
RADAR vs LIDAR for obstacle detection and collision avoidance

Tiago Filipe Félix de Andrade
tiago.andrade@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

October 2020

Abstract

The field of autonomous vehicles is a dynamic and ever-growing field of research which has seen
a rise in popularity in recent years. Research in this area has mostly shifted towards development of
increasingly accurate and versatile sensing systems to be integrated in robust autonomous navigation
algorithms, culminating in highly autonomous vehicles. Diversity in the field of sensing is significant,
with a high number of developed sensing methods to acquire a variety of environment data used in
autonomous navigation. This thesis focuses on two of the most commonly used sensors, LIDAR and
Doppler RADAR, exploring the technology behind these devices. The main goal of this work is the
development of an obstacle detection and collision avoidance system incorporating these sensors and
its implementation in a small-scale robot capable of autonomously navigating unknown environments
to reach a single or multiple waypoints. A physical prototype is developed as well as its virtual
counterpart to simulate its behaviour in a controlled, risk-free environment intended for prior testing.
Modularity is a significant factor in this work, with the intent of easing the integration of the prototype
in any Wi-Fi network. The capabilities of the ROS framework are explored with its integration in the
assembly. Finally, the sensing system is put to test in a set of trials, evaluating the performance of the
standalone sensors as well as its coupling (through sensor fusion) in static and dynamic environments.
Keywords: LIDAR, Doppler RADAR, Obstacle detection, Collision avoidance, ROS

1. Introduction

Mechatronics systems in general have been bur-
dened with human dependence when operating, al-
though to a limited degree, due to the unpredictable
nature of the environment they are operating in.

With the current trend of lowering costs of sen-
sory components and processing units coupled with
the rapid development of hardware and software in-
tegrated in these sensing systems, autonomous sys-
tems have seen an increase in popularity across the
manufacturing industry as well as services and do-
mestic applications. Nowadays, software implemen-
tations of obstacle detection algorithms are quite
advanced and robust to a point in which their per-
formance is mostly limited by the hardware per-
forming the readings and computations. As a re-
sult, research has mostly shifted towards improv-
ing the hardware supporting the computations be-
hind these complex algorithms as well as the sensing
hardware needed to obtain environment data, since
these are the determining factor of an algorithm’s
precision.

Among the many options of sensing systems
available to perform this task, some of the most ac-
curate, each with their own advantages and draw-
backs, are sensors which make use of electromag-

netic waves for surveying the surrounding area. Of-
ten coupled with computer vision-based algorithms
to complement their readings, these are the most
commonly used sensors due to their accuracy and
precision.

1.1. State-of-the-art
The field of autonomous robotics is a widely re-
searched topic with diverse approaches due to the
versatility of the subject itself. Among systems
solely capable of obstacle detection and collision
avoidance, a number of relevant implementations
are worth special mention due to similarities with
this work.

In [6], the implementation of a short-range ob-
stacle detection and collision avoidance algorithm
applied to LIDAR sensing is explored. The robot is
equipped with a set of 4 mechanum wheels, grant-
ing the ability to move in any direction without
shifting its pose (omnidirectional motion). Utiliz-
ing basic strafing motions, the robot is set to follow
the outline of a wall, avoiding any protrusions it
may encounter. Although sensing data is collected,
no mention of clustering or real time monitoring is
made. Nonetheless, the robot is fully autonomous
along any unknown wall-like paths with computa-
tional operations being handled by the robot’s own

1



processing unit, granting a high degree of modular-
ity.

In [7], on the other hand, an implementation of
long-range collision avoidance using LIDAR sens-
ing is developed. With an effective median cluster-
ing algorithm, the robot is able to segment and re-
construct clusters as similar basic geometries (lines,
rectangles and circles). Data obtained by the sensor
is imported to a Matlab instance where avoidance
is computed. However, such an implementation in-
creases the bulk of the algorithm, introducing the
necessity of a good processing unit to achieve real-
time avoidance. A simulation test is carried out
in the imported scenario to validate the algorithm.
No mention of omnidirectional motion is made and
simulations are limited to imported scenarios.

[3] explores an implementation of LIDAR sens-
ing in short-range obstacle avoidance. A thorough
study is made of the performance when sensing ob-
jects with various different physical traits such as
color and size. Motion control is based on modify-
ing each of the rear motors’ angular speeds (tri-
cycle configuration). Obstacle avoidance bulk is
minimized, increasing or decreasing motor speed
based on proximity to obstacles on either side of the
robot. While basic, this approach demonstrates a
good performance when navigating narrow obstacle
courses. Computational operations are handled by
a single Raspberry Pi 3 acting as a master to all the
assembly hardware. No mention of real-time data
monitoring or simulation features is made.

In [9], the authors opt for an approach of short-
range LIDAR sensing applied to a collision avoid-
ance and SLAM algorithm, using the ROS frame-
work as a means of data communication and visual-
ization. A Pioneer 3-DX robot is used for its com-
patibility with the ROS framework. An improve-
ment to the expanded guide circle method for obsta-
cle avoidance is proposed, improving stability of the
avoidance trajectory. A selective decision-making
approach is made, allowing the robot to navigate
the environment in either entry or bypass mode.
These modes allow the robot to either navigate gaps
and narrow spaces between detected obstacles (if
avoidance is possible) or bypass them altogether,
selecting an orbit-like trajectory to avoid dense ob-
stacle zones. This grants a high versatility to the
implementation, allowing it to navigate sparse or
dense obstacle courses with ease. However, such al-
gorithms pose the need of a high resource process-
ing unit such as a computer. No mention of virtual
simulation capabilities is made.

RADAR sensing implementations in small-scale
collision avoidance implementations are uncommon,
denoting a slight bias or favouring LIDAR sensing
in these conditions. Nevertheless, these are not non-
existant, with a few pieces of research worth men-

tion. In [8], a RADAR-based approach to this prob-
lem is presented, with a focus on exploring the limi-
tations of RADAR sensing applied to less controlled
scenarios such as roads and low visibility environ-
ments. It is shown that RADAR sensing is mostly
impervious to low visibility conditions, being able to
navigate long sections of a gravel road with sparse
vegetation in either side as obstacles. Despite the
good performance, this implementation’s bulk de-
mands a good processing unit, with a laptop being
used for computations.

All aforementioned research works culminate in
a common conclusion, rendering either LIDAR
or RADAR to be effective sensing methods for
collision avoidance implementations when comple-
mented with a variety of decision-making algo-
rithms, each with their own advantages and draw-
backs. However, the majority of academic work fo-
cuses on the application of each of these devices as
standalone data collection platforms to the writer’s
knowledge, not providing a means of comparison be-
tween the two or advantages of sensor fusion. Sim-
ulation capabilities are scarce, limiting the range of
possible trial scenarios and providing no means of
testing in controlled, risk-free scenarios prior to real
world trials.

Prototypes are mostly designed with no computa-
tional resource limitations, resulting in the necessity
of a bulkier processing unit. While such an option
often offers the possibility of real-time data moni-
torization, it hinders the implementation in terms
of modularity.

2. Background
2.1. Sensor performance
A theoretical approach to the expected performance
of the sensors in this work can be made. Both of
these sensors perform differently when working un-
der different environments and subjected to noise
from various sources. A few significant environmen-
tal factors, as well as constraints of the technology
behind these sensing systems may significantly im-
pact their performance:

• Due to health regulations, the scanning
range of LIDAR systems is indirectly con-
strained by the maximum allowed radiating
power. Due to being harmful to the human eye,
the maximum radiating power of any LIDAR
sensor is limited by law, hindering its sens-
ing capabilities. RADAR systems however are
not constrained, as the emitted waves are not
harmful. Furthermore, LIDAR sensor waves
are attenuated by the earth’s atmosphere to a
slightly higher degree than RADAR waves;

• Lighting conditions may also influence the
performance of these sensing systems. Both
sensors are expected to perform at their peak

2



during night-time. However, during the day,
LIDAR sensor readings can be influenced by
solar radiation as some of these waves fall un-
der the same wavelength as the electromagnetic
wave range used in LIDAR sensors. RADAR
sensors, however, are unnafected by solar radi-
ation;

• Wave penetration can play a significant part
in sensor performance. RADAR sensor waves
are characterized by longer wavelengths as op-
posed to the LIDAR sensor’s shorter wave-
lengths. Thus, RADAR waves are capable of
penetrating or passing around detected obsta-
cles, being able to detect objects located be-
hind said obstacles. LIDAR sensor waves are
unable to detect obscured obstacles;

• Resolution is a significant factor in the com-
parison of these sensing systems. Range reso-
lution is heavily dependant on wavelength, fa-
voring LIDAR sensing due to its shorter wave-
length. Angular resolution follows the same
trend, favouring LIDAR sensing. While LI-
DAR sensors require a single emitter to per-
form radial scanning with a high resolution due
to wave propagation speed, RADAR require
multiple fixed emitters to perform readings at
a significantly lower resolution;

• Weather conditions are an impactful factor
in the performance of both sensors. Low visi-
bility due to fog or rain contribute to the atten-
uation of electromagnetic waves, reaching up
to a 25% performance decrease in the case of
LIDAR sensors[5].

• Reflectivity is a key property of electromag-
netic waves which greatly influences the perfor-
mance of electromagnetic wave-based sensors.
Due to the increased wavelength and wider
beam form of radio waves used in RADAR sys-
tems, these are characterized by a low absorp-
tivity when in contact with obstacles. For this
reason, RADAR waves have a high reflectivity,
often leading to multipath reflections where an
emitted wave may be reflected multiple times
and then received in a different direction of ar-
rival (different wave direction from when it was
emitted by the source), generating ”ghost tar-
gets” (detections from non-existent obstacles)
[4]

3. Implementation
A virtual simulator as well as a physical implemen-
tation were developed in this work. Both models’
motion systems were based on the Omni-ANT plat-
form developed in [1]. The Omni-ANT platform is
an omnidirectional vehicle equipped with a set of

3 58mm omnidirectional wheels, each powered by
an EMG30 motor controlled by two MD25 motor
controller boards.

3.1. Vehicle Kinematics
With the established assembly of the Omni-Ant
platform, the determination of the kinematic model
of the prototype follows. The wheel configuration
diagram for the Omni-Ant platform is shown in fig-
ure 1. The vehicle’s wheels are paired with the cor-

Figure 1: Omni-ANT platform wheel configuration
(top view)

responding numbered motor (wheel n being pow-
ered by motor n). Due to the omnidirectional na-
ture of the wheels and their configuration, the pro-
totype is able to move in any direction without hav-
ing to change its orientation. This translates into a
holonomic behaviour, where the only constraints it
is subjected to are positional constraints of the form
(the robot is a rigid body, thus nondeformable and,
as such, the relative position of its components are
constrained to their initial state). Thus, the trans-
lational and rotational movement relations in the
local reference frame of the prototype are given by:

[
vx
vy

]
=

[
1 − cos 60◦ − cos 60◦

0 − tan 30◦ tan 30◦

]v1v2
v3

 (1)

where vx is the x direction component of the veloc-
ity vector of the platform, vy the y direction com-
ponent of the same vector and vn the linear velocity
vector of wheel n. Assuming the no-slip condition,
the linear velocity of a single wheel is given by:

vwheel = ωmotorrwheel (2)

where vwheel is the linear velocity of the wheel,
rwheel its radius and ωmotor the angular velocity of
the motor powering the wheel. By combining equa-
tions (1) and (2), the relation between the robot’s
linear velocity components and the angular velocity
of each of its wheels is given by:

[
vx
vy

]
=

[
r1 − r2

2 − r3
2

0 − r2
√
3

2
r2
√
3

2

]ω1

ω2

ω3

 (3)

3



where rn is the radius of wheel n and ωn is the
angular velocity of wheel n, with n = 1, 2, 3. The
angular velocity of the platform in turn is given by:

ω =
v1 + v2 + v3

3L
⇔ ω =

ω1r1 + ω2r2 + ω3r3
3L

(4)

where ω is the rotational speed of the platform and
L is the distance between the rotational center and
each of its wheels. Since the three wheels are iden-
tical, the local kinematic model of the robot can be
simplified:vxvy

ω

 = r

 1 − 1
2 − 1

2

0 −
√
3
2

√
3
2

1
3L

1
3L

1
3L

ω1

ω2

ω3

 (5)

where r is the radius of the wheel model. A transfor-
mation is required to obtain the linear and angular
velocity of the robot in the fixed reference frame,
given by:ẊẎ

Ż

 = T ′

vxvy
vz

 , T =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (6)

where θ is the rotation of the robot in relation to

Figure 2: Local and fixed reference frames

the inertial reference frame (vehicle attitude, figure
2). As such, the relation between linear and angular
velocities of the robot in the fixed reference frame
and the angular velocity of the wheels is given by:ẊẎ

θ̇

 = T ′r

 1 − 1
2 − 1

2

0 −
√
3
2

√
3
2

1
3L

1
3L

1
3L

ω1

ω2

ω3

 (7)

where θ̇ is the rate of change of the vehicle’s attitude
in the fixed frame (which is equal to the angular
velocity of the robot in its local frame)

3.2. Physical Implementation
As previously mentioned, the Omni-ANT plat-
form was used as the prototype’s motion sys-
tem. The processing unit of the robot is a Rasp-
berry Pi 3B running the Raspbian operating sys-
tem. The sensing system is composed of a URG-
04LX-UG01 Lidar sensor as well as a TI mmWave
AWR1642BOOST RADAR sensor. No changes to
the firmware of these devices were made. Figure 3
depicts the final assembly of the autonomous robot
prototype. The Robot Operating System (ROS)

Figure 3: Autonomous robot prototype

was used as the communication network between
all the devices in the assembly as well as an exter-
nal master device to issue commands to the robot.
The master node was set to execute in the ex-
ternal master device (a desktop computer running
ROS through Matlab 2018) as well as a command
publishing node. This master node can however
be set to run in the robot’s processing unit with-
out compromising performance. Several publisher
and/or subscriber nodes were developed to run in
the robot’s processing unit, publishing and/or sub-
scribing to sensor data, odometry data, obstacle de-
tections as well as obstacle avoidance commands
and waypoint commands. At any point during
robot activity, any of the data topics of the ROS
network can be subscribed to and published in by
any external ROS terminals connected to the same
network. This ensures a high degree of modular-
ity to the system, being able to be connected to
and controlled from any ROS network (when run-
ning the ROS master node on the robot’s processing
unit).

3.3. Virtual Simulator
A virtual implementation was developed with the
goal of simulating the three-wheeled robot travers-
ing an obstacle course defined by the user. This
simulator was programmed in Matlab’s Simulink,
making use of its virtual world capabilities.

Based on the identification of the EMG30 motor
in [2], a state-space model model of each motor was
obtained:[

i̇
ω̇

]
= A ·

[
i
ω

]
+B · U, y = C ·

[
i
ω

]
+D · U

with

A =

[
−2088.5 −149.7059
89.7707 −0.1642

]
, B =

[
294.1176

0

]
,

C =
[
0 1

]
, D = 0

(8)

where i is the current applied to the motor, U is the
voltage input and ω is the motor’s angular speed.
Non-linearities are modelled as a saturation in the

4



voltage input range, a quantization of the voltage
input signal and a dead zone to simulate static fric-
tion. A linear relation between desired angular ve-
locity and corresponding supply voltage is obtained
[2]:

ωdesired =
KsUcommand

K2
s +RB

= 1, 9158 · Ucommand (9)

As velocity references are provided as cartesian
components, the kinematic model of the robot is re-
quired to convert these references into desired wheel
angular velocity inputs and convert the response of
the motor models to these inputs into cartesian ve-
locity response. The velocity response is then in-
tegrated to obtain the absolute robot position and
the loop is closed for position control. The robot’s
speed is limited to a maximum value to ensure the
correct functioning of the robot’s algorithm.

The virtual world was designed using Matlab’s 3D
world editor.

3.4. Data processing algorithms
3.4.1 Obstacle detection

The obstacle detection process is initialized when
sensor data is received. A range of 1m was defined
as the maximim scanning range. Upon receiving the
detection data, this message is scanned detections
within the defined scanning range. Dynamic detec-
tions obtained by the RADAR sensor are extracted
regardless of proximity. Any detections which ver-
ify this condition are extracted and the remaining
data is discarded. With the raw detection data from
both sensors within the maximum scanning range,
it is then transmitted to the clustering algorithm.

3.4.2 Clustering

The clustering algorithm is responsible for group-
ing the relevant raw range and velocity readings
into groups to minimize processing time. Since
the prototype is intended to detect obstacles on
an unknown environment, the clustering algorithm
is based on the proximity between detections. As
such, detections within a minimum threshold dis-
tance from each other are grouped into the same
cluster, extracting the centroid, velocity and radius
of said cluster in the case of RADAR data or cen-
troid and radius information in the case of LIDAR
data.

3.4.3 Sensor fusion

Following the clustering of the cluster data, if both
sensors are selected to be used simultaneously, mov-
ing objects characterized by the RADAR velocity
readings are paired by proximity to their LIDAR
cluster counterparts. Any velocity readings within

a distance threshold from a cluster’s centroid are
grouped and the average velocity of said readings is
associated with the same cluster.

3.4.4 Collision avoidance algorithm

The collision avoidance algorithm used in this im-
plementation is denominated minimal deviation
velocity obstacles method. Based on the stan-
dard velocity obstacles approach, this algorithm
builds the instantaneous collision cones based on
the obstacles present in the current scene. Only
obstacles within the robot’s warning zone (robot-
centered radius in which collision avoidance is
meant to be active) and at least one of the sensor’s
field of view (FOV) are considered for this step.
This zone is defined as active avoidance zone.

In an initialization phase, a set of feasible con-
trols is defined, containing a discrete set of possible
velocity vectors with a fixed norm, defined by the
robot’s intended cruise speed. Then, using the pro-
cessed sensor data, the collision cones of each obsta-
cle are determined, containing every possible trajec-
tory which would lead to a collision, assuming static
obstacles. Figure 4 (left) is an example of a scene
where the Omni-ANT is navigating an environment
containing both static and moving obstacles within
its active avoidance zone. The collision cones rela-
tive to each of the obstacles are represented, as well
as the velocity vectors of the robot and obstacles.

The robot’s dimensions must to be taken into ac-
count when determining the real collision cones.
Therefore, the collision cones must be expanded to
accomodate the passage of the robot. Two exam-
ples of robot trajectories are presented in figure 4
(right). As evidenced, avoidance controls (robot

Figure 4: Velocity obstacles scene (left) and avoid-
ance controls example (right)

commands that ensure avoidance of obstacles) in
the vicinity of the collision cone thresholds may
result in collisions if theses are built based on a
point-particle model of the robot (rigid body de-
fined by its mass concentrated in a single dimen-
sionless point). Thus, a transformation must be
applied beforehand expand the collision cones and
correctly build the collision velocity space. The ap-

5



plication of a safety factor is also recommended due
to the limited precision and noise of the sensing sys-
tem. Following this correction and, contrary to the
standard velocity obstacles approach in which the
collision cones of non-static obstacles are displaced
by the associated velocity vector, this algorithm will
analyze each of these collision cones in separate,
thus reducing computational load. However, the
velocity vector of each of the obstacles must be sub-
tracted to the feasible control prior to being tested.
The orientation of the resulting vector is then com-
pared with the angular thresholds of the detected
obstacles. If a feasible control is found to result
in an impending collision with any obstacle, it will
be flagged as a non-avoidance control and removed
from further comparisons. Applying the collision
cone correction to the example in figure 4, figure 5
depicts a comparison between the standard veloc-
ity obstacles method and the method developed in
this work. As evidenced, both methods are similar

Figure 5: Feasible avoidance control test. Stan-
dard velocity obstacles (A) and minimal deviation
method (B)

and effective at determining which feasible controls
enable the robot to avoid collisions with any obsta-
cles in the near future (command −→a is found to be

a feasible avoidance command and
−→
b is not suit-

able for avoidance). Thus, the minimal deviation
is used due to the lower computational load. Fi-
nally, the set of feasible avoidance controls (robot
commands that ensure avoidance of every obstacle
in the scene) is scanned for the control that mini-
mizes the deviation from the robot’s current path to
ensure a smoother trajectory. If, in any case, a fea-
sible avoidance control is not found, the robot will
perform a reverse maneuver, moving in the oppo-
site direction of its current trajectory until a feasible
avoidance control is found.

The inability to map the environment and the
unavailability of a reference map poses a few limita-
tions to navigation using this algorithm, where de-
spite avoiding collisions with obstacles, it might not
be able to reach its intended waypoint and instead
become trapped in a trajectory loop. Limitations
concerning the sensing system are present as well,
where the RADAR sensor will only be able to sense
the radial component of a moving obstacle’s velocity

(the contribution of a moving obstacle’s real veloc-
ity vector in the direction of the robot). This results
in a modified feasible control space which, despite
different from the real feasible space, will ensure the
avoidance of obstacles.

3.4.5 Odometry

A dead reckoning odometry method was devel-
oped to estimate the robot’s position over time.
This method utilizes encoder readings on each
wheel to estimate the robot’s position based on the
kinematics model. Since this method does not accu-
rately reproduce simultaneous rotational and trans-
lational movements, a a fast incremental algo-
rithm is desireable to minimize these errors. By
way of integration of (5) and due to the incremen-
tal nature of the algorithm, the odometry model is
given by:Xt=k

Yt=k

θt=k

 = r

 cos θt=k−1 sin θt=k−1 0
− sin θt=k−1 cos θt=k−1 0

0 0 1


 1 − 1

2 − 1
2

0 −
√
3
2

√
3
2

1
3L

1
3L

1
3L

∆ψ1

∆ψ2

∆ψ3

+

Xt=k−1
Yt=k−1
θt=k−1

 (10)

where Xt=k, Yt=k and θt=k is the current robot
pose, θt=k−1 the robot attitude in t = k − 1, ∆ψi

the rotation of wheel i between instants t = k − 1
and t = k, Xt=k−1, Yt=k−1 and θt=k−1 the previous
robot pose.

4. Simulation vs. experimental results
The performance of the simulated and physical im-
plementations were tried in a set of experiments
to compare their performances. Since atmospheric
conditions of the laboratory as well as the virtual
world in which the robot was tried can’t be reg-
ulated, the sensing system is tried in an enclosed
space without the influence of any atmospheric con-
ditions . Static and dynamic trials were designed
using simple geometries to simulate both static and
moving obstacles. Moving obstacles are constrained
to a movement speed lower than the prototype’s
cruise speed. A YouTube playlist was created with
demonstrations of the robot navigating test scenar-
ios1.

4.1. Case study scenarios
A common ground truth is needed to ensure a
correct direct comparison of the behaviour of the
physical implementation and its virtual counter-
part. Two arenas were built in the real world to
simulate obstacle courses to be traversed by the
robot. These were then scanned using Qualysis,

1https://www.youtube.com/playlist?list=PL-
d8pRLUjxQ1GqVXmXKo9Kgd94PkKp8Do

6



a 3D infrared tracking software and reproduced in
Simulink ’s virtual world. The developed obstacle
courses are presented in figure 7 and their virtual
counterparts in figure 8.

Figure 6: Qualisys system and mapping environ-
ment.

Figure 7: Obstacle configurations for course 1 (left)
and course 2 (right) in the real world

Figure 8: Obstacle configurations for course 1 (left)
and course 2 (right) in the virtual world (rotated
90◦)

4.2. Simulation vs experimental results
The real and simulated Omni-ANT models were
tried in a set of four trials with similar conditions:

• Trial 1: Course 1 configuration with the
presence of static obstacles;

• Trial 2: Course 1 configuration with the
presence of static and dynamic obstacles;

• Trial 3: Course 2 configuration with the
presence of static obstacles;

• Trial 4: Course 2 configuration with the
presence of static and dynamic obstacles.

Aditionally, each trial was performed using distinct
active sensor configurations for each trial:

• LIDAR sensor;

• RADAR sensor;

• LIDAR and RADAR sensors.

The goal of the robot is to navigate the en-
vironment, avoiding collisions and keeping a
safe distance of no less than 0.2m from any
obstacles. A designated waypoint located
4m in front of the robot’s starting point is
set to be the endpoint of the trial. The
trial is considered to be complete once the
robot reaches the vicinity of the designated
waypoint or is otherwise unable to compute
a feasible trajectory to avoid all obstacles,
ceasing movement. The Omni-ANT’s and dy-
namic obstacles’ real locations were tracked in each
trial. The results of each trial are presented in the
following sections. The leftmost figure of each trial
represents the location over time of the robot and
obstacles. The real, tracked location of the robot in
blue, the odometry estimated position of the robot
in red and the virtual simulated robot in green.
Static obstacles are represented by black rectangles
while dynamic obstacles are represented in pink.
The minimum relative distance to obstacles over
time is also presented in the top right plot and the
odometry error in the bottom right of each trial.

4.2.1 Course 1 results

Figure 9: Trial 1, LIDAR and RADAR integration

Figure 10: Trial 1, LIDAR sensor active

Figure 11: Trial 1, RADAR sensor active

7



Figure 12: Trial 2, LIDAR and RADAR integration

Figure 13: Trial 2, LIDAR sensor active

Figure 14: Trial 2, RADAR sensor active

Some observations can be made about the results
of trials 1 and 2, run on course 1:

• All the trials were successful, with the robot
navigating the course without colliding and
keeping a distance above the designated safe
distance from all obstacles;

• A number of trials were characterized by the
loss of tracking of the robot (figures 10, 12,
13). However, the tracking system failed only
in instances where the robot had already exited
the course. Since tracking data is most relevant
in the obstacle course section of the trial, such
irregularities are negligible;

• The sensor fusion approach in trial 2 (figure
12) registered periods of loss of tracking during
navigation through the obstacle-ridden section.
However, these discontinuities in tracking were
brief, with the tracking system being able to
quickly localize and track the robot for the re-
mainder of its navigation through the course.
No significant data loss was registered, render-
ing the trial a success;

• The odometry algorithm achieved satisfactory
results, estimating the current position accu-
rately as evidenced by its comparison with
the real, tracked position. As expected, this
method suffered from innacuracies the further
the robot travelled (most notably in figures 11-
14). This can be attributed to a slight mis-
alignment of the wheels’ axes (intended to be
mounted at a 120◦angle between each pair) and
the propagation of these errors in the odometry
algorithm;

• The movement of the robot in trials where
only the RADAR sensor is active appears to
be slightly irregular, with frequent and sudden
changes in trajectory (figures 11, 14). This can
be attributed to sudden ”ghost targets” due
to the reflectivity in the environment these tri-
als were performed in, introducing unnecessary
and sudden changes in robot trajectory before
resuming its previous path. Nonetheless, the
robot is able to consistently detect the existing
obstacles and avoid them.

• This erratic behaviour is significantly attenu-
ated in trials where sensor fusion is performed
(figures 9, 12). This indicates that proximity
sensing via LIDAR is more accurate and with
less noise in this scenario, resulting in smoother
avoidance trajectories which support the pre-
vious statement;

• While the simulated trajectories in sensor fu-
sion (figures 9, 12)as well as LIDAR-based tri-
als (figures 10, 13) are similar to their real,
tracked counterparts, there is less similarity
when compared to RADAR-based trial tra-
jectories (figures 11, 14). This indicates a
lesser fidelity of the simulator when simulat-
ing RADAR-based obstacle avoidance in real
scenarios, where the reflectivity of the environ-
ment is a significant factor.

4.2.2 Course 2 results

Figure 15: Trial 3, LIDAR and RADAR integration

8



Figure 16: Trial 3, LIDAR sensor active

Figure 17: Trial 3, RADAR sensor active

Figure 18: Trial 4, LIDAR and RADAR integration

Figure 19: Trial 4, LIDAR sensor active

Figure 20: Trial 4, RADAR sensor active

Some observations can be made about the results
of trials 3 and 4, run on course 2:

• Once again, all trials were completed success-
fully, with the robot navigating the obstacle
course and arriving at its intended goal;

• Similarly to course 1, course 2’s results show
that the robot was able to navigate the ob-
stacle course while keeping the minimum safe
distance from any obstacles. However, the min-
imum safe distances registered along the trials
on course 2 are lower than those registered on
course 1. Such behaviour was expected due to
the higher density of obstacles in course 2 when
compared to course 1, with the robot having to
traverse narrower paths to achieve its goal.

• Loss of tracking of the robot during the obsta-
cle course part of the trials is practically nonex-
istant, with the tracking system being able to
locate the robot during the entirety of its nav-
igation through the maze;

• Unlike the trials run on course 1, some of the
trials performed on course 2 registered a loss
of tracking during the initial phase of the trial,
prior to the robot initiating its navigation dur-
ing the obstacle course (figures 17, 20). How-
ever, this is noticeable prior to the robot ini-
tiating avoidance maneuvers, with the system
being able to locate the robot during the initial
section of the maze. For this reason, the trials
are considered a success;

• Once again, the odometry estimation algo-
rithm is accurate at estimating the location of
the robot in the initial part of the trials. How-
ever, small errors are propagated throughout
the robot’s path, contributing to an increas-
ing disparity between the real, tracked position
and the odometry estimation (most notably in
figures 16, 18 and 19). This can be attributed
to longer periods of strafing coupled with for-
ward motion (due to the increased degree of
avoidance required when compared to course
1) registered inaccurately due to the same in-
accuracies in the assembly of the Omni-ANT
platform previously mentioned;

• In the case of figure 17, the odometry algorithm
fails to estimate the position of the robot to-
wards the end of the trial, with a sudden and
significant shift in trend. This phenomenon can
be attributed to a failure in the wheel encoders,
leading to an incorrect incrementation in the
odometry algorithm. However, this failure oc-
curred after the maze portion of the trial, which
maintains the trial’s validity.

5. Conclusions
A few conclusions can be drawn pertaining the
software and hardware implementations and results
presented in the previous chapter:

• Velocity sensing (via RADAR) in the context
of small-scale autonomous vehicles navigating

9



static or otherwise non-significantly dynamic
environments (dynamic obstacles moving at
low velocities) does not offer an improvement in
performance when compared to the avoidance
system using solely proximity sensing, intro-
ducing erratic avoidance trajectories instead;

• Despite the presence of disparities between the
tracking and simulated results, the behaviour
of the models is similar, where both perform
the same general avoidance maneuvers and fol-
low a similar trajectory throughout the obsta-
cle courses in each trial. However, there is a
noticeable disparity in behaviour between the
solely RADAR-based real and simulated mod-
els (due to high reflectivity of real environ-
ments). As such, the Omni-ANT simulator
model is considered validated for LIDAR-based
and sensor fusion trials;

• The virtual simulator can be used as a tool
to run experiments in easily generated scenar-
ios (within the validated conditions of sensor
fusion or LIDAR-based trials) without risk of
damage to any intervenient prior to the real
world testing trials. However, it can not be
used to predict the absolute outcome of a real
trial in similar conditions without thorough
testing. The sensors involved in this imple-
mentation as well as all the hardware are sub-
ject to mechanical failure as well as innacura-
cies. Analyzing the results from the real world
trials, the robot trajectory is not as smooth
and continuous as its simulated counterpart.
These can be minimized by the implementa-
tion of specialized estimation algorithms such
as Kalman filtering which, while effective, in-
crease the computational bulk of such a system
and is not feasible for implementation in the
same conditions as the developed prototype;

• Due to the high degree of modularity that ROS
grants to any machine running its software,
the prototype can easily be installed in a dif-
ferent ROS network, requiring no additional
setup other than setting up the correct IP ad-
dresses of the machines involved and ensur-
ing ROS version compatibility between nodes.
This framework is an essential part of the sys-
tem, which not only provided a simplified and
efficient baseline for the interaction of the dif-
ferent peripherals of the prototype but also
granted a high degree of versatility to the sys-
tem, allowing for the communication and ac-
quisition of data in several different terminals
running ROS, which was a determining factor
in the experimental portion of this work.

References
[1] A. Casqueiro, D. Ruivo, A. Moutinho, and

J. Martins. Improving Teleoperation with
Vibration Force Feedback and Anti-Collision
Methods. In L. Reis, A. Moreira, P. Lima,
L. Montano, and V. Muñoz-Martinez, editors,
Robot 2015: Second Iberian Robotics Confer-
ence. Advances in Intelligent Systems and Com-
puting, volume 417, pages 269–281. Springer,
Cham., 2016.

[2] J. Gonçalves, J. Lima, P. Costa, and A. Moreira.
Modeling and Simulation of the EMG30 Geared
Motor with Encoder Resorting to SimTwo: The
Official Robot@Factory Simulator. Advances
in Sustainable and Competitive Manufacturing
Systems, pages 307–314, 2013.

[3] D. Hutabarat, M. Rivai, D. Purwanto, and
H. Hutomo. Lidar-based Obstacle Avoidance for
the Autonomous Mobile Robot. In 2019 12th In-
ternational Conference on Information & Com-
munication Technology and System (ICTS),
pages 197–202, 2019.

[4] A. Kamann, P. Held, F. Perras, P. Zaumseil,
T. Brandmeier, and U. Schwarz. Automotive
Radar Multipath Propagation in Uncertain En-
vironments. pages 859–864, 11 2018.

[5] M. Kutila, P. Pyykönen, W. Ritter, O. Sawade,
and B. Schäufele. Automotive LIDAR sensor
development scenarios for harsh weather condi-
tions. In IEEE Conference on Intelligent Trans-
portation Systems (ITSC) Proceedings, pages
265–270, 2016.

[6] S. T. Padgett and A. F. Browne. Vector-
based robot obstacle avoidance using LIDAR
and mecanum drive. In SoutheastCon 2017,
pages 1–5, 2017.

[7] Y. Peng, D. Qu, Y. Zhong, S. Xie, J. Luo,
and J. Gu. The obstacle detection and obstacle
avoidance algorithm based on 2-D lidar. In 2015
IEEE International Conference on Information
and Automation, pages 1648–1653, 2015.

[8] I. Ruiz, D. Aufderheide, and U. Witkowski.
Radar Sensor Implementation into a Small Au-
tonomous Vehicle. In U. Rückert, S. Joaquin,
and W. Felix, editors, Advances in Autonomous
Mini Robots, pages 123–132. Springer Berlin
Heidelberg, 2012.

[9] Y. Shim and G. Kim. Range Sensor-Based
Efficient Obstacle Avoidance through Selective
Decision-Making. Sensors, 18:1030, 2018.

10


