Interactive Physics-Based Rendering with AI-Accelerated Denoiser

Keywords:

Abstract:

Gongalo Soares!

L Instituto Superior Técnico/Inesc-ID, Universidade de Lisboa, Lisboa, Portugal
goncalofdsoares @tecnico.ulisboa.pt

Nvidia RTX technology, Vulkan, Path Tracing, Bidirectional Path tracing, Al-based Denoiser

Path tracing in real time has long been ailed has the holy grail of real time rendering. This technique, com-
monly used for photorealistic non-real time rendering, provides incredibly realistic graphics by simulating
the physical behaviour of light, at the cost of being computationally heavy. With the introduction of Nvidia
RTX-enabled GPUs family, light transport simulations started to look like a reality for real time. In this paper
we describe the implementation of interactive Monte Carlo renderers, namely Path Tracing and Bidirectional
Path Tracing algorithms, by using the low level Vulkan API and its RTX extension (VK_KHR ray_tracing),
recently made available by Khronos Group. Furthermore, in order to accomplish low variance rendered im-
ages, we integrated the Al-based denoiser available in the Nvidia“s OptiX framework. With such system, we
were capable not only to compare the two types of light transport algorithms when used with and without
the denoiser but also to answer to a relevant question: is it worthwhile to keep invest in more complex light
transport algorithms, now that an interactive denoised unidirectional path tracing is available?

1 INTRODUCTION

1.1 Motivation

Real-Time Ray tracing has for long been considered
the technology of the future, a far to reach dream
where rendering photo-realistic images by simulating
the physical behavior of light could be calculated fast
enough so that we can interact with the scene and per-
ceive the changes in real-time. This future is now pos-
sible with the introduction of hardware-accelerated
ray tracing (Daniel Koch Tobias Hector and Werness,
2020) simulation provided by the NVidia RTX family
of graphics cards.

Typical production renderers render an image by
using a vast number of samples per pixel to render the
best-looking image possible, however recent work in
image reconstruction, also referred to as denoising,
has opened the possibility of generating images with
far fewer samples per pixel, and therefore less time,
with substantial quality.

Ray Tracing is a technique used to simulate the
physical interactions of the light in a scene, and over
the years, multiple algorithms have been developed to
solve this problem, with varying complexity, image
quality results, and performance. Now that it is pos-
sible to make these simulations at never before seen
rates, it is relevant to compare these different ray trac-

ing algorithms that emerged over the years, when im-
plemented on graphics cards, and used in conjunction
with reconstruction methods.

1.2 Objectives

The main objective of our research is to create a ren-
derer capable of implementing multiple Light Trans-
port algorithms, with the ability to systematically
compare them to each other. Furthermore, with the
rise of denoising algorithms, we seek to answer how
these behave with more complex algorithms such as
Bidirectional Path Tracing (Lafortune and Willems,
1993) and Vertex Connection and Merging (Georgiev,
2013), verifying how a simple algorithm with a de-
noiser compares to the state of the art methods, and
ultimately see if complex algorithms have become un-
necessary. In other words, we are trying to make an
application that helps find answers to the following
questions:

* Can we use Ray Tracing algorithms in real-time?

* How well is a denoiser capable of reconstructing
images with low samples?

e Is it worth using complex light transport algo-
rithms over simpler ones with denoising?

2 CONTRIBUTIONS

To answer the questions above, we developed a
renderer that leverages the graphics card RTX capa-
bilities; we achieve this by utilizing the Ray Trac-
ing extension for the Vulkan low-level graphics API
(Daniel Koch Tobias Hector and Werness, 2020). Our
implementation has an architecture that allows chang-
ing between different light transport, multiple scenes,
and the ability to denoise the generated image either
every frame or after reaching a defined number of ac-
cumulated samples or total elapsed time. This de-
noising is computed and accelerated by the graph-
ics card CUDA cores exposed via the Optix Frame-
work (Parker et al., 2010). Optix provides a function
that can take as input nosy images generated by light
transport algorithms with a small number of sam-
ples and output images with much higher quality, re-
sembling images generated with many more samples.
This work has a focus on making an application that
facilitates the creation of different ray tracing algo-
rithms so that it is easy to add new algorithm imple-
mentations into our working pipeline, and compare
it with the previously created algorithms. We imple-
mented two light transport algorithms for this thesis’s
scope: Path tracing and Bidirectional Path Tracing.

We gathered data from multiple scenes rendered
with both algorithms, with and without denoising the
output so that we can compare the performance and
image quality of both algorithms to be able to answer
the proposed questions.

3 TESTING

3.1 Evaluation Methodology

To evaluate the different algorithms we use a set
of scenes, with different characteristics, e.g. re-
flection of caustics, glossy materials, or difficult to
reach light sources, to benchmark each algorithm’s
strengths weaknesses, we implemented on a graphics
card.

In order to evaluate the success of each algorithm,
we will measure renders with varying amounts of ac-
cumulated samples with the following metrics.

3.1.1 Frames Per Second

This metric measures the number of frames a given
algorithm can produce per second. We will record the
average and the standard deviation of the frames per
second. With this metric we gain information about

Figure 1: Teapot Cornell Box

the time need to render a single frame and if the algo-
rithm can maintain a stable throughput.

3.1.2 Structural Dissimilarity

Structure Dissimilarity Index Metric (DSSIM) (kor-
nelski, 2020) is an image quality metric that gives a
positive value where 0 means its an identical image
and DSSIM > 0 represents the amount of difference
between the images. Structural Similarity Index Met-
ric is one other popular metric used when comparing
Images and DSSIM can be derived from SSIM (Zhou
Wang et al., 2004) where DSSIM = 1/SSIM — 1 This
metric as seen much use to compare the output of a
Monte Carlo renders to its reference image.

3.1.3 Time to Converge

In this scenario we test the algorithms in a static scene
and with a stationary camera, this way we can mea-
sure how long, and additionally how many iterations
are necessary for a certain algorithm to achieve a de-
fined DSSIM between the output and a reference im-
age.

3.2 Test Scenes

For testing purposes, we chose scenes that either have
been used to benchmark Ray Tracing application or
are able to showcase most features of our application.
These scenes are shown in Figures 1, 2, 3 and 4.
We chose this set of scenes to provide a wide
range of characteristics and different complexities.
The “Teapot Cornell Box™ is a simple scene with
very few primitives, featuring as the name suggests,
the Cornell Box with a teapot, showcasing different
materials, such as diffuse, glass, and colored metal.
The ”The Covered Dragon” utilizes the same Cor-
nell Box, though we added a rectangle covering the
light source, this scene serves to test how the imple-
mented light transport algorithms behave when the

Figure 2: Covered Dragon

4

Figure 3: The Breakfast Room (Bitterli, 2016)

light sources are hard to reach. This scene also in-
cludes the Standford Dragon, composed of approx-
imately 5,500,000 triangles, and a sphere to show-
case that renderer supports custom primitives, be-
sides triangles. “The Breakfast Room” (Bitterli,

2016) features multiple different geometries, the light
source in this scene is outside the room and enter it
through a window with blinders. Finally, we chose the
”Japanese Classroom” (Bitterli, 2016), a commonly
used scene to benchmark ray tracing applications and
denoisers.

e | NN
Figure 4: Japanese Classroom (Bitterli, 2016)

203
200

107
100

Frames Per Second

=

Teapot Cornell Box Covered Dragon Room p: cl

[ToPath Tracing DnBidirectional Path Tracing |

Figure 5: Average Frame Rate on 1920x1080 Resolution

4 RESULTS

This section will present and analyze the results
we gathered from rendering our test scenes with both
Path Tracing and Bidirectional Path Tracing. We will
also see how the recursion step affects performance
as well as image quality. Every test was made on the
same machine utilizing the NVidia RTX 2070 graph-
ics card, every test we made was GPU bound, so the
only component that matters is the graphics card. Ev-
ery frame, we trace a single path per pixel, mean-
ing that we calculate one sample per pixel per frame.
Both algorithms had a maximum path length of 32,
which represents the maximum number of bounces
a path can make through a scene. Appendix A con-
tains more images rendered by our application, and
Appendix B has Tables and Figures with more test re-
sults.

4.1 Performance

We start by analyzing the performance of both ray
tracing algorithms; Figure 5 shows the average frames
per second that the scene was being rendered at (see
Table 1 for more details). Here we can see that that at
the resolution of 1920x1080 Path tracing can achieve
real-time rates in every scene and that Bidirectional
Path Tracing is more expensive performance wise but
can still achieve iterable frame rates on the scenes we
tested.

The table 2 reflects the duration of denoising a sin-
gle frame. The duration of the denoiser is indepen-
dent of the scene and ray tracing algorithm, the only
factor that affects its duration is the image resolution.
For example, a denoised frame of the scene Break-
fast Room, at the resolution of 1920x1080, using Path
Tracing takes 6.3 4 14.5 = 20.9 milliseconds, which
means that this scene runs at 1/0.0209 = 47.8 frames
per second with the denoiser running on every frame.

Frame Duration [ms]

PT BDPT
S0 239
S 46 13
Brelag?;t;;gom 2.9 8.5
Japanlezsgoil;lzsgmom 9.3 222
Teapl"gtz%irl“(féémx 48 o7
Cloaivzy 95 244
o0 02 524

Table 1: Scene Frame Durations

1280x720 1920x1080
Denoiser Duration [ms] 7.5 14.5

Image Resolution

Table 2: Denoiser Durations

4.2 Image Quality Assessment

In this section, we take a look at the images the al-
gorithms can produce and how they improve in qual-
ity over time, and how the application of the recon-
struction step affects the image quality. The Figure 6
is the result of accumulating eight samples, meaning
that every pixel only has a contribution from a max-
imum of eight paths. We can see that with this low
sample count, the image contains a high amount of
variance. For comparison Figure 7 shows the result
from rendering the same scene for an equal amount
of time with the Bidirectional Path Tracer, where we
are only able to accumulate 4 samples. Figure 8 is
the outcome of denoising Figure 6. And finally fig-
ure 9, shows a side by side comparison of these im-
ages, where we can see how the denoiser helps reduc-
ing variance, from a noisy image.

The charts depicted in figures 10 and 11 exhibit
how the rendered image quality progressively in-
creases by accumulating samples. Figure 11 is a zoom
in of figure 10 regarding a time interval till 3 seconds
These results come from computing the DSSIM value
between a generated image and the reference for that
scene, utilizing a command line tool(kornelski, 2020).
Here we can see that both algorithms converge to the
reference image, reflected by the DSSIM decreasing
over time until getting close to 0. In this scene, we
can see that Bidirectional Path Tracer produces higher

Figure 6: “Japanese Classroom” - Path Tracing - 8 Total
Accumulated Samples - Rendered in 16 milliseconds

Figure 7: ”Japanese Classroom” - Bidirectional Path Trac-
ing - 4 Total Accumulated Samples - Rendered in 16 mil-
liseconds

Figure 8: “Japanese Classroom” - Path Tracing with De-
noising - 8 Total Accumulated Samples - Rendered in 16
milliseconds + 14.5 milliseconds of denoising

Figure 9: "Japanese Classroom” - Side to Side comparison
rendered in 16 milliseconds. Path Tracing (Top-Left), Bidi-
rectional Path Tracing (Top-Right), Path Tracing Denoised
(Bottom)

2k e PT
—&— PT w/ denoiser
ag BDPT
BDPT w/ denoiser

.
12 14 16 18 2 22 24 26 28 3
Time Elapsed [secands]

L
0 02 04 06 08 1

Figure 10: “Japanese Classroom” Structural Dissimilarity
over Time

0.8

o PT

. —a— PT w/ denoiser
06 \ BDPT

A BDPT w/ denoiser

0 H\W
[02 04 06 08 1 12 14 16 18 2 E
Time Elapsed [seconds]

Figure 11: Japanese Classroom” Structural Dissimilarity
over Time, Zoom in of the first 3 seconds

quality images than a Path Tracer. However, a Path
Tracer with Denoising converges much faster to the
target image, when comparing with methods without

the denoising step.

Algorithm Time [s] Samples DSSIM Denoised
SSSIM
PT 0.02 1 3.0636 0.652
PT 0.161 8 1.2662 0.282
PT 0.343 16 0.9665 0.161
PT 1.292 64 0.6499 0.050
PT 5.196 256 0.3810 0.023
PT 20.773 1024 0.2092 0.014
PT 83.245 4096 0.0858 0.009
PT 331.638 16384 0.0270 0.007
BDPT 0.048 1 2.6231 0.711
BDPT 0.161 4 1.6706 0.493
BDPT 0.343 7 1.3271 0.327
BDPT 1.292 25 0.9605 0.152
BDPT 5.196 49 0.6182 0.091
BDPT 20.773 405 0.3751 0.074
BDPT 83.245 1562 0.2204 0.067
BDPT 331.638 6299 0.1245 0.064

Table 3: ”Japanese Classroom” Image quality..

S CONCLUSIONS

For most scenes, we can exceed Real-Time rates
using Path Tracing, and Bidirectional Path Trac-
ing can keep up with a Real-Time frame rate at
1920x1080 resolution, provided that though we are
only calculating one path per pixel every frame. Over-
all, results seem to indicate that using Path Trac-
ing in conjunction With a Denoiser is the best ap-
proach to obtain the highest image quality in the
shortest amount of time. Modern denoising powered
by deep learning is an excellent solution that is able to
transform low sampling images to images with much
higher quality. Even images with high sample counts
can benefit from denoising their output, to help clear
out some high variance that is very hard to converge.
Complex ray tracing algorithms may still be able to
outperform the simpler Path Tracer under challeng-
ing scenes, such as scenes where light sources are
very hard to reach. However, for the vast majority
of scenes, light sources are not that hard to intersect,
so Path Tracing performs very well in these cases.

5.1 Achievements

Our work tries to pave the way for more research
work of light transport algorithms by providing an
application to compare implementations of said algo-
rithms leveraging hardware acceleration by utilizing
the GPU. Our main goal was to establish a base archi-
tecture so that other Monte Carlo methods could be
integrated and studied. We managed to successfully
implement a ray tracing renderer on the GPU capa-
ble of using a Denoiser, supporting multiple scenes
and a diverse set of materials. We also implemented
two light transport algorithms: Path Tracer and Bidi-
rectional Path Tracer, that we tested extensively so
that we could answer the problems we were trying to
solve.

5.2 Future Work

During the development of the application, we had
to compromise on this work’s scope; initially, we
planned to implement two more light transport algo-
rithms: Photon Mapping and Vertex Connection and
Merging. We feel confident that we built a solid base
for these algorithms to be implemented on, and there
are more of such algorithms that could be of interest to
study when accelerated by the graphics card. The Op-
tix denoiser is not spatiotemporally stable, meaning
that if we move the camera while denoising, a flicker
artifact is produced; another direction of extending
our work would be implementing a spatiotemporally

stable denoiser to remove this type of artifact and ren-
dering animation in real-time.

We hope that the growth of GPU accelerated ray
tracing keeps evolving so that we can afford even
more rays per pixel in the near future to allow for en-
tirely path traced games and faster 3D renderers.

REFERENCES

Bitterli, B. (2016). Rendering resources. https://benedikt-
bitterli.me/resources/.

Daniel Koch Tobias Hector, J. B. and Wer-
ness, E. (2020). Ray tracing in vulkan.
https://www.khronos.org/blog/ray-tracing-in-vulkan.

Georgiev, 1. (2013). Implementing vertex connection and

merging.
kornelski (2020). Image similarity com-
parison simulating human perception.

https://github.com/kornelski/dssim.

Lafortune, E. P. and Willems, Y. D. (1993). Bi-directional
path tracing.

Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hobe-
rock, J., Luebke, D., McAllister, D., McGuire, M.,
Morley, K., Robison, A., and Stich, M. (2010). Optix:
A general purpose ray tracing engine. ACM Transac-
tions on Graphics.

Zhou Wang, Bovik, A. C., Sheikh, H. R., and Simoncelli,
E. P. (2004). Image quality assessment: from error
visibility to structural similarity. /EEE Transactions
on Image Processing, 13(4):600-612.

