
Security Assessment Automated Reporting

Diogo Torres
diogo.torres@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2020

Abstract

A Report provides a way to present information in an organized format for a target audience and
purpose. A summary of a report can be delivered orally, but complete reports are mostly transmitted
in the form of written documents[6]. Most businesses, especially in IT, must showcase their work
and performance through the creation of reports. Yet this is a task that requires a large amount of
time and effort. The aim of this thesis is to capture the repetitiveness and predictability of report
production, transforming it into a partially automated task. This leads to a decrease in user time,
labor and errors, and a new way of creating reports. We intend to deliver a platform for the users
to manage and distribute the reports amongst team members. In this work, the challenge of report
creation is tackled by reducing a report as a whole into both static and dynamic building blocks. This
means the user will spend less time rewriting repetitive information and focus his efforts into writing
the case-by-case data relevant to each report. The management of reports will be achieved by giving
the users a table containing the reports relevant to them and enabling them to create, delete and
modify those documents. The result of this thesis will be a reporting module composed of three main
components. First, a server responsible for manipulating: users, clients and the produced reports inside
the connected databases. It also provides an API for the client application to make calls to functions
implemented in the server. Second, a client application that gets the necessary information from the
databases using the server-side created API, sending data to be stored, using the same API. Finally, an
interface that presents a user login system, a report repository and, most importantly, a report editor.
Keywords: Report, Project, Issue, Knowledge Base, Service, Repository, Editor, API, User

1. Introduction

Communication is a key characteristic of a success-
ful relationship between a company and its cos-
tumers. This is especially true in software engi-
neering, where the product usually takes the form
of source code. However the end user is only inter-
ested in the final computer program and how to use
it.

This is where a healthy flow of information makes
the transaction worthwhile. Proper project docu-
mentation of the work aims to inform the client of
what was done, how it was done and how valuable it
is to the client. This documentation is also impor-
tant to the producing company as a way of archiving
its endeavors for future reference.

A report is a document created to deliver a spe-
cific set of information requirements to a certain
group of people [20]. As such, it presents itself as a
possible way to record the service provided and it
is, in fact, a perpetual reality of any IT company.
Reports are a way of reducing great amounts of
data into the fundamental knowledge points, mak-
ing it possible to rapidly acquire high level knowl-

edge without needing to be aware of all the details
of the day-by-day development process.

The type of information gained by creating re-
ports lets both client and team reach a common
ground of understanding about the created product
so that both entities are able then to make critical
and knowledgeable decisions for the steps to take
place in the future.

Good quality reports, like any other type of work,
are generated not by one person, but with team ef-
fort. For it to be possible, an infrastructure for team
members to orderly interact has to be in place. This
infrastructure comes in the form of management
tools for users, clients, projects and a framework
capable of storing all this data; the creation of this
infrastructure is the core of our work.

1.1. Motivation

The subject of this thesis was introduced by MAIN-
SEC and came to fruition based on challenges they
face on a daily basis.

MAINSEC is an IT company with key expertise
in information security and IT security consulting,
management and professional services. The team at

1



MAINSEC engages with other businesses to inspect
and report the security state of their applications
and infrastructure.

Right now, MAINSEC is presented with the chal-
lenge of optimizing the process of composing re-
ports, due to the repetitive nature of this task. This
type of work usually results in unnecessary strain
for the writers and inevitably causes mistakes in
production which lead to more wasted time and ef-
fort.

After creating the reports there is a need to share
files between team members and clients. This is
accomplished with the use of basic file managers
over online file hosting services and email correspon-
dence.

With regards to archiving and administration of
files handled by the team, there is a problem with
control, privacy and security, or the lack thereof,
over the files stored in external services like Drop-
box or Google Drive. The projects themselves also
lack an official and updated log of the many states
that projects traverse.

This lack of structure brings about wasted time
and a lack of control. It causes team members to
not know what or when to do their respective tasks.

1.2. Contributions

Our contributions and, in particular, the contribu-
tions of this thesis are the following:

1. Provide a notion of what report creation is,
why it is relevant and what are its current faults;

2. Study existing solutions and related work to
target this problem;

3. Detail the specific requirements requested by
MAINSEC, regarding the task at hand;

4. Propose and design a solution for this problem,
comprised of: a User dependant Login system that
changes the way the application behaves relative to
the permissions given to that User; a Projects and
Reports Repository for team members to manage
attached team members and Clients, change meta
information of these files (deadline, status,etc) and
provide a way to easily find and open Reports for
editing; and a Report Editor that encapsulates both
the capabilities of a common text editor and the
custom functionalities that enable the rapid cre-
ation of these specific Reports.

5. An evaluation of the created solution by way of
a comparison with a similar system that is already
in place.

2. Background

In the following sections we will present some tools
and technologies used for report creation, editing
and storing that served as inspiration for the devel-
opment of our own software.

Report Creation Tools
2.1. SAP Crystal Reports
SAP Crystal Reports is a system designed to take
vast existing databases and present them as ready-
to-consume information in the form of reports that
people, both internally and externally, can use to
keep informed and make better decisions. To reach
this goal SAP Crystal Reports gives the user an
editing software to create pixel-perfect reports that
reflect great amounts of information as concise and
easy to consume documents.

By creating reports using formulas, cross-tabs,
sub-reports and conditional formatting, the user
can get a clear picture of a hard to understand large
data set as well as uncover conclusions that would
otherwise be hidden.

This tool enables the user to connect to almost
any source of data like large CSV files or NoSQL
databases to then produce and distribute them as
one of many popular formats like PDF, Word or
HTML [23, 22].

2.2. TIBCO Jaspersoft Studio
Much like SAP Crystal Reports mentioned before,
this editing software was made to design and run
report templates using a plethora of visual compo-
nents like charts, tables and maps.

Using Jaspersoft Studio, one can access dif-
ferent types of data sources, including big data,
CSV, Hibernate, Jaspersoft Domain, JavaBeans,
JDBC, JSON, NoSQL, TIBCO Spotfire R© Infor-
mation Links, XML, or your own custom data
source[25]. After creating the layout of the report,
the user is capable of exporting in many popular for-
mats that fit any data need, like PDF and spread-
sheets or raw CSV and XML documents.

2.3. Overleaf
Overleaf is a cloud-based LaTeX editor that allows
multiple users to write, edit and publish scientific
documents [16, 13]. Overleaf provides the conve-
nience of an easy-to-use LaTeX editor with real-
time collaboration and the fully compiled output
produced automatically in the background as you
type.

Having to write in the form of source code re-
quires a previous knowledge of the LaTeX language
to produce documents, but creating a document
with LaTeX frees the user from worry around de-
sign as this system provides the user with plenty of
industry standard layouts and formatting [10].

Overleaf lets the user create templates of doc-
uments to be completed for each case, as well as
publishing to mainstream supported file formats.

File Management
2.4. Google Drive
Google Drive is a cloud-based multi-platform file
storage and synchronization service [4].

2



The service is used by individuals and teams to
store, manage and share files online. Users can
choose who they share their files with and what
permissions they have on those items. They can
share access to folders or individual files.

As this tool is a part of the Google Office Suite,
from Google Drive a user can open a document for
collaborative editing in the other office applications,
like Google Docs.

2.5. File Browser

The generic file browser is the most basic way of
storing and managing files. It is included in every
main Operating System and is used to store files
offline and manage these files in a folder structure.
If a user intends to share it with a team member,
it must be done using external tools. At most, one
can set read/write permissions per file or folder.

Database Systems
2.6. PostgreSQL

PostgreSQL is an open source object-relational
database that aims to provide access to large data
sets even in the heaviest workloads.

PostgreSQL is highly extensible, letting the de-
veloper define his own data types, custom functions
and write code from different programming lan-
guages without the need to recompile the database.

The SQL standard is mostly respected by Post-
greSQL, with a few exceptions where this compli-
ance would hinder features or architectural struc-
ture. Most features and functions that form the
SQL standard are supported even if sometimes with
a different syntax [24].

2.7. MongoDB

MongoDB is a document oriented database with the
scalability and flexibility that the user wants, whilst
offering the querying and indexing needed.

By storing JSON-like data documents, MongoDB
enables each document to have its own fields and
data structure and be able to change these over time
[21].

Web API
2.8. GraphQL vs REST

GraphQL is a query language for APIs, as well as
a run-time for fulfilling queries related to the user’s
data. Unlike other REST APIs, GraphQL provides
clients with the power to request just what they
need and nothing more through the implementation
of a schema. Apart from being able to use a schema,
the user is also able to change that schema over time
and evolve the APIs or with the APIs with which
it communicates.

Apps using GraphQL are fast and stable because
they control the data they get, not the server. This
means that by defining the requested data in a given

query, the user only receives that data in question
and not the unfiltered content provided by a server.

With GraphQL the user can write APIs that
leverage existing data and code with GraphQL en-
gines available in many languages. This way, the
app only has to be concerned with a single API to
access multiple and varied storage engines [17].

Web Application Framework
2.9. Angular

Angular is a platform made for development of web
applications. Much like its former version, as An-
gularJS, Angular remains a popular option for its
purpose. Its popularity comes from its capabilities
regarding concepts like data binding, which makes
dynamic page updates possible, directives that en-
able the users to create their own HTML tags and
therefore a more personalized application. Further-
more, there is dependency injection to easily create
reusable and testable code.

Angular is a fully re-written and redesigned ver-
sion of AngularJS and now is the one that has be-
come most widely used and actively maintained.
Angular builds upon its predecessor by using Type-
Script which is similar to JavaScript, so the user
does not have to learn a whole new language, and
extends the capabilities of AngularJS by being web,
mobile, and native desktop among many other im-
provements [18, 19].

2.10. Vue.js

Vue.js is an open-source model–view–viewmodel
progressive JavaScript framework for building user
interfaces and single-page applications [9, 11]. Vue
offers much of the same capabilities of Angular, but
it does not require the use of Typescript and offers
a much less opinionated perspective. This means
that a user has a smaller learning curve, if he al-
ready knows how use vanilla Javascript, and has
more flexibility on how to develop an application as
Vue doesn’t impose a Right Way to build an appli-
cation [5].

Discussion

In this chapter, we presented relevant systems in
the area of Report Creation and what other tools
can be used to achieve a complete team framework
for managing and storing reports. Yet, no tool is
without its imperfections, so we highlight the major
faults and features of each type of tool to learn the
most from them.

From the Report Creation applications we want
to replicate the capability of using a template doc-
ument, to be filled by the end user and to export
as a PDF file, allowing any Client to see it or read
it. From Crystal Reports and Jaspersoft Studio, we
want to reproduce the capacity for automatically
getting data from multiple sources into our doc-

3



ument, but we want to use open-source software.
Like Overleaf, we must implement an application
capable of being used online by multiple users and
to have the document automatically saved to the
cloud, but we want to control the server where the
documents are saved to and for the text editor to
behave differently according to the user in session.
What is missing from these tools is the custom func-
tionality of adding Issues (Section 3.2), specifically,
or even the capability to add other modular func-
tionality as needed.

Google Drive, like any file browser, presents the
files and folders in an ordered manner, but lacks
specific information about said files that need to
be present for the user to correctly manage them.
Once again we need a system that acts in a par-
ticular manner depending on the user, beyond the
read/write permissions provided by booth Google
Drive and a file browser. The possibility to go from
the file management software to the editing software
is to be kept. The entities managed by repository
are more complex than folders and files, we need a
way to represent Clients, Users, Projects and Re-
ports and there is no way to produce this function-
ality in either of the tools presented.

The database systems we introduce above satisfy
our needs as they are already being used at MAIN-
SEC and are an compulsory development require-
ment (Section 3.7).

To develop the web API, we focused on the ad-
vantages of GraphQL, because we must use different
databases to store, manipulate and provide data to
the client application.

Angular and Vue.js present a very similar offer-
ing. Since there was already past experience with
Angular, this is its main advantage.

3. Requirements

In this chapter we show the guidelines to be followed
and goals to be met during development, according
to MAINSEC.

Functional Requirements

Hereinafter, we will describe which requirements
must be met within each application interface and
which requirements belong to their respective ac-
tor. So firstly, we will define the roles of Auditor,
Reviewer and Project Manager.

3.1. Entities

1. The Auditor is the person that will interact di-
rectly with the existing application provided by the
client and then write the report which contains all
the issues found during the assessment. This is the
sole entity responsible for creating new reports and
directly change their contents and may have to do
so repeatedly with each review of the document un-
til it is approved by the Reviewer;

2. The Reviewer is the one who reads and makes
suggestions for corrections to be made in the reports
created by auditors;

3. The Project Manager is responsible for the
management of the ongoing projects and guarantees
that these are delivered properly. The management
of projects includes creation of projects and reports,
dictating the roles of the team members involved in
each project, and giving the final validation of a
report before delivery to the client.

3.2. Main Objects

The paragraphs below describe the objects that are
stored and manipulated by the actors detailed in
section 3.1.

Project

The Project is principal organizational compo-
nent of this solution. The Project incorporates the
information about the team members assign to it
and which roles they play.

Each Project has one of three statuses: “Open”,
“In Progress” or “Closed”.

Projects hold the Reports the Auditors write af-
ter an assessment of a Client application. Each
Project has an attached Client.

Report

A Report is the document produced to describe
the issues found by the Auditor during an applica-
tion assessment.

In a management perspective, the Report keeps
information about its deadline for review and deliv-
ery, and the different statuses it traverses through.

A Report starts its life in a “Open” status,
changes to “In Progress” as the Auditor starts writ-
ing in it, then enters a cycle. This cycle begins when
the Auditor finishes the first draft of the document
and sets the Reports to “Review” and waits for the
Reviewer actor to read and append comments as
needed.

When the Reviewer finishes reading the produced
content and writing his suggestions to the Auditor,
he sets the Report to a “Reviewed” state.

The third phase of the review cycle is entered
when the Auditor notices the newly written sugges-
tions of the Reviewer and starts to edit the Report
accordingly, setting the status to “In Progress”.

Th final status is “Closed”, which is set by
Project Manager when he has read the Report and
is confident to deliver it to the Client.

Issue

Issues are the main components that distinguish
Reports. After the Auditor has finished the assess-
ment on the application provided by the Client, the
Auditor uses the Report to showcase every fault
found.

The Auditor is tasked with matching the faults,
found during the Client application assessment,

4



with the corresponding Issue that best describes
them. Having found the correct Issue, the Auditor
must place the static contents of the Issue, retrieved
from the Knowledge Base (3.6), in two sections of
the document.

The two sections of the Report that list Issues are
the “Summary of Assessment Results” and “Assess-
ment Details”. In the “Summary of Assessment Re-
sults” section, Issues are listed in a table with their
title, description and what is the subsection where
this Issue is described in detail, in the “Assessment
Details” section. In the “Assessment Details” sec-
tion, the Issue will be described in full detail, bring-
ing from the Knowledge Base (3.6), all the static
information about this Issue.

The second part of every Issue is dynamically cre-
ated by the Auditor, to explain how the Issue relates
to the specific fault in the Client program. This dy-
namic data is written inside the subsection the Issue
occupies in the “Assessment Details” section of the
report. This dynamic data is composed of text and
images that explain the state of the fault and what
the Client could do to correct it.

3.3. Report Repository

The Report Repository offers a view of all projects
and reports to be accessed and managed by the Au-
ditor, Reviewer or Project Manager.

The interface presented to users must take the
form of a table listing projects and reports. The
columns delineate features like name, status, dead-
lines, team members, etc.

There are capabilities exclusive to each user and
a few that can be executed by all of them. We will
detail the actions that each entity is capable of.

All parts involved can sort and filter through all
active projects and reports for further actions. For
example, in a table of projects, the user can use a
search bar to find a project using a keyword. To
change the order the projects are displayed, a user
can choose, for example, to sort them by status.

Upon selecting a Report any user can preview
how it looks when finished and save it as a PDF
file.

Although all entities are able to change the status
of a Report, there are different statuses available to
different team members.

A new Project can be created by anyone, but only
the assigned Project Manager can change and delete
the Project from then on. The meta information
edited by the Project Manager includes the Project
name, team members, target Client and status.

Report initiation and deletion is exclusive to a
Project Manager and its Auditor, and during is
writing both these actors are able to change its
deadlines. Only the Auditor has the right to write
the Report.

Lastly, the Reviewer is the entity solely respon-
sible for opening the Report to add comments for
the Auditor to read afterwards.

3.4. Report Editor

The Report Editor presents a single interface for
two different users, but each user will get a different
set of functionalities. These two users will be the
Auditor and the Reviewer.

The layout must contain three main features:
scrolling pages representing the opened document,
just like any other word processor, where the Audi-
tor sees and fills a report as a regular document in
any other text editor; a sidebar with a search en-
gine that pops up when an Auditor wants to insert
a new Issue into the document, helping him, more
easily, find the right Issue; and finally, a comment
section for the Auditor to read and the Reviewer to
write on.

The report must follow the existing ordered struc-
ture where the document is a composite of static
and dynamic data. Some components are already
partially constructed and present in every report
and, then, the user only has to fill in the blanks.
Other parts are uniquely added to each report, as
is the case with the Issues.

An Issue is an object that can be inserted into
the document, inside its respective section. Each of
these Issues is made of three components: a static
text description that is imported from the Knowl-
edge Base (page 6); the technical details and current
state to be manually filled in by the user; and the
severity which determines where the Issue is placed
in the document.

The comment section is placed alongside each re-
spective page, i.e., a comment section only contains
comments relevant to that page. The Reviewer add
and modify annotations, while the Auditor only sees
what the Reviewer wrote before.

Development Requirements

This section will specify how the new components
will work, their functionalities and how they will
interact with the existing system. Additionally, we
will introduce how some existing micro-services op-
erate, as they are crucial to the new implementa-
tions. Finally, we will describe what technologies
MAINSEC requires to be used in our solution, as
they are already in place.

3.5. Report Service

The Report Service will be a composition of three
components, a back end server that directly con-
nects to the required databases, the Web API defi-
nition and the a client application where the Front
end is implemented.

The back end server has the responsibility of cre-
ating the necessary functions to manipulate data

5



on multiple types of database systems. This is also
where we will implement the new objects and re-
spective operations needed for representing the Re-
ports and necessary infrastructure around them.

A Web API must be defined as an abstraction
layer for the client application, removing the need
for the client to directly interact with data sources
and having the advantage of only being required
to use a single language to access those different
databases. This Web API is what enable the con-
nection between the server and client application
layers.

Finally, the Report Service is where we will build
the Front end interface to be utilized by the team
members. This interface lets a team manage, cre-
ate, edit and, lastly, export the result Reports to
deliver to the Client.

3.6. Related Services

The services described below represent the infras-
tructure in which the the service produced in this
thesis must integrate to.

User Service. A micro service responsible for
every aspect of user management in the platform.
Registration, authentication, authorization and
removal of clients and their information are all
functionalities associated with this service.
Knowledge Base Service. Will provide the
database to be used as a source for searching Issues
and later populate the created reports. Besides
hosting data relating to Issues this service will hold
other types of the static data required for the pro-
duction of these reports such as Disclaimers, Terms
of Use or other textual descriptions relevant to the
client. Data creation, deletion and modification
will be done exclusively by the Knowledge Base
Service.
Project Service. Similarly to the Knowledge

Base Service, serves as a system for storing and
maintaining data. In this case, it will manage
projects themselves and all the information related
to each project. Through this service a team
members can create, delete, and modify projects.
This includes attached reports, client information,
assigned team members and scheduling.

3.7. Technologies

Our application has to be able to connect with
the database systems, PostgreSQL and MongoDB.
Having these databases already in place, we are re-
quired to use them to store the newly created infor-
mation from Projects and Reports.

Both Angular and GraphQL were not required
options, but had the great advantage of already had
being use by the team members at MAINSEC that
could help during development.

4. SAAR2020
4.1. Approach

Our approach started by understanding the exist-
ing services in place at MAINSEC. Looking at the
services, we found what information they store and
how to transfer that data between the services and
our new application.

The User Service and Project Service use the
PostgresSQL database system to store, respectively,
user and projects information. The Knowledge
Base Service is using MongoDB to store the static
Issues and as referred in section 3.7, our Report
Service must use this same database to store the
reports as they are created.

To bridge all the required databases, existing and
the ones formed during development, a better ap-
proach is a server that is capable of connecting
to different databases, using distinct protocols and
provide an interface to communicate with them all
using only one protocol.

To satisfy the needs previously mentioned, we de-
signed a GraphQL API using a NodeJS server that
enabled the front-end to perform CRUD(create,
read, update and remove) operations in our
databases.

After making sure we were able to connect with
the existing databases, we moved on to expanding
the existing objects, Projects and Users, and cre-
ated a way to archive Reports. All of this was pos-
sible using GraphQL.

Having the basic capabilities of our server work-
ing, we started building our interface in Angular.
Based on what users at MAINSEC already used
before and their current unmet needs, we started
work on a Report Repository similar to most file
storage services. This means, a table showing the
Projects and/or Reports belonging to a given user,
that showed in its columns some meta information
(name, status, etc.) and the actions that the user
could perform.

Regarding the Report Editor, we opted for a
WYSIWYG (what you see is what you get) sys-
tem where as the user interacts with the pages of
the Report the interface reflects exactly what the
exported document will look like.

The report mainly acts as a form to be filled by
the user and that is done in one of three ways. The
Auditor can double-click any page and submit, in a
pop-up, the pertinent information to that page, as
most pages have exact amount and types of data to
be filled. Some pages with sections that have free
form content, present the user with a text editor
similar to a regular word processor like Microsoft
Word. Lastly, the Auditor adds or removes Issues
and their respective content to the report by search-
ing and selecting in a sidebar that presents itself
when needed.

6



Finally, in the Report Editor interface, there is
the possibility of reading or editing comments rel-
evant to a given page. Each page where comments
could be relevant has a comment section next to
it. The Reviewer reads the report and proceeds to
write comments on the necessary pages for the Au-
ditor and later the Auditor uses this comments to
correct and refine the document.

4.2. Implementation

To implement our solution in a safe environment
and without compromising private client informa-
tion, we recreated all the existing MAINSEC ser-
vices and databases as mock-ups. This way we
could use the existing functionalities and add to
them without putting their service at risk.

4.3. Architecture

Our application follows a two layer structure, front-
end and back-end, connected with an API that
transfers the necessary data between them. The
first layer is the Report Service, a back-end server
where we designed the API responsible for making
requests to get data from our databases and sending
data to be archived in those same databases.

The front-end layer is composed of a client appli-
cation that uses our GraphQL API to execute the
tasks, sent from the user interface, on the back-end
server. That same client application is where we
developed the user interface using Angular.

4.4. Server - Designing a GrapqhQL API

The backend of our application was implemented
using Apollo Server [3], which is a GraphQL server
that works with Node.js [1] HTTP server frame-
works, in this case we are using Express [7]. Cou-
pled with our Apollo Server, we used two ORM
technologies, Sequelize [15] and Mongoose [12], to
help us map the objects from the PostgreSQL and
MongoDB databases.

With all the tools mentioned above, we developed
our service using three distinct components to man-
age each object involved in our application. These
components are the schema, the models and the re-
solvers, which we will explain below.

We begin with our schema files. These declare
all object types and possible functions regarding
these objects, using GraphQL schema. This means
that for a given object, like a Project, we defined
what are its features (name, status, date, password,
etc.) and what actions the application can execute
on these objects (create, read, update, delete). As
shown in section 4.5.

Secondly, we create the models. In these files we
define the type of each feature in an object, i.e., the
name of an object would be saved as a string, and a
list of Reports in a Project would be mapped to an
array. The way we produce the model files depends

on what ORM technology is being used to match
each database. Models for objects stored in a Post-
greSQL database are defined using Sequelize, and
Mongoose is used for MongoDB database systems.

Lastly, resolver files contain the implementation
of the functions that we can use to access and ma-
nipulate the data stored in our objects. For exam-
ple, to change a review deadline of a Report, we
have to input the Report id and the desired new
deadline, then the service will return the updated
Report object to be presented in the interface. As
developing models differ depending on the target
database, we have to use both Sequelize and Mon-
goose to implement how the CRUD functions are
executed in their target database.

The complete service definition enables the client-
side application to interact with the objects and
their functions using only the generic GraphQL
schema to make calls to the service. The service,
then, internally executes the functions using their
defined resolvers, without the user needing to know
how each database works.

4.5. Main Object Types
Following the requirements, in Section 3.2, we de-
fine different objects for Projects, Reports and Is-
sues, respecting all their features. We also created
new objects and features which we will now de-
scribe.

In our implementation, we split Report into two
objects. The first represents the report in the Re-
port Repository, only containing meta information
necessary for the Users to manage and select it for
viewing or editing. The Report Document object
defines how the document and its contents are
stored in the MongoDB database system.

We defined each User as a basic User which only
starts with its login information(’name’,’email’ and
’password’). As it is added to a Project as Auditor,
Reviewer or Project Manager, the User object is
extended with a ’role’ field, affecting the way the
application behaves.

A Client object was created by copying the User
object and removing ’password’ field. As there is
no intention for this entity to interact with our pro-
gram.

We added an ’id’ to every object that was au-
tomatically generated by the respective database
upon creation of an object. PostgreSQL was re-
sponsible for Projects, Reports, Users and Clients,
while MongoDB holds the Report Document and
Issue objects.

We also added other ’id’ fields inside related ob-
jects as a way to easily interchange data between
objects. For example, a Report Document gets in-
formation about its attached team members by us-
ing the ’projectId’ of its parent Project.

7



The Report Document object is composed of mul-
tiple complex objects that represent its sections
filled with static and dynamic data. It also has an
array of Issue objects to store the Auditor added Is-
sues. Finally, there is a ’reviewerComments’ object
that has comments added by the Reviewer separate
by sections.

The Issue object has fields already full of static
content from the Knowledge Base, and is added to
the Report with ’technicalDetails’ and ’currentSta-
tus’ empty fields to be written by the Auditor.
There is also and array of ’IssueFigures’ that is used
to store URLs and captions to appended images. fi-
nally, each issue keeps its own Reviewer generated
comment in a ’reviewerComments’ field.

4.6. Client - Using the GraphQL API

For the client application to get, manipulate and
save data in our databases, we had to write func-
tions to interact with the GraphQL API imple-
mented in our server application. As it would be a
taxing task to manually create client-side functions
for every action possible in the API, we used the
tool GraphQL Code Generator [8] to automatically
generate the desired operations.

Automatic saving of a Report is possible, be-
cause the input of new information to the current
document is done though the GraphQL API and
each call only fills a portion of the document. This
means, that filling a single page with content equals
an automatic save, instead of saving an entire doc-
ument at a time.

4.7. Client - Web Interface

In this section, we will demonstrate, through the
help of figures, how the principal interface compo-
nents and features were implemented and how the
User interacts with them to accomplish the tasks
proposed at the beginning of this thesis.

As a whole, the interface was developed using An-
gular. We chose Angular Material [2] as the design
signature of our application.

Login

The first interaction the User has with the appli-
cation is the login screen, where the system takes
the User information to check if he can use the
program, and to select the correct data to present
to the User. The login information is submitted
through a simple form.

Report Repository

As the User initiates a session he is presented with
a list of Projects he is assigned to. These Projects
can be filtered with the search bar on the top, and
can be sorted by clicking one of its features. Search-
ing and sorting capabilities are present in all other
tabs as well.

From the Projects tab, any User can create a new
Project. However, only a Project Manager can edit

the meta information of a Project or delete it. This
is demonstrated by the available buttons on the
right. Alex only is the Project Manager in Project
A.

When the ”Create” Button is pressed, a dialog
will appear. Then, the User fills up the information
accordingly. This is helped by the fact that, apart
form the Project name, all fields only show informa-
tion that respect the rules imposed by MAINSEC.
Only a predefined status can be select, and the pos-
sible options in the Client, Auditor, Reviewer and
Project Manager fields are entities that already ex-
ist in the connected databases. The same dialog is
used to edit the Project information after it is cre-
ated. To open a Report for viewing or editing, a
User double-clicks the name of a given Report.

In the Reports tab, once again, a User only gets
to see the Reports belonging to a Project he belongs
to. Any User can create, edit or remove a Report
inside a Project he is assigned to. Reports can also
be opened in the Reports tab. Creating and editing
a Report uses the same style of form used to create
a new Project.

The Clients and Users tabs show a list of all the
Clients and Users to every User, as these function
mainly as a contact book. Only the Project Man-
agers can edit or delete elements of this list, but all
Users can add Clients and Users as needed.

Figure 1: Editing content in a section using a rich
text editor.

Report Editor
After the User selects a Report to open in the Re-

port Repository, the interface changes to a WYSI-
WYG paradigm. A User can scroll to see how the
Report will look like when exported as PDF, and
double-click in a page to be edited.

As a target page is double-clicked, the correct
tool to edit the present contents will present itself.
Pages are edited either by filling form or by writ-
ing in a rich text editor, shown in Figure 1. In our
application, we chose Quill [14] as our text editor
module, as it is easy to use and implement. Addi-
tionally, Quill can save the edited text, internally,
as HTML. The HTML content produced by Quill
has the advantage of being lightweight and fast to
store in String format inside our database, and later
on be read and reproduced to the interface just as

8



easily.
On the right side of Figure 1, there is the com-

ment section. This section shows a different be-
havior depending on the team member in session.
The Auditor and Project Manager can only read the
comments left by the Reviewer, while the Reviewer
interacts with a text editor, similar to the one seen
in Figure 1, to submit his comments on that page.
This distinction is possible, because when the User
opens a Report the application is aware of the User
role in the respective Project.

Figure 2: Add an Issue to the Report. (a) - Issues
sidebar. (b) - Issue automatically placed in the cor-
rect sections.

Add Issue to the Report
To manage the Issues in the Report, the Auditor

must open the hidden sidebar by clicking the menu
button on the top left corner. In the first table in
the sidebar, shown in Figure 2 - (a), Issues from the
Knowledge Base (section 3.6) can be searched and
sorted. In the table below, the Auditor can remove
Issues already in the Report by clicking in the trash
can button of the target Issue.

To add an Issue to the document, one must first
select a Severity from the selection element next to
the search box. Then, after clicking the plus sign
in the desired Issue, all the static data of that Issue
will be automatically imported from the database
to the to the Report.

Figure 2 - (b) shows the results of adding and
Issue to the Report. First, a summary of the Issue
is inserted in a table of the select severity section,
including an indication to the full description in the
next chapter. Second, a detailed definition of the
Issue in the Assessment Details section.
Editing an Issue

After an Issue is inserted into the document, the
Auditor has to complete it with the Technical De-
tails and Current Status paragraphs. To do this, the
writer double-clicks the recently created page with
just the two titles of the paragraphs. In the pop-up
dialog, paragraphs can be written in the left text

editor and images can be added through the form
on the right.

5. Evaluation

To test the usability of the system proposed in this
document, we compared it to the workflow in place
at MAINSEC. In this test, we have the volunteers
execute a set of tasks in a Google Docs document
and in our solution.

This chapter describes the study that took place
to evaluate both solutions.

6. Participants

The tests where done by eight volunteers, six men
and two women. All of our participants work in IT
companies as developers and/or managers and ev-
eryone has experience in creating report documents.

7. Procedure and Apparatus

The sessions had an approximate duration of 30
minutes and were done in a calm and quiet room
with a desktop computer. Each session was initi-
ated with an explanation of how the tests would
take place and what they would be doing.

First, we explained the window layout in the two
monitors. The first monitor had the interface to
be tested and the second one had the instructions
document for the tasks, as well as an auxiliary doc-
ument containing the information for the Issue to
be added to the Report.

As everybody had previous experience with
Google Docs, and the instructions given provided
all the necessary knowledge to use SAAR2020, no
time was invested in learning the interfaces.

We informed them that there were two question-
naires at the end of the tasks. Finally, we explained
that their results would be kept anonymous. Any
further questions were welcome to be posed during
the test.

Then the testers started performing the asked
tasks by following the instructions given and we
started taking note of the time taken with our stop-
watch.

Each user performed the same seven tasks, listed
below, on both applications. Half of the users
started with Google Docs and the other half started
with SAAR2020, so that the results would not be
affected by the user learning the tasks. The target
document already had some comment and only had
to be modified.

T1: Edit the document cover by changing two
words and a date, in the correct format;

T2: Edit the headers by changing two words;

T3: Add three names to the Auditors and Re-
viewers table;

T4: Add a new row to the Document Manage-
ment table and fill it with 3 words and a date, in
the correct format;

9



T5: Add an Issue to the document using the pro-
vided Issue information and place it in two sections,
each one with its own formatting;

T6: Edit the dynamic data of the added Issue
by writing two paragraphs and adding a captioned
image;

T7: Export the document as a PDF file;

At the end of the task execution on both solu-
tions, we asked the participants to rate each task
on each solution using a Likert scale (1=not at all,
10=very) regarding how fast and how easy it was
to do the task and how useful the interface was in
helping the user perform the task.

8. Results

In this section, we present the results of the com-
parison between the two solutions. The results ob-
tained from the two solutions are described by the
metric and compared with each other.

8.1. Time taken to execute tasks

The time (seconds) a tester took to execute the
tasks was measured from the first click on the in-
terface to the end of the last task.

We saw some difference in the duration of test
completion amongst users. This happens as differ-
ent participants have different levels of experience
with the technologies used during the tests.

Even though the testers took more or less time
performing tasks, we could verify a consistency in
the ratio between time taken on each solution. With
SAAR2020 times being, on average, 2.59 times
faster than Google Drive. The User registering the
smallest difference at 2.46 speed improvement and
the biggest at 2.73 times.

8.2. Satisfaction

In Figure 3, we show the average score attributed in
the three questions posed about each task. These
scores were obtained by having the testers answer
a questionnaire for each solution. These question-
naires were answered using a Likert scale. Every
Likert scale has ten discrete, from 1 to 10 points.
Score 1 represents, for example, ”the task was not
at all easy to do”, and score 10 represents the re-
verse, ”the task was very easy to do”.

Overall, we noticed an improved or constant score
from Google Drive to SAAR2020. This happens,
because at every step our application tries to reduce
the input required from a user. This is especially
noticeable in T2 and T3, where SAAR2020 got al-
most perfect scores, because both these steps are
done automatically by the application itself in the
background. T5 and T6 received in Google Docs
received the worst scores as these are the tasks that
required the most user interaction.

We also calculated of the satisfaction ratio per
task between the two solutions, in Figure 4 (a).

(a) Google Docs (b) SAAR2020

Figure 3: Analysis of the time taken the execute
the tasks.

And, then, averaged the improvement ratios of all
the tasks per solution and measured the difference
(Figure 4 (b).

The difficulty was the least affected, receiving
1.64 more score points in SAAR2020. The use-
fulness improved in a greater manner, getting 2.59
more points than Google Docs. Finally, the best
results came from the enhancement in time taken
to fulfill the tasks. Users gave 3 more points, on
average, to SAAR2020.

(a) Satisfaction per task (b) Average Satisfaction

Figure 4: (a) - Satisfaction Ratio Between Solu-
tions. (b) - Average score per question and the
difference between those averages.

9. Conclusion and Future work
Presented with the challenges faced when creating
reports manually, we proposed SAAR2020, an auto-
mated report creation system that enables the users
to only invest their time writing new data instead
of copying existing information form one place to
another.

We compared this solution with a traditional
word processor, Google Docs. Results show that
SAAR2020 is over 2 times faster than Google Docs
and users find this solution more useful and easy to
use. Improvements to the application can be made
by further tuning which tasks can be automated
and adding new features as found necessary.

10



References
[1] About — Node.js.

[2] Angular Material UI component library.

[3] apollo-server-express - npm.

[4] Cloud Storage for Work and Home - Google
Drive.

[5] Comparison with Other Frameworks — Vue.js.

[6] Definition of REPORT. www.merriam-
webster.com.

[7] Express - Node.js web application framework.

[8] GraphQL Code Generator — GraphQL Code
Generator.

[9] Guide: What is Vue.js? Vue.js.

[10] Introduction to LaTeX.

[11] Introduction — Vue.js. vuejs.org.

[12] Mongoose ODM v5.10.5.

[13] Overleaf - About us. Overleaf.

[14] Quill - Your powerful rich text editor.

[15] Sequelize — Sequelize ORM.

[16] Write papers like a modern scientist (use Over-
leaf or Google Docs + Paperpile). Simply
Statistics blog.

[17] Facebook Inc. Introduction to GraphQL —
GraphQL, 2019.

[18] Google. Angular - What is Angular?, 2019.

[19] Ilya Bodrov-Krukowski. Angular Introduction:
What It Is, and Why You Should Use It —
SitePoint, 2018.

[20] P. Madan. Language proficiency in English.
Agarwal publication, 28/115, jyoti block, san-
jay place, Agra-2, 2016.

[21] I. MongoDB. What Is MongoDB? — Mon-
goDB, 2018.

[22] SAP SE. Analytics for the small to midsize
business with SAP Crystal solutions SAP So-
lution Brief SAP Solutions for Small, Midsize
Businesses. Technical report, 2018.

[23] SAP SE. SAP Crystal Reports reporting and
analytics solution, 2018.

[24] The PostgreSQL Global Development Group.
PostgreSQL: About.

[25] TIBCO Software Inc. Jaspersoft R© Studio —
Jaspersoft Community, 2018.

11


