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Abstract

The present work focuses on alleviating the range anxiety in the context of electric vehicles using
real world-data collected in a light powered vehicle. To do this, the original lead-acid battery pack
of the vehicle was changed into lithium-ion, achieving a 25% gain in autonomy. A data acquisition
system was also developed and integrated with the new battery pack recording global position data
from a GPS receiver and battery information from the Battery Management System (BMS). The
data collected was then used to test trip and trip-based methods to alleviate range anxiety. The
history-based methods used both physical and statistical models to predict the energy consumption of
varying duration trips. In the physical models the best results were obtained with the regression, which
achieved 3% average error and 13% error standard deviation, for 150s segments. From the statistical
models the best results were obtained with the decision tree regression with a 1% average error and a
26% error standard deviation, for 150s segments. The history-based methods used moving averages
to predict the remaining driving range of the vehicle. In this work, the moving average was made in
a constant time window as well as in a constant distance window. For a constant time window of
2h45min it was obtained a 8.1% mean error with 19.7% standard error deviation. For the constant
distance window of 80km it was possible to obtain a average error of 2% and a standard error deviation
of 8.2%. s
Keywords: electric vehicles, BEV, smart mobility, range prediction, vehicle modelling, data science.

1 Introduction

Following the 2016 Paris agreement, 195 countries
formulated the commitment of keeping the global
temperature rise below the 2 degree mark. In order
to that, the greenhouse gas emissions have to de-
crease drastically. As responsible for one fourth of
the CO2 emissions[1], the transportation sector will
need to go through profound changes. This requires
the shift from the widespread internal combustion
engine (ICE) into the electric vehicles (EV), which
make use of electric engines to provide the propul-
sion energy. From the EV’s, the most effective in
reducing emissions are the battery electric vehicles
(BEV). These vehicles are completely electric and
have zero tailpipe emissions.[2].

Light powered vehicles such as motorcycles and
small three-wheelers such as the one used in this
work are of particular importance in the road to
widespread vehicle electrification. They are often
urban vehicles and travel shorter distances at lower
velocities. They are also smaller than other ve-
hicles. Because of this, they have smaller energy
consumption and require smaller battery packs[2],

which in turn makes its electrification easier.

1.1 Range Anxiety

Despite the improvement of the vehicle technology,
the vehicle range still ranks as one of the three
most important costumer concerns over BEV pur-
chase[3]. Range anxiety can be defined as the fear
that the driver has of not being able to reach the
destination because of the finite range of the vehicle
[4]. This effect arises from the mismatch between
the costumer vehicle usage and the vehicle range.

One way of solving the range anxiety problem
is to provide the driver with accurate information
about the vehicle consumption and the available
range. In order to do this, there can be taken
two major approaches[5]. The trip-based and the
history-based methods.

1.2 Trip-Based Methods

The first way to eliminate range anxiety is through
early planning of the vehicle using a rout-planner.
For a known route, the total energy consumption
can be predicted using different models. The prob-
lem is formulated by equation 1, where ∆E is the
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total energy spent in a trip, xi are trip features
such as the distance travelled, average velocity etc.,
and fj can represent any of the models used. These
methods are often called trip-based and have been
shown to reduce range anxiety[6].

∆E = fj(x1, ..., xn) (1)

The models (fi) used in these methods are often
divided into physical and statistical models. The
former attempts to provide the most accurate vehi-
cle representation by using physical laws to describe
each part of the vehicle. The latter, instead com-
bines statistical methods and measurements form
the vehicle to provide an accurate description.

1.2.1 Physical Model

There are several studies made using physical mod-
els of the vehicle[7–14] to estimate the energy con-
sumption. In figure 1, a simplified representation of
the battery-to-wheel energy flow in a fully electric
vehicle is shown. It can be seen that, as the energy
flows from the batteries to each of the vehicle com-
ponents,there are losses in energy. In the present
work, the auxiliary power is discarded because its
contribution is small when compared with the other
terms.

Figure 1: Energy flow scheme battery-to-wheel(above)
and wheel-to-battery(below). The size of the box is a
visual indicator of the relative power reaching each com-
ponent.

As shown in figure 1 the efficiencies of the in-
verter, the controller, the motor and drive shaft
were grouped in a single value. The efficiency is
then given by equation 2, where Pmec is the me-
chanical power and Pbat is the battery power.

η(T, ω) =
Pmec

Pbat
(2)

Of the components in the vehicle, the one that
will affect the consumption the most is the mo-
tor. The electric motor changes its efficiency sig-
nificantly depending on the torque and rotational
frequency.

As seen in equation 2, the power measured in the
batteries is proportional to the mechanical power
(Pmec) provided to the vehicle. The most common

physical model to predict this power is the lumped
mass model. There are three main forces consid-
ered in this model: the gravitational force (Fg), the
rolling friction (Fr), the aerodynamic friction (Fa),
and to balance them, the traction force (Ft) applied
by the motor. A schematic representation of these
forces is shown in figure 2.

Figure 2: Graphical representation of forces acting
on the vehicle adapted from [15]. (Ft - traction
force, Fr - rolling friction, Fa - aerodynamic friction,
Fg - gravitational force)

Introducing this forces in Newton’s second law of
motion, it is possible to obtain the main equation of
the model shown in equation 3, where m is the ve-
hicle mass and v(t) is the velocity of the vehicle[15].

m
d

dt
v(t) = Ft(t) − (Fa(t) + Fr(t) + Fg(t)) (3)

The aerodynamic force is given by 4 where ρ is the
air density, CD is the aerodynamic drag coefficient
and Af is the frontal area of the vehicle.

Fa =
1

2
ρAfCDv

2 (4)

The rolling friction is given by equation 5, where
m is the mass of the vehicle, g is local gravitational
field of Earth and α is the slope of the road. cr0 is
the rolling coefficient and Q, an empirical constant
defined to be 44.4m/s.

Froll = m · g · cosα · cr0 ·
(
1 +

v

Q

)
(5)

The gravitational force is given by equation 6,
where m is the mass of the vehicle, g is local gravi-
tational field of Earth the and the α is the slope of
the road.

Fg = m · g · sinα (6)

From the previous formulation of the lumped
mass model, the ∆E is the integral that can be
expressed as shown in equation (7).
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(a) K = 1 (b) K = 3

Figure 3: Points in the training set (blue) that are
used in the weighted average prediction of the un-
known point (red) for three different values of K.

∆E =
1

2
m · (v2

f − v2
i )︸ ︷︷ ︸

Kinetic Energy Variation

+ cr ·m · g
(

∆sxy +

∫ xf

xi

v · dx
)

︸ ︷︷ ︸
Rolling Friction Energy Dissipation

+ m · g · ∆h︸ ︷︷ ︸
Potental Gravitational Enrgy

+ ρ · cD ·Af ·
∫ xf

xi

v2 · dx︸ ︷︷ ︸
Aerodynamic Friction Energy Dissipation

(7)

1.3 Statistical Model

In addition to physical models, statistical models
have also been used to estimate the energy con-
sumption of road vehicles. These models do not re-
quire the knowledge concerning the physical mech-
anisms at play in the vehicle motion or any types of
parameters which characterise it. In previous stud-
ies, models including neural networks[16–18], de-
cision trees[17] and K-nearest neighbours[19] have
been used. The way that these methods work is by
using data to build a model that describes them well
without any knowledge of the physics involved. Sta-
tistical models should improve as the data collected
increases, allowing them to capture finer details of
vehicle consumption behaviour.

Figure 4: Decision Tree Example

1.3.1 K-Nearest Neighbours

The way this algorithm works is, when presented
with a new data point, it will compute the distances
between that point and the ones in the training
data. The energy prediction will then be a weighted
average of the energy measured in the K points that
are closest from the new one. This is the reason for
the name K-nearest neighbours. In figure 3, three
examples of the algorithm working in a data set for
several values of K can be seen. As it is possible to
observe the points in the training set (blue) are used
in the weighted average prediction of the unknown
point (red) for three different values of K.

1.3.2 Decision Trees

In order to better understand the decision tree mod-
els a simple example taken from the data collected
is provided in figure 4, where ∆h is the height vari-
ation from the trip start to finish, a is the average
acceleration and ∆E is the total energy spent in the
trip. As one can notice, the decision tree can be pic-
tured as a graph where each of the nodes represents
a binary decision based on the data features. In
order to make the energy consumption prediction
successive tests are made to the data, staring at
the root node and following the chart all the way
through until the leafs are reached. In order to gen-
erate this trees from the data the algorithm used
was the CART algorithm[20].

1.4 History-Based Methods

The second way of alleviating range anxiety does
not involve early planning of the trip. It uses in-
stead only the past consumption of the vehicle to
predict the future behaviour. Because of this, they
are called history-based methods. They often are
less accurate than the trip based methods mainly
because they do not have access to the road topol-
ogy, which is one of the most determinant factors
in the vehicle consumption.

There are also several studies concerning history-
based methods in literature, where the most com-
mon way of estimating the vehicle consumption is
through the usage of a moving average. [21–23]

In this work different types of range prediction
methods were implemented. The trip- based pre-
diction was implemented using three different re-
gression methods (Decision Tree, K-Nearest Neigh-
bors, and Linear regressions) and the history-based
predictions us- ing two different ways to choose the
window of past values (constant time and constant
dis- tance).These methods were evaluated using ex-
perimental data spanning over 300km in Lis- bon
city center. The vehicle used was a electric light
three wheel vehicle (category L).
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1.5 Objectives

The present work can be divided into three different
parts. The first part was the conversion of the bat-
tery pack of the vehicle used from the original lead-
acid batteries to new lithium-ion batteries. This
involved the modification of the previous battery
pack to hold the new batteries as well as devising
the new wiring of the previous batteries.

The second part of the work consists in building
the data acquisition system in order to collect and
log important features in the course of the vehicle
movement. In general, the information regarding
the battery pack will be collected from the Battery
Management System (BMS) and combined with
information regarding the vehicle position from a
GPS receiver using a Raspberry Pi.

In the final part of the work, the data collected
will be analysed and used to test different methods
of solving range anxiety. Both trip and history-
based methods are tested, using in the first several
physical and statistical methods and in the second
a moving average based method.

2 Data Collection
This work is focused in a fully electric three-wheel
light powered vehicle, commonly knwon as auto
rickshaw. The vehicle studied in particular was a e-
tuk Limo GT model manufactured by e-tuk Fac-
tory and can be seen in figure 5. The battery bank
of the e-tuk consisted of 24 160 Ah batteries, with a
nominal voltage of 76.8V. The motor in this vehicle
was a 7kW three phase AC motor.

Figure 5: e-tuk Limo GT

2.1 Battery Conversion

In the present work the battery pack of the vehicle
was successfully converted from the original lead-
acid batteries to a new LiFePO4 lithium-ion pack.
After the battery pack conversion, it was achieved
a increase of 25% in the vehicle range, relative to
the one provided by the manufacturer. It is also ex-
pected the increase in the durability of the batteries
to 2000 cycles in stead of the previous 600, which
corresponds to a 230% increase in durability.

In order to do this, a new battery compartment
was designed to hold the now smaller and lighter
batteries in place. The full view of the battery pack
can be seen in figure 6.

Figure 6: Isometric view of the assembled battery
compartment.

Figure 7: Schematic of the wiring in the main set-up
used.

2.2 Data Acquisition System

A data acquisition system was developed and tested
to log the geographical position of the vehicle as well
as information concerning the battery pack. The ge-
ographical information contained latitude and lon-
gitude of the vehicle vehicle as well as the velocity
of the vehicle. The battery information contained
the battery pack voltage, current, SOC, power etc..
This system was done using a Raspberry Pi con-
nected to a GPS receiver and also to the BMS
through serial communication. The set-up was
tested using a e-max motorcycle and adapted to
fit the new battery pack of the e-tuk. The software
used to make the data acquisition was developed in
Python, within object oriented programming. For
each individual acquisition one individual class was
used. It was also implemented a webpage hosted
in the Raspberry Pi to read the last point recorded
without need for connection via SSH.

3 Derived Data
The collected data was mostly used in the future
models, but there were two features that needed to
be estimated, which were the distance and the alti-
tude. In the last section it is shown the estimation
of the efficiency map of the drivetrain.
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3.1 Altitude

Despite having access to the altitude data pro-
vided by the on-board GPS receiver, the accu-
racy of these measurements was not sufficient for
the usage in vehicle modelling. Because of this,
altitude data of Lisbon city centre was obtained
through Mapbox, using their Mapbox Terrain-RGB
API in Python 3. This API uses the altitude taken
from the Copernicus EU project, which derives its
data from a weighted average of the Shuttle Radar
Topography Mission (SRTM) and Advanced Space-
borne Thermal Emission and Reflection Radiome-
ter (ASTER). Both of these datasets have smaller
area resolution and provide one altitude measure-
ment for every 30 meters (square of area 900m2).
Despite not being ideal, this is the only one avail-
able for free use.

Figure 8: Elevation map of the Lisbon Area taken from
Mapbox Terrain-RGB

3.2 Horizontal Distance Estimation

The GPS receiver measures the sequence of loca-
tions of the vehicle. The location is given by a pair
of values (λ, φ), where λ represents the latitude and
φ represents the longitude. The distance between
two successive points was determined using equa-
tion (8). Where ER represents the Earth Radius,
which was considered to be equal to 6371008.8m,
and λm represents the average latitude of the two
points. As the points are most of the times very
close together, there will not be a very large dif-
ference in latitude, and the approximation will be
valid.

∆sxy = ER

√
∆λ2 + (cosλm · ∆φ)

2
(8)

3.3 Drivetrain Efficiency Estimation

The previous model considered only the physical
properties of the vehicle. However, it is known that
the motor efficiency changes prominently depending
on the operation point of the motor. To characterise
the efficiency of the motor it is common to use the
efficiency map. This map is often represented as a

function of the torque and velocity acting on the
motor.

Unfortunately, no data concerning the efficiency
of the motor of the vehicle was not provided by
the manufacturer. Nevertheless, using the a pri-
ori model described in the previous section it was
possible to estimate the mechanical power on the
wheels, using equation 9, where Ft is the traction
force given by the lumped mass model as shown in
equation 3.

Pmec = v · Ft (9)

The acceleration was estimated using a linear re-
gression to the previous three seconds of velocity
values and extracting its rate of change. This was
also done to estimate the slope although now es-
timaing the value of tanα = ∆h

∆sxy
. The values of

velocity used were the instantaneous measured by
the GPS. and finally the vehicle parameters used
are shown in table 2.

To build the efficiency map, the values of Pmec

as well as Pbat were split in two dimensional bins as
a function of their torque and velocity values. The
values of the efficiencies were averaged inside the
bins to build the two dimensional map that can be
seen in figure 9.

Figure 9: Different Representations of the efficiency
map of the motor.

The general form obtained for the drive-train effi-
ciency map is similar to the motor efficiency. This is
to be expected because the motor is the most impor-
tant component in the drive-train. Because of inac-
curacies in the individual height measurements, it
was not possible to find the values of the individual
power consumption using this model and then the
integrated energy consumption could not be used in
the trip-based methods described in section 4.

4 Trip-Based Prediction
The trip-based models implementes were evalu-
ated using the R2 metric given equation 10.[24]. For
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the physical models the R2 value presented is ob-
tained considering all the points in the dataset. To
evaluate the statistical models the K-Fold cross val-
idation method with 10 folds was used.

R2 =

∑
i(yi − fi)

2∑
i(yi − ȳ)2

(10)

4.1 Physical Models
In table 1 the data used as input for the physical
models can be seen. This data is relative to fniite
trip segments.

Feature Name Expression
Variation of the velocity Squared (v2

f − v2
i )

Total Height Variation ∆h
Total Distance Travelled ∆sxy
Velocity Integral

∫ xf

xi
v · dx

Velocity Squared Integral
∫ xf

xi
v2 · dx

Table 1: Features used and respective expressions
in the physical models.

4.1.1 A priori Physical Model

This model is based on the lumped mass model
described ipreviously and takes the form of equation
7. The parameters used in this section are some
typical values expected for a vehicle of this type
that can be seen in table 2, where both the rolling
and aerodynamic coefficient were taken from the
model developed in [11], and the vehicle mass was
estimated estimated from manufacturer data.

Name Symbol Expected Value
Drag Area Cd ·A 1.75m2 [11]

Rolling Coefficient cr 0.012 [11]
Vehicle Mass vm 1000 kg

Table 2: Coefficients for the vehicle in study

4.1.2 Regression Model

The first logical step towards improving upon the
a priori model is to try to provide better estima-
tions for the model parameters. Using the general
equation of the lumped mass model described be-
fore a least squares regression to the data collected
and determine the model parameters that are better
suited to describe it.

The first model (model 1) did not consider the
aerodynamic friction or the dependence of the ve-
locity of the rolling friction. The second model
(model 2) adds the effect of the aerodynamic fric-
tion acting on the vehicle. The third model (model
3) considers the effects of both the aerodynamic
friction and the velocity term of the rolling friction.

Parameter Value

m 959 kg
cr 0.04

Cd ·Af 1.24 m2

Table 3: Vehicle Model Parameters for a segment
size of (R2 = 0.95)

In table 3 it can be seen examples of the vehicle
parameters obtained in the regression model. In can
be seen that the rolling friction coefficient is much
higher than it would be expected for rolling coef-
ficient of wheels rolling over concrete, which were
expected to vary form 0.010 to 0.015. This can be
explained by the fact that the vehicle does not move
in concrete for a lot of its travel time. The other two
values are inside the expected for a road vehicle.

4.2 Statistical Models
In this section two different data-driven statistical
models were implemented: the decision tree and
KNN regression models. The implementation used
the sklearn Python libraries and for training used
the same aggregated trip data shown in table 4.
For both statistical models it is made a hyperpara-
menter optimization. In the following sections the
parameter configuration that provided the best re-
sults is shown.

Feature Name Expression
Average Acceleration 1

N

∑
i ai

Velocity Squared Integral
∫ xf

xi
v2 · dx

Average Trip Velocity 1
N

∑
i vi

Total Distance Travelled ∆sxy
Total Height Variation ∆h
Trip Duration ∆t

Table 4: Features used and respective expressions
in the statistical models.

4.2.1 Decision Tree Regression

The final parameters chosen for the decision tree
used were a maximum depth of 4,and the default
values of 2 and 1 for the minimum number of sam-
ples per split and minimum samples per leaf, re-
spectively were chosen.

4.2.2 KNN Regression

For the final KNN model, 40 neighbours were con-
sidered, using uniform weights and the euclidean
distance metric.

4.3 Model Comparison
In this section we compare the results obtained for
the different implemented models, and provide a
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discussion of the pros and cons of using each model
as well as a summary of the main conclusions. The
grouped results obtained can be seen in figure 10.

The most striking difference between the data-
driven models (KNN and Decision Tree) and the
physics-based models (a priori and regression mod-
els) is that for longer trip segments the data-driven
models start to fail. This happens because, as
said before, the larger the trip segment the smaller
the dataset, and the dataset becomes smaller than
the necessary for the model to make accurate pre-
dictions. On the other hand, the physics-based
models already have the information of the vehicle
model and can more easily generalise from smaller
datasets.

From the data-driven models we can see that the
decision tree model provided the best performance.
From the physics-based models, the one that pro-
vided the best results were the regression models,
with small differences between the models. But
the a priori model showed the best results for the
smaller trip segments, where the regression mod-
els could not find the accurate model parameters to
describe the vehicle.

Figure 10: Joint Representation of the R2 for all
the models that were used to describe the vehicle

Table 5 is a compilation of average errors and
standard error mean deviation data for the different
models. We can see that the standard deviation of
the error closely follows the performance expected
by the R2 value of the models. However, it is possi-
ble to see that that is not quite the case for the bias.
It is observed that the model which has the most
(absolute) bias, with 32%, is the a priori model,
followed by the KNN model, with 7%. The model
that had the less bias was the decision tree model,
despite the fact that the R2 value was higher than
the regression model.

5 History-Based Methods

In contrast to the previous section, the focus of this
chapter is to implement and test, using the real-
world data collected, a system that allows the esti-
mation of the vehicle range without the knowledge
of the future vehicle trajectory. This was done us-

Model
Average Standard

Error (%) Deviation (%)
Regression Model 3 13
A priori Model -32 27

KNN 7 52
Decision Trees 1 26

Table 5: Average and standard deviation of the er-
ror values for the different methods.

ing a moving average. The general form that a
moving average takes can be seen in equation 11,
where the yt are the values that the series takes for
time t, and N is the length of the moving average
window [25].

MAi(y) =
yt + yt−1 + ...+ yt−(N−1)

N
(11)

In this particular case, we want to estimate the
consumption per distance travelled by the vehicle
(p̄). In order to do that, two moving averages
are computed as shown in equation in equation 12,
where MAi(I) and MAi(∆s) represent the moving
average values for time t of the current consumed
and the distance travelled by the vehicle, respec-
tively. Both of the moving averages are computed in
the same way and for the same window. the compu-
tation of the average consumption allows us to then
estimate the remaining driving range (RDR) of the
vehicle using equation 13, where SOCt is the in-
stantaneous state of charge in the battery provided
by the BMS, and the fcal is a calibration factor.

To estimate the calibration factor we compute
for all of the trips collected the distance travelled
(∆strip) and the range variation (∆RDRtrip =
RDRi − RDRf ) from start to finish. This calibra-
tion factor is then estimated using a linear regres-
sion to equation 14. An example of a calibration is
shown in figure 11.

p̄i =
tw ·MAi(I)

MAi(∆s)
(12)

RDRi =
SOCi

p̄i
· fcal (13)

∆RDRtrip = fcal · ∆strip (14)

To test the history based models, the range was
calculated for the entire day of data acquisition of
the vehicle. For each of this estimations the error
was computed using equation 15. The average er-
ror as well as standard deviation of the errors of the
predictions were the main evaluation metrics con-
sidered.

e =
∆RDR− ∆s

∆s
(15)
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Figure 11: Example of a graph of the calibration

This tests were used in the following two sections,
which consider two ways of choosing the moving av-
erage. The first corresponds to the constant time
window and the second to the constant distance
window.

5.1 Time Window
The range prediction was made over all the charging
cycles that were acquired for varying time windows.
The average value of R2 obtained can be seen in fig-
ure 12 as a function of the time window considered.
It is possible to see that for the points with cal-
ibration the R2 approaches 1 for windows above
10000 s (around 2:45 h), which indicates that this
is the minimum value for a correct description of
the measured data.

From the values of errors for the charging cycles,
it was computed the average error and the standard
deviation of the values. In figure 13 it can be seen
the evolution of the average error as well as the
evolution of the standard deviation of the errors.
As seen before the values tend to stabilise for bigger
time windows, as the bigger the window the less the
values will vary.

Figure 12: Evolution of the R2 as a function of the
window used.

5.2 Distance Window
The evaluation of the model was made in the same
way as for the time window models. For this

Figure 13: Values of the mean error and standard
deviation of the error values for various time win-
dows.

model, the results also improved upon calibration.
Because of this the data presented corresponds only
to calibrated data. In figure 14 it can be seen that
the value of R2 once again stabilizes close to one
for widows above 30 kilometres. However, as can
be seen in figure 15 the average error is still consid-
erable and only becomes close to zero for windows
of around 80 km. For these bigger windows, it can
be seen that the standard deviation of the error is
close to 10%, which is a acceptable value.

Figure 14: Evolution of the R2 values for the con-
stant distance window moving average as a function
of the window considered.

5.3 Model Comparison
The objective of this section was to determine which
of the ways of choosing the window produced the
best results for this real time methods. We make
this by comparing the best results obtained with the
constant time window to the best ones obtained us-
ing the constant distance window. Table 6 shows
the R2 average and standard deviation for both
models. It is verified that both values are relatively
close to one another. Both present an acceptable fit
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Figure 15: Examples of the range prediction profile
for two different time windows.

to the measured data and the results show consis-
tency across the different days considered, showing
a relatively low standard deviation. In table 7 it can
be seen the mean and the standard deviation of the
relative error for the cycles considered. It can be
seen that the distance window method showed it-
self to be more accurate with a lower average error,
as well as more precise with a lower error standard
deviation.

Window Mean R2 Standard R2

Deviation
tw = 2 : 45min 0.77 0.13
dw = 80km 0.79 0.18

Table 6: Mean and Standard Deviation of the R2.

Window
Mean Standard Error

Error (%) Deviation (%)
tw = 2 : 45min 8.1 19.7
dw = 80km 2.0 8.2

Table 7: Mean and Standard Deviation of the relative
error.

6 Conclusions
In this work, the Limo GT was successfully con-
verted to use lithium ion batteries, increasing the
range and the durability of the batteries. A data
acquisition system to collect information concern-
ing the position of the vehicle as well as the battery
pack was successfully implemented, using a Rasp-
berry Pi device.

The data collected was used to test range pre-
diction methods to eliminate range anxiety. Sev-
eral trip- and history-based methods were im-
plemented.

In the trip-based models it was generally shown
that the performance of all the models improved
with the length of the segment considered. It was

also concluded that the best performance was pro-
vided by the regression model. It was also seen that
the performance of the statistical models gets worse
as the dataset is reduced, while the physical models
retain predictive capability even for small datasets.

Due to the fact that the altitude estimations were
not reliable, the road slope estimations were not re-
liable. Because of this, it was not possible to accu-
rately predict the instantaneous consumption of the
vehicle, making the introduction of the efficiency of
the electric motor impossible. However it was suc-
cessfully extracted a efficiency map of the vehicle.

Two different formulations of history-based were
also successfully implemented using methods based
on the moving average algorithm. The first method
considered a constant time window and the second a
constant distance window. The results shown were
compatible with commercial range prediction of ve-
hicles.
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