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ABSTRACT 

The latest advances in Micro Aerial Vehicle (MAV) 

manufacturing have made these tiny robots very good 

development tools for both researchers and students. This 

work
1
 aims to provide a system that students from IST, 

namely in Computer Engineering courses, can easily deploy 

and use in a laboratory environment to control a MAV, 

using their own computer and a python API, here described. 

This system is built on top of the Crazyflie platform and is 

accompanied by a set of laboratory guides for students to 

follow during laboratory classes. The topics covered range 

from manual navigation to mapping, autonomous 

exploration and drone-to-drone interaction. Experimental 

results show the system’s ability to perform in complex 

indoor environments. 

KEYWORDS 

MAV; Crazyflie; Indoor environment; Mapping; 

Exploration. 

1 INTRODUCTION 

Unmanned aerial vehicles (UAV), commonly known as 

drones, have been used for a long time in several civilian and 

military domains, including weather observation, 

surveillance, search and rescue operations or civil 

engineering inspections. In fact, as these robots’ capabilities 

keep increasing, they also keep getting smaller and cheaper, 

and new uses for them continue to be explored. More 

recently, research has been done towards the development of 

small human-friendly drones that can fly autonomously in 

indoor environments. Unlike a regular-sized UAV, a micro 

aerial vehicle (MAV) can operate in confined and GPS-

denied environments, and since it is usually a low-cost 

solution, it can be easily replaced in case of damage or total 

loss. Moreover, they can be an excellent development tool for 

students and researchers, in a big diversity of fields such as 

embedded systems, robotics or control theory. Because of 

their small size and weight, it is very safe to use them in a 

laboratory environment, including near people. More 

specifically, they make up a new and engaging learning 

opportunity for university students in the Computer Systems 

branch, as they would able to modify both software and 

hardware of the drone and build their own drone-oriented 

applications during laboratory classes. 
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Objectives 

The main focus of this work is in providing a full-fledged 

system that students and researchers from Computer 

Engineering can easily use and deploy in laboratory 

environment, such as the facilities at Departamento de 

Engenharia Informática (DEI) in IST, to develop drone-

oriented applications. The system aims to take advantage of 

the unique and engaging learning opportunities provided by 

MAVs, specifically in the Computer Systems / Cyber-

Physical Systems branch, as they are complex cyber-

physical systems, with real-time sensing and control 

requirements, and at the same time, highly resource-

constrained systems, as their small size does not allow 

powerful sensors, computing units and batteries. To that 

end, a set of 3 laboratory guides will be produced that will 

give students the opportunity to tackle these unique 

challenges, using MAVs, during laboratory classes of a 

subject in the field. For them to solve the proposed 

exercises, a high-level API is here developed and 

documented, which offers a few high-level calls that allow 

easy control of the drones. Finally, this work also aims to 

provide a solid base for future students that wish to use 

these drones for their own projects, or otherwise anyone 

that wants to extend the system here proposed in any way. 

The goals here described are addressed mainly as a 

software challenge rather than focus on enhancing or 

automating hardware. 

2 RELATED WORK 

There are some MAV based systems already being used in 

research and education at university level. The SLIM [1] 

system, for instance, was built to enable a big diversity of 

use cases to be implemented. It has been used only in 

multiple research projects but also lecture courses and 

student projects and competitions. In [2], a system to fly 

autonomously in complex and unknown environments 

using ground control station architecture is presented. This 

work was important to help understand the lower-level 

modules necessary to produce position estimates. In the 

system here presented though, these modules are provided 

off-the-shelf in the drone’s default firmware build. It was 

also presented some research [3][4] and education [5][6] 

systems involving the Crazyflie platform. They showcase 

the platform’s potential to run swarming architectures and 

build high-level applications. All in all, these systems 

helped to converge into the topics to be addressed in 

laboratory classes, such as Mapping, Exploration and 



Swarming (later simplified into drone-to-drone 

communication). 

Most of the presented techniques and technologies for 

indoor localization assume one or more transmitters that 

communicate a signal to one or more receivers [7]. Most of 

the time, this implies that this set of transmitters (or 

receivers) that need to be previously installed in the room, 

which does not promote easy deployability. While this does 

not mean that a mobile robot system would not benefit from 

that kind of setup, especially in a scenario where multiple 

drones need to be aware of each other, a more device-

centered approach needs to be taken, where most of the 

hardware required is in the robot. In doing so, there is a 

tradeoff between localization accuracy and deployability, 

Finally, some research is done on topics addressed in the 

laboratory guides, with the goal to provide and high-level 

implementation through the developed API. In particular, 

the occupancy grid mapping [8] and frontier-based 

exploration [9] algorithms were implemented, as mapping 

and exploration were not provided off-the-shelf by the 

Crazyflie platform. 

3 SYSTEM ARCHITECTURE 

This is the system that will be used by each group at 

laboratory classes. It comprehends a Crazyflie 2.1 

quadcopter, a ground control station and a python API. 

Each component will be described over the next sections. In 

the last section some design choices are discussed, 

including the choice of the Crazyflie platform. 

The Crazyflie is a small and versatile MAV developed 

with research and education purposes in mind. Bitcraze AB 

[10], the company that develops and manufactures the 

Crazyflie, also maintains a wide ecosystem of expansion 

decks, clients and development tools that enable rapid 

development, flexibility and ease of use. In addition, all 

their projects are open source with extensive documentation 

available. The system that will be used in laboratory context 

has three main components, the Crazyflie drone, a 

corresponding ground control station, which is a computer 

enabled by a Crazyradio PA USB dongle, and a python API, 

that is extending the functionality of the python library cflib 

[11], made available by Bitcraze. It provides a full-fledged 

solution that can be easily deployed in a laboratory and 

allows students to focus on software development while 

having to respect the constraints and challenges adjacent to 

controlling a flying robot. The architecture is depicted in 

Figure 1. 

Crazyflie 

The Crazyflie 2.1 drone (in Figure 2) contains an EEPROM 

memory for storing configuration parameters and a 10-DOF 

IMU with accelerometer, gyroscope, magnetometer and a 

high precision pressure sensor. The MAV is also equipped 

with low latency/long-range radio and Bluetooth LE, which 

gives the user the option of either downloading the official 

app and use a mobile device as a controller or, in 

combination with the Crazyradio PA, flying with a game 

controller. This is the fastest way to start flying right out of 

the box, but it’s not how students will be controlling it. The 

firmware of the drone is written in C and can be easily 

modified and flashed over the radio. The drone weighs only 

27g and it's so small that it fits in the palm of a hand. 

Despite its size it is designed to be durable, as it will, in 

most cases, remain intact in minor crashes and break at the 

cheapest components, like propellers and motor mounts, in 

the event of a major accident (as verified during the 

development of this system). These characteristics make it 

ideal for flying indoors. Although small, the four 7mm 

coreless DC-motors in the Crazyflie grant it a maximum 

take-off weight of 42g, which enables it to carry multiple 

expansion decks for extra capabilities in sensing, 

positioning or visualization. There is an extensive range of 

decks available, but the platform is also designed to make it 

easy to design and add custom decks, enabling the user to 

use sensors and other devices on the platform. From the 

expansion interface the user can access buses such as 

UART, I2C and SPI as well as PWM, analog in/out and 

GPIO. In the system presented in this work, two expansion 

decks will be used.  

The first, the flow deck v2, is attached on the bottom of 

the drone and gives the ability of performing improved 

relative localization. The deck achieves this using two 

Figure 1- System Architecture 



sensors. First, a PMW3901 optical flow sensor that 

measures movements in relation to the ground. Internally, it 

uses a low-resolution camera and predictive algorithms that 

try to detect motion of surfaces. The second sensor is a 

VL53L1x TOF sensor that measures the distance to the 

ground with high precision. This is a laser-ranging sensor 

that can accurately measure distances up to 4 m with a 

ranging frequency up to 50Hz. The flow deck gives much 

more control over the drone, as it not only can now be pre-

programmed to fly specific distances in any direction but 

also greatly improves overall flying stability. It plays a key 

role in pose estimation. Usually, pose estimation using only 

odometry sensors (dead reckoning) is too unreliable to be 

considered, as the relative position will drift too much when 

considering only accelerometer or gyroscope sensors. The 

flow deck greatly improves this estimation process and 

allows dead reckoning to be considered in systems that 

require location updates, but do not need highly accurate 

estimations, like this one. The second deck it is called 

multi-ranger. It is attached to the top of the drone and adds 

the ability to detect obstacles around the Crazyflie.  

It contains 5 VL53L1x TOF sensors (the same as in the 

flow deck) that will measure distances in the directions 

front, back, left, right and up. This deck is essential to 

perform collision avoidance or work on environment-aware 

problems like mapping a room. With these two decks, the 

Crazyflie can now be an interactive autonomous platform. 

This setup can be seen in Figure 2. 

Ground Control Station 

A ground control station (GCS) is a land-based 

infrastructure that has the necessary hardware and software 

for human control of UAVs. All commands to the drone 

and all readings from it, go through the GCS, to the human 

pilot. In the context of this work, a GCS will be a laboratory 

computer or laptop, plugged with a USB dongle called 

Crazyradio PA. This dongle relays the CTRP (Crazy Real 

Time Protocol) from the python library to and from the 

Crazyflie. The CTRP is a high-level communication 

protocol developed by Bitcraze to send and receive data in 

either direction, but in most cases the communication will 

be driven from the host, the CGS. 

When flying using the python API, the Crazyflie relies 

on constant communication with the GCS. The GCS is the 

one running the application and has the obligation to 

continuously send control commands to keep the drone 

flying. The drone will autonomously kill its motors if it 

stops detecting the radio signal from the Crazyradio PA. 

Such behavior is implemented by default in the firmware, 

for safety reasons, and it's why the drone is not considered 

“fully autonomous” as it requires constant communication 

with the host. In order to grant higher degree of autonomy, 

one could remove the GCS and python API entirely from 

the architecture and do all the programming in firmware. 

However, there are two big disadvantages that invalidate 

this option. First, because of usability. Programming 

directly in the drone’s firmware would require much deeper 

knowledge of how the firmware is structured and working 

with a programming language that is less user-friendly than 

python, C. And secondly, because of performance reasons. 

Having a GCS always ready allows the drone to offload 

computing power when performing heavy tasks, which is 

especially relevant in such a small and low-cost device that, 

consequently, has limited computational power, storage and 

energy. 

Crazyflie API 

The Crazyflie API is the gateway intended for users to 

interact with the Crazyflie, which assumes they have some 

basic knowledge of the python programming language. 

Bitcraze maintains a python library called cflib [11], which 

is the main connection point for programs and scripts to 

communicate with the drone. The version used in this 

system is 0.1.11. This library contains all the core 

functionality needed to implement a simple semi-

autonomous mission, such as how to connect to a Crazyflie 

using an URI that identifies a communication link; how to 

set up logging configurations that will request the drone 

firmware to send specific variables at a predefined time 

interval (in ms) to the GCS, like a reading from a sensor; 

how to read and set parameters on the drone (they differ 

from the logging as the variable is not changed by the 

Crazyflie but by the client and is not read periodically) and 

how to send control set-point commands. 
However, the laboratory guides will naturally start to 

introduce slightly more complex problems over time. 

Sometimes, those problems may require knowledge that is 

outside of what is intended for a computer engineering 

student to know. This was the case with the problem of 

building a floor plant, a 2D representation of the room 

where the drone is flying, introduced in laboratory guide 2. 

Other times it was just necessary to enforce some common 

rules that all groups should obey and agree, mainly for 

safety reasons. This was particularly important in laboratory 

guide 3, where drones from multiple groups share the same 

airspace and must navigate in the same airway, as a 

functional, yet very basic, intelligent transportation 

Figure 2 - Crazyflie 2.1 and expansion decks 



system (ITS). These two factors were the main motivation 

to develop cfist, a python library that extends the 

functionality of the cflib, with everything that students 

would need to solve the exercises proposed in the 

laboratory guides, which includes building a floor plan, 

using an occupancy grid mapping algorithm; running and 

developing a custom autopilot, using frontier-based 

exploration; detecting other Crazyflies, using drone-to-

drone communication and basic Traffic Management. This 

functionality is explained in the next section. As for the 

cflib, is still the only way of communicating with the GCS, 

which means that users are still expected to use all 

functionality made available from that library. Together, 

these libraries make up the API that students will use and 

learn from to build their first drone applications. 

4 LABORATORY PROJECTS 

In this section the implementation of the developed 

components is described. This includes the laboratory 

guides that were written, the cfist library developed and the 

modified firmware that was flashed to all the drones. 

Each guide is planned for a 90 min laboratory class and all 

follow a similar structure, which includes at least these 

sections: 

 Goal: This tells right away to the students what they 

will be doing and gives a quick idea of what will be 

needed to accomplish that task. 

 Crazyflie API: This is a briefing of the functionality 

they will need to use or implement to accomplish the 

task. For each functionality, it is always included a 

description of what it does and references to usage 

examples and to the respective implementation in the 

API. 

 Safety Warnings: There will always be some risk 

involved. This section includes some practical 

measures that students must take, before and during 

flight, to lower that risk and avoid injure themselves 

and the equipment. 

 Exercise: A description of the task to be developed 

divided into up to 3 smaller exercises. 

Laboratory Guide 1 

In this first laboratory guide [12], the goal is to introduce 

students to the Crazyflie development environment. This 

includes the installation process of everything needed for all 

the guides, the run of a demonstration script and the 

development of their first flight script. 

Here, the main contribution from the cfist library is the 

Manpilot module. This module contains the KeyboardPilot 

class, which was created to make it easy to control a 

Crazyflie using the keyboard of the computer, so that 

students don’t need to import some 3
rd

 party library 

themselves, which would most likely result in a lot of 

repeated code to create the key maps. Instead, the API has a 

pre-defined key map that students can extend by adding 

their own callbacks that will be called at a key press that 

they choose. It is still the user responsibility to send the 

control command to the drone. The class can be used as a 

context manager to start and stop the observer that is 

listening for keyboard input automatically. 

Laboratory Guide 2 

This laboratory guide [13] focus on three components: 

Logging, Mapping and Autopilot. The log module is 

provided by the cflib and is one of the main features 

provided by this library. It is the standard way of reading 

values from the Crazyflie firmware. In this laboratory guide 

it will be used to monitor the drone’s battery and 

automatically land based on the drone’s response. The 

Mapping module of the cfist will be used by students to 

build a 2D representation of the room while flying the 

drone. It is very easy to use; with only a couple lines of 

code a map can be created and update itself passively when 

it needs to. The Autopilot module, also from the cfist 

library, gives the drone the ability of understanding where it 

needs to go, solely based on its perception of the world and 

a pre-programmed algorithm. It will output a command that 

can be redirected to the Crazyflie instead of using the 

command from the KeyboardPilot as in the previous guide. 

For the students, this is where most of the work will be 

focused on. 

The Mapping module is responsible for the 

implementation of an occupancy grid mapping algorithm 

[8], and the drawing functionality of that map, using a 3
rd

 

party library
2
. 

The Autopilot module was created to be a simple way of 

implementing autonomous behavior in the Crazyflie. Each 

object needs to have a method run, which receives multi-

ranger measurements from the Crazyflie and outputs a 

command ready to be forwarded to the Crazyflie, like the 

KeyboardPilot does. There is a predefined subclass called 

Follower, which implements a simple wall-follower 

algorithm. It used for usage example and later in guide 3. 

There is also another type of Autopilot called Explorer. Its 

goal will be to conduct a frontier-based exploration, as 

proposed in [9]. Students will be able to use to generate in-

map goals that they can then navigate to. There are also 

other useful methods that allow, for example, calculating 

the distance to the current goal or the yaw needed to be 

facing the goal. 

Laboratory Guide 3 

In this lab [14], each group will be simulating a Drone 

Delivery Application. Delivery Services are one of the most 

promising applications for drones and here students will 

have the opportunity to implement their own system, while 

being part of a larger intelligent transportation system 

(ITS), where every group will have to follow basic traffic 

control rules. This is of course a simplistic version of the 
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system, which doesn’t have to deal with some of the biggest 

challenges that real-world systems that are currently being 

developed have, such as flying in very complex 

environments, like crowded cities, or compliance with the 

local laws. This is also a simulation because it will be done 

indoors, in a controlled environment with permanent human 

monitoring. The behavior of picking up and dropping off a 

package will also be simulated, although a system that 

could physically lift a light package using the Crazyflie 

would be an interesting extension to this project. 

When designing such a system, where multiple 

Crazyflies will be flying at the same time and sharing the 

same airspace, there is a need to enforce some common 

traffic rules to help reduce the probability of traffic 

congestions and collisions between drones, much like 

common traffic rules in the road greatly reduce car 

accidents for every driver.  

On one hand a semi-automated detection mechanism 

was developed, which allows students to ask their drone if 

they “see” other drones nearby. This is necessary because 

since the Crazyflie is such a small drone, the multi-ranger 

sensors can easily miss other nearby drones. They can then 

act depending on the estimated distance to the detected 

drone, as well as who is being detected. There are two sides 

to the implementation of this functionality. The Radar 

module of the API, which exposes the functionality just 

mentioned to the user, and the firmware of the drone[12], 

which had to be modified so that it could start broadcasting 

messages that other drones could receive and send to its 

respective GCS. Figure 3 illustrates how these parts interact 

with each other in a typical use case, when the user tries to 

detect neighboring drones.  

On the other hand, there is still the need to enforce the 

common rules that will decrease the risk of two drones even 

getting close to each other. This is achieved using the DDS 

module. DDS stands for Drone Delivery Service, and 

besides providing the route that a drone should take when it 

is travelling to a destination, it also provides basic logistics, 

like methods to manage locations available for delivery that 

every application might need. These locations are relative to 

each system. 

Globally, this results in an ITS where each group’s 

system is unaware of the other systems until the moment 

their drones need to avoid each other, since they still need 

to operate in the same environment. On one hand this 

allows systems implemented in different ways to be able to 

live together. On the other hand, the responsibility of 

enforcing common rules and check for drone collisions falls 

upon each individual GCS, which is susceptible to 

implementation error from the user.  

5 EVALUATION 

This section describes the experiments conducted to 

evaluate and validate the suggested system. Core features of 

the system will be tested: mapping, exploration and drone-

to-drone communication. All tests were performed in an 

Asus K550J laptop, with an Intel Core i7-4710HQ CPU 

@2.50GHz and 8.00 GB of RAM. As for software versions, 

the cflib library is v.0.1.11, cfist is v.0.0.1 and the firmware 

is a modified version of v.2020.06. 

Mapping 

The performance of the occupancy grid mapping algorithm 

will now be tested. First, the quality of the generated map 

will be evaluated by manually flying a Crazyflie drone in an 

indoor environment and comparing it with the ground-truth 

top view of this room. And secondly, it will be tested how 

the algorithm parameters can vary the resulting quality of 

the map as well as how fast it can be generated. These 

parameters are the cell size of the grid (which define the 

grid resolution) and the sensor FOV.  

The testing environment can be seen in Figure 4 (a), 

from where it’s possible to distinguish two different zones. 

A wide-open obstacle-free space (on the left) and a smaller 

cluttered space (on the right). This is to evaluate how the 

complexity of the environment affects the quality of the 

generated map. The space is approximately 6,5 m x 2,5 m. 

All the experiments described will have the Crazyflie flying 

at 0,2 m/s. 

From the first experiment, the map that resulted from 

manually flying a Crazyflie around the room for 2’30’’ is 

presented in Figure 4 (b). A side-by-side comparison shows 

that the map is fairly accurate, as it is possible to distinguish 

the general shape of the room. One thing that stands out 

however, it's how the small stairs, as well as the table legs, 

are completed ignored. This is because, at the height that 

the drone was flying, the obstacles are so thin that even if a 

few cells register an obstacle a few times, most of the time 

the obstacle is dismissed and so the cell is considered more 

likely to be free than occupied. In addition, it was possible 

to see clear performance differences while navigating in the 

two zones of the room, namely, the clustered zone was 

mapped much faster because of its smaller size. 

In the second experiment, to evaluate how the cell size 

and FOV would vary the quality of the resulting map, 

multiple test runs were executed where only one of these 

Figure 3 - Sequence diagram for detecting a neighboring drone 



(a) 

parameters was changed. The cell size values tested were 

0,02 m, 0,05 m and 0,08 m and FOV values were 2.0º, 5.0º 

and 10º. Because of the probabilistic nature of occupancy 

grid mapping algorithms, the longer the Crazyflies is flying 

the more certain it will be about the occupancy probability 

of the cells it sees, which, assuming perfect pose estimation, 

would translate to a more accurate map. For this reason, to 

ensure accurate test trials, the time taken during each run 

was approximately the same. The results are shown in 

Figure 5. 

By analyzing the table, the first conclusions we can 

draw are that, generally speaking, map accuracy increases 

with finer grids and coverage speed increases with a bigger 

FOV. This is to be expected, as a smaller cell size will 

produce a more realistic map and a wider FOV will assume 

a lot more cells to be occupied. Secondly, it is also possible 

to see that, generally speaking, there is a tradeoff between 

accuracy and coverage. This is because on one hand, 

smaller cells mean more cells that the drone will need to 

“see” and on another hand, a wider FOV means that the 

probability of assuming wrongly occupied cells greatly 

increases. Third, it is possible to see that using a FOV value 

as big as 10º always make the map too inaccurate, 

regardless of cell size. Finally, we can conclude that the 

optimal parameters to express the quality requirements that 

were stated before are a FOV of around 5.0º and a cell size 

that can vary between 0.05 m and 0.08 m. If someone who 

is looking to extend this system needs a high accuracy 

representation, it is recommended to decrease the cell size, 

while maintain a similar FOV value. This will of course 

require more time to fully map the same area. 

Exploration 

Now, the performance of the frontier detection algorithm 

will be tested. This is the algorithm used by students in 

laboratory guide 2 to calculate a goal during autonomous 

exploration. To evaluate the quality of the generated goals, 

the drone will be flying in the same testing environment 

with the following behavior: 

 

(b) 

Figure 4 - Top view of testing room (a) and occupancy grid map generated during manual flight (b) 

Figure 5 - Occupancy grid mapping performance experimental results 



1. Take-off; 

2. Do a 360º scan, to maximize information gained; 

3. Run the frontier detection algorithm, which will 

generate an in-map goal; 

4. If a goal is returned, manually fly there and repeat from 

first step; 

5. Otherwise, the map is considered fully discovered. 

Land. 

Figure 6 shows the generated occupancy grid map. 

Generated goals are marked as blue dots and numbered by 

order of appearance, defining the path traveled. Mark “0” is 

the take-off position. The presented map was generated in 

1’54’’ time with a grid resolution of 5 cm per cell and FOV 

parameter at 4.0º. When analyzing the generated map, there 

are two metrics here defined to evaluate the algorithm 

performance. The quantity of goals, in the sense that the 

ideal map would contain the minimum amount of goals 

possible that allow to fully discover a room. And the quality 

of those goals, in the sense that goals should be generated in 

a position that offers as much information gain as possible. 

As for quantity, the amount of goals generated look very 

good. Because of the sensor maximum range is capped at 3 

m (for more accuracy), each new goal would be ideally at 

approximately that distance, to ensure the minimum goals 

generated and fastest map generation. This is possible to 

verify by looking at the estimated distance between a goal 

and the next. As for quality, there are some goals better 

than others. Goal 1 would ideally be place at the center of 

the wide zone, however it is place very near the take-off 

position. This can be attributed to the fact that the scan that 

was done in position 0 gained very little information 

because of its cornered position, so the drone didn’t have 

enough information to decide the best position to scan the 

zone. Goals number 3 and 4 are particularly interesting. 

After the scan done at 2, the algorithm saw the obstacle in 

the middle of the cluttered zone and defined two frontier 

regions, one for each side of the box. Because the goals are 

such in a good position there was no need to have more 

than two goals to learn all the map of the cluttered zone. 

Drone-to-drone communication 

In this section, multiple requirements are being validated. In 

a first experiment, only the performance of the RSSI 

distance estimation will be evaluated. Then the experiment 

is scaled, to test how many drones can be detected at the 

same time without compromising other requirements. 

Safety is also being validated, by evaluating how many 

collisions is the system able to avoid. 

The first experiment consists on having a Crazyflie (A) 

hovering still, while another drone (B) slowly flies towards 

it at 0,2 m/s, starting from 3 meters away. When one of the 

drones detects it is in dangerous proximity with another 

drone, they both land and the distance between them is 

measured. Proximity is considered dangerous if the RSSI 

value returned is bigger than –48 dBm. This value was 

obtained by trial and error and its validity should also be 

considered when analyzing these results. This experiment is 

repeated 8 times to account for RSSI noise. Because the 

floor in this environment is very reflective, the drones will 

be flown higher than usual, at 0,5 m, to try to mitigate some 

noise in the signal propagation. The results are shown in 

Figure 7.  

As it is possible to conclude, the accuracy of the distance 

estimation is quite poor, with values ranging from 23 cm to 

197 cm in only 8 trials. This can be justified not only by the 

natural lack of accuracy of the technology in indoor 

environments, namely because of the multipath effect, but 

also because no proper signal propagation model is being 

used, namely one that makes use of software filters that 

help to counteract this effect. This is something that should 

be investigated in future extensions of this work. 

Nevertheless, at this velocity with the reference RSSI of -48 

dBm, it was still possible to automatically prevent the 

collision in all trials. To this end, no value greater than –48 

should be used, as the signal could easily be dismissed. On 

the other hand, values smaller than –48 dBm can quickly 

start to be detected in the whole room. This means that the 

system should not be too conservative either or it will 

quickly become unusable as a proximity detector. Being 

hovering still or in motion doesn’t appear to have any effect 

on accuracy. 

The second experiment is very similar to the one just 

described, but instead of only one drone (A) hovering, there 

will be a cluster of 3 drones. The behavior is still the same. 

Another drone (B) will approach and whoever detects each 

other first (between A and B) makes both land. The goal is 

to measure how difficult it is for A to detect B, since it must 

process the messages coming from the other two drones of 

the cluster too. The drones in the cluster were about 1 m 

apart in a triangle formation. Since there were only 4 

Crazyflie drones available this was the maximum it was 

possible to scale up the experiment. Results are shown in 

Figure 8. 

Figure 6 - Occupancy grid map generated during exploration. 

Blue dots are goals generated by frontier detection algorithm. 



Contrary to what was expected, detection accuracy not 

only did not decrease, it improved a little. The mean shows 

that Crazyflie B was generally being detected sooner than 

in the previous experiment. Not only that, but measures 

taken were also more consistent, as shown by the standard 

deviation. This may be explained by the signal propagation 

from the other two drones from the cluster interfering with 

the reflected weaker waves, coming from the multipath 

effect, which ultimately results into only the stronger direct 

signal being received. This would require further testing to 

be proved, as well as expertise that is not part of this work. 

As for the previous experiment, all collisions were 

automatically prevented without the need for manual 

intervention. 

Due to the global health crisis, that occurred during 

most of the development period, live tests with users were 

not possible to conduct, in order to assess difficulties in 

apprehending and solving the proposed exercises, as well as 

obtaining more realistic time estimation. Therefore, they 

should be further evaluated in the future, before being used 

in laboratory classes. For instance, a teacher that wants to 

use this system in its class should evaluate the guide not 

only to further ensure overall correctness, but also to make 

any necessary modification to account for specific needs. 

6 CONCLUSION 

In this dissertation, a system to help students and 

researchers implement drone applications is suggested. The 

system is built on top of the Crazyflie platform and exposes 

a python API so that users can easily interact with the 

MAV. A set of 3 laboratory guides [12] [13] [14] were also 

developed, that aim to help students from IST to use this 

system over the course of 3 laboratory classes. In addition, 

an admin guide [16] has also been created to help an admin 

user to prepare a newly bought Crazyflie to be used in the 

suggested system. 

Results obtained are overall very positive and show that 

the goals that were presented were successfully achieved. 

This work also serves as proof-of-concept that validates the 

choice of the Crazyflie platform [13] as an option for 

research and education, namely in the fields here addressed.  

Because of the broad scope of this work, it was only 

possible to “scratch the surface” at each one of the topics 

covered. To this end, the modular implementation of each 

main feature in this work hopes to greatly facilitate future 

extensions that can be made in a particular field of interest. 

System Limitations 

Just like any architecture, this system has some known 

limitations. Some come from the Crazyflie platform itself 

and others from the implementation described in section 4. 

As was said before, Bitcraze regularly maintains their 

libraries and firmware code. Whether it is in fixing existing 

bugs or delivering new features, by freezing the version of 

the cflib (v. 0.1.11) and the base firmware (without Radar 

support, v. 2020.06) the system will lose all those benefits. 

Readers that want to extend the proposed system in any 

way are encouraged to use the latest versions of cflib and 

the firmware instead, and test the system themselves to 

ensure its validity, knowing that compatibility with the 

presented system is not assured. 

Swarming using the Crazyradio PA dongle and the cflib 

library (specifically, the Swarm module) provided by this 

system, it is only possible when controlling up to 3 or 4 

Crazyflies at the same time. After that, the packet loss will 

start to become problematic. However, there are external 

Figure 8 - Cluster-to-Drone collision detection experimental 

results 

Figure 7 - Drone-to-Drone collision detection experimental 

results 



projects, such as Crazyswarm [14], that allow controlling 

more than 15 Crazyflie drones with a single Crazyradio, by 

using more efficient communication schemes. 

The Crazyflie platform also offers the possibility of 

communicating via BLE which is intended to be used with 

mobile phone apps. A reader interested in implementing 

such application should know that, using the cflib and 

firmware versions used in this system, the Crazyflie drone 

cannot communicate concurrently via Crazyradio PA and 

BLE, as there will be a small amount of packet loss that 

increases with the number of Crazyflies added. In addition, 

it is also not possible to use the Radar module developed 

for the system here presented, as it requires BLE to be 

disabled in the NRF chip in order to use P2P 

communication between drones. Therefore, using a 

Crazyflie that was previously used as part of this system 

requires the BLE to be activated again. 

Future Work 

The system here suggested was designed to be easy to 

extend, either by adding new functionality to the existing 

modules, or by adding new modules. Some interesting 

suggestions that aim to either fix an existing problem or 

simply add a new feature are here described: 

 Radar: To improve the Radar performance, a signal 
propagation model for estimating distance from 
RSSI radio signal could be used, along with various 
filtering techniques. 

 Path Planning: Most path planning algorithms are 
usually tested in simulation tools and programs, 
instead of real robots. This system provides an easy 
way for developers and researchers to test their 
algorithms in a real flying robot. The system even 
provides, through the Mapping module, the drawing 
functionality and the occupancy grid mapping code 
which is commonly used to implement these 
algorithms. 

 Hardware Extensibility: Adding extra sensors to 
the Crazyflie is a feature that holds great potential 
for future projects. For instance, an early idea was 
related to adding simple temperature and LDR 
sensors to the drone to make a mobile weather 
station that could be programmed to go take 
reading at specific places and predefined times of 
the day. 

7 REFERENCES 

[1]  W. A. Isop e F. Fraundorfer, “SLIM - A Scalable and 

Lightweight Indoor-Navigation MAV as Research and 

Education Platform,” em Robotics in Education, 2020, p. 

182–195. 

[2]  A. Bachrach, R. He e N. Roy, “Autonomous Flight in 

Unknown Indoor Environments,” International Journal of 
Micro Air Vehicles, vol. 1, n.º 4, pp. 217-228, 2009.  

 

[3]  E. A. Cappo, A. Desai e N. Michael, “Robust Coordinated 

Aerial Deployments for Theatrical Applications Given 

Online User Interaction via Behavior Composition,” em 

DARS, 2016.  

[4]  B. Araki, J. Strang, S. Pohorecky, C. Qiu, T. Naegeli e D. 

Rus, “Multi-robot Path Planning for a Swarm of Robots that 

Can Both Fly,” em 2017 IEEE International Conference on 

Robotics and Automation (ICRA), Singapore, 2017. 

[5]  W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński e 

P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for 

research and education in robotics and control engineering,” 

em 2017 22nd International Conference on Methods and 
Models in Automation and Robotics (MMAR), Miedzyzdroje, 

Poland, 2017.  

[6]  J. Noronha, “Development of a swarm control platform for 

educational and research applications,” Master’s Thesis, Iowa 
State University, 2016. 

[7]  F. Zafari, A. Gkelias e K. K. Leung, “A Survey of Indoor 

Localization Systems and Technologies,” IEEE 

Communications Surveys & Tutorials, vol. 21, n.º 3, pp. 
2568-2599, 2019.  

[8]  S. Thrun, W. Burgard e D. Fox, Probabilistic Robotics, The 

MIT Press, 2005.  

[9]  B. Yamauchi, “A frontier-based approach for autonomous 
exploration,” em Proceedings 1997 IEEE International 

Symposium on Computational Intelligence in Robotics and 

Automation CIRA'97. 'Towards New Computational 

Principles for Robotics and Automation', Monterey, CA, 
USA, 1997.  

[10]  Bitcraze AB, “Bitcraze Home Page,” [Online]. Available: 

https://www.bitcraze.io/. [Accessed 12 September 2020]. 

[11]  Bitcraze AB, “cflib 0.1.11 docs,” [Online]. Available: 
https://www.bitcraze.io/documentation/repository/crazyflie-

lib-python/0.1.11/. [Accessed 9 September 2020]. 

[12]  B. Rocha, “Lab Guide 1: Crazyflie - Manual Navigation,” 

Laboratory Guide, Instituto Superior Técnico, Lisbon, 2020. 

[13]  B. Rocha, “Lab Guide 2: Crazyflie – Autonomous Navigation 

and Mapping,” Laboratory Guide, Instituto Superior Técnico, 

Lisbon, 2020. 

[14]  B. Rocha, “Lab Guide 3: Crazyflie – Drone Delivery,” 
Laboratory Guide, Instituto Superior Técnico, Lisbon, 2020. 

[15]  Bitcraze AB, “Crazyflie firmware v.2020.06 docs,” [Online]. 

Available: 

https://www.bitcraze.io/documentation/repository/crazyflie-
firmware/2020.06/. [Accessed 9 September 2020]. 

[16]  B. Rocha, “Getting a Crazyflie 2.1 ready for Lab Classes 

(Admin Guide),” Instituto Superior Técnico, Lisbon, 2020. 

[17]  B. Rocha, “Semi-Autonomous Indoor Drones,” Master's 
Project Report, Instituto Superior Técnico, Lisbon, 2019. 

[18]  J. A. Preiss, W. Honig, G. S. Sukhatme e N. Ayanian, 

“Crazyswarm: A Large Nano-Quadcopter Swarm,” em IEEE 

International Conference on Robotics and Automation, 2017.  

 

 


