VITHEA-Kids 3.0

Slvia Maria Matos Timteo
silvia.timoteo@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2020

Abstract

Language disorders can make it difficult for kids to understand what people are saying or to express
their own thoughts and feelings through spoken and written language. Among others, Dyslexia and
Specific Language Impairment (SLI) are such language disorders. However, the skills affected by each
one are different. Whereas dyslexia is characterized by difficulties in word recognition, spelling, writing
and decoding with a genetic basis, SLI is characterized by difficulties in different aspects of language,
such as lexical retrieval, phonology, morphology, syntax, semantics and pragmatics. Individuals with
these disorders face numerous adversities in their daily life, which can be minimized by solving exercises
recommended by therapists. Some efforts have been made to develop applications that can provide
these exercises and be suitable for its users. An example of such application is VITHEA-kids 2.0,
which is an European Portuguese application for helping children with Autism Spectrum Disorder and
their caregivers. This application provides a way of creating exercises and allows the customization
of some aspects of the platform to make it more suitable for the children needs (e.g. show letter
always in upper-case), also has a talking animated character. Since this platform is a promising one,
in this thesis, we intend to extend VITHEA-kids 2.0 with new exercises in order to reach children
with other learning disabilities, namely dyslexia or SLI. Regarding dyslexia, a research of exercises to
deal with reading and spelling problems was made. Regarding SLI, the exercises to deal with relative
clauses comprehension were provided for a specialist in syntax acquisition. However, implementing
new types of exercises in this platform were not possible, since the code was not flexible to the addition
of new types of exercises. This way, the present thesis also focus on refactoring the whole platform,
back-end, caregivers application and childs application, in order to allow new exercises to be added to
VITHEA-kids 2.0. Thus, in this thesis we create VITHEA-kids 3.0 to support new types of exercises
for children with dyslexia or SLI, and also we make the addition of further types of exercise easier for

developers.

Keywords: Learning disabilities, SLI, Dyslexia, refactorization, VITHEA Kids

1. Introduction

The adequate development of language is one of
the fundamental factors to childhood development,
since language is needed to understand others, to
express our thoughts or make ourselves understood.
Worldwide, around 15-20% of the population has a
language-based learning disability ', which consists
of problems with age-appropriate reading, spelling,
and/or writing. The symptoms may be visible since
the early years of life, which often makes people
with a learning disability frustrated and, in extreme
levels, could lead to depression [4]. Many of the dif-
ficulties that have been identified in children with
some impairment in learning could be strongly con-
nected to a language disorder, such as dyslexia and
SLI. Dyslexia affects around 70-80% of the pop-
ulation with a language-based learning disability,

Thttps://dyslexiaida.org/frequently-asked-questions-2/
last access 01/06/2020

and consists of a specific learning difficulty typi-
cally characterized by difficulties in word recogni-
tion, spelling, and decoding, with a genetic basis’.
In Portugal, according to an epidemiological study,
5.4% of the primary school-age children were diag-
nosed with dyslexia[5]. SLI is characterized by dif-
ficulties with learning and usage of language, thus
a child with SLI does not develop speech and skills
in the expected way. Grammar, vocabulary and,
frequently, phonology are learned with difficulty.
Also, when reading or listening, they may only fo-
cus on a few content words and then they deduce
the meaning from them, thus contributing to a poor
comprehension [1]. Both dyslexia and SLI are dis-
orders that require early interventions to minimize
the inherent problems, such as for poor spelling and
problems with syntax. This way, with appropriate
support and intervention, people with learning dis-
abilities can achieve success in school, at work, in

relationships, and in the community. For many par-
ents it is not always possible to get their children
in contact with therapists, often because they can
not afford it. There are already IT solutions with
the purpose of helping children with their learn-
ing difficulties, however these solutions are paid or
include paid features, mostly applications are not
in European Portugues and have few customization
options. In order to fulfill these gaps, VITHEA-
kids, an educational application for helping chil-
dren, inspired by the needs of children with ASD
and their caregivers was developed. VITHEA-kids
2.0 was released where a deep reformulation of the
used technologies was made and new modules were
implemented such as prompting and reinforcement
strategies [3]. Hence, the primary purpose of this
work is to look for the main types of exercises that
are used to improve skills that children with SLI and
dyslexia struggle with, and enrich VITHEA-kids 2.0
with them. However, despite Vithea having an ex-
cellent infrastructure, the code developed to imple-
ment the exercise does not allow adding new types.
This way, there will be a great focus on refactoring
all modules that concern the exercises, to ease the
implementation of new types by developers.

2. VITHEA-kids 3.0

We identified an exercise to be implemented in
VITHEA-kids. However, there were still bugs to be
solved, as well as features to be finished to achieve
an usable platform. Moreover, adding new exer-
cises had become a big challenge by itself, given the
way that the existing features were implemented.
For this reasons, the present section describes all
changes that had lead to the production of a new
version, VITHEA-kids 3.0.

2.1. Implementation of features

Whenever a child finish a set of exercises we would
like to present him with a GIF as a reinforcement.
However every GIF we tried to insert was always
static in our application. For this reason, we inte-
grated Glide ? to make possible the proper load of
this image format into VITHEA-kids 3.0. The in-
terface did not support long answers. We created
new layouts that could accommodate long answers
like sentences, as can be seen in Figure 1.

Also, there was no feedback when an answer but-
ton is pressed. To solve this, we opted for changing
background color, whenever the button is pressed.
In order to set different colors, it was necessary to
create two different backgrounds, one for pressed
state and another for unpressed state as we can see
in Figure 2. Since the platform should be able to
help users recover from errors, an error message was
added whenever the user type their credentials in-

2https://github.com/bumptech/glide last

30/03/2020

access

(b) Current lay-

(a) Previous layout. out.

Figure 1: Layout for exercises of multiple choice.

Figure 2: Button with the word ”Pra” pressed

correctly. Also, an encouraging message was added
for the the users to create exercises and/or classes
when there are no exercises.

Before this current version of VITHEA-kids a
therapist had requested a button to repeat the ut-
tered sentences. So in VITHEA-kids 2.0 there was
actually a button that when pressed, it did what
was expected. However, duo to the new version
of Unity, that button was not there. Therefore, it
was necessary to add it again. Since the animated
characters is an imported Unity project, it was nec-
essary to modify this project in order to add the
button and also its behaviour.

In an exercise, each image was loaded immedi-
ately before being displayed. As a result, there were
network requests during the process of solving the
exercises, making the user to wait in every exercise.
The same therapist that had requested the button,
had also pointed out this as a problem. In order to
avoid this, all images are now loaded when selecting
a new class of exercises, which often delayed it, as
shown in Figure 3.

Figure 3: Loading images

A confirmation dialog is now shown whenever the

user tries to return to the main menu like in Figure
4 to assure if the user is sure about interrupting the
class of exercises, since doing this way it will not be
saved any progress of the current class.

Figure 4: Loading images

VITHEA-kids 2.0 made available the five types
of prompting for the multiple choice exercises:
read the remaining answers, change color of the
right answer, change size of the distractors, scratch
the distractors and hide distractors.The caregiver
could combine some types of prompting. However,
these strategies was not implemented for the mul-
tiple choice exercise whose answers were images.
Therefore, it was necessary to implement them in
the child’s application, as well as the prompting
strategies (the prompting is always given or the
prompting is given when the child selects a wrong
answer). In the first version of VITHEA-kids, there
was the request of having the exercises’s text in up-
per case. This way, it makes sense provide freedom
of choice for caregivers regarding the way in which
the text is displayed in the child application. This
type of customization has been implemented in the
first version of VITHEA-kids, however it was no
longer available in the last version. Therefore, we
implemented it again. So now, the exercise’s text
can be displayed in the way it was typed or in upper
case, regarding the caregiver’s choice. Also, in the
first version of VITHEA-kids, it was possible for the
caregivers to sort the exercises of a class or choose to
sort them in a random way. However, as that cus-
tomization was also no longer available we imple-
mented again. During visualizations of VITHEA-
kids and also during the development of the fea-
tures mentioned above, some bugs were identified,
such as, the logout was not working properly, it was
possible at times to find the exercises and other in-
formations of the child logged before. Sometimes,
after failing to login, the buttons did not answer to
the user’s interaction. Theses bugs are now fixed in
the current version of VITHEA-kids.

2.2. Refactoring VITHEA-kids

The whole process of refactoring the different com-
ponents of VITHEA-kids 2.0 architecture such as
database model, back-end, caregiver’s application
and child’s application to ease the implementation
of new exercises will be presented.

2.2.1 Back-end

VITHEA-kids 2.0 uses Play Framework to develop
an API in Java. Play’s architecture is RESTful
by default, which means it uses HT' TP requests to
GET, PUT, POST and Delete data. At its core,
Play is based on the MVC pattern, that separates
an application into three main logical components:
the model, the view, and the controllers. Using
this framework, to expose a REST API is simple
as the developer just need to match an HT'TP verb
(GET, PUT, POST and Delete) with an associated
action defined in a custom controller in a configu-
ration file named ’routes’. In this subsection, the
focus are the controllers, part of the system that
handles the requests from both caregiver’s appli-
cation and child’s application, such as register an
exercise, delete an exercise, get all exercises and so
on. There is one main controller that deals with the
exercises, which has the three methods: register ex-
ercise (called whenever the caregiver creates a new
a exercise), edit exercise (called whenever the care-
giver wants to edit an existent exercise) and delete
exercise (called whenever the caregiver decides to
delete an existent exercise).

Each type of exercise has its own characteris-
tics, which requires different implementations to
register, edit and delete exercises. However, in
VITHEA-kids 2.0, the different implementations
are handled by a single method, where there is
a conditional statement for each type of exercise,
which is not a scalable solution. The same happens
with the other methods mentioned before. This way
of implementation is not desirable for the following
reasons:

e For every new exercise, it will be necessary to
include the code in each method to register,
edit and delete, which makes the method in-
creasingly larger, and consequently the code
becomes harder to maintain.

e It is difficult to implement new types of ex-
ercises and vary existing ones since there was
no independence in the implementation of the
various types of exercises.

It is possible to avoid these problems by defining
classes that encapsulate different operations algo-
rithms. A design pattern that encapsulates in this
way is called Strategy [2].

Therefore, following the Strategy design, the di-
agram shown in Figure 5 was obtained.

+RegisterExercise()

+editExercise()

+deleteExercise()

+RegisterExercise()
+editExercise()

+deleteExercise()

Figure 5: Refactoring controller using Strategy de-
sign.

The AdminExerciseCtrl class is the controller
and it is responsible for register, delete or edit
an exercise. These operations strategies are not
implemented by the controller. Instead, they are
implemented separately by a subclass that im-
plement the interface ExerciseOperations class.
ExerciseOperations’s subclasses may implement
different strategies. For example, mcOperations
implements a strategy for creating, editing and
deleting a multiple choice exercise. Currently,
to implement a new type of exercise, it is
just necessary to create a class that implements
ExerciseOperations.

However, there was still a problem: the con-
troller AdminExerciseCtrl can not predict what
subclass of ExerciseOperations should instanti-
ate since it depends on the exercise type. The
class only knows when use the operations, not
what kind of operations. This creates a dilemma:
The class must instantiate subclasses, but it only
knows about interface, which it cannot instanti-
ate. We solve this by using the Factory Method
pattern [2] since it encapsulates the knowledge
of which ExerciseOperations’s subclass to cre-
ate and moves this knowledge out of the controller
AdminExerciseCtrl.

2.3. Caregiver’s application

As already mentioned, the caregiver’s application
was developed in Angular 2. Angular 2 follows a
components-based approach to web development.
Components are essentially reusable Ul building
blocks that are easy to test and reuse. They cor-
respond a sets of screen elements that Angular can
choose among and modify according our program
logic and data. Angular uses also services that are
Typescript classes, usually responsible for fetching
data from the server, validating user input and so
on. They can be developed for specific tasks needed

in a given component. In the case of this applica-
tion, they are mostly used to communicate with the
server in order to fetch or send information.

Through the analysis of these concepts and
the front-end’s code the following architecture of
VITHEA-kids 2.0 arises.

In short, there are several concerns that could be
split out into small components to make the code
more readable, less complex and extensible.

The Exercise component is responsible for list-
ing all created exercises and preview them. In terms
of code, to preview each exercise, the component
checks if every possible element of an exercise is
not null. If it is not, the component display it. So,
to preview another type of exercise, it would be
necessary to add new validations for the new fields.
Once again, this would introduce more complexity
and less flexibility, making the code harder to un-
derstand and maintain. Therefore, a solution would
be to delegate functionality to smaller components.

Having said this, the following subsections de-
scribes how the AddExecise and Exercise compo-
nents were broken into smaller ones. Furthermore,
all changes have the goal of creating a different com-
ponent for every type of exercise in order to make
easy the new exercises implementation, since this
way the developer could only focus on the exercises
that he/she intends to implement, without the need
of understanding how other types of exercises are
implemented.

2.4. AddExercise Component

Since every kind of exercise has its creation form
and its logic, a good solution would be to create
one component for each form.

In light of this, we created a AddComponent for
each exercise that encapsulates each specific form.
Now the AddComponent is more generic since its
main responsibility is to render the proper creation
form according to the type of exercise selected by
the caregiver. This is possible thanks to an Angu-
lar’s feature that allows to inject components inside
other components by adding a tag (a reference to a
component).

Also, we created an editExercise component
that follows the same logic of AddExercise, which
means there is a different component to edit each
exercise.

2.5. Exercise Component

We created two new components, one for each type
of multiple choice. Each one has only the code (logic
and HTML template) related to the corresponding
exercise type. Now, the Exercises Component just
iterates over all exercises and injects a component
according to exercise type.

3. Child’s application

The child’s application consists of an Android ap-
plication where the child can solve the exercises pre-
viously created by his/her caregiver.

When the child plays VITHEA-kids for the first
time, a login screen is displayed, in which the child’s
credentials should be typed. After that, a menu is
displayed to select a given class.

So far, each class may be composed of two kinds
of multiple choices. In each exercise, the child can
skip to the next exercise or return to the previous
exercise, if it exists. Also, a reinforcement screen is
shown between exercises displaying an image when-
ever the child answers correctly to an exercise.

At the architecture level, all interactions with
the application are handled through two Activities
classes. An activity class is usually associated to
a screen with a graphical user interface and it dic-
tates the Ul and handles the user interaction with
the smartphone screen 3. Each activity has a XML
Layout file configured, which contains all the UT el-
ements.

Following the login, the main Activity is created.
This activity is associated with all the remaining
screens, such as the exercise screen, menu screen
and so on. The layout associated with the main ac-
tivity is divided in half, in which one of the sides is
the container of the unity character and the other

is a container of the following views*:

e List of classes associated with the child;
e Current exercise;
e Reinforcement.

As a consequence of that, all functionalities in-
herent to these views are concentrated in a single
activity class. This was implemented this way in
order to avoid unity’s character loading whenever
there is a screen change. However, this way of
implementation leads to many code lines in a sin-
gle class, witch turns the code almost unreadable
and more bug prone. Also, the time to add any
feature is affected in negative way. Furthermore,
changing a layout is almost impossible since there
are big dependence between views. In other words,
one change is some kind of view could involve un-
intended changes in other layouts. Keeping this
implementation could make these problems worse
when adding new kind of exercises. Therefore, it
is not a flexible and scalable solution. So, refactor
this activity was necessary in order to add exercises
in a flexible way. To accomplish this, we followed
an fragment-oriented architecture. A Fragment is

Shttps://developer.android.com/guide/components
/activities/intro-activities.html

4https://developer.android.com /reference/android /view
/View.html.

a modular section of an Activity, that has its own
life-cycle. It might be seen as a sub-activity since
it has its own layout and its own behaviour, which
enables more modular activity design®. Moreover,
it is possible to combine multiple fragments in a sin-
gle activity to build a multi-panel UIL. Furthermore,
with fragments, adding a new exercise is easier since
it is just necessary to create a fragment and its re-
spective layout. Also, the layouts for the new types
of exercises are easier to create, since each layout
is independent of the other layouts. Therefore, the
main activity layout is now divided in four main
areas, as we can see in the Figure 6:

- Animated character, which occupies half of
the screen. As it is supposed to be always present,
independently of the child interaction, it was de-
clared in a static way;

- Toolbar, which provides the application set-
tings;

- Fragment place holder, which defines an
empty container layout to be set by the main ac-
tivity. The activity replaces the current fragment
by another that could be the “list of classes”, “the
multiple choice image”, “the multiple choice text”
or “the reinforcement”;

- Navigation view which allows the child navi-
gate between exercises. This view only appears once
a class is selected.

List of sequences

Multiple choice
image

Multiple choice text

Figure 6: Android activity layout

<<Static Fragment>>

Unity

Toolbar

<<Dynamic Fragment>>

PlaceHolder

NavigationView

Given this division, there is now a fragment for
each type of exercise. The reinforcement and list of
classes of exercises were also implemented through
fragments.

In addition to the use of fragments, it was nec-
essary to refactor the model classes. That should
reflect the model classes of the server, consider-
ing the refactorization described in Subsection ?7.
Once the model was changed to support inheri-
tance, the child’s application model should also sup-
port to guarantee the automated mapping of the
data coming from the server. Firstly, inheritance
was implemented using the Exercise class as the
basis and having MultipleChoiceExercise as a
subclass. Also, at the exercise class,the annotations
presented in the were added to accomplish the au-

Shttps://developer.android.com /reference
p/Fragment.html

/android/ap-

tomated mapping. This annotations allow deserial-
ization. When deserializing, the actual code being
executed will know the expected class, through the
property dtype of JSON that comes from server.

Using fragments leads to a more modular code.
To add a new exercise, it is just necessary to create
a fragment and its respective layout. Layouts for
the new types of exercises are easier to create, since
each layout is independent of the other layouts.

4. New type of exercise

After refactoring, we focused on the last goal of this
thesis, which consists in extending the VITHEA-
kids 3.0 with another type of exercise. In the re-
lated work, a versatile type of exercise was identified
that can be used by children with dyslexia or with
SLI, depending on how the exercise is created by
the caregiver. The identified exercise consists of a
question and an image, where it is possible to select
an area of the image. The selected area corresponds
to the area where the child should touch to finish
the exercise successfully on the mobile device. The
implementation of this exercise was another contri-
bution to this thesis.

5. Evaluation

In this section we are going to show the improve-
ments in the three main components of VITHEA-
kids, back-end, caregiver’s application and child’s
application. This way, we are able to compare the
scalability of both architecture. Also, in this sec-
tion we are going to describe new exercises that are
now possible to create with the new exercise type,
which match our main goal of helping children with
SLI or dyslexia. Furthermore, to reinforce the im-
provement inherent to the new architecture, we give
a description of a new type of exercise implemented
by a researcher, as well as her feedback when imple-
menting the exercise, using the new architecture.

5.1. Selection image exercise Implementation

After all the research, a new type of exercise was
identified that was not possible to achieve with the
current exercises was identified, which we named as
selection image. With this type of exercise, it is pos-
sible to create exercises for children with SLI as well
as for children with dyslexia. This exercise should
allow the caregiver to define a specific area to be
taken as correct, inside an image. At the child’s
application, the child has to touch inside the area
previously defined by the caregiver. As we intend
to show how easy it has become to implement new
types of exercises we we are going to illustrate the
main differences between the two architecture, us-
ing the implementation of this new type of exercise
as example.

5.1.1 Back-end

For the new exercise to be implemented it is neces-
sary to store in database an image, a question, orig-
inal width and height of the chosen image and also
selection’s coordinates. The selection is a rectangle
performed inside the image. The original width and
height have the goal of keeping track the ratio of se-
lection’s coordinates. In terms of implementation,
it requires alterations in the entity classes and in
the controllers. Regarding the database, that will
not be covered, since it is a reflection of the entity
classes.

As it was already mentioned, Play framework of-
fers a way of inheritance (Single table). With this
feature, we have now the common fields to all ex-
ercises in the class Exercise and we created an-
other one, extending from the Exercise with the
specific properties of this exercise (image, question,
width, height, selection’s coordinates). In respect
to the controller responsible for the exercise’s oper-
ations (create, edit, delete), to implement the op-
erations for the new exercise we need first to add
to our factory the name of the new type in order
to instantiate the appropriate object (the one that
has the right operations). After that, we imple-
ment the class SelectionImageOperations with
the logic associated to the behaviour of each op-
eration, not forgetting that the class should extend
from ExerciseOperations (an interface that de-
fines the behaviour of the exercise controller). This
way of implementation assure us more flexibility
and also more independence between different types
of exercises.

5.1.2 Caregiver’s application

For the caregiver application, in respect to the ex-
ercise, we have three screens, one to create an exer-
cise, one to edit and another to preview the exercise.

In the new architecture, we need to create a folder
to contain three new angular components. Those
components are add-exercise-selectionImage,

edit-exercise-selectionImage and
show-exercise-selectionImage. The
add-exercise-selectionImage is a compo-

nent that implements all necessary logic to create
an exercise that allows us to draw a selection inside
an image. So in this component, we have an HTML
file where we implemented the user interface that
allows the caregiver create the exercise and store it
in the server, we have a CSS file where we develop
the style for the exercise form and a typescript file
where we implement the logic that deals with the
caregiver’s input and send it to the server.

The edit-exercise-selectionImage, as well
as the show-exercise-selectionImage follow the
same logic, which means every one has three

files Html file, CSS file and typescript file.
However, the edit-exercise-selectionlImage
was implemented to allow the caregiver edit
an exercise that was once created by hi.
The show-exercise-selectionImage was imple-
mented to allow the preview the exercise already
created.

After creating these three components it is neces-
sary to edit HTML files of four more general com-
ponents which are add-exercise, edit-exercise,
exercise and add-sequence to make possible that
the new components mentioned before could be in-
stantiated when needed. In add-exercise HTML
file we introduce an conditional statement that
verifies if the exercise type is a selection image
and inside that statement we reference a com-
ponent add-exercise-selectionImage. In the
edit-exercise we do exactly the same we did in
add-exercise.

The exercise can be previewed when the
caregiver lists all exercises or when checking
a given class. Therefore, to make possi-
ble show-exercise-selectionImage being created
and instantiated it is necessary to add the exercise
name into exercise and add-sequence, in order
know which component is going to be created. We
can do this way, since every exercise corresponds
to a component, and each component knows how
should be rendered and which information needs.
With this solution we have more independence be-
tween exercises.

5.1.3 Child’s application

For the child’s application we need to make possible
the information retrieving about the new exercise
from server and also create an user interface where
the child can solve the type of exercise. So, we are
going to describe how it would be made by using the
previous architecture and how it is done through the
new architecture.

Regarding the exercise implementation itself, a
block code is necessary to be added that contains all
logic behind the possible interactions when solving
the exercise into VitheaKidsActivity class (men-
tioned in Section 4). Also, it is necessary to add
a XML file to implement the user interface regard-
ing to new type of exercise. This kind of imple-
mentation is not scalable for new exercises since
this way we just increase the complexity of the
VitheaKidsActivityclass, making it more difficult
to maintain it and extend it.

Since so far we have all types of exercises extend-
ing from a class Exercise that contains all common
properties, in the back-end, we need to reflect this
into child’s application. Therefore, it is necessary
to create a class that extends from Exercise, in the

child application, in the same way it was made in
the back-end. Also, in the class Exercise of Child
application it is required the line highlighted in
Listing ??, in order to make possible the mapping
between the JSON that comes from the back-end
and the respective class.

Regarding the exercise implementation itself, it
is necessary to create a Fragment with the logic as-
sociated with selection image exercise. Also, it is
necessary to create a XML layout, to implement the
layout of this exercise. This way we assure more in-
dependence between different types of exercises and
consequently this solution becomes more scalable,
in terms of adding new types of exercises.

Criar Exercicio

Figure 7: Form to create selection on an image(left)
exercise to be solved by a child (right).

5.2. Selection in Image exercise

In the previous section we focused in describing the
main differences when implementing the new exer-
cise using the previous architecture and the current
one, implemented by us in order to show our contri-
bution in this thesis, regarding the goal of refactor-
ing VITHEA-kids and making the implementation
of new exercises an easier task. After refactoring
VITHEA-kids 2.0, a new version of it arise with
a new type of exercise. This way, in the present
section, the potential of this new type of exercise
will be shown as well as how we can create exer-
cises identified in Related work chapter that could
be user in therapies for children with dyslexia or
SLI.

5.2.1 Exercises for SLI

As mentioned at section 3.1, an expert in the field
hypothesized an exercise to be used by children to
train relative clauses, since comprehension and pro-
duction presents itself as a problem for them. In
short, this exercise consist of a sentence illustrating
the idea of that sentence. This exercise leads the
child to do what is in the sentence. For example,
in the sentence "Que cavalo que o boi mordeu?”
("What hore did the ox bite?), the child has to
touch in the part of the screen that corresponds

to the horse that suffered the action. With the
new type of exercise, several similar exercises can
be created to practice and improve relative clauses
comprehension, as shown in the Figure 7.

5.2.2 Exercises for dyslexia

Regarding dyslexia some exercises of an exercise
manual for children with dyslexia can be replicated
with the new type of exercise. For example, the
exercises, mention in section 3.2.4, can be produces
in VITHEA-kids 3.0, as we can observe in the im-
age. This way, we might conclude that with this
new type of exercise we can provide children with
dyslexia a list of different exercises to practice skills
where they feel more difficulties, such as the exer-
cise presented in Figure 8 .

Figure 8: Form filled with information of an exercise
for childs with dislexia image(left) exercise to be
solved by a child (right).

5.3. Word Naming exercise

Beside the exercise we had implemented, another
researcher from INSIDE have provided VITHEA-
kids 3.0 with a new type of exercise, more specifi-
cally a word naming exercise. In this exercise the
child has to say orally the name that appears in the
screen. Also, this exercise has to be created previ-
ously and added to a class by the caregiver. There-
fore, the researcher had to pass for every component
of the VITHEA-kids, back-end, caregiver’s applica-
tion and child’s application. Based on the feedback
received and having into account that the researcher
had already knowledge about de the previous archi-
tecture, the exercise was simple to implement and
not so confused how it would be in the previous
architecture. Also, the implementation was not a
very time-consuming process.

6. Conclusions and Future Work

Worldwide, there are children with some learning
disability, such dyslexia and SLI. It is not always
possible to provide these children with therapies,
many times duo to financial problems. Therefore
there is a need to develop a solution that addresses
this problem. Taking advantage of the technology
and the enjoyment felt by the children when play-
ing with mobile devices, to create an application
that seems like a great solution. With this view in

Criar Exercicio

Figure 9: Form to create a word naming exercise
(left) exercise to be solved by a child (right).

mind, we found VITHEA-kids 2.0 a promising plat-
form to achieve our main goal of using technology
to create exercises, to help children with learning
disabilities, namely dyslexia and SLI, that could be
solved through a mobile device. VITHEA-kids 2.0
was an application inspired by the needs of children
with ASD, allowing the caregiver create exercises to
be solved by their children in order to fight some
kind of impairment associated to them. Also, this
application is free, easy to use and it is European
Portuguese.

However, when exploring this application more
closely, we found features incomplete, as well as
bugs in VITHEA-kids 2.0 that had to be addressed.
Also, after analysing the components that compose
VITHEA-kids 2.0 we have also realised that a pro-
found reformulation was needed, since there was no
flexibility for the implementation of new types of
exercises. Hence, VITHEA-kids 2.0 was submit-
ted to a process of refactorization in every part
of the application (back-end, caregiver’s application
and child’s application). With this refactorization,
VITHEA-kids 3.0 is now more extensible to new
types of exercises.

In addition to the refactorization, we also devel-
oped a new type of exercise that allows caregivers
define an area on a image to be taken as correct. In
consideration of what was mention at the related
work, this type of exercise is useful to create exer-
cises with focus on dyslexia as well as on SLI.

Also to reinforce the benefits achieved with the
refactorization, we got a very positive feedback by
a researcher of INSIDE about the implementation
of a word naming exercise.

However there was space for improvement, re-
garding new functionalities adding. After searching
for therapies and exercises used by specialists to
fight difficulties felt by children with dyslexia, we
found out some useful ideas, that could be imple-
mented in VITHEA-kids. These ideas are based on
Orthon-Gillingham approach (OG) and were dis-
cussed with a specialized on the field. This ideas
implies to implement:

e A Tutor, whose the main goal would be teach
the sounds of syllables by providing children

with dyslexia a set of syllables and their re-
spective sounds.

e An exercise where could be possible to join syl-
lables to form the word that matches the image
presented on the display.

Regarding the OG approach, since it is as being
explicit, and after having discussed with a thera-
pist, it has raised the idea of introducing a tutor in
VITHEA-kids. The main goal of this tutor would
consists of providing children with dyslexia, a set
of syllables and their respective sounds as in Figure
10. However, synthesize the syllables sounds could
be a challenge since in Portuguese the syllables can
vary according to the word. For example, the words
cama (bed) and casa (home) have the same syllable
ca, however, the sound in each word is different.

SAPO

Figure 10: Tutor teaching SA syllable

Also, another proposed exercise, by the therapist,
following the OG, with special emphasis on multi-
sensory teaching, requires a few senses, such as, vi-
sion, audition and touch, all at same time. The
main focus consists of turning children more aware
of basic sound units of language. Regarding the de-
tails of the exercise, it consists of joining syllables
to form the word that matches the image presented.
In other words, an image is presented, as well as, a
set of syllables (syllables that belongs to the word
and others that not, to distract the child). To solve
the exercise, the child has to drag each syllable close
to the image in order to build the word that match
the image. When a syllable is being moved, the cor-
responding sound is uttered. So far, this exercise is
also not supported by VITHEA-kids.

References

[1] D. V. M. Bishop and L. Laurence B. Speech and
Language Impairments In Children. Psychology
Press, Purdue University, Indiana, USA, 2014.

[2] G. Erich, H. Richard, J. Ralph, and V. John.
Design Patterns: FElements of Reusable Object-
Oriented Softwares. Addison-Wesley Profes-
sional, 1994.

[3] C.P.B.Filipe, M. L. T. R. M. d. S. Coheur, and
J. A. R. P. Sardinha. An application to help

(a) Exercise

- 5
- b

(b) Exercise Solved

Figure 11: Syllable Exercise

children with communication disorders. Mas-
ter’s thesis, Instituto Superior Técnico, 2017.

S. M. Handler. Dyslexia: What you need to
know. Contemporary Pediatrics, 33(8):18, 2016.

A. P. Vale, A. Sucena, and F. Viana. Prevaléncia
da Dislexia entre Criancas do 1 . © Ciclo do
Ensino Bésico falantes do Portugués Europeu.
pages 45-56, 2011.

