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Abstract

Within the context of spacecraft formation flying localization methods, autonomous orbit deter-
mination through relative sensing is one of the most promising concepts discussed in the literature.
Despite its potential, it is yet to be implemented in practice. In this thesis, the SunRISE mission
concept will be used as a case study to explore the potential of this method. After comparing it with
the mission’s previously proposed localization methods, an optimization study will be made to place
a new satellite in the formation so as to maximize its localization accuracy. Finally, a new study will
be done on the possibility of removing the relative bearing measurement systems from the spacecraft
in the formation while maintaining the observability of their position in the inertial frame, and the
resulting performance will be evaluated and compared with the previous results.
Keywords: Spacecraft formation flying, relative positioning, trajectory optimization, observability
study

1. Introduction

Over the last few decades, a great focus has been
given to the goal of reducing the costs of space ex-
ploration missions. Among the new concepts and
developments being studied for this purpose, for-
mation flying may prove to be one of the most im-
portant technological shifts to influence the space
industry. The interest in Flying Formations stems
from the ability to divide the payload and opera-
tional functions of a spacecraft between several el-
ements [1].

The fractioning of a single large satellite into sev-
eral smaller ones should not only lead to a reduction
in cost, but also to an increased reliability, since
the loss of one element would not necessarily im-
ply the collapse of the system [2]. Furthermore, FF
can extend the realm of possible science missions
that would otherwise be impractical with a single
spacecraft [3]. Applications that require large and
precise baseline separations such as interferometry
and gravimetry could particularly benefit from the
attributes of FF [1].

One of the most challenging aspects of spacecraft
FF missions is the design of on-board guidance,
navigation and control (GNC) techniques [4]. So
far, the navigation solutions adopted by most FF
missions have relied on GNSS receivers. Even the
MMS mission, in which the formation reached or-
bital apogees extending as far as 25 Earth radii,

opted to use a GPS receiver tuned to acquire low
strength GPS signals to allow for positioning at high
altitudes [5]. In deep space missions, orbit determi-
nation systems are tipically dependent on ground
station telemetry [6].

However, ground station telemetry in deep space
missions does not allow for knowledge of the real-
time state due to the time delay. For certain mis-
sions, such as those that involve the landing of
equipment on a planet’s surface, that time delay be-
comes a considerable predicament [7]. Overcoming
this challenge will require autonomous, real-time
navigation methods.

Seeking to find a solution to the previous prob-
lem, Markley demonstrated that the time history of
the relative positioning of the spacecraft in a forma-
tion can allow for the observation of their absolute
position in an inertial frame [8]. This method has
been extensively researched since, as it provides an
autonomous and real-time means of observing the
absolute position, regardless of the distance or visi-
bility to the ground stations or GNSS constellation.

In order to contribute to the research on the rel-
ative positioning autonomous navigation method, a
case study will be necessary. Due to the sparse-
ness of deep-space flying formation concepts, how-
ever, the Earth-centered SunRISE mission concept
was selected [9]. A study done on potential nav-
igation methods to achieve SunRISE’s positioning
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requirements compared a relative positioning-only
method with a GNSS-based method [10]. Even
though the study concluded that the latter was the
better choice, their proposed relative positioning-
only method did not make use of absolute state ob-
servability for autonomous navigation.

Using this concept as a template, 3 topics of dis-
cussion were set for this study:

� Analysis and comparison of a new relative po-
sitioning autonomous navigation method with
the previously proposed navigation solutions
for the SunRISE concept;

� Placement of an additional spacecraft in the
formation in a configuration that optimizes the
autonomous navigation system’s performance;

� Possible suppression of system sensors while
maintaining full state observability.

1.1. Related work
In this section, previous work by other researchers
relevant to the topics mentioned above will be re-
viewed.

1.1.1 Autonomous navigation method

As mentioned before, the concept of using rel-
ative positioning within a multi-satellite mission
for autonomous navigation was first suggested
by Markley [8]. In his paper, Markley demon-
strated the full observability of a positioning sys-
tem with two spacecraft in keplerian orbits around
the same body, and with relative position measure-
ments (with orientation knowledge in an inertial
frame) using the observability matrix. Markley also
reached the conclusion that this system will be-
come unobservable if both spacecraft always have
the same altitude, and are either coplanar or ori-
ented such that they cross the line of intersection of
the two orbital planes simultaneously.

Further studies have been done on the observabil-
ity of this system. Psiaki first proposed a batch fil-
ter to autonomously determine the orbits of 2 space-
craft based on measurements of the relative posi-
tion vector from one spacecraft to the other [11].
Later on, Psiaki further developed this method so
that it could also autonomously determine positions
while allowing for corrections of the gravity model
of the celestial body around which the spacecraft
orbit [12].

1.1.2 Observability Optimization

Within the topic of absolute positioning through
relative positioning measurements, the question of
which orbital configuration will optimize the ac-
curacy of the system has already been addressed

in the literature. Ou studied the impact of the
formation’s absolute orbital elements on the ob-
servability within a 2-element formation [13]. A
subsequent study concentrated in designing an au-
tonomous navigation scheme for Mars exploration
[14].

1.1.3 System Sensor Reduction

Since relative positioning systems that do not de-
pend on tracking systems estimate the relative po-
sition through separate measurements of the range
and LOS (Line-Of-Sight) vector, studies have also
been done on the observability of a system with
ranging-only [15] and LOS vector-only [16].

According to Yim’s work [16], relative LOS vec-
tor measurements with inertial attitude information
allow for the system to be observable, even with-
out J2 perturbations from the Earth’s oblateness
effect on its gravity field. This system is only un-
observable when the two spacecraft are in the same
orbiting plane with no inclination. Increasing the
complexity of the gravity field of the central body
or the overall inclination of the formation may in-
crease the system’s observability.

Hill found that ranging measurements in the two-
body problem could observe the shape, phase and
relative orientation of the orbits of the two space-
craft, but not the absolute orientation with respect
to the inertial frame of reference, due to the spher-
ical symmetry of the two-body problem’s gravity
field model [15]. The problem can become observ-
able when the asymmetries of the central body’s
gravity field are considered [15, 17]. Another way
to render this system observable through ranging
measurements is to consider three-body problem
dynamics, in which one of the spacecraft is in the
Lagrange points 1 or 2. This concept of navigation
for the Earth-Moon system is known as LiAISON
[18], and has been proposed as a method of au-
tonomous navigation for vehicles on the far side of
the lunar surface.

2. Localization methods
The SunRISE mission, proposed by NASA’s Jet
Propulsion Laboratory, aims at studying the accel-
eration of solar energetic particles at Coronal Mass
Ejections. The mission consists of a spacecraft for-
mation with 6 identical 6U CubeSat forming an ob-
servatory in a 25-hour circular orbit slightly above
GEO. The spacecraft’s formation is kept passively,
with interspacecraft distances ranging from ∼ 1−10
km along an orbit. In order to achieve its scientific
objectives, the mission requires a maximum 3 m
relative positioning accuracy.

Two solutions were discussed in [10] for the po-
sitioning system of the SunRISE mission: a GNSS-
based method, and a RF/vision-based method. De-
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spite the study’s conclusion that the former was the
better solution, it also concluded that the latter had
potential room for improvement. We will therefore
make a description of the RF/vision-based method,
followed by a proposed alternative filtering solution.

2.1. RF/vision-based method

The alternative proposed method to achieve the
relative positioning accuracy requirement is based
on range and bearing measurements between the
spacecraft. Each spacecraft carries a UHF radio to
perform relative ranging, and a star tracker/camera
that can measure the orientation of another space-
craft with respect to an inertial frame of reference.

2.1.1 Crosslink schedule

This method is built on the assumption that rela-
tive measurements between spacecraft can only be
performed in pairs, and therefore a measurement
schedule is necessary such that every spacecraft gets
the chance to perform one set of measurements with
every other spacecraft within a measurement cycle.
The proposed measurement schedule is shown in
Table 1, in which the spacecraft are identified with
indexes from 1 to 6. For each measurement set, rel-
ative range and bearing observations between pairs
are made every second. The time between sets ac-
counts for the time required for the spacecraft to
slew and point the cameras towards each other and
for the radios to lock onto each other.

Time Interval, min S/C Pairs

[t0 + 9 + 50k, t0 + 10 + 50k] 1-2 3-4 5-6

[t0 + 19 + 50k, t0 + 20 + 50k] 1-3 2-5 4-6

[t0 + 29 + 50k, t0 + 30 + 50k] 1-4 2-6 3-5

[t0 + 39 + 50k, t0 + 40 + 50k] 1-5 2-4 3-6

[t0 + 49 + 50k, t0 + 50 + 50k] 1-6 2-3 4-5

Table 1: Measurement schedule, where t0 is the
starting epoch and k ∈ Z+ [10]

2.1.2 Extended Kalman Filter

The filtering algorithm proposed in [10] for this po-
sitioning system consists of a simple EKF. The ob-
jective of the EKF is to obtain an estimate of the
system state x ∈ Rp modelled after a dynamic sys-
tem ẋ(t) = f(x(t), t, w) with observation equations
y(t) = h(x(t), t, ν), where y ∈ Rm denotes the avail-
able observations on the system’s states, w ∈ Rp
represents process noise to account for modelling
innaccuracies and ν ∈ Rm represents measurement
noise. Kalman Filters are built on the assumption
that noise can be modelled as centered white noise,
meaning that w ∼ N (0, Q) and ν ∼ N (0, R).

Prediction model

The Extended Kalman Filter proposed in [10] fol-
lows a PVA (Position-Velocity-Acceleration) model,
meaning that its state vector accounts for the po-
sition, velocity and acceleration of each of the ele-
ments within the formation.

Let us consider δrj/1 the position vector of space-
craft j ∈ [2, ..., 6] with respect to spacecraft 1 in an
inertial frame centered at the latter. Its correspond-
ing velocity vector in the same frame of reference is
δvj/1, and its acceleration vector is δaj/1. In matri-
cial form, the continuous-time propagation of these
states in the PVA model is

ẋj = Ajxj +Gjwj ⇔δ̇rj/1δ̇vj/1
δ̇aj/1

 =

0 I 0
0 0 I
0 0 0

δrj/1δvj/1
δaj/1

+

0
0
I

wj1wj2
wj3

 (1)

where wj is a centered Gaussian white noise pro-
cess with covariance E{wj(t)wTj (τ)} = Qδ(t −
τ) = qjIδ(t − τ), and in [10] qj was set to
(1e−7)2(m/s3)2∀j ∈ {2, . . . , 6}. The full state vec-
tor x for the formation is a direct sum of the in-
dividual propagation system of each relative space-
craft motion state vector xj for j ∈ {2, . . . , 6}. The
complete full state dynamic model is therefore

ẋ = Ax+Gw, (2)

where A = diag(A2, . . . , A6), G =
diag(G2, . . . , G6), x = {xj} and w is the con-
catenation of the white noise processes wj , akin
to that of the full state vector. The full process
covariance matrix Q is similarly the direct sum of
all Qj ,∀j ∈ {2, . . . , 6}.

Observation model

According to the measurement schedule in Table 1,
measurements will be made between any pair of two
spacecraft indexed j and n. The range and bear-
ing measurements within a pair describe the relative
position vector in the inertial frame from one space-
craft to the other, δrj/n = [δrx,j/n δry,j/n δrz,j/n]T .
Relative positions between a pair that does not in-
clude the chief spacecraft (indexed 1) can be de-
composed into relative position vectors that belong
to the state vector x as

δrj/n(t) = δrj/1(t)− δrn/1(t),∀j 6= n ∈ {2, ..., 6}.
(3)

Range and bearing (expressed through right ascen-
dancy and declination angles) of spacecraft j from
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spacecraft n are expressed as

ρj/n(t) =
∥∥δrj/n(t)

∥∥+ νρ(t) (4)

ψj/n(t) = arctan

(
δry,j/n(t)

δrx,j/n(t

)
+ νψ(t) (5)

θj/n(t) = arcsin

(
δrz,j/n(t)∥∥δrj/n(t)

∥∥
)

+ νθ(t) (6)

where νρ(t), νψ and νθ are Gaussian white
noise process with covariances set in [10]
as E{νρ(t)νρ(τ)} = (1/3)2δ(t − τ)m2

and E{νψ(t)νψ(τ)} = E{νθ(t)νθ(τ)} =
(35)2δ(t − τ)arcsec2. These are incorporated
into the diagonal entries of the measurement noise
covariance matrix R.

2.2. Proposed solution
In the new proposed version of the filter, the state
vector and prediction model are modified. Whereas
the previously proposed state vector incorporated
the position, velocity and acceleration vectors in an
inertial frame centered at an arbitrary spacecraft,
we now propose to remove the relative accelera-
tion vector states for each of the spacecraft, and
to add the absolute position and velocity vectors of
the chief spacecraft 1 in the ECI frame.

By including the absolute position into the state
vector, the two-body problem dynamic model can
be incorporated into the EKF. The propagation of
the absolute position is done with the following set
of equations:ṙ1 = v1

v̇1 = −µ r1

‖r1‖3
+ ω1

. (7)

The relative states of spacecraft j with respect to
the chief spacecraft 1 in a local inertial frame cen-
tered on the latter, in turn, are propagated accord-
ing to the following set of equations:
δ̇rj/1 = δvj/1

δ̇vj/1 = −µ⊕

(
r1 + δrj/1

‖r1 + δrj/1‖3
− r1

‖r1‖3

)
+ ωj

.

(8)
These equations are discretised and computed nu-
merically using MATLAB ’s ode45 with the default
relative and absolute tolerance of 1e−3 and 1e−6,
respectively. The STM (State Transition Matrix) is
also propagated through this method and used for
the term Φk in the EKF equations. The process
noise are modelled similarly to the previous filter,
with the exception that q1 = (1−6)2(km/s2)2 and
the remaining qj are set to (1−9)2(km/s2)2.

2.3. Filter comparison
In this section, Monte Carlo simulations will be run
(M = 40 samples) in order to compare the two

configurations of the EKF and their performance
in terms of accuracy.

The trajectory generation approach in [10] con-
sisted only of a two-body dynamic model with
an added constant acceleration in an arbitrary di-
rection representing non-keplerian perturbations.
Since the study [10] focuses exclusively on relative
positioning and does not account for orbit dynam-
ics in its filter prediction step, the simulation period
can be reduced to a portion of an orbital period.
However, in the present study we intend to propose
an improved filter that includes the estimation of
the absolute position. The new filtering technique
is therefore tested with a simulation period extend-
ing to one orbital period, and with as accurate a
real trajectory as possible. In this study, the simu-
lation’s real trajectory incorporates solar radiation
pressure, gravitational pull from the Sun and Moon
and an Earth gravity geopotential model included
in the ODTBX Toolbox.

In [10], an error of 100 m and 1 cm/s in a ran-
dom direction was given to the initial relative posi-
tion and velocity vector state estimates δ̂rj/1(t0)

and δ̂vj/1(t0), respectively, while the initial ac-
celerations were assumed to be zero. The corre-
sponding diagonal entries of the initial state covari-
ance matrix are the squared value of that same
initial error ((0.01 km2 for position entries and
1× 10−10 (km/s)2 for velocity entries), with the
exception of the acceleration entries being set to
1× 10−14 (km/s2)2. Save for the acceleration en-
tries, these initialization parameters also apply to
the new filter’s simulation.

In table 2 the RMS error values of the original
and proposed filter are compared. The results of
the PVA EKF are shown for both the simulation
method described in [10] and for the new approach
in this study. The RMS values only account for
the period after which the filters have converged
(∼ 200 min). The mean relative position error is
the average of the RMS position error of the deputy
spacecraft with respect to the chief spacecraft. The
absolute position error corresponds to the RMS er-
ror of the absolute position of the chief spacecraft.

Abs. pos.
error (km)

Mean rel.
pos. error (m)

PVA EKF
(results in[10])

- 3.6

PVA EKF
new simulation

- 3.6

Added absolute
states EKF

1.82 0.13

Table 2: RF/vision filter RMS error comparison.

The new simulation conditions provide very close
results to those obtained in [10]. The difference in
error between the original and the proposed solu-
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tion in the new simulation environment shows that
the addition of the absolute position and keplerian
dynamics to the filter significantly improves the ac-
curacy of the algorithm (by a factor of ∼ 30).

The proposed modifications to the RF/vision-
based navigation solution seem to improve the over-
all performance of the system, not only increasing
the relative positioning accuracy, but also by allow-
ing the formation to autonomously determine its
absolute position. However, the absolute position-
ing accuracy of this method underperforms that of
the chosen GNSS-based navigation solution for the
mission by a factor of ∼ 1000.

3. Observability Optimization
As suggested in the first study that proposed the
concept of autonomous navigation through the ob-
servation of the time history of the relative position
of spacecraft in an inertial frame [8], the observ-
ability of the system is heavily dependent on the
orbital configuration of the spacecraft performing
the measurements. In order to further explore the
potential of this method, this study will focus on
adding a new spacecraft to the case study forma-
tion, such that its orbital configuration optimizes
the navigation system’s performance.

The generic mathematical formulation for the
problem in question is described as

minimize
x∈D

f(x)

subject to fi(x) ≤ 0, i ∈ {1, ...,m}
hj(x) = 0, j ∈ {1, ..., p}

where x describes the initial orbital configuration
of the new spacecraft, f(x) is the objective function
that quantifies the observability/performance of the
system, and fi(x) and hj are the inequality and
equality constraints, respectively.

3.1. Objective function
Several choices exist regarding the choice of objec-
tive function for the problem in question. Two tools
were used to evaluate and quantify the observabil-
ity/performance of the dynamic system:

� The continuous-time Observability matrix O
up to order 3 as described in [8]. Within the
context of this study, it will be used to study
which results would optimize local observabil-
ity across the trajectory, in the absence of mea-
surement noise;

� The inverse of the SFIM (Standard Fisher In-
formation Matrix ) serves as an estimate of
the state covariance of a discrete-time non-
linear system [19]. For numerically more ac-
curate results, the square-root of the SFIM
(SR-SFIM) was used, calculated as I =
[(R−1/2H0Φ0|0)T . . . (R−1/2HkΦk|0)T ]T .

2 metrics from each of these matrices were chosen
for optimization: the smallest singular value and
the condition number (ratio of largest to smallest
singular value):

� Maximizing the smallest singular value (or
minimizing its negative value, which will be re-
ferred to in this study as Local Unobservability
Index or LUI) can be explained as increasing
the observability of the least observable sub-
space in the context of the observability ma-
trix, or decreasing its estimation error variance
when considering the SR-SFIM;

� Minimizing the condition number (or its neg-
ative reciprocal value) should lead to a better
conditioned matrix, decreasing the disparity in
observability or estimation error between the
least and most observable subspaces.

These metrics can be taken from any matrix and
used to evaluate how close to singular it is. The ob-
servability matrix in question, however, only evalu-
ates local observability within a given point in time.
In order to evaluate the observability of a trajectory
using the observability matrix, it was decided to av-
erage the corresponding metric across time steps.
The SR-SFIM is calculated considering a set of ob-
servations from a given trajectory, and therefore can
be used directly.

Relative Positioning System

Based on precedents established by previous mis-
sions and available current technology, 2 measure-
ment systems were considered in this optimization
problem:

� The RF/vision-based system described in Sec-
tion 2.1 that was proposed for the case study
formation, with equivalent error model;

� An RF-only system, that uses multiple re-
ceivers and TOA (Time-Of-Arrival) differenc-
ing to estimate the (AOA) Angle-Of-Arrival of
the signal, which can be used with absolute ori-
entation knowledge to estimate relative bear-
ing.

Both models incorporate a Gaussian white noise
model for the ranging and bearing observations.
The values for the covariance of the RF/vision-
based system have already been described in Sec-
tion 2.1. For the RF-only system, the ranging ac-
curacy will be similar, but the relative bearing will
be more innacurate, with a standard deviation of 1◦

for the right ascension and declination angles (based
on the accuracy presented by the FFRF system on-
board the PRISMA mission [20]).
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The lower accuracy presented by the RF-only sys-
tem is compensated by the assumption that the
system can perform measurements regardless of the
distance between the spacecraft within the Earth’s
sphere of influence. The RF/vision-based system
will present a maximum distance constraint to ac-
count for the camera’s functional range.

Due to this constraint, the orbital period of any
spacecraft employing this system must be similar
to that of the chief spacecraft. The question of
whether or not to apply the restriction of synchro-
nizing the orbital motion of the new spacecraft with
the formation led to the decision of studying 2 dif-
ferent configurations for the RF-only system:

� Free-period configuration: In this configura-
tion, the new spacecraft has the freedom to
have a different orbital period than that of the
formation, which equates to a2 being a part
of the variables x. This configuration incurs
the problem that the orbits will become asyn-
chronous, making it difficult to evaluate how
the system will perform over time;

� Fixed-period configuration: The semi-major
axis a2 is set equal to that of the formation
a1, synchronizing the orbits and making the
relative orbital motion periodic. The periodic-
ity of the motion makes the filtering simulation
results of one orbital period more descriptive of
its overall behaviour.

For the SR-SFIM RF-only free-period and the
observability matrix configurations, the objective
function is calculated for the duration of the orbit
with the longest orbital period between the chief
and the new spacecraft. Because the SR-SFIM
cost functions benefit from considering a greater
number of observations, a period factor fperiod =
T1/max(T1, T2) is multiplied to the objective func-
tion of the RF-only free-period configurations.

Dynamic system approximations

In order to reduce the computation time of each
f(x) evaluation, the dynamic system was reduced
to a 2 spacecraft system, with one spacecraft being
the chief orbit used to design the formation (indexed
1) and the other being the new spacecraft. Addi-
tionally, the sampling period was changed from the
previously mentioned schedule to a fixed constant
sampling period of 90s.

Eclipse condition

Within a configuration in which the new space-
craft has a wider search space available, it is pos-
sible for the Earth to obstruct the field-of-view be-
tween it and the formation. This obstruction should

be accounted for in the objective function, such
that measurements become unavailable during the
“eclipse” period. In this period, the LUI and the
negative reciprocal of the CN are set to zero.

The SR-SFIM-related cost functions are multi-
plied by the ratio of uneclipsed per total observa-
tions used in the functions calculation to further
discourage the presence of occultation periods in
these results.

3.2. Constraints and Search Domain

The variables to be optimized x describe the ini-
tial state of the new spacecraft. The Classi-
cal Orbital Elements are generically used (x =
{a2, e2, i2,Ω2, ω2, ν2}, where a is the SMA, e is the
eccentricity, i the inclination, Ω the RAAN, ω the
argument of the perigee and ν the true anomaly).

Restrictions need to be applied to the domain
of x, however. The perigee of the orbit must stay
above a given threshold to avoid excessive atmo-
spheric drag (defined at 6678 km) and the apogee
must stay below 3× 105 km, to place a ceiling on the
computation time of the objective function (which
is proportional to the duration of the longest orbital
period of the two spacecraft). For the configura-
tions of the optimization problem that restrict the
new spacecraft’s orbital period (and therefore semi-
major axis a2 = a1 = a),these restrictions limit the
eccentricity such that e2 ∈ [0, 0.85].

For the free orbital period configurations, in order
to avoid nonlinear constraints, the elements a2 and
e2 are replaced with the radius of the orbit at the
apsides r1, r2 ∈ [Rmin, Rmax]. a2 and e2 are then
calculated from these elements according to a2 =
(r1 + r2)/2 and e2 = |r1 − r2|/(r1 + r2).

The functional range restriction for the vision-
based system, however, requires a nonlinear con-
straint. Setting this distance as dmax = 480 km
(based on the PRISMA mission’s VBS system with
a 20 km margin), it is not easy to apply this restric-
tion on the initial states of the formation. In order
to do so, relative motion was modelled by the ap-
proximated equations in the LVLH frame derived
from the Hill-Clohessy-Wiltshire equations. The
maximum distance constraint between the space-
craft is expressed as

a[(|ω2 +M2 + Ω2 − ω1 −M1 − Ω1|+2e2)2

+ (i2 − i1)2]
1/2 − dmax < 0 (9)

with M the mean anomaly, which can be obtained
from the true anomaly ν and eccentricity e. This
formulation was based on the considerations that
the chief orbit is near-circular and near-equatorial,
and that both spacecraft have an equal orbital pe-
riod.
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a(km) e i(rad) Ω(rad) ω(rad) ν(rad)
chief orbit 43399 0 0 0 0 0
LUI-opt. S/C 6678 0 1.54 2.25 6.13 2.12
CN-opt. S/C 6678 0 1.51 4.9e−03 2.92 1.40

Table 3: Initial COE of the Observability
Matrix-optimized new spacecraft.

3.3. Optimization Results
For the optimization problems with nonlinear con-
straints, MATLAB ’s fmincon’s Interior Point Algo-
rithm with multi-start was used as a global solver
[21]. For the remaining ones, PSwarm was used
[22]. Each algorithm is run for a period of ∼ 8
hours.

Observability Matrix

The observability-optimized orbital configurations
for the new spacecraft are described in Table 3.

The optimized values of the objective function for
each problem were near identical, at ∼ 9.91e−07.
Upon closer inspection, it was observed that the rel-
ative state subspaces are always equally observable
(the corresponding singular values are unitary), and
therefore there is no difference between the recipro-
cal of the CN and the smallest singular value.

Between the two results, the only COE that con-
verged to similar values are the semi-major axis
anew and the eccentricy enew. The new S/C or-
bit also tends to become near polar (inew ∼ 90◦),
which might come as a result of minimizing eclipsed
time.

These results give insight into which orbital con-
figurations would optimize the observability of the
system. In general, these results seem to indicate
that large differences in magnitude of gravitational
acceleration improve the local observability of the
least observable (absolute) states.

SR-SFIM RF/vision system

We now evaluate the results of the optimization
problems that use the CN and LUI of the SR-SFIM
matrix, when considering the RF ranging and vi-
sion bearing measurement system for the new aux-
iliary spacecraft. The optimized orbits are shown in
Figure 1 in the LVLH plane, since these are indis-
cernible in the ECI frame due to their close promix-
ity to the chief spacecraft.

In these configurations, the differences in the re-
sults that come from optimizing either the condi-
tion number or the smallest singular value are more
visible. Since the state error covariance of the rela-
tive states increases with the distance between the
spacecraft, all singular values are affected by the
orbital configuration, unlike with the observability
matrix.

Figure 1: Optimized orbits for the RF/vision
based system in the LVLH frame centered around

the chief orbit.

The CN-optimized configuration leads to a new
relative orbit with wider out-of-plane motion and
closer in-plane motion when compared to the LUI-
optimized configuration.

By performing singular value decomposition of
the SR-SFIM matrix of the optimized results, we
can use the right singular vectors to know which
states the smallest and largest singular values are
most associated with. In both configurations, the
largest singular value is linked with δvy, the Y com-
ponent of the relative velocity of the new spacecraft
with respect to the chief orbit in the ECI frame,
while the smallest singular value corresponds most
to ry, the Y component of the chief spacecraft’s ab-
solute position vector in the ECI frame.

SR-SFIM RF-only system

In this section, we will evaluate the optimized or-
bital configurations for the SR-SFIM RF-only sys-
tem. The results are shown in Figure 2.

The free-period configurations achieve only
slightly better results than the fixed period results.
Figure 2 also shows how close the free and fixed
period CN-optimized new orbits are to each other
with respect to the eccentricity, inclination and or-
bital plane orientation. The free and fixed period
LUI-optimized orbits, despite only presenting a sim-
ilarity in terms of eccentricity, achieve very close
results.

None of the four optimized new orbits present
Earth-eclipsed periods. Whereas the CN-optimized
configurations are highly eccentric, the LUI-
optimized orbits present a comparatively small de-
gree of eccentricity (e2 ' 0.37). All optimized orbits
are near-polar (i2 ∼ 90°) with the exception of the
fixed-period LUI-optimized one.
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Figure 2: Optimized new spacecraft orbits for the
RF-only system with free and fixed orbital period.

The dots mark the initial S/C states.

4. System Sensor Reduction

As mentioned in Section 1.1.3, previous studies have
demonstrated that, with keplerian motion, in a 2
spacecraft formation performing ranging-only mea-
surements, 9 out of 12 position and velocity vector
states can be observed at most. The unobservable
subspace corresponds to the absolute orientation el-
ements ω,Ω and i [15].

However, ranging history allows for the observa-
tion of relative orientation elements θ, φ1 and φ2.
Of these, θ is the angle between the orbital planes,
φ1 is the angular distance along the orbit of space-
craft 1 from the periapsis to one of the two inter-
sections of the orbits, and viceversa for φ2 with re-
spect to the orbit of the second spacecraft. These
paraments are functions of the absolute orientation
elements of both spacecraft. This implies that, with
knowledge of one of the spacecraft’s absolute orien-
tation elements, the other one’s absolute orientation
elements could also be deduced.

The previous reasoning would imply that, within
a formation with more than two spacecraft, if one
pair is performing relative ranging and bearing mea-
surements to observe their full state, then the re-
maining spacecraft only need to perform ranging
measurements with either of these two in order for
their position and velocity states to become observ-
able.

4.1. Observability Analysis

In order to test the previous hypothesis, we con-
sider a simplified system with 3 spacecraft. The
corresponding state vector is composed of the po-
sition and velocity vector of the chief spacecraft in
the ECI frame and the position and velocity vec-
tors of the remaining spacecraft in a local iner-
tial frame centered on the first spacecraft. The
propagation model is similar to that described in

(7) and (8). The spacecraft pair 1 and 2 per-
form ranging measurements, while the spacecraft
pair 1 and 3 perform relative range and bearing
measurements every 90s. We describe the discrete-
time dynamic observation system with the propa-
gation model xk = φ(xk−1) and observation model
yk = h(xk), where xk and yk denote the state and
observation vectors at time tk. Considering Φk|0
to be the state transition matrix from states x0 to

xk, and Hk =
dh

dx

∣∣∣∣
xk

the observation matrix, we

construct the discrete-time observability matrix as
O = [HT

0 (H1Φ1|0)T . . . (HkΦk|0)T ]T , where the
simulation period tk− t0 corresponds to one orbital
period. The resulting matrix had full rank 18, albeit
with a condition number of 5.55× 109. This im-
plies that the system, despite observable in theory,
presents a large disparity in state subspace observ-
ability and is therefore ill-conditioned. Simulations
will be used to better evaluate the performance of
this type of system.

5. Simulation Results
We seek to evaluate the results from the optimized
orbits in a simulation environment. However, in
order to do so, a new measurement schedule with
the added spacecraft needs to be designed.

Two sets of results were obtained with different
measurement schedules: one in which the assump-
tion is made that no spacecraft can measure its posi-
tion with more than one other spacecraft simultane-
ously, and therefore an adapted schedule is created
(shown in Table 4 and denoted as schedule 1); and
the other in which the original schedule of the for-
mation runs parallel to the measurements between
the chief and the new spacecraft (shown in Table 1
and denoted as schedule 2).

Time Interval, min S/C Pairs

[t0 + 9 + 50k, t0 + 10 + 50k] 1-2 3-4 5-6

[t0 + 19 + 60k, t0 + 20 + 60k] 1-3 2-4 5-7

[t0 + 29 + 60k, t0 + 30 + 60k] 1-4 2-7 3-6

[t0 + 39 + 60k, t0 + 40 + 60k] 1-5 2-6 3-7

[t0 + 49 + 60k, t0 + 50 + 60k] 1-6 2-5 4-7

[t0 + 59 + 60k, t0 + 60 + 60k] 1-7 3-5 4-6

Table 4: Adapted measurement schedule, where t0
is the starting epoch and k ∈ Z+

Finally, the latter schedule will be used to vali-
date the hypothesis that the formation does not re-
quire relative bearing measurements between each
other so long as the chief spacecraft’s position is
known from relative positioning measurements with
the new spacecraft.

The simulations are run with the Monte-Carlo
method, with M = 40 samples, in which the initial
position state estimates will be placed 100 m away
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Abs. pos.
error (km)

Mean form. rel.
pos. error (m)

new S/C rel.
pos. error (m)

RF/Vision
LUI 1.783 0.158 5.680
CN 1.801 0.157 5.043

RF
only

free
period

LUI 2.310 0.159 6103
CN 3.885 0.168 81043

fixed
period

LUI 2.286 0.159 2869
CN 3.675 0.170 66161

Table 5: Mean absolute and relative error for the
optimized orbital configurations with schedule 1.

Abs. pos.
error (km)

Mean form. rel.
pos. error (m)

new S/C rel.
pos. error (m)

RF/Vision
LUI 1.697 0.134 5.660
CN 1.716 0.131 5.139

RF
only

free
period

LUI 2.126 0.133 14344
CN 6.970 0.169 91828

fixed
period

LUI 1.971 0.134 7182
CN 3.327 0.139 57122

Table 6: Mean absolute and relative error for the
optimized orbital configurations with schedule 2.

from the real initial position in a random direction.
The simulation period is kept at one orbital period
of the original formation (∼ 25 hours). For the sen-
sor reduced simulations, however, half the Monte-
Carlo simulations are run, each with twice the sim-
ulation period, due to the filter’s longer relative po-
sitioning error convergence time (∼ 1000 min). The
remaining aspects of the simulations were kept sim-
ilar to those in Section 2.3.

5.1. Optimization Results

Tables 5 and 6 show the RMS error values obtained
for each of the optimized configurations with sched-
ules 1 and 2, respectively.

The results indicate that only the RF/Vision con-
figurations for the auxiliary spacecraft matching or
slightly improving the absolute positioning accu-
racy of the formation.

When comparing the results from both sched-
ules, it is possible to note that schedule 2 generally
provides better relative positioning accuracy within
the original formation. The RF/vision-based sys-
tem generally outperforms the RF-only system in
absolute positioning performance, as well as rel-
ative positioning performance for the new space-
craft. The LUI-optimized configurations generally
have better absolute positioning performance than
the CN-optimized ones.

The large errors observed in the RF-only CN-
optimized configurations appear to be linked to fac-
tors that are unaccounted for in the SR-SFIM-based
cost functions, such as inconstant levels of process
noise and the validity of the EKF’s linearization ap-
proach.

5.2. Reduced System results

By removing the relative bearing measurements be-
tween spacecraft in the original formation, but keep-
ing them for the measurements between the chief

Abs. pos.
error (km)

Mean form. rel.
pos. error (m)

new S/C rel.
pos. error (m)

RF/Vision
LUI 3.070 0.8802 4.439
CN 3.599 0.9164 3.253

RF
only

free
period

LUI 3.376 0.9465 3060
CN 12.610 2.438 79303

fixed
period

LUI 7.353 1.532 7723
CN 34.243 6.286 158028

Table 7: Mean absolute and relative error for the
optimized orbital configurations with the

sensor-reduced system.

spacecraft and the new spacecraft with schedule 2,
the results shown in Table 7 are obtained.

The removal of the relative bearing measure-
ments within the original formation leads to a de-
crease in relative and absolute positioning accuracy.
The results show the LUI-optimized configurations
outperforming the accuracy of their CN-optimized
counterparts in terms of absolute positioning accu-
racy.

The time frame under which these results were
produced made it unclear whether the positioning
error was converging or not. After running new
longer simulations (5 orbital periods) for each con-
figuration, it became more evident that the error
was slowly diverging, indicating that the system is
too ill-conditioned for the EKF to converge.

6. Conclusions

Using the SunRISE mission as a case study, the
results in Section 2 demonstrated that including
the absolute position states and two-body dynamics
into the filter results in better relative positioning
accuracy than the PVA model initially proposed in
[10] (13 cm as opposed to 3.6 m mean RMS relative
positioning error). The new filter, however, has the
disadvantage of requiring an initial absolute posi-
tion estimate. Compared with the performance of
the chosen GNSS-based solution, its absolute posi-
tioning RMS performance is worse by a factor of
around ∼ 1000, while its relative positioning RMS
performance is better by a factor of ∼ 10.

Regarding the observability optimization study,
the following conclusions were drawn:

� The use of the continuous-time observability
matrix leads to optimized configurations in line
with the results shown in [13, 14], indicating
that larger differences in magnitude of gravity
acceleration between spacecraft lead to better
local observability of the absolute position;

� The comparison of results between the original
formation’s capacity to perform autonomous
navigation with and without the added space-
craft shows that in most configurations the new
spacecraft worsens the absolute positioning ac-
curacy of the original formation;
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� The choice of objective function may not have
been sufficiently adequate for this study for
several reasons, such as: 1. approximating the
formation to a single spacecraft; 2. not account-
ing for the measurement schedule; 3. the choice
of the SFIM, which more accurately describes
the performance of a nonlinear WLS filter than
that of the implemented EKF;

� LUI-optimization generally provided more ac-
curate absolute positioning results than the
CN-optimization;

� The RF/vision based system provided more ac-
curate absolute positioning than the RF-only
system;

� The restriction of the orbital period of the new
spacecraft to that of the original formation gen-
erally improved the positioning performance of
the system, contrary to the expectations set by
the optimization results.

Finally, regarding the study on the observability
and performance of the formation when deprived
of part of its relative bearing measurements, it was
possible to conclude that 1. the observability study
demonstrated that only one pair of S/C in the FF
needs to perform relative bearing measurements for
the system to remain observable, albeit ill-condi-
tioned; 2. the removal of most of the relative bearing
measurements from the system leads to the EKF di-
verging, likely due to the system’s ill-conditioning.

6.1. Future Work

The following suggestions are left for a potential
continuation of the line of work discussed here:
1. alternative objective functions should be con-
sidered for the new spacecraft configuration opti-
mization problem (such as the PFIM [19], which
could more accurately reflect the performance of
the EKF in question); 2. new approaches to re-
ducing the complexity of the computation of the
objective function while maintaining the validity of
the problem; 3. testing whether the sensor-reduced
system positioning error would converge under a
square-root filter better suited for ill-conditioned
problems.
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