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Abstract—Skin cancer is the most common type of cancer
worldwide. Early detection leads to an increased survival rate.
CAD systems, which process dermoscopic images, can improve
the early detection rates.

In recent years, different CAD (Computer-Aided Diagnosis)
systems have been developed. However, almost all of these systems
ignore additional patient metadata (e.g., age, region of the body,
and gender), which is also taken into account by dermatologists
when diagnosing the lesions.

This work aims to answer the following question: ”Does
combining patient information with dermoscopic images for
skin lesion diagnosis lead to further improvements over just
dermoscopic images?”. The goal is to understand if there are
any performance improvements when incorporating the patient’s
clinical information (age, sex, body region) in the decision system.
Thus, different strategies based on Deep Neural Networks, that
combine these covariates with images, are proposed. These
strategies are compared against models trained just with images.

Experiments conducted on the ISIC 2019 dataset verified
that metadata improves the results, since the strategies that
incorporate patient’s metadata reach a higher BACC. The best-
evaluated configuration achieved a BACC of 77.76% for the
validation set and 56.01% for the test set, and it led to an
improvement of 3.14% and 3.79%, respectively, over the model
without metadata. In this configuration, the fusion of the image
network and the metadata network is performed by multiplying
their outputs.

Lastly, the relevance of each combination of metadata is
explored, and a website application is developed to be used by
dermatologists.

I. INTRODUCTION

Skin cancer is the most common type of cancer worldwide,
and the number of cases and deaths has been increasing in
the past years [3]. The World Health Organization (WHO)
estimates that one in three diagnosed cancers is skin cancer
[4].

Early detection and treatment are critical to reducing the
mortality rate of this disease, as early detection leads to an
increased survival rate. When melanoma is detected on an
early stage, the 5-year survival rate is 99% [12]. However,
this value drops to about 14% if detected in its latest stages.

The diagnosis of melanoma can benefit from image analysis
and machine learning methods to increase the diagnostic
accuracy. CAD systems, which process dermoscopic images
from high-resolution cameras, can allow doctors and patients
to detect skin lesions earlier and can be of great value in
reducing the number of deaths.

In addition to dermoscopic images, patient’s information
(such as the patient’s age, gender, anatomical site, family

history, among others) is also taken into account by dermatol-
ogists to diagnose [29]. However, these covariates have been
scarcely used in CAD systems [6]. Therefore, it is crucial
to know whether this information is an important clue to be
incorporated in a CAD system to achieve a more accurate
diagnosis. Taking into consideration not only dermoscopic
images but also patient information, it may be possible to
build a more robust system. This system can help to act as
a quick and efficient diagnostic tool to help doctors to detect
and treat cancerous patients earlier and help to save many lives.
The incorporation of patient’s information in CAD systems is
a great and useful challenge, since some lesions that belong
to different classes are very similar, and metadata can act to
differentiate them.

Several medical methods are used to diagnose dermoscopic
images, such as dermoscopy, pattern analysis, 7-point check-
list, Menzies method, and ABCD rule [6]. Nevertheless, med-
ical methods are very subjective. To overcome the limitations
of medical diagnosis, CAD systems, based on dermoscopic
images, can be used to act as a second opinion tool. Different
methods have been proposed to tackle this problem. Firstly,
systems using low-level image processing methods (edge
and line detection, and region growth), then methods based
on Machine Learning (Decision trees, Bayesian classifiers,
Support Vector Machines, and artificial neural networks) [6].
Nevertheless, these classical machine learning techniques re-
quired the extraction of handcrafted features.

In order to overcome this problem, CNN (Convolutional
Neural Network) models have been used in recent years. CNNs
have become the main approach to solving this kind of prob-
lem. The use of CNNs in dermoscopy is related to the increase
in the number of public datasets. The most famous dataset for
skin cancer diagnosis is the ISIC dataset. ISIC promotes a
challenge to help participants develop image analysis tools to
enable the automated diagnosis from a dermoscopic image.
One of the tasks is lesion diagnosis classification. In the ISIC
2017 challenge, a ResNet architecture was used in [7]. In
the ISIC 2018, a DenseNet 201 was used in classification
task, in [23]. The latter works have used ensemble methods,
which combine different architectures. For instance, in [16] an
ensemble consisted with ResNet 50, Inception v3, Xception,
DenseNet 201 and InceptionResNet v2 was applied. The 2018
challenge winner [24] has also used an ensemble approach.

Recently, studies that combine images with the patient’s
clinical information have started to appear (for example, in



[22]). In 2019, to further improve the diagnostic performance,
the ISIC challenge came with new tasks to consider: one
of them is lesion diagnosis with dermoscopic images and
metadata [1]. The image’s information was completed with
the patient’s information. The winner of the challenge with an
ensembling strategy was Gessert [13]. This work combined the
images network with the metadata network by concatenating
outputs at the feature level. However, it is not yet clear
whether metadata helps or not to improve the diagnosis.
This leads to the challenge of this thesis: understand if the
patient’s information is beneficial to skin lesion classification.
Moreover, it is also necessary to understand what is the best
strategy for combining metadata with images, and this study is
missing in the literature. Both questions motivated this thesis,
which is a new contribution to literature.

In this work, to diagnose the skin lesion of a given patient,
the dermoscopic image of the lesion and the patient’s infor-
mation is used as input. The metadata is composed of the
patient’s age (18 intervals from 0 to 90 years old) and gender,
and the region of the body where the skin lesion is located (8
different parts). The classification/diagnostic is a skin lesion.
The dataset is composed of 8 types of skin lesions: MEL,
NV , BCC, AK, BKL, DF , V ASC and SCC.

This thesis aims to answer the following question: ”Does
combining patient information with dermoscopic images for
skin lesion diagnosis can lead to further improvements over
just dermoscopic images?”. In other words, the goal is to
understand if there are improvements when incorporating
the patient’s information (age, sex, body region) in the de-
cision system. To answer this question, different strategies
that include these covariates with images are proposed and
compared. These strategies are also compared against models
trained just with images. The relevance of each combination
of metadata is also explored (to check which combination
has the most influence on the classification) separately, by
training a selected architecture with all the different possible
combinations of metadata features.

Lastly, a website application will be developed to be used
by dermatologists, where the main goal is that they can upload
an image and insert the patient’s information, and immediately
receive the skin lesion classification.

II. BACKGROUND

A CNN is a class of deep neural networks used with several
image-related problems. CNN allows the extraction of features
by applying convolutional operators that progressively learn
more abstract features. CNN comprises convolutional layers,
Fully Connected Layers (FCL), and pooling layers.

A. Convolutional Layer

The main building block of a CNN is the convolutional
layer [14]. A convolutional layer is composed of a set of
convolutional kernels/filters. The input image is converted into
feature-maps, using the convolution operation. Each feature-
map represents the output of the convolutional operation
between the input and a given kernel. In convolutional layers,

kernels can be represented as a 3-dimensional tensor (with
shape equal to width × height × number of channels) [14].
Each kernel has a specific width and height but has a depth
equal to the number of channels of the input.

Each kernel slides along the spatial dimensions of the input
tensor with a certain stride, and it continues until the filter can
not slide further [18]. At each location, the kernel computes
dot products. The resulting value is placed in the filtered image
(it is just one pixel of the resulting feature-map) [14]. This
kernel is evaluated at every possible location.

By applying several kernels in the same convolutional layer,
the output of the convolutional layer is a stack of feature-
maps [14]. The depth of this stack is equal to the number
of kernels used. Each feature-map is a new image, and a
nonlinear activation function is applied to each pixel of the
feature-map.

B. Pooling layer

The pooling layer merges similar features into one since the
relative positions of the similar features can vary somewhat
[21]. A pooling layer operates on blocks of the feature map
and combines the feature activations [18]. The pooling layer
reduces the spatial size of the image (it reduces the width and
the height but the depth remains the same), while retaining the
most important information [14]. The pooling operation works
as follows: a window slides across the input feature map with
a specific stride [18], and for each location, it combines the
neighboring pixels of the image into a single representative
value (this output value is usually the average or maximum
within the window). It is highly beneficial to include pooling
layers for relieving the computational load.

C. Fully Connected Layer

After convolutions and pooling layers, CNN has FCL layers.
The output of the convolutions and pooling layers are fed in
one or more fully connected layers [25]. In FCL each neuron
is connected to all the input units. The input of the first FCL
is a one-dimension vector, results from a flattening operation.
The output of the FCL is a vector of size equal to the number
of neurons of the layer, resulting in a linear combination of the
input with weights. It can be represented as a multiplication
followed by adding a vector of bias terms and applying an
element-wise nonlinear activation function f [18]. It is given
by:

y = f(WTx+ b) (1)

where f is the activation function, x is the input flatten vector,
y the output vector, W the weight’s matrix, and b the bias term
vector [18]. The last FCL is used to predict the class label
[25]. This layer has M neurons, in order to generate a vector
of size M (where M is the number of classes) that gives the
final probability for each label.

D. Activation Functions

The purpose of the activation function is to introduce a
nonlinear behavior into the network, and it allows a neural
network to learn nonlinear mappings [18]. The activation



functions used in deep learning are differentiable in order to
allow the backpropagation optimization [18]. The activation
functions are applied to convolutional layers and FCL. The
most popular nonlinear function is the ReLU [21], since
it helps in overcoming the vanishing gradient problem and
allows the network to converge very quickly, since it learns
much faster in networks with many layers. ReLU is defined
by ReLU(z) = max(0,z).

Other activation functions are commonly used, such as
tanh(z) and sigmoid.

In the output of the FCL is common to use a Softmax
activation function. In Softmax, the sum of the outputs is equal
to 1 and, therefore, it can be in interpreted as a probability
distribution. The Softmax activation function, σ(x) (with M
classes and x the vector of inputs with size M ), is given by:

σ(x)i =
exi∑M
k=1 e

xk

, i = 1, 2, ...M, (2)

where σ(x)i represents the probability to belong to the class
i.

E. Training the model

In supervised methods, the estimation of the network param-
eters assumes that the input-output pairs are known (training
set). A loss function is used to evaluate the quality of predic-
tions made by the network on the training data [18].

During the training, the main goal is to minimize the
loss function, which computes the difference between the
network’s output and the ground truth. There are different
loss functions to perform this task. Categorical cross-entropy
is the most common loss function in classification problems.
This function measures the difference between two probability
distributions (the network’s output and the ground truth).
Cross-entropy loss increases as the network’s output diverges
from the ground truth. A perfect model would have a loss of
0.

The parameters of the network are optimized with the
gradient descent method. The general equation is given by:

θt = θt−1 − η
∂L

∂θ
, (3)

where θt−1 represents a network parameter at step t − 1, θt
is the update at step t, η is the learning rate, and ∂L

∂θ is the
backpropagated gradient of a loss function with respect to the
trainable parameters [11].

During the train, the gradient, ∂L
∂θ , is computed using the

backpropagation method, which is a practical application of
the chain rule [21]. Backpropagation involves forward and
backward steps. In the first, the input is forward through the
network, and it outputs a predicted value. After computing
the loss function based on the predicted value, the backward
steps are performed (by using the chain rule) to compute the
gradient, and the weights are further updated with the chosen
optimizer, in order to reduce the value of the loss function [21].
The optimizer defines the way that the weights are updated
in order to minimize the loss function. Different variants of

the gradient descent are used as optimizers, such as: Stochas-
tic Gradient Descent (SGD), SGD with momentum, Adam,
Adaptive Delta (AdaDelta). [18]. Adam is the most common
optimizer. It uses estimations of the first and second moments
of the gradient to apply an individual adaptive learning rate
for each parameter. This algorithm is computationally efficient
with little memory requirements [19].

F. Popular CNN architectures

The development of popular CNN architectures for classi-
fication is often linked with the ImageNet Large Scale Visual
Recognition Challenge. The most popular architectures are
those that participated in the ImageNet challenges.

AlexNet [20] won ImageNet challenge in 2012. This net-
work has 60 million parameters and 650,000 neurons. It
consists of eight layers: five convolutional layers and three
fully-connected layers.

VGG ranked second in the ImageNet challenge in 2014,
showing that it is possible to train deeper networks to achieve
better results. In [26] an architecture with very small (3
× 3) convolution filters were used, showing that significant
improvements may be achieved by increasing the depth to
16–19 weight layers, with very small filters.

GoogleNet [27] won ImageNet challenge in 2014. This
architecture uses a new structure called inception module. In
this module, instead of choosing one size for the filters in each
layer, it uses different size filters, and then a concatenation of
the feature maps from each filter into one big feature map is
performed.

With deeper networks, a degradation problem has been
exposed: with the increase of network depth, accuracy gets
saturated and then degrades rapidly. Therefore, adding more
layers to a previous trained deep model leads to a decrease
of the training accuracy [15]. There is a vanishing gradient
problem. Therefore, some architectures, such as ResNet and
DenseNet, present techniques to improve the information
flow between layers in deep networks. In ResNet [15], the
traditional convolution blocks were replaced by residual con-
nections. In DenseNet [17], all layers are connected directly
with each other.

In 2017 a convolutional neural network architecture based
entirely on depthwise separable convolution layers - Xception
- was proposed [8]. It is a stronger version of the Inception
architecture, which stands for “Extreme Inception” [8]. This
architecture replaces the original Inception modules by an
“extreme” version, which first applies a 1×1 convolution to
map cross-channel correlations, and then separately maps the
spatial correlations of every output channel.

III. METHODOLOGY

The main purpose of this thesis is to understand if the
patient’s clinical information is useful for diagnosing skin
lesions. To address this question, different diagnostic systems
were designed and evaluated: systems based only on dermo-
scopic images, systems with metadata only, and systems with
both. The main steps of the systems that combine images and



patient information are illustrated in fig. 1. Before being fed
in the different models to perform the classification, the image
and the metadata are pre-processed.

Fig. 1: The main blocks of the proposed system.

The final output of the system is an 8-d vector because
there are 8 different lesion classes. The output represents a
probability vector of the different classes. Two different CNN
architectures were used to process the dermoscopic images,
and five different methods were investigated to process the
metadata and combine this information with the one from the
images.

A. Pre-processing

The ISIC dataset comes from different medical centers:
HAM10000 [28], BCN 20000, [10], and MSK [9], and was
acquired using different equipments. For this reason, the size,
the color and the aspect ratio of the images are different. To
overcome these differences, pre-processing operations were
performed. As far as metadata is concerned, since the metadata
contains categorical features, one-hot encoding technique was
applied. In relation to images, data variability was addressed
by applying cropping and a color constancy algorithm. As a
first step, a central cropping strategy is used, since some of the
images often show a black area in the borders. This strategy
aims to reduce this black area or eliminate it. An example is
illustrated in fig. 2.

(a) Original (b) Cropped

Fig. 2: Example of crop transformation in dermoscopic
images.

If a system operates with multisource images, there may
be significant changes in the colors of the acquired images,
leading to alterations in the values of the color features in CAD
systems. This may reduce the performance of the systems
[5]. Color constancy is meant to transform the colors of an
image, acquired using an unknown light source, to identical
colors under a canonical light source. In this work, the color
constancy algorithm Shades of Gray with Minkowski norm p =
6 is used, as proposed in [5]. This method estimates the color
of the illuminant, acquired using an unknown light source,
and transforms the image, based on this value, to identical

(a) Before Normalization (b) After Normalization

Fig. 3: Example of color normalization with color constancy
algorithm - Shade of Gray.

colors under a canonical light source. An example is outlined
in fig. 3.

As far as metadata is concerned, it consists of age, gender,
and anatomical site. These data are encoded as a feature vector,
using a one-hot encoding strategy. The gender is represented
by two binary features, where one of them is zero, and the
other is one, the anatomical site by 8 features, and the age
by 18 features (one for each age interval, since the age
is represented in intervals of 5 years). For each type of
information, just one feature will be 1, and all the others will
be 0. The final feature vector has a size 28. In some of the
examples, one or more type of metadata may be missing. Thus,
all of the features associated with that data will be zero.

B. Skin lesion classification

This thesis considers three types of models. A CNN for the
diagnosis of dermoscopic images, a multi-layer perceptron for
diagnosis based on metadata only, and a deep learning model
that integrates both images and metadata. In this section, all
the different methods are described.

Classification using only dermoscopic Images
The diagnostic with images is performed using a CNN. The

image is first pre-processed, and then fed into the CNN Model
block, which comprises convolutional and pooling layers,
and a global average pooling layer block. The Convolutional
and Pooling Layers block, outlined in fig. 4, is a stack of
convolutional and pooling layers. A global average pooling
layer is applied to the output of this block, to obtain a vector
of size 2048, that will be fed into a FCL with 8 neurons, which
performs the decision. This overall scheme is outlined in fig. 4,
where it is assumed that the image is already pre-processed.

The configuration of the Convolutional and Pooling Layers
block depend on the architecture used. ResNet and Xception
were chosen to be used as CNN Model block. In both cases,
the network ends with a global average pooling layer (the
input of this layer is a feature map with size (7,7,2048), and
the output is a vector of size 2048, where each position of
the vector represents the average of each 7×7 channel). CNN
Model block has an image as input and outputs a vector
of size 2048. In the next subsections, CNN Model will be
showm in the block diagrams. After this block, there is an 8-
way fully-connected layer (because there are 8 classes/lesions)



Fig. 4: The model used to classification with dermoscopic
images, where a CNN Model block and a Classification

layer modules are defined, to be used in the next examples.
The Convolutional and Pooling Layers block depends on the

model used.

with Softmax as the activation function, that performs the
classification. This is called Classification Layer block and
will appear in the next subsections.

Classification with metadata
Although metadata contains little information about skin

lesion classes, classifiers using only metadata inputs were
designed. These models are composed of a stack of FCL
(multi-layer perceptron), varying among them the number
of hidden FCL, the number of neurons in each FCL, and
the initial learning rate. The best configuration consists of a
single FCL with 500 neurons, followed by a Softmax with 8
neurons. The network input is a vector of size 28 in a one-hot
encoding format, as described in section III-A.

Classification with both dermoscopic images and metadata
In order to classify lesions using images and metadata, five

strategies were investigated to combine images and metadata.
For each of them, several experiments with different archi-
tectures were carried out, and the best five, according to the
validation set, are presented.

Method 1: This method comprises the CNN Model block
(the same as the depicted in fig. 4), where the input is a
dermoscopic image, and a metadata network, with just a FCL,
where the input is the metadata. The fusion is carried out
by concatenating the output of both networks. The output of
the CNN Model is the output of the global average pooling:
a feature vector of size 2048-d. In relation to the metadata
network, the 28-d feature vector is applied to a network
with only one layer with 500 neurons, with ReLU activation
function. The output of this network is a vector of size 500-
d. These two outputs are concatenated, and the output of this
operation is a feature vector with dimension 2548. The same
way of fusing the networks was performed in [13]. This fusion
is classified as early fusion, since the fusion is done at the
feature level. The concatenation output is followed by two
FCL (the first with 200 neurons, and the second with 100
neurons). The network ends with a Classification Layer (same
as described in fig. 4).

During the training phase, the initialization of the weights
in the CNN Model block is not random. A pre-trained model
is used to initialize it: the weights obtained from training a

CNN for diagnosing dermoscopic images. Firstly, tests with
only dermoscopic images were performed, and the weights that
lead to the best result were saved and used as initial weights
here. The metadata network weights and the weights of the
remaining FCL’s are randomly initialized. During the train,
all weights are updated.

Method 2: The second method adopts a different way
of fusing the information and was inspired on [22]. The
architecture and training of the model are similar to method 1.
However, the differences are: this approach does not perform
concatenation between the output of the CNN Model block
and metadata network. Instead, it multiplies the outputs. For
accomplishing it, the dimension of each network output must
be equal, since each feature-map of the CNN Model output
is multiplied by the corresponding vector element from the
metadata network. This is also a type of early fusion. This
method is depicted in fig. 5.

Fig. 5: Method 2: A fusion of metadata and the CNN image
model. Fusing architectures by multiplying the outputs at

feature level - early fusion.

With this approach, the metadata controls each feature
channel of the CNN Model (for instance, the metadata network
can learn which feature-maps are more relevant and give more
importance to those feature-maps by assigning higher values
in the respective positions, and can disable a specific feature
map by introducing a value 0 in the respective position).
As such, the metadata network is composed of a layer with
2048 neurons (instead of 500 neurons) with ReLU activation
function. The output of the multiplication layer has size 2048-
d. After this layer, everything is the same as method 1:
the output is applied to a stack of two FCL’s with ReLU
activation function and a Classification Layer. As in method
1, the initial weights of the CNN Model block are the values
obtained for the CNN trained for image classification, using
only dermoscopic images. Then we allow for all the weights
to be updated during training.

Method 3: This method is similar to method 2. The
difference is in the way of combining the image and metadata
information. This method does not perform multiplication
between the feature map (2048-d) of the CNN Model and
the output of the metadata network (also 2048-d). Instead,
it performs an average of both outputs. Once again, it is an
early fusion, and the dimension of each network output must
be equal. Each feature-map of the CNN Model is averaged
with the corresponding vector element from the output of the
metadata network.



Method 4: In method 4, the module responsible for com-
bining the outputs performs a squared sum. To accomplish it,
the size of the output of both networks is the same. Thus,
the FCL used in the metadata network contains 2048 neurons.
After applying the fusion operation, the output of the fusing
layer (with size 2048-d) is fed to a stack of one FCL, with 200
neurons and a ReLU activation function, and a Classification
Layer.

Method 5: In method 5, the fusion is done at the decision
level, by combining the classifiers of both networks. The
output of the Classification Layer (with Softmax activation
function, as depicted in fig. 4) of the image network has
size 8-d, and it is multiplied by 1 − α, while the output of
the Classification Layer of the metadata network (also with
Softmax and size 8-d) is multiplied by α. Then, these two
outputs are summed, position by position, resulting in an 8-
d output vector, where the sum of the output vector is equal
to 1 and, therefore, it can be in interpreted as a probability
distribution. The method is represented in fig. 6.

Fig. 6: Method 5: A fusion of metadata and the CNN image
network by combining the classifiers. Nevertheless, all the

model is re-trained.

Since the information is combined at the decision level, this
approach produces better results when everything is trained
end-to-end, instead of just combining the classifiers without
training the weights. Thus, it was considered as a late fusion
with training. The weights of the image network (CNN Model
+ Classification Layer) were initialized with the weights
obtained by the trained CNN only for image classification,
but those weights were allowed to change during the train.

C. Training issues

Since the trained models have a large number of parameters,
there may be an overfitting problem. Moreover, the dataset
used in this thesis is highly class-imbalanced, where some
lesions classes contain just a few images. In order to overcome
these issues, the following strategies were adopted during the
training phase.

Data Augmentation: Several images present different ori-
entations, locations, scales, brightness, etc. To help to reduce
the overfitting, the network can be trained with additional
synthetically modified data. Thus, whenever an image is used
to train or test the network, it is resized and, then, randomly
flipped horizontally and vertically are applied, independently,
to the original image with probability p = 0.5 (each transfor-
mation is applied with probability p). Then, random brightness
is applied independently of the other’s transformation. For

example, the resulting image may be flipped horizontally and
vertically, just one of them, or none, and, in addiction, random
brightness is applied.

Regarding metadata, data augmentation is necessary, since
not all images contain metadata. If a certain piece of metadata
is missing, all features of that type will be zero. During the
train, the model independently encodes each type of metadata
as missing with a probability of p = 0.1. For instance, if for
a given patient the gender is provided and he is a male, the
gender input will be Fem. = 0 and Male = 1, in the one-hot
encoding vector. However, it may encode the gender feature as
a missing value, and, in this case, the one-hot encoding input
vector will have the entries Fem. and Male equal to zero.

Class weights in Loss Function: Class weights are applied
to the loss function. These weights are used in all of the
experiments. The weights in the loss function are inversely
proportional to the class frequencies in the training data. As
such, the less frequent classes have a higher weight in relation
to the others. Thus, it is possible to place more emphasis on the
minority classes such that the final model goal is a classifier
that can learn equally from all classes.

Dropout: In order to handle overfitting problems, Dropout
is applied to all FCL, since it is in these layers that exist more
weights. In this technique, it sets to zero a subset of hidden
neuron randomly chosen with probability p = 0.1.

Transfer Learning: For all CNN architectures pre-trained
models were used. It consists of taking features learned on
a problem and leveraging them on a new problem [2]. In
other words, the initial weights used in our CNN model were
obtained from models trained for the classification of the
ImageNet dataset.

IV. EXPERIMENTS AND RESULTS

This chapter starts by introducing the dataset, and then it
describes the metrics used to evaluate all the experiments. Af-
terwards, it presents the experimental results and a discussion
of the methods proposed.

A. Dataset

The dataset comprises 25,331 images with ground truth
labels for training and a held-out test set of 8,238 images. The
labels of the test set are not available. As mentioned in [1],
the ISIC 2019 dataset comes from different hospital sources:
HAM10000 [28], BCN 20000 [10], and MSK [9].

The original training dataset is divided into the training
set (80%) and the validation set (20%). Table I summarizes
the number of images and metadata records for each of the
training, validation, and test sets, split by all the eight different
classes.

TABLE I: The total number of samples in training,
validation and test sets, and the number of samples per class.

Dataset Total MEL NV BCC AK BKL DF V ASC SCC
Train 20265 3654 10241 2678 698 2084 195 209 506

Validation 5056 868 2634 645 169 540 44 44 122
Test 8238



In addition to the images, the dataset also contains metadata
for most of the examples. The metadata is composed of the
patient’s age and gender, and the body region where the skin
lesion is located.

B. Evaluation Metrics

In order to compare the results, the main metrics used were
the Sensibility (SE) and the Balanced Accuracy (BACC). SE
is the true positive rate and it corresponds to the percentage of
positive samples correctly classified. The SE for each class i,
SEi, is given by:

SEi =
TPi

TPi + FNi
, (4)

where TPi is the True Positive of the class i (it is predicted
class i and it is true), and FNi is the False Negative of the
class i (it is predicted negative, and it is false - it belongs to
class i).

Regarding BACC, since the dataset is unbalanced, instead
of using the weighted accuracy, this metric is used. Thus,
the same importance is given to all classes, independently of
the number of examples. BACC is the average of the SE
obtained for each class. In this case, it is given by:

BACC =

∑7
i=0 SEi
8

. (5)

C. Skin Lesion Classification

In this section, the results of all experiments carried out,
with and without metadata, are presented.

All the experiments have in common the following condi-
tions:

• The loss function is the categorical cross-entropy with
Adam Optimizer algorithm.

• The batch size is equal to 8 (except for the model that
only uses just metadata).

• The training was performed during 40 epochs (except
when it is used just metadata).

• Class weights in loss function are used.
• Dropout with p = 0.5 in all FCL.
The other hyperparameters were adjusted in order to obtain

the best possible value of BACC in the validation set. In all
the examples, after training the model, the weights that led to
the best value of BACC in the validation set are chosen and
loaded to compute the metrics.

Classification with dermoscopic images only
The experiments without metadata were performed using

ResNet 101 and Xception architectures. In both cases, the
initial learning rate is 1−5, and it decreases by a factor of
0.75 if the validation loss function does not decrease during
5 consecutive epochs. Table II represents the results obtained
with ResNet and Xception architectures.

Xception and Resnet extract features with different image
properties, since Xception has inception modules and ResNet
residual modules. This may justify the different performances
achieved with both methods.

TABLE II: BACC in the experiments without metadata.

Architecture Validation Set [%] Test Set [%]
ResNet 74.62 52.22

Xception 75.56 50.52

Classification with metadata only
In this case, the batch size is set to 20, and the initial

learning rate is equal to 5−5. The learning rate decreases by a
factor of 0.75 if the validation loss function does not decrease
during 3 epochs in a row. The training was performed during
50 epochs.

In the validation set, the BACC obtained is 34.41%. The
most problematic class is MEL, which is only correctly
diagnosed in 10% of the cases. Therefore, it can be concluded
that metadata alone is not sufficient to achieve a reasonable
classification result.

Classification with images and metadata
Experiments with different fusion methods were carried out.

For each method, ResNet and Xception architectures were
compared as well. In all the methods, the initial learning rate
used is equal to 5 · 10−5, and it decreases by a factor of
0.75 if the validation loss function does not decrease during
2 epochs in a row. Regarding Method 5, the best value of the
hyperparameter α was 0.2. Table III shows the comparison
between the methods that combine images with metadata and
the methods without metadata.

TABLE III: comparison between the methods that combine
images with metadata, and the methods without metadata,

based on BACC.

ResNet Xception
Method Val. Set [%] Test Set [%] Val. Set [%] Test Set [%]

No metadata 74.62 52.22 75.56 50.52
Method 1 78.18 55.07 78.18 55.50
Method 2 77.76 56.01 79.65 54.79
Method 3 78.00 54.30 78.49 53.39
Method 4 77.79 54.13 78.22 54.84
Method 5 78.03 54.85 78.97 51.26

All the methods that combine images with metadata lead
to improvements in the BACC scores, both for the validation
and test sets. ResNet seems to generalize better than Xcep-
tion, because in almost all methods ResNet achieves a better
BACC in the test set, even when Xception gets a better result
in the validation set. Method 2 with ResNet seems to be the
most robust method.

In order to see the improvements brought by each method,
which fuses images and metadata, in relation to the network
without metadata, the SE of each lesion was analyzed. In
this analysis, an additional line with improvements is included
below the results of each method. The values shown in these
lines are the difference between the respective column, with
the value obtained without metadata (first line of the table).
If the difference is greater than 2%, the difference value will
be in green color. On the other hand, if it is under -2%, it is
in red. This analysis was performed on the validation and the



testing set, for both ResNet and Xception architectures. As an
example, table IV represents the results obtained for ResNet
in the validation set.

TABLE IV: Comparison of metrics between all methods that
combine images with metadata, and the model with only

images as input, in the validation set with the ResNet
architecture.

SE
Model MEL NV BCC AK BKL DF V AS SCC BACC

No metadata 68.43 78.28 81.40 65.09 66.11 72.72 97.72 67.21 74.62
Method 1 67.17 84.66 84.34 68.64 67.04 88.64 97.73 67.21 78.18

Improvements -1.26 +6.38 +2.94 +3.55 +0.93 +15.92 +0.01 0.00 +3.56
Method 2 68.78 87.32 83.26 72.19 70.00 84.09 90.91 65.57 77.76

Improvements +0.35 +9.04 +1.86 +7.10 +3.89 +11.37 -6.81 -1.54 +3.14
Method 3 69.47 85.27 83.57 65.68 67.41 95.45 93.18 63.93 78.00

Improvements +1.04 +6.99 +2.17 +0.59 +1.30 +22.73 -4.54 -3.28 +3.38
Method 4 71.20 86.41 83.26 71.60 75.00 79.55 95.45 59.84 77.79

Improvements +2.77 +8.13 +1.86 +6.51 +8.89 +6.83 -2.27 -7.37 +3.17
Method 5 71.31 82.31 84.19 68.64 66.67 93.18 93.18 64.75 78.03

Improvements +2.88 +4.03 +2.79 +3.55 +0.56 +20.46 -4.54 -2.46 +3.41

Regarding ResNet architecture, the bigger SE improve-
ments happen in DF and NV lesions. In the method 3, DF
improved 22.73% (it has reached a SE = 95.45% ). The class
SCC got worse with the introduction of metadata. As V ASC
has a great SE in the classification with images only in the
validation set, just method 1 led to minimal improvements in
the SE of this class. All the other methods made it worse.

In the case of Xception (the respective table is not presented
here), the scores of the MEL, AK and V ASC classes seem
to improve in all the methods for the validation set. Although
MEL does not exhibit the same behavior in the test set, AK
and V ASC do.

Therefore, it is possible to conclude that the incorporation
of the metadata does not benefit the lesions in the same way.
Moreover, it seems to depend on the CNN architecture used to
process the dermoscopic images. While in ResNet the classes
with the biggest improvements are NV , DF and AK, in
Xception these classes are MEL, AK, V ASC, SCC. BKL
does benefit in both cases. This may be due to the features
extracted by both architectures, which may be different. The
improvements for each class also depend on the method used
to incorporate the metadata.

Another important observation was drawn based on the
confusion matrices of all the methods. As an example, fig. 7
represents the confusion matrices of method 1, for ResNet and
Xception, in the validation set.
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Fig. 7: Confusion matrices to method 1 with image and
metadata, in the validation set.

In all methods, SCC is the most challenging class in ResNet
(in general, more confused with BCC), and AK is the most
challenging class in Xception (in general, more confused with
BCC and BKL), with more significant deviations from 1, in
relation to the other classes. This misdiagnosed makes sense,
since BKL is the benign form of AK and both AK and
BCC are Non-Melanocytic and Malign). The V ASC is often
the most accurate class in both architectures.

V. EFFECT OF EACH TYPE OF METADATA FEATURE

In order to study the influence of each combination of
metadata features, all the different combinations of metadata
were tested. These experiments were performed with method
2, for both architectures, since the best result was obtained
with this approach. Therefore, the input size from the metadata
network depends on the features being used. For example,
if only age is used, the size will be 18, if only gender is
taken into account, the size will be 2. The remaining training
conditions were the same as those used with all features.
Table V summarizes the BACC obtained when method 2
was trained with all the combinations of features, for ResNet
architecture.

TABLE V: BACC of the Model 2 with all metadata
combinations as input, for ResNet architecture.

Features Val. Set [%] Test Set [%]
No metadata 74.62 52.22

Age 76.28 53.46
Gender 74.71 51.71
Region 76.15 51.21

Age + Gender 77.03 51.82
Age + Region 76.46 53.67

Gender + Region 76.10 51.40
Age + Gender + Region 77.76 56.01

Not all combinations of metadata led to improve the results,
and some of them are more beneficial in one CNN architecture
in relation to the other (Xception’s results are not depicted
here). The combination that led to the best result, in the
validation and test sets, is the one that combines all the
metadata features: age, gender and body region. This was
observed for both CNN architectures.

The other goal of this section is to analyze the metadata
features, and their relationships with each lesion, in order to
better understand the potential influence of the patient’s infor-
mation on the classification of skin lesions. The improvements
obtained when metadata is taken into consideration may be
related to some hypotheses defined. The networks may take
advantage of some relationships in metadata to improve the
distinction of some classes. The hypotheses were defined based
on the validation set. As an example, in fig. 8 the markers
represent the two-dimensional distribution of occurrences ac-
cording to the patient’s age and the body region of the lesion,
for NV and BKL.

As can be seen, these two lesions appear more frequently
in specific body regions. NV is more frequent in the anterior
torso and BKL in head/neck. Taking into account not only
the region of the lesion but also the patient’s age, it may be
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Fig. 8: Bi-dimensional distribution per diagnostic, with
variables age and the body region of the lesion. The mark’s
area represents the probability, where the sum of the area of

the all marks in each lesion is equal to 1.

observed that the preferences for some regions of the body
can be restricted to some age ranges. In NV the most frequent
region is the anterior torso between 30 and 55 years old, and
the lower extremity between 30 and 55 years old. In BKL
the prevalence to head/neck is higher for ages over 55 years
old. Table VI shows the SE of these lesions in the validation
set, without metadata and with the combination of metadata
Age and Region of the body, for ResNet architecture.

TABLE VI: SE of the lesions NV and BKL in the
validation set, without metadata and with the combination

Age and Region of the body, for ResNet architecture.

Lesion No metadata Age + Region
NV 78.28 84.70
BKL 66.11 72.41

As the SE of these two classes have improved considerably
in the case of the ResNet architecture when just Age and the
region of the body were considered, this seems to support the
hypotheses. The ResNet network might be learned these rela-
tionships, and taken into account in the classification, leading
to significant improvements on the SE of these lesions.

VI. WEB SITE APPLICATION

This website aims to represent a type of application that
can be used by dermatologists in the future, to support them
in the detection of skin cancer. It is a simple application,
in which the user uploads a dermoscopic image and inserts
the patient’s information and, as soon as the user submits
the information, receives an automatic diagnosis. To created a
website application that can be used by different institutions
and multiple users at the same time, a scalable and fault-
tolerance application is needed. However, as it is not the focus
of this work, this website is just a simple example that has not
been tested for these specifications.

This web application is divided into two main parts: client
and server. The client is a front-end that sends the patient’s
information to the server, receives, and displays the result.
When the server is initialized, it builds the diagnostic model
based on a deep neural network and loads the weights (Method
1 with Xception was chosen because of the memory). After
receiving an image and the patient’s information, the server
feeds the input into the model, performs the prediction, and

returns the output of the Softmax and the diagnostic to the
client, that displays the result. A complete example of how
the website application works is available on:
https://www.youtube.com/watch?v=cwCnXPRWa1o

VII. CONCLUSIONS

This thesis aimed to understand if there are improvements
when the patient’s information (age, sex, body region) are
incorporated into an automatic decision system that diagnose
skin lesions. To accomplish it, this thesis considers three types
of models: a CNN for the diagnosis of dermoscopic images, a
multi-layer perceptron for diagnosis based on metadata only,
and a deep learning model that integrates both images and
metadata. For the diagnosis of dermoscopic images, ResNet-
101 and Xception CNN architectures were used. Regarding the
combination of images and metadata, five different methods
that combine these covariates with images were developed and
compared.

Each one of these methods was consisted of combining a
CNN, previously trained just with dermoscopic images (using
either ResNet or Xception architectures), with a multi-layer
perceptron output, used for diagnosis based on metadata only.
How this fusion is performed depends on the method. In all
experiments performed, the hyperparameters were adjusted in
order to select the best performing configuration (according to
the metric BACC) in the validation set. Then, it was applied
to the test set.

The results show that using only metadata does not lead to
a reasonable classification result. All strategies that combine
images and metadata performed better than the respective
strategy without metadata, both in the validation set and in the
test set. Thus, it is concluded that patient information improves
the performance of the system. Method 2 with ResNet was
the best overall method. It achieved a BACC of 77.76%
for the validation set and 56.01% for the test set. It led
to an improvement of 3.14% and 3.79% in the validation
and the test set, respectively, compared to the model without
metadata. In this configuration, the fusion is performed with
a multiplication operation.

The incorporation of metadata did not benefit all the classes
in the same way across the two CNN architectures. It seems
to depend on the CNN architecture used to process the
dermoscopic image, since these architectures extract features
differently. This analysis was performed based on the SE
of each lesion. The classes with the most significant im-
provements in ResNet were not the same as for Xception.
In addition, it was stood out that the most challenging class,
in general, is different between the two CNN architectures.

In order to study the influence of each type of metadata
feature, all different combinations of metadata were tested,
using method 2, trained with both ResNet and Xception,
to analyze which combination has the most influence on
the classification, and to analyze some hypotheses proposed.
These hypotheses say that some combinations of metadata
may be helpful to improve the SE of specific lesions, since
they may be correlated. The networks can take advantage

https://www.youtube.com/watch?v=cwCnXPRWa1o


of some relationships between the lesions and the patient’s
information, to improve the distinction of some classes. The
combination that performed better was with Age, Gender
and body region (the one that combines all the metadata
information). In addition, some hypotheses proposed were
supported. For example, since NV is more frequent in some
regions of the body in specific ranges of age (in this case, in the
anterior torso between 30 and 55 years old), the introduction of
the combination Age + Anatomical site seemed to be helpful
to diagnose this lesion, since it led to improve the SE of this
lesion in the validation set.

Last but not least, a web site application was developed.
This website aims to represent a type of application that can
be used by dermatologists in the future, to support them in
the detection of skin cancer. A complete example of how the
website application works is available on:
https://www.youtube.com/watch?v=cwCnXPRWa1o

A. Future Work

The results obtained in this thesis show the importance of
the metadata in the decision system that diagnoses skin lesions.
However, there is room to improve the results. The following
points show some contents that can be studied in the future.

• Ensemble the classifiers of the different strategies used,
that combine images with metadata. This will make
it possible to take advantage of the properties of the
different CNN architectures.

• Increase the dataset size, since some lesions contain only
a few images. DF and V ASC represent around 0.9%
and 1% of the dataset, respectively.

• Further analysis of the influence of each metadata com-
bination: try to find correlations between the lesions and
metadata, and further improvement models with all the
combinations.

• Deployment of the web site application to the Cloud, in
order to be online and accessible to all the dermatologists.
Ensure that the application is scalable, fault-tolerant.
In addition, add a new feature that allows automated
retraining, in order for the dermatologists add samples,
and the system automatically retrains the model.
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