribution of each term, the

KL divergence term is multiplied by an hyperparameter β. If we increase β we encourage the network

to learn a better distribution, whereas if we decrease it, we encourage the network to focus more on

the reconstruction task. With the loss function set, the model is then trained using a proper optimisation

algorithm, such as Adam or SGD, with minibatches of SAR images without ships. One should notice

that this is a totally unsupervised learning method, since no labels are used during training.

A diagram with the overall architecture of the VAE framework is shown in Figure 3.7

3.2.2 Anomaly detection

The anomaly detection strategy is based on the following idea. The representation learning model (the

Convolutional VAE) is trained on data without ships, so that it learns the normal patterns of images with-

out ships. At test time, the representation learning model will receive as input images with and without

ships and will map those images with different patterns into different regions of the space. Therefore, it

is possible to use those representations to distinguish between images with and without ships. For this

purpose we used clustering in the approximate posterior mean space µz.

The goal is to find the two clusters in this space that best describe the normal data (images without

ships) and the anomalous data (images with ships). To achieve this, we propose the usage of the K-

means algorithm and Gaussian mixture models to assign the largest cluster to normal images and the

smallest to anomalous ones.
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Figure 3.7: General architecture of the VAE.

An overview of the clustering pipeline is shown in Figure 3.8.

Figure 3.8: Clustering pipeline.
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Chapter 4

Implementation

In this chapter, the implementation details of our proposed approach are presented. First, the main

characteristics of the dataset are discussed, as well as the processing it had to undergo before being

utilized in our experiments. Subsequently, all the details of the whole process required to achieve the

final results, from model training to testing are presented.

4.1 Dataset

Deep learning models are highly influenced by the quality and amount of the data used to train it. Usually,

the more data available the better the generalisation power of the network, and the lack of annotated

data is often a bottleneck in neural networks training.

Although the proposed method does not need labels to be trained, labelled data is still needed to test

the final model.

The dataset used throughout this work was made available by Wang et al. [132], and consists of

43,819 256x256 SAR images, all of them containing one or more ships, extracted from 102 Chinese

Gaofen-3 images and 108 Sentinel-1 images. An important feature of this dataset is its variety in several

settings, such as polarisation, resolution, incidence angle, imaging mode and background complex-

ity, making it a very promising tool to train robust models, with high generalisation power. This is of

paramount importance to have a model that performs well on previously unseen data.

4.1.1 Dataset details

The 102 Gaofen-3 images have resolutions ranging from 3m to 10m, with Ultrafine Strip-Map (UFS),

Fine Strip-Map 1 (FSI), Full Polarisation 1 (QPSI), Full Polarisation 2 (QPSII), and Fine Strip-Map 2

(FSII) imaging modes, respectively. For the Sentinel-1 images, imaging modes include S3 Strip-Map

(SM), S6 SM, and IW-mode. The properties of the data are briefly described in Table 4.1. Figure 4.1

contains some samples of the aforementioned images, with two examples obtained by the Gaofen-3

satellite and two examples obtained with the Sentinel-1.

The details of the procedure conducted to achieve the final set of images are described in [132].
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Sensor Imaging Mode Resolution (m) Swath (km) Incident angle (o) Polarisation #images

GF-3 UFS 3x3 30 20 50 Single 12
GF-3 FS1 5x5 50 19 50 Dual 10
GF-3 QPSI 8x8 30 20 41 Full 5
GF-3 FSII 10x10 100 19 50 Dual 15
GF-3 QPSII 25x25 40 20 38 Full 5
Sentinel-1 SM 1.7x4.3 to 3.6x4.9 80 20 45 Dual 49
Sentinel-1 IW 20x22 250 29 46 Dual 10

Table 4.1: Details of the dataset. From [132].

(a) Gaofen-3 image (b) Gaofen-3 image

(c) Sentinel-1 image (d) Sentinel-1 image

Figure 4.1: Images from the original dataset [132].

Each image file in the original data is accompanied with an Extensible Markup Language (XML) file,

that contains the pixel coordinates of all the bounding boxes that enclose each ship for the respective

image.

4.1.2 Pre-processing

To build a no-ship image dataset, we randomly cropped portions of these images, all of which contained

no ships, which was possible since the ships location and size were labelled. This process resulted in a
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total of 43,789 images without ships - 42,789 images for the training set and 1,000 images for the test

set - all with varying width, height, and aspect ratio. To complete the test set, 500 images with ships

were cropped using the ship labels, resulting in a test set composed of 1,500 images: 500 with ships and

1,000 without ships. For this purpose, a python script was written to perform these steps automatically.

Figure 4.2 contains some examples of the resulting dataset.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Examples of images with ships (a, b, c), and without ships (d, e, f), from the resulting dataset.

As will become clear later, the model used requires a constant image input size, so each image is

appropriately resized to the desired dimensions before entering the network. Moreover, since the image

pixel values are, by default, in a range from 0 to 255, each image pixel is rescaled to a 0-1 range, dividing

each by 255. This step is common practice in neural networks training.

4.2 Representation learning

The first part of the experimental setup consisted in building the VAE network. As stated before, the

job of the VAE is to extract features relevant enough so that the resulting low-dimensional latent space

for each sample provides sufficient information for the clustering algorithms to assign each image to

its respective cluster. Hence, assuring that a good model is built is of paramount importance for the

success of this work.

Since literature on the usage of VAEs to extract features from SAR images was lacking, the process

of choosing the right architecture and parameters was very empirical, in the sense that many tests with

different configurations had to be conducted in order to arrive at a desirable one, chosen according to
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some metric. The choices that had to be done included the following:

• Number of layers and their types (pooling layer, convolutional layer, FC layer, etc.)

• Layer specifications

– Number of filters, kernel size, strides and padding (in the case of convolutional layers)

– Pooling size (for pooling layers)

– Number of hidden units (in the case of FC layers)

• Optimiser

• Learning rate

• Latent space dimensions

• The value of β

• Reconstruction error function

• Batch size

Naturally, the number of configurations that we are able to try is limited by the available resources,

and there is no guarantee that the ideal configuration is among the set of configurations chosen for

training. Nevertheless, it is expected that among the possible configurations in this set is a configuration

that performs well and achieves satisfying results.

4.2.1 VAE architecture

The chosen architecture for the encoder part of the network is shown in table 4.2, with each layer’s

specifications. Note that this table does not include the reshaping/flattening steps.

Index Type Kernel size Filters Stride Padding Activation Output shape

1 Conv2D (3,3) 16 1 Same ReLU (56,56,16)
2 MaxPool2D (2,2) - 2 Valid Linear (28,28,16)
3 Conv2D (3,3) 32 1 Same ReLU (28,28,32)
4 MaxPool2D (2,2) - 2 Valid Linear (14,14,32)
5 Conv2D (3,3) 64 1 Same ReLU (14,14,64)
6 MaxPool2D (2,2) - 2 Valid Linear (7,7,64)
7 Dense - dz - - Linear (dz)
8 Dense - dz - - Linear (dz)
9 Custom - - - - - (dz)

Table 4.2: Encoder architecture.

Conv2D corresponds to the convolutional layer, whereas MaxPool2D corresponds to the max pooling

operation, and dz is the desired size of the latent space. The outputs of layer 6 are wired to both layers

7 and 8, which output the sets of means and log variances, respectively. Layer 9 is a custom layer
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(or lambda layer) that performs the reparameterization trick to sample a point z from the latent space,

that is assumed to generate the input image, and will feed it to the decoder part of the network. This

sampling layer should be regarded as an intermediate layer between the encoder and the decoder,

cleverly placed to allow the usage of gradient descent over the network. Figure 4.3 depicts an overview

of the data pipeline of the encoder, for a latent space with dimensions dz = 256.

In order to avoid misinterpretations and for clarification, z is referred to as a point in the sense that it

is a data point, provided with dz dimensions.

After sampling from the latent space, the point z is fed to the decoder, that attempts to reconstruct

the original input image based on the sample. The architecture details of the decoder part of the network

is shown in table 4.3, excluding the reshaping/flattening steps. Conv2DTranspose layers are convolu-

tional layers that also learn the best way to upsample their inputs, although here the dimensions are

kept constant. The upsampling job is conducted by the UpSampling2D layers, using nearest-neighbor

upsampling to scale the image up.

Index Type Kernel size Filters Stride Padding Activation Output shape

1 Dense - 3136 - - ReLU (3136)
2 Conv2DTranspose (3,3) 64 1 Same ReLU (7,7,64)
3 UpSampling2D (2,2) - 2 - Linear (14,14,64)
4 Conv2DTranspose (3,3) 32 1 Same ReLU (14,14,32)
5 UpSampling2D (2,2) - 2 - Linear (28,28,32)
6 Conv2DTranspose (3,3) 16 1 Same ReLU (28,28,16)
7 UpSampling2D (2,2) - 2 - Linear (56,56,16)
8 Conv2DTranspose (3,3) 1 1 Same Sigmoid (56,56,1)

Table 4.3: Decoder architecture.

Figure 4.4 depicts an overview of the data pipeline of the decoder, for a latent space with dimensions

dz = 256. The InputLayer simply corresponds to the sampled point z, with dimensions dz. One should

note that for the last layer, the activation function implemented is the sigmoid, since we wish to output

an image with pixel values between 0 and 1.
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4.2.2 VAE training

With the overall architecture of the model established, there are still some hyperparameters to define in

order to begin training and testing the network.

Although batch normalization is a widely used technique to train deep learning models, we opted not

to implement it since the added stochasticity along with the stochasticity from sampling may cause some

instability, so it is common practice to avoid it when training VAEs [133].

For the optimiser, Adam was chosen with a learning rate of lr = 3 × 10−4 and a mini-batch size of

128. The reconstruction error function chosen was the mean squared error (MSE).

In order to study the influence of varying the penalty associated with the KL divergence term, the

network is trained several times with different values of β. In the end, it is expected that the set of

different results for each value of β, evaluated on the test set, will allow us to draw some conclusions

about the behaviour of the representation learning task in situations in which optimisation focuses more

on the reconstruction versus situations in which the optimisation objective is more oriented towards

learning a good distribution for the data. The goal here is to train enough different models to allow us to

determine what is the best balance between these two terms.

Additionally, for each different value of β, the network is trained with multiple values for the latent

space dimensions, in order to analyse how the dimensionality of the generated space influences the

results of the model. Each dimension of this compressed representation is expected to reflect, to some

extent, some feature that characterizes the training data. In addition, it is also expected that the bigger

these dimensions are, the better the representation learned by the network, although a too big latent

space may lead the model to overfit the training set.

Table 4.4 summarises the set of hyperparameters that were used in each training routine.

Optimiser lr β dz Loss Batch

Adam 3× 10−4 {0, 0.3, 0.7, 1, 2, 4, 10} {4, 16, 64, 128, 256} MSE+KL Divergence 128

Table 4.4: Training hyperparameters.

Accurately predicting the number epochs that the network would need to find the best parameters

is not possible, so early stopping was used to find them, and avoid overfitting and underfitting of the

network to the training set. Therefore, model performance on the validation set was monitored during

training, namely the loss function value over time, and the weights that gave the best results stored.

An epoch number limit of 300 was imposed, and stopping triggered if there had not been any im-

provement in the loss value in the past 50 epochs. 25% of the training data was separated to be used

for validation.

4.3 Anomaly detection

After the aforementioned process, we had our model trained with 35 different configurations of hyperpa-

rameters, ready to be tested with the test set of 1500 images with and without ships, and try to cluster
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them based on the features extracted by the resulting trained encoder. For this task, two clustering

methods were used to automatically separate our data into two groups. All the implementation steps

performed to achieve this goal are explained in this section.

4.3.1 Data visualisation

As was shown in previous sections, each input image will generate a set of dz means and a set of dz

variances, with dz ranging from 4 to 256. Since visualising each dimension of such high-dimensional

data would be infeasible, we opted to employ PCA with two components to the generated space, in order

to visualise the resulting data in two dimensions.

4.3.2 Clustering in the generated space

After training, the 1500 images put aside for testing are passed through each trained encoder to generate

their corresponding sets of means and variances. Then, GMMs clustering with ncomponents = 2 and K-

means clustering with nclusters = 2 are used to split the data into two clusters. The smallest cluster

assigned by these algorithms is categorized as a cluster of images with ships (anomalies), whereas the

biggest cluster is labelled as a cluster of images without ships, or normal images.

4.4 Results evaluation

To evaluate the performance of the framework, a set of evaluation metrics are used to compare the labels

assigned by the clustering algorithms with the original labels of the test set. Moreover, a CNN with an

architecture similar to the encoder is built and trained with the 42789 images used for training the VAE,

plus 58536 images with ships cropped from the original dataset, in order to compare the performance of

a supervised model with the proposed unsupervised framework.

Evaluation metrics

Before explaining the evaluation metrics used to evaluate the performance of the model, the following

terms regarding the labels assigned by the algorithm must be introduced:

• True negatives: data examples with negative labels (ground truth) that are predicted as negative

by the algorithm that is being tested

• True positives: data examples with positive labels that are predicted as positive by the algorithm

that is being tested

• False negatives: data examples with positive labels that are predicted as negative by the algorithm

that is being tested

• False positives: data examples with negative labels that are predicted as positive by the algorithm

that is being tested
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These are the values that compose the confusion matrix, and are needed to compute the metrics used

to evaluate the clustering results: precision, recall, accuracy and F1-score. The precision is given by

Precision =
True positives

True positives+ False positives
, (4.1)

and should be used as a metric when the objective is to limit the number of false positives.

Recall is used when it is important to avoid false negatives, and is given by

Recall =
True positives

True positives+ False negatives
. (4.2)

Accuracy measures the rate of correct predictions:

Accuracy =
True positives+ True negatives

Number of samples
. (4.3)

The F1-score offers a way to summarise both precision and recall, penalising the model for either

having bad precision or bad recall:

F1 = 2 · Precision ·Recall
Precision+Recall

. (4.4)

These four metrics are used to evaluate the performance of the model on the test set, for each set of

parameters.

Comparing the results with a CNN

As mentioned before, a CNN is trained with a dataset of 42789 images without ships (also used to train

the VAE), plus 58536 images with ships, in order to compare its results with the ones obtained with the

proposed framework. The layers used in the CNN are detailed in table 4.5.

Index Type Kernel size Filters Stride Padding Activation Output shape

1 Conv2D (3,3) 16 1 Same ReLU (56,56,16)
2 MaxPool2D (2,2) - 2 Valid Linear (28,28,16)
3 Conv2D (3,3) 32 1 Same ReLU (28,28,32)
4 MaxPool2D (2,2) - 2 Valid Linear (14,14,32)
5 Conv2D (3,3) 64 1 Same ReLU (14,14,64)
6 MaxPool2D (2,2) - 2 Valid Linear (7,7,64)
7 Dense - 16 - - ReLU (16)
8 Dense - 1 - - Sigmoid (1)

Table 4.5: CNN architecture.

This network was trained with an Adam optimiser, with a learning rate of lr = 1× 10−4, using binary

crossentropy as the loss function, and a batch size of 128. 25% of the training set was put aside for

validation, used to monitor the performance of the network and to trigger early stopping when there were

no improvements on the validation accuracy. An overview of the architecture of the implemented CNN
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is depicted in figure 4.5.

Afterwards, the evaluation metrics mentioned above were calculated for both the CNN and the pro-

posed model, and compared with each other. The objective of this comparison is to see how close

the performance of the unsupervised method can get to the performance of a supervised method with

similar characteristics and trained under similar circumstances.
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Chapter 5

Results

In this chapter, the results of the proposed method are presented. We start by presenting the training

results for the different sets of parameters, followed by a discussion on the clustering of the test set, using

two different clustering methods. This discussion will primarily focus on the influence of the variation of

the parameters in the final outcome of the model.

The algorithms were implemented using python and the Keras [134] library, with TensorFlow [135]

backend. The specifications of the laptop used to train the model were the following:

• CPU: Intel Core i5-7300HQ @ 2.50GHz

• GPU: NVIDIA GeForce GTX 1050 Ti 4GB

• RAM: 8GB

• OS: Ubuntu 18.04.3 LTS

5.1 VAE training

As previously explained in Chapter 4, the VAE was trained with early stopping, with the patience param-

eter (maximum number of epochs elapsed without improvement of the validation error) set to 50, and

maximum number of epochs set to 300. All the training cycles (for each set of parameters) combined

took about 62552 seconds to finish, resulting in an approximate training time of 17h 30m.

Figures 5.1 to 5.5 depict the evolution of the validation loss over number of epochs during training for

each value of dz. Each of these figures corresponds to the evolution of the validation loss for each value

of β in the set {0, 0.3, 0.7, 1, 2, 4, 10}, respectively.

Looking at the results shown in these figures, it is possible to observe that generally, regardless of

the size of the latent space, the model converges to lower loss values for lower values of beta. This is

expected since increasing β leads to increasing the KL divergence term in the loss function. Moreover,

bigger β values reveal a tendency to delay the time of convergence of the model. Both of these two

observations can possibly be justified by the constraints imposed by β > 1. As explained in Section

3.1.3, increasing β above 1 limits the capacity in the latent information channel, pushing the model to
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Figure 5.1: Total validation loss over number of epochs for dz = 4.

Figure 5.2: Total validation loss over number of epochs for dz = 16.
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Figure 5.3: Total validation loss over number of epochs for dz = 64.

Figure 5.4: Total validation loss over number of epochs for dz = 128.
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Figure 5.5: Total validation loss over number of epochs for dz = 256.

learn a more efficient representation of the data, while looking for independent factors of variation, and

trading off some information preservation (reconstruction quality). Naturally, this leads to higher values

in the reconstruction term of the loss function.

Inspecting the final loss values for each combination of parameters, it is also possible to observe that

for values of β smaller than 1, the convergence loss value tends to decrease with the increase of dz,

possibly due to the fact that a bigger latent space allows better representations of the inputs, resulting in

a smaller reconstruction error. As β increases, this effect becomes less noticeable, possibly due to the

limitations imposed by the effect mentioned above.

5.2 Results of anomaly detection on the test set

In this section, we perform an evaluation of the framework in terms of its ability to detect anomalies in

the test set.

We start by presenting the results of applying the chosen clustering methods to the generated mean

space, which reflect the quality of the VAE’s encoding capabilities. Then, we analyse the generated

log-variance space, as well as the reconstruction errors associated with the test images.
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5.2.1 Clustering in the approximate posterior mean space

This section presents the results obtained by applying the two chosen clustering algorithms to the 35

mean spaces generated by the trained models. One should notice that, throughout this section, we often

refer to the results of applying the algorithms to the mean space of a given model simply as the results

of the model, in order to avoid unnecessary repetitions.

K-means

Table 5.1 presents the accuracy of the models for every pair of β and dz, using K-means clustering

in the approximate posterior mean space. The highest accuracy (lowest error rate) for each value of

β is highlighted in bold, whereas the best accuracy values for each value of latent dimensions dz are

underlined.

Accuracy (%)

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 82.80 64.67 66.20 63.73 63.40

0.3 93.80 95.67 95.60 96.20 96.53

0.7 92.67 94.87 95.33 95.60 95.87

1 93.73 93.87 94.60 94.53 95.07

2 92.47 94.07 93.13 92.13 92.80

4 73.20 92.93 91.60 90.40 89.60

10 76.33 76.87 77.53 77.33 75.60

Table 5.1: Accuracy of anomaly detection obtained with K-means using generated mean space.

Inspecting table 5.1, it is evident that clustering had the most success using the space generated

by the model trained with β = 0.3, outperforming all the other models trained with different values of

β in terms of accuracy. In order to make it easier to interpret the overall impact of the variation of this

parameter in the error rate of the model, a plot of accuracy over β is shown in figure 5.6.

Some conclusions can be drawn from this figure. As stated above, accuracy peaks at β = 0.3 for all

values of dz, with the highest value of all being the one obtained with dz = 256. Increasing β above 0.3

makes the accuracy drop consistently for almost all values of dz. The effect of decreasing β bellow 0.3

cannot be determined properly, since no intermediate values between this number and 0 were tested.

We can, however, conclude that setting it to 0 has a very negative impact on the classification accuracy,

since all models trained with this value of β report the highest error rate, except for the one trained with

dz = 4.

Further testing could be conducted with values of β within the interval [0, 0.7], since there might be

a value in this range that leads to better accuracy results.

Going back to table 5.1, it is possible to observe that for values of β = {0.3, 0.7, 1}, the increase in

latent space dimensions promotes an increase in the accuracy, having its highest value for dz = 256.

Additional studies could be done with dz > 256, in order to check if there are latent space dimensions
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Figure 5.6: Evolution of accuracy over β.

that produce better results, since the obtained values suggest that training with higher dimensions would

possibly improve accuracy.

To decide which model works better, other evaluation metrics must be analysed. Table 5.2 contains

the F1-scores for the classification using K-means clustering, with the best score highlighted in bold.

This is usually a better metric than accuracy if we want to have a good balance between false positives

and false negatives, and avoid models that are biased towards one specific class of the data. In addition,

precision and recall for each pair of parameters are shown in Tables 5.3 and 5.4, respectively. Evaluating

precision will allow us to draw conclusions regarding false positives (false alarms), while recall will allow

us to infer about false negatives (missed detections).

Inspecting Tables 5.3 and 5.4, we observe that, generally, precision values are considerably higher

than recall values (with the results for β = 0 and β = 10 being exceptions), meaning that missed
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F1-score

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 0.7490 0.6187 0.6461 0.6047 0.6070

0.3 0.8992 0.9321 0.9317 0.9412 0.9462

0.7 0.8791 0.9218 0.9271 0.9317 0.9356

1 0.8988 0.9013 0.9143 0.9120 0.9219

2 0.8762 0.9046 0.8884 0.8700 0.8821

4 0.6850 0.8853 0.8612 0.8378 0.8207

10 0.7033 0.7037 0.7087 0.7089 0.6691

Table 5.2: F1-score of anomaly detection obtained with K-means using generated mean space, with the
highest score highlighted in bold.

Precision

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 0.7292 0.4831 0.4978 0.4749 0.4727

0.3 0.9811 0.9759 0.9657 0.9723 0.9808

0.7 0.9710 0.9776 0.9674 0.9657 0.9740

1 0.9743 0.9722 0.9708 0.9707 0.9754

2 0.9685 0.9746 0.9693 0.9681 0.9712

4 0.5631 0.9646 0.9583 0.9588 0.9649

10 0.6029 0.6140 0.6240 0.6198 0.6106

Table 5.3: Precision of anomaly detection obtained with K-means using generated mean space, with the
highest value highlighted in bold.

Recall

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 0.770 0.860 0.920 0.832 0.848

0.3 0.830 0.892 0.900 0.912 0.916

0.7 0.804 0.872 0.890 0.900 0.900

1 0.834 0.840 0.864 0.860 0.874

2 0.800 0.844 0.820 0.790 0.808

4 0.874 0.818 0.782 0.744 0.714

10 0.844 0.824 0.820 0.828 0.740

Table 5.4: Recall of anomaly detection obtained with K-means using generated mean space, with the
highest value highlighted in bold.

detections are more prevalent than false alarms among these models. It is important to realise that

there are some models that present good recall values when compared to the rest of the group, but have

very poor precision values. One example of this is the model trained with β = 0 and dz = 64, that has
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a recall value of 0.920 (the highest among all models), but shows one of the lowest precision values

(0.4978). This is an indicator that this model is probably labelling the majority of the images as positive.

This is confirmed by the normalised confusion matrix of the model in these conditions, depicted in Figure

5.7, showing that 46.4% of the negative images were predicted as positive.

Figure 5.7: Normalised confusion matrix for β = 0 and dz = 64.

Similarly to what happened with the accuracy values, the models trained with β = 0.3 outperformed

all the others in terms of F1-score, and the one that showed to perform better was the model trained with

dz = 256 and β = 0.3. Therefore, it is fair to conclude that this was the best model, and will be chosen

for a deeper analysis later in this section.

Before proceeding to this analysis, it is also important to visualise the results of applying PCA with 2

components to the generated mean spaces, in order to understand how the encoder distributed each im-

age in the latent space. Figure 5.8 contains seven images corresponding to the 2-component PCA repre-

sentation of the generated mean space (zmean), with fixed dz = 256 and for β = {0, 0.3, 0.7, 1, 2, 4, 10}.

Each axis represents one dimension of the resulting PCA representation, with the horizontal axis

corresponding to the first dimension and the vertical axis to the second dimension.

The main idea behind using VAEs to distinguish images with ships from images without ships, was

that it was expected that the encoder trained only with normal images (no ships) would learn how to

represent them and assign those images a meaningful location in the latent space. In this figure it is

possible to observe that this expectation was successfully met for some of the trained models. Namely,

in Figures 5.8 (b), (c), (d), and (e), normal images are aggregated together in well defined clusters (red

dots in the figures), whereas anomalous images (with ships) are spread across both dimensions in this

compressed two-dimensional space (blue dots in the figures). One should notice, however, that in Figure

5.8 (e) there is a clear increase in superposition between data points from both classes when compared

to Figures 5.8 (b), (c), and (d), also reflected in the accuracy results obtained.

Interestingly, although we can visually notice an apparent well-defined separation between both

classes for β = 0 (Figure 5.8 (a)), the K-means algorithm was not able to do this separation successfully,

showing poor F1-score and accuracy.

Figure 5.8 (g) confirms that for β = 10 the model was not able to separate the two classes of data in

the latent space, justifying its unsatisfying results in terms of accuracy and F1-score.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.8: 2-component PCA for dz = 256 and β = 0 (a), β = 0.3 (b), β = 0.7 (c), β = 1 (d), β = 2 (e),
β = 4 (f), β = 10 (g). Each image has the ground truth labels of the test set.
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In Figure 5.9 are depicted two plots of the 2-component PCA for dz = 256 and β = 0.3, one with

the ground truth labels (a) and another with the labels assigned by the K-means algorithm (b). It is

noticeable how data points further away from the cluster of images without ships were classified as

positive (”contains ship”), whereas data points closer to this cluster were classified as negative (”no

ships”).

(a) PCA with ground truth labels (b) PCA with K-means labels

Figure 5.9: Comparison between ground truth and K-means generated labels for β = 0.3 and dz = 256.

Hereafter a deeper analysis of the model that performed better with K-means (trained with β = 0.3

and dz = 256 is presented. Firstly, we should inspect the confusion matrix for the model, depicted in

Figure 5.10.

Figure 5.10: Confusion matrix for β = 0.3 and dz = 256.

Based on this matrix, we conclude that roughly 99.1% of the images without ships were predicted as

negative, but a smaller percentage of the images with ships were predicted as positive (about 91.4%).

This means that the main source of errors of the model is in the misclassification of images with ships,

missing the classification of around 8.6% of the cases, translating into 43 mislabelled anomalous images.

When analysing a machine learning model, it is of paramount importance to carefully inspect its most
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common mistakes, in order to infer where we should try to improve it. Additionally, it is common to find

some peculiarities among the dataset, that usually justify these mistakes, such as samples with incorrect

ground truth.

In fact, after taking a closer look at all the images with missed detections, 9 were found not to

contain any ship at all. Investigating the source images from which these data points were extracted, we

concluded that there may have occurred some mistakes in their labelling in the original data. Therefore,

these images should not be accounted as missed detections, but correct negative predictions instead.

If these images are accounted as correct predictions of negative samples, the actual F1-score, accu-

racy, precision, and recall values for K-means applied to the mean space generated by the model trained

with β = 0.3 and dz = 256 are the following:

F1 = 0.9551

Accuracy = 97.13%

Precision = 0.9808

Recall = 0.9308

Figure 5.11 contains a few examples that were mislabelled as not containing ships by the algorithm,

that actually contained ships. Inspecting these images, it is hard to identify a clear ship shape, and for

that reason the model may have struggled to find enough features to trigger detection.

(a) (b) (c)

(d) (e) (f)

Figure 5.11: Examples of K-means missed detections for the model trained with β = 0.3 and dz = 256.

Finally, we can observe the location of these images in the latent space in Figure 5.12. One should

notice that the original images have different aspect ratios and sizes, and the way they are represented
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here is how the model receives them as inputs, resized to 56x56 pixels. Most of these missed detections

lie in an area between the main cluster of normal images and the rest of the images with ships, where

there is some superposition between data of the two classes. This is expected, since most of these

images do not have very clear characteristics to allow the model to classify them.

Figure 5.12: PCA with ground truth labels and missed detections, for β = 0.3 and dz = 256.

62



Gaussian Mixture Models

Now that the analysis of the results of the model using K-means is complete, hereafter we evaluate the

performance of the model using Gaussian mixture models clustering.

Before proceeding, the following notation is introduced, to facilitate the reading of this part of the

section:

• The model trained with β = 0.3 and dz = 256 will be called model A

• The model trained with β = 1 and dz = 256 will be referred to as model B

This will be useful since these models will be mentioned multiple times throughout the rest of the section.

Table 5.5 presents the accuracy results using GMMs clustering applied to the generated latent space

for each parameter pair (β, dz). The highest accuracy for each value of β is highlighted in bold, whereas

the best accuracy values for each value of latent dimensions dz are underlined.

Accuracy (%)

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 89.07 86.40 67.00 63.73 63.53

0.3 77.60 68.80 80.47 86.33 96.73

0.7 64.80 77.67 86.40 89.67 96.53

1 71.60 79.33 88.20 92.27 96.67

2 74.20 84.27 92.07 93.67 92.73

4 82.80 88.60 93.73 93.87 88.93

10 87.00 89.87 92.87 91.60 85.80

Table 5.5: Accuracy of anomaly detection obtained with GMMs using generated mean space, with the
highest value highlighted in bold.

Similarly to what occurred with K-means, the encoded z spaces that showed the best error rate

with GMMs were the ones obtained by the models trained with dz = 256 and β = {0.3, 0.7, 1}, with

considerably higher accuracy than the others. Furthermore, for these values of β there was the same

tendency of increasing the accuracy as we increased the latent space dimensions dz. The overall top

accuracy value was again obtained by applying the clustering algorithm to the mean space generated by

model A, reaching the 96.73% mark, a slightly better value than the one obtained by applying K-means.

There was, however, a slight deterioration in the error rates for smaller values of dz, specially for

dz = 4 and dz = 16. Also, as opposed to the previous case, β = 0.3 does not yield the best accuracy

values for all the latent space dimensions.

Figure 5.13 depicts the evolution of accuracy with the change of β. The tendency of decreasing the

accuracy for values of β above 0.3 verified for K-means clearly does not hold for GMMs. Instead, it

increases for the majority of the latent space dimensions, except for dz = 256. Namely, for the models

trained with latent space dimensions dz = {16, 64, 128}, the highest accuracy values emerge when

they are trained with values of β of 4 or 10. This suggests that the GMMs algorithm is probably taking
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better advantage of the disentanglement promoted by these values of β than the K-means algorithm. In

addition, the fact that K-means assumes spherical clusters, while GMMs has more flexibility in terms of

cluster shape, might justify these results. Nevertheless, these properties did not enable the algorithm to

surpass the results obtained by the models trained with β values of 0.3, 0.7 and 1.

Figure 5.13: Evolution of accuracy over β.

To drive further conclusions about GMMs, we should inspect the resulting F1-scores, Precision and

Recall values for this clustering algorithm, presented in Tables 5.6, 5.7, and 5.8, respectively.

For this clustering algorithm, the maximum F1-score of 0.9494 was obtained by both models A and

B, a slightly better score than the best score obtained by K-means clustering. One should once more

realise that the model could be trained with latent dimension values above 256, in order to see if there

is a dz value that yields better results, since the obtained results once again suggest that training with

higher dimensions would possibly improve accuracy.
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F1-score

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 0.8569 0.8280 0.6685 0.6075 0.6090

0.3 0.7462 0.6808 0.7709 0.8267 0.9494

0.7 0.6540 0.7476 0.8283 0.8634 0.9467

1 0.7000 0.7615 0.8473 0.8942 0.9494

2 0.7198 0.8066 0.8917 0.9115 0.8842

4 0.7913 0.8517 0.9125 0.9130 0.8122

10 0.8285 0.8657 0.8999 0.8750 0.7697

Table 5.6: F1-score of anomaly detection obtained with GMMs using generated mean space, with the
highest value highlighted in bold.

Precision

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 0.7601 0.7157 0.5025 0.4752 0.4739

0.3 0.5995 0.5166 0.6329 0.7160 0.9808

0.7 0.4864 0.5998 0.7151 0.7717 0.9706

1 0.5402 0.6188 0.7451 0.8221 0.9611

2 0.5641 0.6833 0.8180 0.8534 0.9433

4 0.6644 0.7519 0.8537 0.8656 0.9349

10 0.7394 0.7753 0.8453 0.8681 0.8376

Table 5.7: Precision of anomaly detection obtained with GMMs using generated mean space, with the
highest value highlighted in bold.

Recall

dz = 4 dz = 16 dz = 64 dz = 128 dz = 256

β

0 0.982 0.982 0.998 0.842 0.852

0.3 0.988 0.998 0.986 0.978 0.920

0.7 0.998 0.992 0.984 0.980 0.924

1 0.994 0.990 0.982 0.980 0.938

2 0.994 0.984 0.980 0.978 0.832

4 0.978 0.982 0.980 0.966 0.718

10 0.942 0.980 0.962 0.882 0.712

Table 5.8: Recall of anomaly detection obtained with GMMs using generated mean space, with the
highest value highlighted in bold.

Inspecting Tables 5.7 and 5.8, it is evident that the predictions generated by GMMs generally have

an overall higher recall than precision, differently to what was observed with K-means. This means that

this algorithm is, in most cases, producing more false alarms than K-means.
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Although model A has a slightly higher accuracy than model B, this difference is rather small to

be used as a criterion of choice to elect the best between the two. Looking at precision and recall

values, despite having lower precision (0.9611 as opposed to 0.9808 for model A), model B shows a

considerably higher recall value (0.938 as opposed to 0.920 shown by model A), which is important if we

want to minimise the number of missed detections. Since the main goal of this framework is to detect

anomalies, we consider that trading off some precision (meaning it will produce more false alarms) for

better anomaly detectability is very reasonable (considering the magnitude of the difference), so this is

the model chosen as being the best when applying GMMs among the 35 models.

The two plots in Figure 5.14 depict the 2-component PCA applied to the mean space generated by

model B, one with the ground truth labels (a) and another with the labels assigned by the GMMs algo-

rithm (b). It is once more noticeable how data points further away from the cluster of images without

ships were classified as positive (”contains ship”), whereas data points closer to this cluster were clas-

sified as negative (”no ships”). In Figure 5.9 (b) (depicting the two-component PCA representation with

K-means labels) it was possible to observe that the separation made by the K-means algorithm was

heavily expressed along the first dimension (x-axis in the figure) of the PCA representation. In Figure

5.14, this is not observed so evidently with the GMMs labels. Instead, it appears the model was able

to make use of additional features to perform its classification, since it was capable of finding normal

images that are further away from the main cluster, and ship images which are closer to it, which might

justify its better performance when compared to K-means.

(a) PCA with ground truth labels (b) PCA with GMMs labels

Figure 5.14: Comparison between ground truth and GMMs generated labels for β = 1 and dz = 256.

To get a better understanding of how the model is performing on the test set, we first analyse its

normalised confusion matrix, depicted in Figure 5.15.

Based on this matrix, we observe that roughly 98.1% of the images without ships were predicted as

negative, but a smaller percentage of the images with ships were predicted as positive (about 93.8%).

Similarly to the K-means classification results, this means that the main source of errors of the model
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Figure 5.15: Confusion matrix for β = 1 and dz = 256.

is in the misclassification of images with ships, missing the classification of around 6.2% of the cases,

translating into 31 missed detections.

It is now important to perform a more in depth analysis to the misclassified images in the test set.

Starting by inspecting the missed detections, it is expected that at least 9 of the 31 images with ships

with wrongly predicted labels (false negatives) do not have any ship at all, corresponding to the images

in the test set with incorrect ground truth positive labels, previously pointed out in the K-means analysis.

After checking each of these 31 images, it was possible to identify those 9 images among the list of false

negatives. Since these predictions were actually correct (the algorithm labelled them as negative, and

the ground truth labels should be changed to negative), the actual total number of missed detections

was 22 instead of 31.

Considering this, the new F1-score, accuracy, precision, and recall for GMMs applied to model B are

the following:

F1 = 0.9581

Accuracy = 97.27%

Precision = 0.9611

Recall = 0.9552

Continuing this analysis, Figure 5.16 shows some examples of images with ships that were previously

not detected by the K-means algorithm applied to model A’s generated latent space, and were now

detected by GMMs applied to model B’s generated space. In these images there is a noticeable pattern:

all the ships have a great amount of black pixels within their bodies, and that might have been enough

to impede the K-means to recognize them.

Figure 5.17 contains 6 examples of ship images with incorrect labels assigned by GMMs applied to

the mean space generated by model B. The model might have failed to identify these shapes due to

the dimness of the pixels that compose the ships, probably mistaking them with the kind of noise that is

typically present in most SAR images.
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(a) (b) (c)

(d) (e) (f)

Figure 5.16: Examples of images with ships not detected by K-means and detected by GMMs.

(a) (b) (c)

(d) (e) (f)

Figure 5.17: Examples of GMMs missed detections for the model trained with β = 1 and dz = 256.

5.2.2 Comparison with a supervised CNN

The normalised confusion matrix for the classification results of the supervised CNN is depicted in Figure

5.18.

Comparing the values of this matrix with the values of the confusion matrices for the classification

with our proposed method, the major difference between them is in the ship detection rate, that is
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Figure 5.18: Confusion matrix for the supervised CNN.

considerably higher with the supervised CNN.

The overall results of the proposed framework with both clustering algorithms and the results of the

supervised CNN are shown in Table 5.9. Notice that all the presented values for each evaluation metric

are taking into account the 9 images that had incorrect ground truth labels, and were correctly labelled

by the algorithms.

Evaluation metric Clustering Algorithm Used Supervised
Used K-means GMMs CNN

Accuracy 0.9713 0.9727 0.9820
F1-score 0.9551 0.9581 0.9728
Precision 0.9808 0.9611 0.9622

Recall 0.9308 0.9552 0.9837

Table 5.9: Results overview for all the used algorithms.

Regarding the two clustering methods, the Gaussian Mixture Models clustering shows slightly better

accuracy (+0.14%) and F1-score (+0.31%), as well as considerably higher recall (+2.62%), when com-

pared to the K-means algorithm. K-means, on the other hand, presents a considerably higher precision

(+2.05%), when compared to the Gaussian Mixture Models.

As mentioned before, when the main goal is to detect positives and, consequently, avoid false nega-

tives, it is important to choose the method that reveals a higher recall value. Therefore, and even though

having lower precision, the algorithm that performed the classification task better was the Gaussian

Mixture Models clustering.

Finally, it is important to compare the performance of the proposed framework using GMMs with the

performance of the supervised CNN. Inspecting table 5.9, it is evident that the latter performed better

in every evaluation metric used, especially in terms of recall, meaning it had significantly more success

in detecting images with ships. These results are well aligned with what was expected, because a

supervised model has clear advantages when it comes to learning. Namely, since they are provided

with images containing ships during training - which is not the case for the proposed unsupervised

method, that is trained only with normal images - they are able to learn from them in order to distinguish

between both types of images at test time, justifying the much better recall values.
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Chapter 6

Conclusions

The presented thesis aimed at developing a completely unsupervised machine learning framework to

detect anomalies in SAR images, resorting to the representation learning ability of variational autoen-

coders. By the time when we engaged in this endeavour, we believed that unsupervised learning tools

were especially important in the field of remote sensing, namely in the field of SAR image analysis, given

the huge and ever-increasing amount of data available. This work came to confirm our belief.

To design and test the proposed framework, images of the ocean were chosen due to the relevance

of monitoring areas that are mostly remote. In addition, given the vastness of the ocean, the great

majority of sea images is expected to not contain any anomaly at all, therefore being great candidates

for a successful model. Nevertheless, we believe that other cases where the observed terrain does

not change much over time could also take advantage of this solution, provided that enough data is

available. In these cases, the network could also have to be adapted to the complexity of the images

involved, since more analytical power could be necessary for such scenarios.

Since very few previous works were found on the application of VAEs to SAR images, arriving at

the final model was no easy task. A lot of experimenting was conducted in order to achieve satisfying

results. This process, as is usual when training a neural network for a new application, was limited by

the computational resources available.

Nonetheless, the final model achieved very interesting results, being able to classify the test set

images with 97.27% of accuracy and an F1-score of 0.9581, so it is fair to conclude that the proposed

objective for this thesis was reached with success.

6.1 Achievements

The main goal of this work was to provide an unsupervised way of detecting anomalies in SAR images,

using VAEs as the main stepping stone. Given that the proposed framework was able to detect roughly

95.5% of the anomalous images in the test set, with a false alarm rate of 0.019 and a missed detection

rate of 0.045, we consider that this goal was achieved.

A paper related to the work presented here was submitted and accepted for publication and oral pre-
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sentation at the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS2020).

6.2 Future Work

Despite the good results obtained, there are a few things that should be considered for possible future

developments.

As previously mentioned, the network should be trained with dz > 256, in order to check for possible

improvements.

Regarding the applicability of the solution to real case scenarios, further testing should be conducted

to evaluate other performance metrics, such as the time needed to classify each image, in order to

perform a benchmark with current state of the art methods, and assess the feasibility of applying the

framework in a live surveillance system. This would also require a study of possible optimisations to be

applied to the classification pipeline, in order to achieve minimum classification time.

This work focused on analysing the generated mean spaces of each trained model. Future develop-

ments could try to also take advantage of the generated sets of variances, that could possibly contain

useful information to help the model perform even better. Further studies could also include training the

model using the triplet loss [136], and the usage of adversarial VAEs [137].

Finally, it would be interesting to train and test the network in other scenarios, such as in land surveil-

lance applications, in order to analyse how the model would behave in those conditions.
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