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This thesis investigates the interplay between two topics: electrical transport and driving-induced
(Floquet) topological systems. Specifically, we study the role of topology on the transport properties
of one-dimensional Floquet systems. This naturally leads us to investigate the role of symmetries
on charge and heat pumping.

We consider a driven Su-Schrieffer-Heeger (SSH) chain. The average current as a function of
the oscillation amplitude was found to be monotonic in the non-topological phase whereas in the
topological phase it is non-monotonic.

We also address bound-state-induced transport by monitoring the transmission peaks when the
chemical potentials lie inside the energy gap in an inhomogeneous setup. The increase in the number
of localized states enhances the conductance due to electronic tunneling through those states.

Finally, we investigate charge and heat pumping in two models belonging to the BDI symmetry
class. The presence of particle-hole symmetry (PHS) implies that the pumped charge (heat) is an
odd (even) function of the chemical potential. This occurs if spatial symmetry (PS) is broken. If
PHS is broken, the product of PHS with PS produces even/odd charge/heat pumping. An additional
symmetry that behaves like a PHS, although not the usual one, is introduced, which renders the
pumped charge/heat an odd/even function. Our results provide a simple criterion for reversing (or
maintaining) the direction of the charge or heat flux.
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I. INTRODUCTION

One goal of Condensed Matter Physics is to classify
the states of matter according to the properties of the
system. Usually we are taught that we can find matter
in three phases: gas, solid and liquid. Eventually we are
told about the plasma state. However, this picture is a
little bit reductive. In fact, there are many more states of
matter that can be identified, such as superfluids, super-
conductors, liquid crystals or the Bose-Einstein conden-
sate, and topological phases of matter. While topological
phases of matter in equilibrium are well established, the
same can not be said about non-equilibrium ones, object
of current and active research.

Periodic driving of a topologically trivial system can
render it topological [1], providing an alternative route
to synthesize and manipulate topological nontrivial ma-
terials.

Topological insulators have been realized in experi-
ments [2], one example being HgTe/CdTe quantum-wells
[3], providing evidence for the quantum spin Hall ef-
fect. Other works searched for the quantized anomalous
Hall (QAH) effect in tetradymite semiconductors Bi2Te3,
Bi2Se3, and Sb2Te3 doped with transition metal elements
(Cr or Fe) [4], which are known to belong to the class of
topological insulators. The observation of the QAH ef-
fect has already been reported [5]. However, the choice of
materials that exhibit these unique topological properties
remains rather scarce.

Fortunately, external periodic driving opens a route to
engineer that kind of topological materials from materials
that are topologically trivial in equilibrium. The mate-
rials that display topological properties under periodic
driving are usually called Floquet topological insulators

(FTIs) [6]. One example is a graphene ribbon attached
to two electrodes (one in each edge) and irradiated by cir-
cularly polarized light as described in a work by T. Oka
and H. Aoki [7]. Moreover, we can find in the literature
reports of experimental realizations involving graphene,
namely in Ref. [8], where the driving induces the Haldane
model [9].

Transport along one dimensional driven systems has
been studied by P. Hänggi et al. in Ref. [10], where a
Floquet Green function approach was adopted. In Ref.
[10] and in this work the thermalization mechanism is
due to the contact with two leads.

Transport properties of Floquet topological phases in
one dimension has been reported by O. Balabanov and
H. Johanesson in [11]. Predictions for transmission spec-
tra are presented. Namely, peaks in the transmission
spectra that lie in the gaps whenever the system is in a
topological phase are observed. The height of the peaks
depends non-monotonically with the chain size. In this
work we extend the analysis to non-homogeneous chains,
with two portions of the chain being driven with different
amplitudes.

In the context of quantum charge pumping, symme-
tries play a huge role. Both [12] and [13] point out that to
obtain a pumped current the left-right symmetry of the
system must be broken. This can be achieved by break-
ing parity (or spatial) symmetry (PS) or time-reversal
symmetry (TRS).

In this work the main goal is to establish transport
properties of Floquet topological phases in one dimen-
sion. For that we compute the average current and the
differential conductance for different topological phases
of two distinct models. We study the implications sym-
metries have on the charge pumping for two distinct mod-
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els as well. The tools acquired also allow for the study of
the heat pumping for the models already considered in
the charge pumping.

This paper is organized as follows. In Sec. II we discuss
the setup of our physical system and introduce the tight-
binding models we will work on. In Sec. III we present
the phase diagram of the Magnus effective Hamiltonian
of the first model introduced in II, using the winding
number for static systems, and the phase diagram of the
second model introduced in II using the winding number
for Floquet systems. In section IV we explain briefly how
to compute the average charge current, the total heating
of the leads and the pumped heat between them. We
also define the transmission coefficients to be studied. In
section V we start by computing the average current as a
function of the driving amplitude for the first model in-
troduced. Then we move on to the second model, where
we compute the transmission peaks for homogeneous and
inhomogeneous chains varying the chain size, and com-
pare the results between the two cases. In the first situ-
ation we compute the transmission peaks at zero energy
and in the second we study the transmission peaks at
±π energies. In section VI we study the role symmetries
have on the even/odd behavior of the charge pumping,
using the second and third models introduced in section
II. In section VII we study the role symmetries have on
the even/odd behavior of the total heating of the leads
and the heat pumping between the leads, using again
the second and third models introduced in section II. We
finish with section VIII, where we make conclusions and
final remarks.

II. SETUP AND MODELS

In this work we consider one dimensional tight-binding
models driven by an external time-periodic field. This
can be achieved by illuminating the chain with radiation,
which in our case would be monochromatic. The elec-
trodes are metallic leads connected to a battery which
sets a bias V between them. The leads, which act as
reservoirs, are connected to the chain through the end
sites. The left lead is at the chemical potential µL and
the right one at the chemical potential µR. The bias
applied is thus V = (µR − µL)/e, e > 0.

In this work we consider three models. The first one is
a driven version of the Su-Schrieffer–Heeger (SSH) model,
with Floquet Bloch Hamiltonian

H(k, t) =(t1 + t2 cos k) σx + (t2 sin k − 2A sin(Ωt)) σy+

2A cos(Ωt) σz , (1)

where A and Ω are the amplitude and frequency of the
driving, respectively, t1 and t2 are the hopping ampli-
tudes of the static SSH model, and σx, σy and σz are the
three Pauli matrices, acting on the sublattice space. The
second model is a variant of the driven SSH chain, which
we called zx model:

Hzx(k, t) = (sin k, 0, cos k +A cos(Ωt) + µ) · (σx, σy, σz) .
(2)

The last and third model is obtained from (2) by a
cyclic permutation of the Pauli matrices. We called it xy
model:

Hxy(k, t) = (cos k +A cos(Ωt) + µ, sin k, 0) · (σx, σy, σz) .
(3)

III. TOPOLOGICAL PHASE DIAGRAMS

A. Symmetries

There are three fundamental symmetries that deter-
mine the symmetry class the Hamiltonian belongs to.
They are time-reversal symmetry (TRS), particle-hole
symmetry (PHS) and chiral symmetry (CS). They are
defined as:

TRS: THT(−k,−t)T † = H(k, t) , (4)

PHS: CH∗(k, t)C† = −H(−k, t) , (5)

CS: ΓH∗(k, t)Γ† = −H(−k, t) . (6)

If the Hamiltonian is static, in the definitions we can sim-
ply omit the time-dependence. For Hermitian Hamiltoni-
ans, TRS as per (4) is equivalent to the more frequent def-
inition with complex conjugation instead of the transpose
of the Hamiltonian. For non-hermitian Hamiltonians this
is not true anymore. There is TRS and TRS†. TRS as
defined in (4) is in fact TRS† according to K. Kawabata
et al. ([14]). The same goes for PHS/CS, which as de-
fined in (5)/(6), is in fact PHS†/CS†. However, we will
abuse of notation and refer to the symmetries without
dagger, simply by TRS, PHS and CS.

It is easy to see that the model defined in Eq. (1) has
only TRS with T = 1, so it belongs to the AI symmetry
class, according to the Altland-Zirnbauer classification
[15]. If the driving amplitude is zero, we obtain the static
SSH model, which belongs to the BDI class.

The zx model has TRS with T = σz and PHS with
C = σx. As CS is the product of TRS with PHS, then it
also has CS, with Γ = σy. Hence, the zx model belongs
to the BDI symmetry class.

As the xy model is a cyclic permutation of the Pauli
matrices, it belongs to the BDI symmetry class as well,
but with T = 1, C = σz and Γ = σz.

B. Phase Diagram of the driven SSH model

The model defined in Eq. (1), as we stated, belongs to
the AI symmetry class, which according to the periodic
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table of Floquet topological insulators and superconduc-
tors in [15] has no topological invariant in one dimension.
What we can do is compute the effective Magnus Hamil-
tonian [16] up to first order, valid for high frequencies,
which yields (~ = 1)

Heff(k) = H0(k) +
1

Ω
[H1(k), H†1(k)] = H0(k)− 4A2

Ω
σ1 =

= (teff
1 + t2 cos k) σx + t2 sin k σy , (7)

where H1(k) is the first (and only) harmonic component
of the Hamiltonian (1), and teff

1 = t1−4A2/Ω. The effec-
tive Magnus Hamiltonian is just a static SSH Hamilto-
nian, with hopping terms teff

1 and t2. The phase diagrams
for this Hamiltonian are presented in Fig. 1, where the
topological invariant, the winding number ν [17], is plot-
ted against the amplitude and period of the driving.

(a) t1 = 1, t2 = 0.6

(b) t1 = 0.6, t2 = 1

FIG. 1: Phase diagram of the effective first order Magnus
Hamiltonian of the driven SSH model.

Blue: ν = 0; White: ν = 1.

One must take care when reading the phase diagrams
of Fig. 1, since the Magnus expansion only makes sense
for high frequencies. For mid-range and low frequencies
the phase diagrams have no meaning. Furthermore, we
are using a winding number best suited for static systems.

So the winding number of the effective Hamiltonian does
not capture the full picture. Additionally, this winding
does not predict the existence of π-modes. As this model
has no (dynamic) winding number, next we move on to
the zx model, which has dynamical winding number.

C. Phase Diagram of the zx model

The zx model defined in Eq. (2), as we stated, belongs
to the BDI symmetry class, which in one dimension has
a winding number at the zero gap, ν0, and a winding
number at the π gap, νπ, according to the periodic table
of Floquet topological insulators and superconductors in
Ref. [15].

In Fig. 2 the phase diagram of the zx model for µ = 0.5
is shown. Each topological phase is characterized by the
pair (ν0, νπ).

FIG. 2: Phase diagram of the zx model, for µ = 0. A and T
are the amplitude and period of the driving, respectively.

IV. CHARGE AND HEAT CURRENT

In this section we discuss briefly how to compute the
average directed charge current and the average directed
heat current. We start with the charge current. The
electronic states in the chain obey the Floquet equation

i~∂t|uε(t)〉 = [H(t) + Σ− ε]|uε(t)〉 , (8)

where H(t) is the Hamiltonian of the chain in real space,
ε is the quasi-energy and

Σ = − i
2

[ΓL|1〉〈1|+ ΓR|N〉〈N |] (9)
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is the self-energy, which comes from the coupling of the
chain to the leads. We work in the wide-band limit where
ΓL and ΓR are constants.

The Fourier series of the Floquet state reads

|uε(t)〉 =
∑
n∈Z

e−inΩt|un(ε)〉 . (10)

Expanding the Hamiltonian of the chain as H(t) =∑
nHne

inΩt, the Fourier components |un(ε)〉 of the Flo-
quet state obey

∑
n∈Z

[Hn−m − n~Ωδn,m]|un(ε)〉 = ε|un(ε)〉 . (11)

Because the Hamiltonian we work with includes a non-
hermitian term, the quasienergies are complex. The Flo-
quet states with quasienergies ε and ε+~Ω are physically
the same, so we assume that −~Ω/2 < <(ε) ≤ ~Ω/2. We
call this interval the Floquet zone (FZ). Furthermore, we
need to compute the left eigenstates, |u+

ε (t)〉, which obey

− i~∂t〈u+
ε (t)| = 〈u+

ε (t)|[H(t) + Σ− ε] , (12)

which in terms of Fourier components reads

∑
n∈Z
〈u+
n (ε)|[Hn−m − n~Ωδn,m] = 〈u+

n (ε)|ε . (13)

The normalization condition
∑
n〈u+

n (ε)|un(ε)〉 = 1 is sat-
isfied. The orthonormality and completeness of the left
and right eigenvectors basis vectors implies for the lattice
sites |j〉 that

∑
ε

∑
n∈Z
〈i|un(ε)〉〈u+

n (ε)|j〉 = 〈i|j〉 = δi,j . (14)

The electrical current flowing through the chain av-
eraged in one cycle, in the wide-band limit, is given by
[10]

Ī =
e

h
ΓLΓR

∑
n∈Z

∫
dE [|G(n)

1N (E)|2fR(E)−|G(n)
N1 (E)|2fL(E)] ,

(15)
where −e is the electron charge, h the Planck’s constant,
and the functions fR(E) and fL(E) are the distribution
functions of the leads. We assume both leads are in ther-
mal equilibrium, so the electronic distribution function
is the Fermi-Dirac function, the right one with chemical
potential µR and the left one with chemical potential µL.

G(n)
ij (E) denotes the Green function

G(n)
ij (E) =

∑
ε∈FZ

∑
m∈Z

〈i|un+m(ε)〉〈u+
m(ε)|j〉

E − ε− ~mΩ
, (16)

where the sum in the quasienergies is over the quasiener-
gies in the Floquet zone. We work in the wide-band limit
at zero temperature, so the distribution functions are
stepwise, hence the integrands in (15) are rational func-
tions and the integral can be done analytically. Besides
the average current, experimentally we can also measure
the differential conductance. In the zero temperature ap-
proximation the differential conductance fixing µL and
raising µR, denoted by GLR, is given by

GLR(E) =
δĪ

δV
=
Ī(E + dE,E)− Ī(E,E)

δV
=

=
e2

h

∑
n∈Z

T
(n)
LR (E) =

e2

h
ΓLΓR

∑
n∈Z
|G(n)

1N (E)|2 ≡

≡ e2

h
TLR(E) . (17)

We could also define a differential conductance, GRL,
where we fix µR and lower µL. We would obtain

GRL(E) =
e2

h

∑
n∈Z

T
(n)
RL (E) =

e2

h
ΓLΓR

∑
n∈Z
|G(n)
N1 (E)|2 ≡

≡ e2

h
TRL(E) . (18)

If we want to study the charge pumping, we compute
(15) with the leads at the same chemical potential. With
µR = µL = µl, the leads share the same distribution
function f(E), since we consider that they are at the
same temperature. Hence, the pumped charge over a
cycle, Q, is given by the average current at zero bias
multiplied by the driving period, that is,

Q =
e

~Ω
ΓLΓR

∑
n∈Z

∫
dE f(E)[|G(n)

1N (E)|2 − |G(n)
N1 (E)|2] .

(19)
As we will need later on to study the even/odd behav-

ior of the charge pumping, we compute the derivative of
the pumped charge with respect to the chemical potential
µl at zero temperature, which reads

Q′(µl) =
e

~Ω
ΓLΓR

∑
n∈Z

[|G(n)
1N (µl)|2 − |G(n)

N1 (µl)|2] . (20)

The heat Qα entering the lead α (= L or R) per unit
time with all leads at the same chemical potential µl is
given by [13]

Q̇α =
1

h

∫
dE
∑
β

∑
n∈Z

(E − µl + n~Ω)
{
|Sαβ(n,E)|2fβ(E)−

(E − µl)|Sβα(n,E)|2fα(E)
}
,

(21)
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where S is the Floquet scattering matrix. Sαβ(n,E)
is the probability amplitude for an incident wave with
energy E leaving lead β to absorb (n > 0) or emit
(n < 0) |n| photons and leave through lead α with energy
E+n~Ω. The Floquet scattering matrix is related to the
Green function through

|Sαβ(n,E)|2 = ΓαΓβ |G(n)
αβ (E)|2 . (22)

Now we can either look at the total heating in one
cycle (Q̇R + Q̇L)2π/Ω ≡ QR + QL or at the pumped

heat between the leads in one cycle (Q̇R − Q̇L)2π/Ω ≡
QR −QL. From Eq. (21) we have for the total heat and
pumped heat

QR +QL = Q1,+ (23)

QR −QL = Q1,− +Q2 , (24)

where we defined for convenience

Q1,± =
∑
n∈Z

∫
dE f(E)n

[
|SRR(n,E)|2 ± |SLL(n,E)|2

+ |SRL(n,E)|2 ± |SLR(n,E)|2
]
, (25)

Q2 = 2
∑
n∈Z

∫
dE f(E)

(
E − µl
~Ω

)[
|SRL(n,E)|2

−|SLR(n,E)|2
]
. (26)

The terms in LL and RR are reflection terms not
present in the charge current, which describe a heating
effect caused by the radiation field on each lead when
the fermions enter the chain through one lead, exchange
photons with the radiation field, and return to same lead.

The term that has the energy in the numerator in (26)
diverges logarithmically with the band-width of the elec-
trode. Nonetheless, at zero temperature, the integral is
from −∞ to µl. The integral from −∞ to 0 does not
depend on µl, so we can discard it, and only the integral
from 0 to µl remains. We compute the derivative of Q1,±
and Q2 with respect to the chemical potential separately,
that read

Q′1,±(µl) =
∑
n∈Z

n[|SRR(n, µl)|2 ± |SLL(n, µl)|2

+ |SRL(n, µl)|2 ± |SLR(n, µl)|2] (27)

and

Q′2(µl) = −2
∑
n∈Z

∫ µl

0

dE

~Ω

[
|SRL(n,E)|2 − |SLR(n,E)|2

]
(28)

The expressions above will determine if the behavior
of both total heat and pumped heat as functions of the
chemical potential are even or odd.

V. TOPOLOGY AND TRANSPORT

In this section we present our results of the study on
the topological signatures in the transport properties of
one-dimensional Floquet systems. We first consider the
model defined in Eq. (1), and then the zx model.

A. Driven SSH model

In Fig. 3 the average current is plotted against the
driving amplitude while fixing all the other parameters.

FIG. 3: Average current through the wire as a function of A.
Ω = 20, ΓL = ΓR = 0.5, µR = −µL = 25. 80 sites.

We can see in these plots transitions between topo-
logical phases. In Fig. 1a the average current behaves
monotonically for A . 1.4 and for A & 2.7, while for
1.4 . A . 2.7 it decreases and then increases. In Fig. 1b
we see only one transition around A ≈ 2.7. For A . 2.7
the average current first decreases and then increases un-
til it reaches the transition point. From that point on it
behaves monotonically. Looking at Fig. 1 we see that
these transitions occur when the value of the winding
number changes.

B. zx model

As explained in [11], when the length of the topolog-
ical insulator is finite, the topological states hybridize
with bulk states and create additional transport channels
across the structure. Thus a fingerprint of those states
we expect to see is the existence of transmission peaks at
the chemical potentials 0 whenever ν0 6= 0 or at ±π/T
whenever νπ 6= 0 for homogeneous chains.

We choose Hamiltonian parameters so that the chain
is in a homogeneous topological phase with edge states
localized at sites |1〉 and |N〉. We also study the inho-
mogeneous system where the two halves of the chain are
illuminated with two different amplitudes and are in two
different topological phases. In this situation, localized
states emerge in the middle of the chain, according to the
bulk-edge correspondence principle.
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So we do an analysis similar to the one done by
H. Johansson and O. Balabanov in Ref. [11], which con-
sists in studying the growth of the transmission peaks
with the chain size. Here we consider homogeneous and
inhomogeneous chains.

First we consider a situation where the left side of the
chain is in the phase (1, 0) and the the right one is in

the phase (−1, 0), such that we have four zero-energy
bound states in total, according to the bulk-edge corre-
spondence. We can see in Fig. 4 that the transmission
peak at zero energy of the inhomogeneous chain survives
for bigger chain sizes than the ones of the homogeneous
chains.

FIG. 4: Transmission peaks at zero chemical potential as a function of the number of unit cells, for homogeneous and
inhomogeneous chains. Note that for the homogeneous chains TLR(0) = TRL(0). µ = 0.5, T = 1.6, ΓL = ΓR = 0.5, AL = 2,

AR = 6.

To see what happens to the transmission peaks at the
±π energies we give an example with the left portion
of the chain in the phase (0, 1) and the left one in the
phase (0,−1), so that we have four π-modes, according
to the bulk-edge correspondence. Now we have to look for
peaks at the chemical potentials −π and π. We see from
Fig. 5 that the peaks at ±π of the inhomogeneous chain
survive for bigger chain sizes compared to the homoge-

neous cases, except for TLR(−π/T ) of Fig. 5c. Nonethe-
less, we note that for inhomogeneous chains the peaks
at zero chemical potential survive for bigger chain sizes
compared to the peaks at ±π.

The conclusion to make is that additional bound states
enhance the conductivity, since there are more states
which through tunnel effect occurs.

VI. SYMMETRIES AND CHARGE PUMPING

In this section we study the role symmetries play on
the properties of charge pumping.

In this section and the next one parity symmetry (PS)
will play a significant role, so we define it now as:

H(k, t) = PH(−k, t)P † , in momentum space, (29)

H(−x, t) = PH(x, t)P † , in real space. (30)

First we consider the zx model defined in (2). Al-
though the Hamiltonian of the chain enjoys PS with
P = σz, the coupling to the leads, Σ, violates PS, so one
expects to have charge pumping. The leads break PHS

symmetry as well. If the chain is inhomogeneous, then it
is certain that PS is broken, so we will have charge pump-
ing as well. If the chain is homogeneous, the pumped
charge as a function of the chemical potential is even,
as can be seen in the left panel of Fig. 6. This hap-
pens because the homogeneous chain enjoys the product
of PS and PHS, we call it PC symmetry. For instance,
starting from the Floquet equation and then applying
the particle hole transformation followed by the parity
transformation we obtain

i~∂t|uε(t)〉 = [Hzx(t) + Σ− ε]|uε(t)〉 ⇔
⇔ i~∂tPC|uε(−x, t)〉∗ = [Hzx(x, t) + Σ + ε∗]PC|uε(−x, t)〉∗ ,

(31)
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(a) (b)

(c) (d)

FIG. 5: Transmission peaks at chemical potentials ±π as a function of the number of unit cells, for homogeneous and
inhomogeneous chains. (a) Left-right transmission coefficient at π. (b) Right-left transmission coefficient at π. (c) Left-right

transmission coefficient at −π. (d) Right-left transmission coefficient at −π. µ = 1.5, T = 1.6, ΓL = ΓR = 0.5, AL = 2,
AR = 10.

where we used the fact that PCΣ∗(−x)C†P † = −Σ(x)
with ΓL = ΓR. Hence, the Floquet state PC|uε(−x, t)〉∗
has quasienergy −ε∗. So we have

PC|uε(−x, t)〉∗ = |u−ε∗(x, t)〉 , (32)

resulting for the Fourier components in

PC|u−n(−x, ε)〉∗ = |un(x,−ε∗)〉 . (33)

Since PC = iσy, we have in particular

〈N |u−n(ε)〉∗ = 〈N − 1|PC|u−n(ε)〉∗ = 〈1|un(−ε∗)〉∗,
(34)

〈1|u−n(ε)〉∗ = −〈2|PC|u−n(ε)〉∗ = −〈N |un(−ε∗)〉 .
(35)

For the Green function this results in

G(m)
1N (E) =

∑
ε∈FZ

∑
n∈Z

〈1|um+n(−ε∗)〉〈u+
n (−ε∗)|N〉

E + ε∗ − ~nΩ
=

= −
∑
ε∈FZ

∑
n∈Z

〈N |u−m−n(ε)〉∗〈u+
−n(ε)|1〉∗

E + ε∗ − ~nΩ
=

=
(
G(−m)
N1 (−E)

)∗
. (36)

If we use the previous relation in Eq. (20), we arrive
at Q′(µl) = −Q′(−µl), which implies that the pumped
charge is an even function of the chemical potential.

FIG. 6: Charge pumped in a cycle vs. chemical potential, in
a homogeneous xz model chain (left panel), and in

inhomogeneous chains of the zx and xy models (right panel),
where two halves of the chain are illuminated with different
amplitudes. The parameters are T = 1.6, ΓL = ΓR = 0.5, 60

sites. A = 2 and µ = 0.5 for the left panel.

In the right panel of Fig. 6 the pumped charge is
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plotted against the chemical potential for inhomogeneous
chains of the zx and xy model. Considering first the
zx model, we note that for µ = 0, when two halves
of the chain are driven with different amplitudes, the
pumped charge is an odd function of the chemical po-
tential. The PC symmetry is explicitly broken, but
the system has a special kind of PHS that only strictly
holds when µ = 0. We introduce the operator O which
acts upon the Floquet state in space-time domain as
O|u(x, t)〉 = (−1)x|u(x, t + π/Ω)〉. In momentum-time
space, O produces a wave vector shift k → k + π and
time translation by half a period. If we now consider the
operator σ3OK, where K denotes the complex conjuga-
tion, we see that

σzO [H∗zx(−k, t)]µO
−1σz = − [H∗zx(k, t)]−µ , (37)

while for the self-energy

σzOΣ∗O−1σz = −Σ . (38)

Eqs. (37) and (38) show that σ3O serves as modified
form of PHS when µ = 0. The effect of σ3OK on the
Floquet equation is (here we drop the label zx in the
chain’s Hamiltonian)

i~∂|uε(t)〉 = [H(t) + Σ− ε] |uε(t)〉
⇔ i~σzO∂|uε(t)〉∗ = [H−µ(t) + Σ + ε∗]σzO|uε(t)〉∗ .

(39)

Therefore, the state σzO|uε(t)〉∗ has quasi-energy −ε∗ in
the Hamiltonian H−µ(t) + Σ. In terms of the Fourier
components of the Floquet function

σzO|uε(x, t)〉∗(x, t) =
∑
n

σz|un(x, ε)〉∗(−1)x+neinΩt =

=
∑
n

σz|u−n(x, ε)〉∗(−1)x+ne−inΩt = |u−ε∗(x, t)〉 .

(40)

We are now able to compute the Green function’s matrix
elements when µ is replaced by −µ:

[
G(m)

1N (E)
]
−µ

=
∑
ε∈FZ

∑
n∈Z

〈1|um+n(−ε∗)〉〈u+
n (−ε∗)|N〉

E + ε∗ − n~Ω

=
∑
ε∈FZ

∑
n∈Z

〈1|σzOu−m−n(ε)〉∗〈σzOu+
−n(ε)|N〉∗

E + ε∗ − n~Ω

=
∑
ε∈FZ

∑
n∈Z

(−1)m+ N
2 〈1|u−m+n(ε)〉∗〈u+

n (ε)|N〉∗

E + ε∗ + n~Ω

= (−1)1+m+N/2
[
G(−m)

1N (−E)
]∗
µ
. (41)

When µ = 0 we have |G(m)
1N (E)|2 = |G(−m)

1N (−E)|2. From
(20) we can see that Q′(µl) is an even function, which
implies that the pumped charge is odd. This explains
the result from the right panel of Fig. 6. If µ 6= 0 neither
PC nor PHS’ are present, so the pumped charge is nei-
ther even nor odd. In the homogeneous case, if ΓL 6= ΓR
the PC symmetry is broken, so when µ 6= 0 the pumped
charge is no longer an even function of the chemical po-
tential. Nonetheless, if µ = 0 the pumped charge is an
odd function, because PHS’ is present.

Now we turn to the xy model, where P = σx and
C = σz. In the homogeneous case, the leads preserve PS
if ΓL = ΓR, so there is no charge pumping. However, in
the inhomogeneous case we have charge pumping. The
PS of the system is broken, but PHS is still preserved.
Indeed, CH∗xy(t)C† = −Hxy(t) and CΣ∗C† = −Σ, and
the Floquet equation for the Floquet state |uε(t)〉 with
quasienergy ε reads

i~∂t|uε(t)〉 = [Hxy(t) + Σ− ε]|uε(t)〉 ⇔
⇔ i~∂tC|uε(t)〉∗ = [Hxy(t)− CΣ∗C† + ε∗]C|uε(t)〉∗ ,

(42)

and since CΣ∗C† = −Σ, the state C|uε(t)〉∗ has
quasienergy −ε∗ for the Hamiltonian Hxy(t)−CΣ∗C† =
Hxy(t) + Σ, which means that

C|uε(t)〉∗ = |u−ε∗(t)〉 . (43)

For the Fourier components it reads

σz|u−n(ε)〉 = |un(−ε∗)〉 ⇔ |un(ε)〉 = σz|u−n(−ε∗)〉 .
(44)

Using the previous equation in (16) we get

G(m)
1N (E) =

∑
ε∈FZ

∑
n∈Z

〈1|u−m−n(−ε∗)〉∗〈u+
−n(−ε∗)|N〉∗

E − ε− ~nΩ
.

(45)

Replacing n → −n and ε → −ε∗ one can see that
G1N (m,E) = G∗1N (−m,−E), and a similar relation can
be derived for GN1. It follows that the relation

|G(m)
1N (E)|2 = |G(−m)

1N (−E)|2 (46)

holds, which means Q′(µl) is an even function, so the
pumped charge is odd, just as can be seen in the right
panel of Fig. 6. For a homogeneous chain with ΓL = ΓR
PS symmetry is present, so there is no charge pumping.
If ΓL 6= ΓR, then PS is broken, hence there is charge
pumping. As PHS is still present, the pumped charge is
an odd function of the chemical potential.
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VII. SYMMETRIES AND HEAT PUMPING

Now we study the role symmetries have on the heat
flow. We know how to compute the total heat and the
pumped heat over a cycle through Eqs. (23) and (24).
We work in the wide-band limit at zero temperature, so
the integrals can be done analytically. First we study
the case of the homogeneous zx chain, which has PC
symmetry. Similarly to (34) we have

〈1|un(−ε∗)〉 = 〈N − 1|PC|u−n(ε)〉∗ = −〈N |u−n(ε)〉∗,
(47)

〈u+
n (−ε∗)|1〉 = 〈PCu+

−n(ε)|N − 1〉∗ = −〈u+
−n(ε)|N〉∗ .

(48)

using the previous relations in the Green function yields

G(m)
11 (E) =

∑
ε∈FZ

∑
n∈Z

〈1|um+n(−ε∗)〉〈u+
n (−ε∗)|1〉

E + ε∗ − ~nΩ
=

= −
∑
ε∈FZ

∑
n∈Z

〈N |u−m+n(ε)〉∗〈u+
n (ε)|N〉∗

−E − ε∗ − ~nΩ
=

= −G(−m)
NN (−E) . (49)

Besides having |SLR(n,E)|2 = |SRL(−n,−E)|2, we now
have also |SLL(n,E)|2 = |SRR(−n,−E)|2, assuming
ΓL = ΓR. In this way, the derivative of the total heat as
in (27) (choosing the plus sign) verifies (QR+QL)′(µl) =
−(QR + QL)′(−µl). Hence, the total heat is an even
function of µl. Se left panel of Fig. 7. Through Eq.
(27) with the minus sign and Eq. (28), one can see that
(QR −QL)′(µl) = (QR −QL)′(−µl), which implies that
the pumped heat is an odd function of µl, apart from a
constant. See the right panel of Fig. 7.

If ΓL 6= ΓR, in the homogeneous case with µ 6= 0, as
functions of the chemical potential, the total heat is no
longer an even function and the pumped heat is no longer
and odd function (up to a constant), because in this way
PC is broken. Nonetheless, if µ = 0 PHS’ is present. A
similar reasoning that led to (41) yields (ii = 11, NN)

[
G(m)
ii (E)

]
−µ

= (−1)m+1
[
G(−m)
ii (−E)

]∗
µ
. (50)

Eqs. (41) and (50) imply that |Sαβ(n, µl)|2 =
|Sαβ(−n,−µl)|2 holds when µ = 0. In this way, both
(QR +QL)′(µl) and (QR +QL)′(µl) determined by Eqs.
(27) and (28) are odd functions, which means PHS’
renders both total heat and pumped heat even func-
tions. If µ = 0 and ΓL = ΓR there is neither charge
nor heat pumping, but there is total heat and it is an
even function. In the inhomogeneous case with µ =
0, (QR ± QL)(µl) are even functions because PHS’ is
present. If ΓL 6= ΓR, (QR ± QL)(µl) remain even, as
long as µ = 0. If µ 6= 0 in the inhomogeneous case
(QR ±QL)(µl) are no longer even functions. See Fig. 8.

FIG. 7: Total heat (left panel) and pumped heat (right
panel) in a cycle vs. chemical potential in homogeneous

chains of the zx model (left and right panels) and of the xy
model (left panel). The parameters are:µ = 0.5, A = 2,

T = 1.6, ΓL = ΓR = 0.5, 60 sites.

For a homogeneous chain of the xy model with
ΓL = ΓR PS symmetry is present, so there is no heat
pumping. However, we have total heating, and it is an
even function, as can be seen in the left panel of Fig. 7
(red dashed line). This happens because the chain has
PHS, as it was already stated above. A similar reasoning
that led to (45) leads to (ii = 11, NN)

G(m)
ii (E) = −

(
G(−m)
ii (−E)

)∗
, (51)

which implies |Sαβ(n,E)|2 = |Sαβ(−n,−E)|2, so
(QR ±QL)(µl) are even functions, but in this case we
have only total heating. If the chain is inhomogeneous,
PS symmetry is broken, so we will have heat pumping.
Nonetheless, PHS is still present, so (QR ± QL)(µl) re-
main even functions, as can be seen in Fig. 8 (red lines).

VIII. CONCLUSIONS

In this work we studied the role of topology on the
transport properties in one-dimensional Floquet systems
and studied the role of symmetries on the charge and
heat pumping as well.

First we considered a driven SSH chain in the AI sym-
metry class. We obtained the phase diagrams based on
the winding number of the first order Magnus Hamil-
tonian. We saw that the average current behaves non-
monotonically/monotonically when the system is the
non-topological/topological phase. Then we computed
the transmission peaks at zero energy for homogeneous
and inhomogeneous chains of a model belonging to the
BDI class we called zx model. In the inhomegeneous case
two halves of the chain were illuminated with different
driving amplitudes, being in different topological phases,
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FIG. 8: Total heat (left panel) and pumped heat (right
panel) in a cycle vs. chemical potential, in inhomogeneous
chains of the zx and xy models. A = 2(left), A = 6(right),

T = 1.6, ΓL = ΓR = 0.5, 60 sites.

with |νL0 − νR0 | = 2 and νLπ = νRπ = 0. The transmission
peaks were computed varying the chain size, similarly to
what was in [11].We found that the transmission peak at
zero energy for inhomogeneous chains survives for bigger
chain sizes compared to the case of homogeneous chains.
This is due to the additional number of bound states,
which opens additional channels for the electrons to tun-
nel across the chain. We repeated the procedure for a
chain with |νLπ − νRπ | = 2 and νL0 = νR0 = 0, plotting
the transmission peaks at ±π energies against the chain
size. The transmission peaks of the inhomogeneous were
observed to survive for bigger chain sizes compared to

the homogeneous chains, except for TLR(−π/T ). How-
ever, the peaks at ±π/T energies vanish for chain sizes
smaller than the ones for which the peaks at zero vanish.

Then we focused on the study of charge and heat
pumping. In the zx model the leads break PS, so we have
charge pumping. The homogeneous chain with µ 6= 0
does not have PHS, but has the product of PHS and PS,
that renders the pumped charge an even function of the
chemical potential and the pumped heat an odd function
of the chemical potential. For µ = 0 the system has also
a special kind of particle-hole symmetry, which renders
the pumped charge an odd function of the chemical po-
tential and the pumped heat an even function. Thus,
being even and odd functions of the chemical potential,
the pumped charge and the pumped heat through ho-
mogeneous chains of the zx model with µ = 0 are zero.
Inhomogeneous chains of the zx model with µ 6= 0 enjoy
none of the symmetries considered. Thus the pumped
charge and the pumped heat are neither even nor odd
functions.When µ = 0, the inhomogeneous chain enjoys
PHS’, so the pumped charge and the pumped heat are
odd and even , respectively. In the other model called xy
we considered, obtained by a permutation of the Pauli
matrices of the xz model, the leads preserve PS, so there
is neither pumped charge nor pumped heat for homoge-
neous chains. In inhomogeneous chains PS is broken, so
we have charge and heat pumping. Only PHS symmetry
is present, which in this case renders the pumped charge
and the pumped heat odd and even, respectively. Basi-
cally, we can easily reverse the direction of the charge or
heat flow by only tuning the chemical potential.
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