
Semi-Autonomous Indoor Drones

Bernardo Rocha

Instituto Superior Técnico

Lisbon, Portugal

bernardorocha@tecnico.ulisboa.pt

ABSTRACT

The latest advances in Micro Aerial Vehicle (MAV)

manufacturing have made these tiny robots very good

development tools for both researchers and students. This

work
1
 aims to provide a system that students from IST,

namely in Computer Engineering courses, can easily deploy

and use in a laboratory environment to control a MAV,

using their own computer and a python API, here described.

This system is built on top of the Crazyflie platform and is

accompanied by a set of laboratory guides for students to

follow during laboratory classes. The topics covered range

from manual navigation to mapping, autonomous

exploration and drone-to-drone interaction. Experimental

results show the system’s ability to perform in complex

indoor environments.

KEYWORDS

MAV; Crazyflie; Indoor environment; Mapping;

Exploration.

1 INTRODUCTION

Unmanned aerial vehicles (UAV), commonly known as

drones, have been used for a long time in several civilian and

military domains, including weather observation,

surveillance, search and rescue operations or civil

engineering inspections. In fact, as these robots’ capabilities

keep increasing, they also keep getting smaller and cheaper,

and new uses for them continue to be explored. More

recently, research has been done towards the development of

small human-friendly drones that can fly autonomously in

indoor environments. Unlike a regular-sized UAV, a micro

aerial vehicle (MAV) can operate in confined and GPS-

denied environments, and since it is usually a low-cost

solution, it can be easily replaced in case of damage or total

loss. Moreover, they can be an excellent development tool for

students and researchers, in a big diversity of fields such as

embedded systems, robotics or control theory. Because of

their small size and weight, it is very safe to use them in a

laboratory environment, including near people. More

specifically, they make up a new and engaging learning

opportunity for university students in the Computer Systems

branch, as they would able to modify both software and

hardware of the drone and build their own drone-oriented

applications during laboratory classes.

1
Supervised by Prof. Alberto Manuel Ramos da Cunha

Objectives

The main focus of this work is in providing a full-fledged

system that students and researchers from Computer

Engineering can easily use and deploy in laboratory

environment, such as the facilities at Departamento de

Engenharia Informática (DEI) in IST, to develop drone-

oriented applications. The system aims to take advantage of

the unique and engaging learning opportunities provided by

MAVs, specifically in the Computer Systems / Cyber-

Physical Systems branch, as they are complex cyber-

physical systems, with real-time sensing and control

requirements, and at the same time, highly resource-

constrained systems, as their small size does not allow

powerful sensors, computing units and batteries. To that

end, a set of 3 laboratory guides will be produced that will

give students the opportunity to tackle these unique

challenges, using MAVs, during laboratory classes of a

subject in the field. For them to solve the proposed

exercises, a high-level API is here developed and

documented, which offers a few high-level calls that allow

easy control of the drones. Finally, this work also aims to

provide a solid base for future students that wish to use

these drones for their own projects, or otherwise anyone

that wants to extend the system here proposed in any way.

The goals here described are addressed mainly as a

software challenge rather than focus on enhancing or

automating hardware.

2 RELATED WORK

There are some MAV based systems already being used in

research and education at university level. The SLIM [1]

system, for instance, was built to enable a big diversity of

use cases to be implemented. It has been used only in

multiple research projects but also lecture courses and

student projects and competitions. In [2], a system to fly

autonomously in complex and unknown environments

using ground control station architecture is presented. This

work was important to help understand the lower-level

modules necessary to produce position estimates. In the

system here presented though, these modules are provided

off-the-shelf in the drone’s default firmware build. It was

also presented some research [3][4] and education [5][6]

systems involving the Crazyflie platform. They showcase

the platform’s potential to run swarming architectures and

build high-level applications. All in all, these systems

helped to converge into the topics to be addressed in

laboratory classes, such as Mapping, Exploration and

Swarming (later simplified into drone-to-drone

communication).

Most of the presented techniques and technologies for

indoor localization assume one or more transmitters that

communicate a signal to one or more receivers [7]. Most of

the time, this implies that this set of transmitters (or

receivers) that need to be previously installed in the room,

which does not promote easy deployability. While this does

not mean that a mobile robot system would not benefit from

that kind of setup, especially in a scenario where multiple

drones need to be aware of each other, a more device-

centered approach needs to be taken, where most of the

hardware required is in the robot. In doing so, there is a

tradeoff between localization accuracy and deployability,

Finally, some research is done on topics addressed in the

laboratory guides, with the goal to provide and high-level

implementation through the developed API. In particular,

the occupancy grid mapping [8] and frontier-based

exploration [9] algorithms were implemented, as mapping

and exploration were not provided off-the-shelf by the

Crazyflie platform.

3 SYSTEM ARCHITECTURE

This is the system that will be used by each group at

laboratory classes. It comprehends a Crazyflie 2.1

quadcopter, a ground control station and a python API.

Each component will be described over the next sections. In

the last section some design choices are discussed,

including the choice of the Crazyflie platform.

The Crazyflie is a small and versatile MAV developed

with research and education purposes in mind. Bitcraze AB

[10], the company that develops and manufactures the

Crazyflie, also maintains a wide ecosystem of expansion

decks, clients and development tools that enable rapid

development, flexibility and ease of use. In addition, all

their projects are open source with extensive documentation

available. The system that will be used in laboratory context

has three main components, the Crazyflie drone, a

corresponding ground control station, which is a computer

enabled by a Crazyradio PA USB dongle, and a python API,

that is extending the functionality of the python library cflib

[11], made available by Bitcraze. It provides a full-fledged

solution that can be easily deployed in a laboratory and

allows students to focus on software development while

having to respect the constraints and challenges adjacent to

controlling a flying robot. The architecture is depicted in

Figure 1.

Crazyflie

The Crazyflie 2.1 drone (in Figure 2) contains an EEPROM

memory for storing configuration parameters and a 10-DOF

IMU with accelerometer, gyroscope, magnetometer and a

high precision pressure sensor. The MAV is also equipped

with low latency/long-range radio and Bluetooth LE, which

gives the user the option of either downloading the official

app and use a mobile device as a controller or, in

combination with the Crazyradio PA, flying with a game

controller. This is the fastest way to start flying right out of

the box, but it’s not how students will be controlling it. The

firmware of the drone is written in C and can be easily

modified and flashed over the radio. The drone weighs only

27g and it's so small that it fits in the palm of a hand.

Despite its size it is designed to be durable, as it will, in

most cases, remain intact in minor crashes and break at the

cheapest components, like propellers and motor mounts, in

the event of a major accident (as verified during the

development of this system). These characteristics make it

ideal for flying indoors. Although small, the four 7mm

coreless DC-motors in the Crazyflie grant it a maximum

take-off weight of 42g, which enables it to carry multiple

expansion decks for extra capabilities in sensing,

positioning or visualization. There is an extensive range of

decks available, but the platform is also designed to make it

easy to design and add custom decks, enabling the user to

use sensors and other devices on the platform. From the

expansion interface the user can access buses such as

UART, I2C and SPI as well as PWM, analog in/out and

GPIO. In the system presented in this work, two expansion

decks will be used.

The first, the flow deck v2, is attached on the bottom of

the drone and gives the ability of performing improved

relative localization. The deck achieves this using two

Figure 1- System Architecture

sensors. First, a PMW3901 optical flow sensor that

measures movements in relation to the ground. Internally, it

uses a low-resolution camera and predictive algorithms that

try to detect motion of surfaces. The second sensor is a

VL53L1x TOF sensor that measures the distance to the

ground with high precision. This is a laser-ranging sensor

that can accurately measure distances up to 4 m with a

ranging frequency up to 50Hz. The flow deck gives much

more control over the drone, as it not only can now be pre-

programmed to fly specific distances in any direction but

also greatly improves overall flying stability. It plays a key

role in pose estimation. Usually, pose estimation using only

odometry sensors (dead reckoning) is too unreliable to be

considered, as the relative position will drift too much when

considering only accelerometer or gyroscope sensors. The

flow deck greatly improves this estimation process and

allows dead reckoning to be considered in systems that

require location updates, but do not need highly accurate

estimations, like this one. The second deck it is called

multi-ranger. It is attached to the top of the drone and adds

the ability to detect obstacles around the Crazyflie.

It contains 5 VL53L1x TOF sensors (the same as in the

flow deck) that will measure distances in the directions

front, back, left, right and up. This deck is essential to

perform collision avoidance or work on environment-aware

problems like mapping a room. With these two decks, the

Crazyflie can now be an interactive autonomous platform.

This setup can be seen in Figure 2.

Ground Control Station

A ground control station (GCS) is a land-based

infrastructure that has the necessary hardware and software

for human control of UAVs. All commands to the drone

and all readings from it, go through the GCS, to the human

pilot. In the context of this work, a GCS will be a laboratory

computer or laptop, plugged with a USB dongle called

Crazyradio PA. This dongle relays the CTRP (Crazy Real

Time Protocol) from the python library to and from the

Crazyflie. The CTRP is a high-level communication

protocol developed by Bitcraze to send and receive data in

either direction, but in most cases the communication will

be driven from the host, the CGS.

When flying using the python API, the Crazyflie relies

on constant communication with the GCS. The GCS is the

one running the application and has the obligation to

continuously send control commands to keep the drone

flying. The drone will autonomously kill its motors if it

stops detecting the radio signal from the Crazyradio PA.

Such behavior is implemented by default in the firmware,

for safety reasons, and it's why the drone is not considered

“fully autonomous” as it requires constant communication

with the host. In order to grant higher degree of autonomy,

one could remove the GCS and python API entirely from

the architecture and do all the programming in firmware.

However, there are two big disadvantages that invalidate

this option. First, because of usability. Programming

directly in the drone’s firmware would require much deeper

knowledge of how the firmware is structured and working

with a programming language that is less user-friendly than

python, C. And secondly, because of performance reasons.

Having a GCS always ready allows the drone to offload

computing power when performing heavy tasks, which is

especially relevant in such a small and low-cost device that,

consequently, has limited computational power, storage and

energy.

Crazyflie API

The Crazyflie API is the gateway intended for users to

interact with the Crazyflie, which assumes they have some

basic knowledge of the python programming language.

Bitcraze maintains a python library called cflib [11], which

is the main connection point for programs and scripts to

communicate with the drone. The version used in this

system is 0.1.11. This library contains all the core

functionality needed to implement a simple semi-

autonomous mission, such as how to connect to a Crazyflie

using an URI that identifies a communication link; how to

set up logging configurations that will request the drone

firmware to send specific variables at a predefined time

interval (in ms) to the GCS, like a reading from a sensor;

how to read and set parameters on the drone (they differ

from the logging as the variable is not changed by the

Crazyflie but by the client and is not read periodically) and

how to send control set-point commands.
However, the laboratory guides will naturally start to

introduce slightly more complex problems over time.

Sometimes, those problems may require knowledge that is

outside of what is intended for a computer engineering

student to know. This was the case with the problem of

building a floor plant, a 2D representation of the room

where the drone is flying, introduced in laboratory guide 2.

Other times it was just necessary to enforce some common

rules that all groups should obey and agree, mainly for

safety reasons. This was particularly important in laboratory

guide 3, where drones from multiple groups share the same

airspace and must navigate in the same airway, as a

functional, yet very basic, intelligent transportation

Figure 2 - Crazyflie 2.1 and expansion decks

system (ITS). These two factors were the main motivation

to develop cfist, a python library that extends the

functionality of the cflib, with everything that students

would need to solve the exercises proposed in the

laboratory guides, which includes building a floor plan,

using an occupancy grid mapping algorithm; running and

developing a custom autopilot, using frontier-based

exploration; detecting other Crazyflies, using drone-to-

drone communication and basic Traffic Management. This

functionality is explained in the next section. As for the

cflib, is still the only way of communicating with the GCS,

which means that users are still expected to use all

functionality made available from that library. Together,

these libraries make up the API that students will use and

learn from to build their first drone applications.

4 LABORATORY PROJECTS

In this section the implementation of the developed

components is described. This includes the laboratory

guides that were written, the cfist library developed and the

modified firmware that was flashed to all the drones.

Each guide is planned for a 90 min laboratory class and all

follow a similar structure, which includes at least these

sections:

 Goal: This tells right away to the students what they

will be doing and gives a quick idea of what will be

needed to accomplish that task.

 Crazyflie API: This is a briefing of the functionality

they will need to use or implement to accomplish the

task. For each functionality, it is always included a

description of what it does and references to usage

examples and to the respective implementation in the

API.

 Safety Warnings: There will always be some risk

involved. This section includes some practical

measures that students must take, before and during

flight, to lower that risk and avoid injure themselves

and the equipment.

 Exercise: A description of the task to be developed

divided into up to 3 smaller exercises.

Laboratory Guide 1

In this first laboratory guide [12], the goal is to introduce

students to the Crazyflie development environment. This

includes the installation process of everything needed for all

the guides, the run of a demonstration script and the

development of their first flight script.

Here, the main contribution from the cfist library is the

Manpilot module. This module contains the KeyboardPilot

class, which was created to make it easy to control a

Crazyflie using the keyboard of the computer, so that

students don’t need to import some 3
rd

 party library

themselves, which would most likely result in a lot of

repeated code to create the key maps. Instead, the API has a

pre-defined key map that students can extend by adding

their own callbacks that will be called at a key press that

they choose. It is still the user responsibility to send the

control command to the drone. The class can be used as a

context manager to start and stop the observer that is

listening for keyboard input automatically.

Laboratory Guide 2

This laboratory guide [13] focus on three components:

Logging, Mapping and Autopilot. The log module is

provided by the cflib and is one of the main features

provided by this library. It is the standard way of reading

values from the Crazyflie firmware. In this laboratory guide

it will be used to monitor the drone’s battery and

automatically land based on the drone’s response. The

Mapping module of the cfist will be used by students to

build a 2D representation of the room while flying the

drone. It is very easy to use; with only a couple lines of

code a map can be created and update itself passively when

it needs to. The Autopilot module, also from the cfist

library, gives the drone the ability of understanding where it

needs to go, solely based on its perception of the world and

a pre-programmed algorithm. It will output a command that

can be redirected to the Crazyflie instead of using the

command from the KeyboardPilot as in the previous guide.

For the students, this is where most of the work will be

focused on.

The Mapping module is responsible for the

implementation of an occupancy grid mapping algorithm

[8], and the drawing functionality of that map, using a 3
rd

party library
2
.

The Autopilot module was created to be a simple way of

implementing autonomous behavior in the Crazyflie. Each

object needs to have a method run, which receives multi-

ranger measurements from the Crazyflie and outputs a

command ready to be forwarded to the Crazyflie, like the

KeyboardPilot does. There is a predefined subclass called

Follower, which implements a simple wall-follower

algorithm. It used for usage example and later in guide 3.

There is also another type of Autopilot called Explorer. Its

goal will be to conduct a frontier-based exploration, as

proposed in [9]. Students will be able to use to generate in-

map goals that they can then navigate to. There are also

other useful methods that allow, for example, calculating

the distance to the current goal or the yaw needed to be

facing the goal.

Laboratory Guide 3

In this lab [14], each group will be simulating a Drone

Delivery Application. Delivery Services are one of the most

promising applications for drones and here students will

have the opportunity to implement their own system, while

being part of a larger intelligent transportation system

(ITS), where every group will have to follow basic traffic

control rules. This is of course a simplistic version of the

2
 Matplotlib: https://matplotlib.org/. Last Accessed: 1 September

2020

https://matplotlib.org/

system, which doesn’t have to deal with some of the biggest

challenges that real-world systems that are currently being

developed have, such as flying in very complex

environments, like crowded cities, or compliance with the

local laws. This is also a simulation because it will be done

indoors, in a controlled environment with permanent human

monitoring. The behavior of picking up and dropping off a

package will also be simulated, although a system that

could physically lift a light package using the Crazyflie

would be an interesting extension to this project.

When designing such a system, where multiple

Crazyflies will be flying at the same time and sharing the

same airspace, there is a need to enforce some common

traffic rules to help reduce the probability of traffic

congestions and collisions between drones, much like

common traffic rules in the road greatly reduce car

accidents for every driver.

On one hand a semi-automated detection mechanism

was developed, which allows students to ask their drone if

they “see” other drones nearby. This is necessary because

since the Crazyflie is such a small drone, the multi-ranger

sensors can easily miss other nearby drones. They can then

act depending on the estimated distance to the detected

drone, as well as who is being detected. There are two sides

to the implementation of this functionality. The Radar

module of the API, which exposes the functionality just

mentioned to the user, and the firmware of the drone[12],

which had to be modified so that it could start broadcasting

messages that other drones could receive and send to its

respective GCS. Figure 3 illustrates how these parts interact

with each other in a typical use case, when the user tries to

detect neighboring drones.

On the other hand, there is still the need to enforce the

common rules that will decrease the risk of two drones even

getting close to each other. This is achieved using the DDS

module. DDS stands for Drone Delivery Service, and

besides providing the route that a drone should take when it

is travelling to a destination, it also provides basic logistics,

like methods to manage locations available for delivery that

every application might need. These locations are relative to

each system.

Globally, this results in an ITS where each group’s

system is unaware of the other systems until the moment

their drones need to avoid each other, since they still need

to operate in the same environment. On one hand this

allows systems implemented in different ways to be able to

live together. On the other hand, the responsibility of

enforcing common rules and check for drone collisions falls

upon each individual GCS, which is susceptible to

implementation error from the user.

5 EVALUATION

This section describes the experiments conducted to

evaluate and validate the suggested system. Core features of

the system will be tested: mapping, exploration and drone-

to-drone communication. All tests were performed in an

Asus K550J laptop, with an Intel Core i7-4710HQ CPU

@2.50GHz and 8.00 GB of RAM. As for software versions,

the cflib library is v.0.1.11, cfist is v.0.0.1 and the firmware

is a modified version of v.2020.06.

Mapping

The performance of the occupancy grid mapping algorithm

will now be tested. First, the quality of the generated map

will be evaluated by manually flying a Crazyflie drone in an

indoor environment and comparing it with the ground-truth

top view of this room. And secondly, it will be tested how

the algorithm parameters can vary the resulting quality of

the map as well as how fast it can be generated. These

parameters are the cell size of the grid (which define the

grid resolution) and the sensor FOV.

The testing environment can be seen in Figure 4 (a),

from where it’s possible to distinguish two different zones.

A wide-open obstacle-free space (on the left) and a smaller

cluttered space (on the right). This is to evaluate how the

complexity of the environment affects the quality of the

generated map. The space is approximately 6,5 m x 2,5 m.

All the experiments described will have the Crazyflie flying

at 0,2 m/s.

From the first experiment, the map that resulted from

manually flying a Crazyflie around the room for 2’30’’ is

presented in Figure 4 (b). A side-by-side comparison shows

that the map is fairly accurate, as it is possible to distinguish

the general shape of the room. One thing that stands out

however, it's how the small stairs, as well as the table legs,

are completed ignored. This is because, at the height that

the drone was flying, the obstacles are so thin that even if a

few cells register an obstacle a few times, most of the time

the obstacle is dismissed and so the cell is considered more

likely to be free than occupied. In addition, it was possible

to see clear performance differences while navigating in the

two zones of the room, namely, the clustered zone was

mapped much faster because of its smaller size.

In the second experiment, to evaluate how the cell size

and FOV would vary the quality of the resulting map,

multiple test runs were executed where only one of these

Figure 3 - Sequence diagram for detecting a neighboring drone

(a)

parameters was changed. The cell size values tested were

0,02 m, 0,05 m and 0,08 m and FOV values were 2.0º, 5.0º

and 10º. Because of the probabilistic nature of occupancy

grid mapping algorithms, the longer the Crazyflies is flying

the more certain it will be about the occupancy probability

of the cells it sees, which, assuming perfect pose estimation,

would translate to a more accurate map. For this reason, to

ensure accurate test trials, the time taken during each run

was approximately the same. The results are shown in

Figure 5.

By analyzing the table, the first conclusions we can

draw are that, generally speaking, map accuracy increases

with finer grids and coverage speed increases with a bigger

FOV. This is to be expected, as a smaller cell size will

produce a more realistic map and a wider FOV will assume

a lot more cells to be occupied. Secondly, it is also possible

to see that, generally speaking, there is a tradeoff between

accuracy and coverage. This is because on one hand,

smaller cells mean more cells that the drone will need to

“see” and on another hand, a wider FOV means that the

probability of assuming wrongly occupied cells greatly

increases. Third, it is possible to see that using a FOV value

as big as 10º always make the map too inaccurate,

regardless of cell size. Finally, we can conclude that the

optimal parameters to express the quality requirements that

were stated before are a FOV of around 5.0º and a cell size

that can vary between 0.05 m and 0.08 m. If someone who

is looking to extend this system needs a high accuracy

representation, it is recommended to decrease the cell size,

while maintain a similar FOV value. This will of course

require more time to fully map the same area.

Exploration

Now, the performance of the frontier detection algorithm

will be tested. This is the algorithm used by students in

laboratory guide 2 to calculate a goal during autonomous

exploration. To evaluate the quality of the generated goals,

the drone will be flying in the same testing environment

with the following behavior:

(b)

Figure 4 - Top view of testing room (a) and occupancy grid map generated during manual flight (b)

Figure 5 - Occupancy grid mapping performance experimental results

1. Take-off;

2. Do a 360º scan, to maximize information gained;

3. Run the frontier detection algorithm, which will

generate an in-map goal;

4. If a goal is returned, manually fly there and repeat from

first step;

5. Otherwise, the map is considered fully discovered.

Land.

Figure 6 shows the generated occupancy grid map.

Generated goals are marked as blue dots and numbered by

order of appearance, defining the path traveled. Mark “0” is

the take-off position. The presented map was generated in

1’54’’ time with a grid resolution of 5 cm per cell and FOV

parameter at 4.0º. When analyzing the generated map, there

are two metrics here defined to evaluate the algorithm

performance. The quantity of goals, in the sense that the

ideal map would contain the minimum amount of goals

possible that allow to fully discover a room. And the quality

of those goals, in the sense that goals should be generated in

a position that offers as much information gain as possible.

As for quantity, the amount of goals generated look very

good. Because of the sensor maximum range is capped at 3

m (for more accuracy), each new goal would be ideally at

approximately that distance, to ensure the minimum goals

generated and fastest map generation. This is possible to

verify by looking at the estimated distance between a goal

and the next. As for quality, there are some goals better

than others. Goal 1 would ideally be place at the center of

the wide zone, however it is place very near the take-off

position. This can be attributed to the fact that the scan that

was done in position 0 gained very little information

because of its cornered position, so the drone didn’t have

enough information to decide the best position to scan the

zone. Goals number 3 and 4 are particularly interesting.

After the scan done at 2, the algorithm saw the obstacle in

the middle of the cluttered zone and defined two frontier

regions, one for each side of the box. Because the goals are

such in a good position there was no need to have more

than two goals to learn all the map of the cluttered zone.

Drone-to-drone communication

In this section, multiple requirements are being validated. In

a first experiment, only the performance of the RSSI

distance estimation will be evaluated. Then the experiment

is scaled, to test how many drones can be detected at the

same time without compromising other requirements.

Safety is also being validated, by evaluating how many

collisions is the system able to avoid.

The first experiment consists on having a Crazyflie (A)

hovering still, while another drone (B) slowly flies towards

it at 0,2 m/s, starting from 3 meters away. When one of the

drones detects it is in dangerous proximity with another

drone, they both land and the distance between them is

measured. Proximity is considered dangerous if the RSSI

value returned is bigger than –48 dBm. This value was

obtained by trial and error and its validity should also be

considered when analyzing these results. This experiment is

repeated 8 times to account for RSSI noise. Because the

floor in this environment is very reflective, the drones will

be flown higher than usual, at 0,5 m, to try to mitigate some

noise in the signal propagation. The results are shown in

Figure 7.

As it is possible to conclude, the accuracy of the distance

estimation is quite poor, with values ranging from 23 cm to

197 cm in only 8 trials. This can be justified not only by the

natural lack of accuracy of the technology in indoor

environments, namely because of the multipath effect, but

also because no proper signal propagation model is being

used, namely one that makes use of software filters that

help to counteract this effect. This is something that should

be investigated in future extensions of this work.

Nevertheless, at this velocity with the reference RSSI of -48

dBm, it was still possible to automatically prevent the

collision in all trials. To this end, no value greater than –48

should be used, as the signal could easily be dismissed. On

the other hand, values smaller than –48 dBm can quickly

start to be detected in the whole room. This means that the

system should not be too conservative either or it will

quickly become unusable as a proximity detector. Being

hovering still or in motion doesn’t appear to have any effect

on accuracy.

The second experiment is very similar to the one just

described, but instead of only one drone (A) hovering, there

will be a cluster of 3 drones. The behavior is still the same.

Another drone (B) will approach and whoever detects each

other first (between A and B) makes both land. The goal is

to measure how difficult it is for A to detect B, since it must

process the messages coming from the other two drones of

the cluster too. The drones in the cluster were about 1 m

apart in a triangle formation. Since there were only 4

Crazyflie drones available this was the maximum it was

possible to scale up the experiment. Results are shown in

Figure 8.

Figure 6 - Occupancy grid map generated during exploration.

Blue dots are goals generated by frontier detection algorithm.

Contrary to what was expected, detection accuracy not

only did not decrease, it improved a little. The mean shows

that Crazyflie B was generally being detected sooner than

in the previous experiment. Not only that, but measures

taken were also more consistent, as shown by the standard

deviation. This may be explained by the signal propagation

from the other two drones from the cluster interfering with

the reflected weaker waves, coming from the multipath

effect, which ultimately results into only the stronger direct

signal being received. This would require further testing to

be proved, as well as expertise that is not part of this work.

As for the previous experiment, all collisions were

automatically prevented without the need for manual

intervention.

Due to the global health crisis, that occurred during

most of the development period, live tests with users were

not possible to conduct, in order to assess difficulties in

apprehending and solving the proposed exercises, as well as

obtaining more realistic time estimation. Therefore, they

should be further evaluated in the future, before being used

in laboratory classes. For instance, a teacher that wants to

use this system in its class should evaluate the guide not

only to further ensure overall correctness, but also to make

any necessary modification to account for specific needs.

6 CONCLUSION

In this dissertation, a system to help students and

researchers implement drone applications is suggested. The

system is built on top of the Crazyflie platform and exposes

a python API so that users can easily interact with the

MAV. A set of 3 laboratory guides [12] [13] [14] were also

developed, that aim to help students from IST to use this

system over the course of 3 laboratory classes. In addition,

an admin guide [16] has also been created to help an admin

user to prepare a newly bought Crazyflie to be used in the

suggested system.

Results obtained are overall very positive and show that

the goals that were presented were successfully achieved.

This work also serves as proof-of-concept that validates the

choice of the Crazyflie platform [13] as an option for

research and education, namely in the fields here addressed.

Because of the broad scope of this work, it was only

possible to “scratch the surface” at each one of the topics

covered. To this end, the modular implementation of each

main feature in this work hopes to greatly facilitate future

extensions that can be made in a particular field of interest.

System Limitations

Just like any architecture, this system has some known

limitations. Some come from the Crazyflie platform itself

and others from the implementation described in section 4.

As was said before, Bitcraze regularly maintains their

libraries and firmware code. Whether it is in fixing existing

bugs or delivering new features, by freezing the version of

the cflib (v. 0.1.11) and the base firmware (without Radar

support, v. 2020.06) the system will lose all those benefits.

Readers that want to extend the proposed system in any

way are encouraged to use the latest versions of cflib and

the firmware instead, and test the system themselves to

ensure its validity, knowing that compatibility with the

presented system is not assured.

Swarming using the Crazyradio PA dongle and the cflib

library (specifically, the Swarm module) provided by this

system, it is only possible when controlling up to 3 or 4

Crazyflies at the same time. After that, the packet loss will

start to become problematic. However, there are external

Figure 8 - Cluster-to-Drone collision detection experimental

results

Figure 7 - Drone-to-Drone collision detection experimental

results

projects, such as Crazyswarm [14], that allow controlling

more than 15 Crazyflie drones with a single Crazyradio, by

using more efficient communication schemes.

The Crazyflie platform also offers the possibility of

communicating via BLE which is intended to be used with

mobile phone apps. A reader interested in implementing

such application should know that, using the cflib and

firmware versions used in this system, the Crazyflie drone

cannot communicate concurrently via Crazyradio PA and

BLE, as there will be a small amount of packet loss that

increases with the number of Crazyflies added. In addition,

it is also not possible to use the Radar module developed

for the system here presented, as it requires BLE to be

disabled in the NRF chip in order to use P2P

communication between drones. Therefore, using a

Crazyflie that was previously used as part of this system

requires the BLE to be activated again.

Future Work

The system here suggested was designed to be easy to

extend, either by adding new functionality to the existing

modules, or by adding new modules. Some interesting

suggestions that aim to either fix an existing problem or

simply add a new feature are here described:

 Radar: To improve the Radar performance, a signal
propagation model for estimating distance from
RSSI radio signal could be used, along with various
filtering techniques.

 Path Planning: Most path planning algorithms are
usually tested in simulation tools and programs,
instead of real robots. This system provides an easy
way for developers and researchers to test their
algorithms in a real flying robot. The system even
provides, through the Mapping module, the drawing
functionality and the occupancy grid mapping code
which is commonly used to implement these
algorithms.

 Hardware Extensibility: Adding extra sensors to
the Crazyflie is a feature that holds great potential
for future projects. For instance, an early idea was
related to adding simple temperature and LDR
sensors to the drone to make a mobile weather
station that could be programmed to go take
reading at specific places and predefined times of
the day.

7 REFERENCES

[1] W. A. Isop e F. Fraundorfer, “SLIM - A Scalable and

Lightweight Indoor-Navigation MAV as Research and

Education Platform,” em Robotics in Education, 2020, p.

182–195.

[2] A. Bachrach, R. He e N. Roy, “Autonomous Flight in

Unknown Indoor Environments,” International Journal of
Micro Air Vehicles, vol. 1, n.º 4, pp. 217-228, 2009.

[3] E. A. Cappo, A. Desai e N. Michael, “Robust Coordinated

Aerial Deployments for Theatrical Applications Given

Online User Interaction via Behavior Composition,” em

DARS, 2016.

[4] B. Araki, J. Strang, S. Pohorecky, C. Qiu, T. Naegeli e D.

Rus, “Multi-robot Path Planning for a Swarm of Robots that

Can Both Fly,” em 2017 IEEE International Conference on

Robotics and Automation (ICRA), Singapore, 2017.

[5] W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński e

P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for

research and education in robotics and control engineering,”

em 2017 22nd International Conference on Methods and
Models in Automation and Robotics (MMAR), Miedzyzdroje,

Poland, 2017.

[6] J. Noronha, “Development of a swarm control platform for

educational and research applications,” Master’s Thesis, Iowa
State University, 2016.

[7] F. Zafari, A. Gkelias e K. K. Leung, “A Survey of Indoor

Localization Systems and Technologies,” IEEE

Communications Surveys & Tutorials, vol. 21, n.º 3, pp.
2568-2599, 2019.

[8] S. Thrun, W. Burgard e D. Fox, Probabilistic Robotics, The

MIT Press, 2005.

[9] B. Yamauchi, “A frontier-based approach for autonomous
exploration,” em Proceedings 1997 IEEE International

Symposium on Computational Intelligence in Robotics and

Automation CIRA'97. 'Towards New Computational

Principles for Robotics and Automation', Monterey, CA,
USA, 1997.

[10] Bitcraze AB, “Bitcraze Home Page,” [Online]. Available:

https://www.bitcraze.io/. [Accessed 12 September 2020].

[11] Bitcraze AB, “cflib 0.1.11 docs,” [Online]. Available:
https://www.bitcraze.io/documentation/repository/crazyflie-

lib-python/0.1.11/. [Accessed 9 September 2020].

[12] B. Rocha, “Lab Guide 1: Crazyflie - Manual Navigation,”

Laboratory Guide, Instituto Superior Técnico, Lisbon, 2020.

[13] B. Rocha, “Lab Guide 2: Crazyflie – Autonomous Navigation

and Mapping,” Laboratory Guide, Instituto Superior Técnico,

Lisbon, 2020.

[14] B. Rocha, “Lab Guide 3: Crazyflie – Drone Delivery,”
Laboratory Guide, Instituto Superior Técnico, Lisbon, 2020.

[15] Bitcraze AB, “Crazyflie firmware v.2020.06 docs,” [Online].

Available:

https://www.bitcraze.io/documentation/repository/crazyflie-
firmware/2020.06/. [Accessed 9 September 2020].

[16] B. Rocha, “Getting a Crazyflie 2.1 ready for Lab Classes

(Admin Guide),” Instituto Superior Técnico, Lisbon, 2020.

[17] B. Rocha, “Semi-Autonomous Indoor Drones,” Master's
Project Report, Instituto Superior Técnico, Lisbon, 2019.

[18] J. A. Preiss, W. Honig, G. S. Sukhatme e N. Ayanian,

“Crazyswarm: A Large Nano-Quadcopter Swarm,” em IEEE

International Conference on Robotics and Automation, 2017.

