
Evaluating Password Strength Meters and Password
Composition Policies using Guessing Attacks

David Pereira∗
INESC-ID & Instituto Superior Técnico
University of Lisbon, Lisbon, Portugal

Email: ∗david.b.pereira@tecnico.ulisboa.pt

Abstract—Passwords remain the primary authentication
method in today’s digital world. However, weak password se-
lection behaviors combined with the re-utilization of credentials
across services, make guessing attacks a serious threat against the
integrity of user accounts. Password strength meters (PSMs) and
password composition policies (PCPs) are security mechanisms
that guide users towards better password selection. While recent
studies have showed the efficacy of these security mechanisms,
rigorous methods to assess their accuracy and to estimate
password strength are needed.

In this thesis we study the relationship between PSMs and
PCPs with respect to their resistance against off-the-shelf guess-
ing attacks by following a well-defined methodology. Our exper-
imental results validate past password research and suggest new
relevant findings regarding the security mechanisms under study.
Finally, we focus on the zxcvbn meter by identifying several issues
regarding its internal strength estimation mechanism and by
proposing some adjustments so as to further improve its accuracy
at password strength estimation.

Index Terms—Authentication; Password Strength Meter; Pass-
word Composition Policy; Accuracy; Guess Resistance

I. INTRODUCTION

Passwords remain the primary authentication method in
today’s digital world and will likely prevail in the foreseeable
future as a viable, practical and cheap method for user authen-
tication [1], [2]. However, passwords alone do not guarantee
the absence of security related issues in digital systems. Weak
password selection behaviors [3], [4] combined with the re-
utilization of credentials across different services [5], make
guessing attacks a serious threat against the integrity of user
accounts [6], [7]. In fact, the problem of maximizing resistance
against password guessing attacks has been widely researched
in academia for the past two decades [8], [6], [9], [10], [7].

Password strength meters (PSMs) and password compo-
sition policies (PCPs) are popular security mechanisms that
help users choose stronger passwords. They rely on the idea
of proactively checking password strength through estima-
tion [11], [12], while enforcing certain requirements [5] and
offering useful feedback to users.

Building an accurate PSM is one of the main challenges
towards guiding users into better password selection. Depend-
ing on the metrics used for measuring password strength as
well as how the passwords’ estimation strength is computed,
meters might misjudge, by over or underestimating, the true
strength of passwords, thus failing to capture the passwords’
guessing resistance [2], [6], [9]. This means that users trusting

in inaccurate meters may actually be misguided into worse
password selection.

Previous research focused exclusively on evaluating PSMs
and PCPs is scarce [13], [14], [8], but adds crucial sup-
porting evidence on how to develop better password security
mechanisms and provide better feedback guidance towards a
more secure user passwords selection in today’s digital world.
Therefore, our motivation is focused on better understanding
the relationship between guessability and current password
security mechanisms.

In this thesis, we study password guessing resistance against
off-the-shelf guessing attacks as an accuracy and overall
effectiveness measure of both PSMs and PCPs. We consider
13 PSMs, 14 PCPs, 5 different attack tools, and a random
selection of 165,000 passwords extracted from three differ-
ent datasets of real-world password leaks (RockYou [15],
LinkedIn [16], and 000WebHost [17]).

We studied how passwords are evaluated and filtered accord-
ing to different PSMs and PCPs and then relate them with
their respective guessing resistance to guessing attacks. By
following this methodology, we were able to: 1) validate past
research and establish that guessing resistance against modern
offline attacks can be used as an accuracy and effectiveness
measure of PSMs and PCPs; 2) gather new supporting evi-
dence and insights about which password security mechanisms
are the most accurate at estimating passwords’ strength and
the ones that are the most vulnerable against guessing attacks;
3) we also identify a set of issues and possible improvements
to the open-source zxcvbn meter in order to improve its
accuracy; 4) finally, we share a public library composed by
different utility Python scripts1 developed in the context of this
thesis, that could be leveraged or extended by the password
security community.

After addressing the related work in Section II, we present
the research questions and the evaluation methodology used in
this study in Section III. In Sections IV, V and VI we present
and discuss the obtained results. We conclude this work in
Section VII, where we also discuss ethical considerations and
future work.

II. RELATED WORK

Research focused exclusively on evaluating PSMs is scarce.
de Carné de Carnavalet and Mannan [14] analyzed 11 PSMs

1GitHub Repository: https://github.com/davidfbpereira/pws repo



deployed in popular websites by measuring the strength labels
assigned to common passwords from several password dictio-
naries. They found evidence that the commonly used meters
are highly inconsistent and fail to provide coherent feedback.
Recently, Golla and Gürmuth [13] formulated a methodology
for measuring the accuracy of a PSM. However, unlike the
study presented here, none of these two approaches attempt to
relate the output of PSMs with password guessing resistance
to easily available, off-the-shelf guessing attacks.

New password cracking probabilistic methods [18], [19],
[20] are being developed in academic research. Moreover, the
emergence of hardware acceleration (with customized GPUs,
FPGAs and ASICs) and distributed computation systems over
the past decade also led to the increase of the efficiency and
speed of current guessing attacks [21], [22], allowing billions
of guesses per second.

The problem of maximizing password guessing resistance
has been extensively researched [5], [6], [7]. A greater em-
phasis on studying password strength, on how to define and
quantify it, has been carried out progressively [2], [6], [9],
[13]. Moreover, new approaches with the aim of assisting
and protecting users against modern password guessing at-
tacks, through the development of effective security mecha-
nisms [12], [19], have been introduced while trying to maintain
the usability of passwords at the same time.

III. STUDY DESIGN

This section presents the underlying evaluation methodol-
ogy used in our experiments, including the research questions,
the selection of the PSMs, PCPs, password datasets, attack
tools, as well as the data collection and analysis methodology.

A. Research Questions

We aim to answer the following research questions:
RQ1: Does password guessing resistance to off-the-shelf

attacks of similarly labelled passwords relate to their password
strength estimated by PSMs?
RQ2: Which PCPs are the most vulnerable/resilient against

off-the-shelf guessing attacks? And how are they related to
PSMs?
RQ3: Is it possible to extract new insights from the obtained

results in order to build password security mechanisms with
better strength estimation and accuracy?

B. Password Strength Meters

We focus on PSMs that are used by popular web services
and easily queryable, i.e. where the setup process together with
password feeding and output scraping can be automated. Most
of the PSMs considered in this study are from popular websites
appearing in the top 100 ranking published by RankRanger2

according to user online traffic in 2019. In addition, we include
the Have I Been Pwned? service3, which collects database
dumps with information about billions of leaked accounts and
their respective passwords.

2RankRanger Top 100 Websites: https://www.rankranger.com/top-websites
3Have I Been Pwned?: https://haveibeenpwned.com

The PSMs that we selected for this study are shown below.
Where applicable, we indicate how many bins each PSM uses.
• zxcvbn (5 bins) Popular academic PSM created by Daniel

Wheeler [12]. We used the Python implementation.4

• haveibeenpwned This web service returns the frequency of
a particular passwords’ hash in the available leaked datasets.

• From popular websites:
– 3 bins: airbnb, airbnb.com; bestbuy, bestbuy.com;

thehomedepot, homedepot.com
– 4 bins: dropbox, dropbox.com; target, target.com;

facebook, facebook.com; microsoftV3, bit.ly/39LCXT6
– 5 bins: cryptowallet, blockchain.com; reddit, reddit.com;

slack, slack.com; twitter, twitter.com

C. Password Composition Policies

We selected the following PCPs based from [8]. This set
is composed by a mixture of length, character-class and
dictionary requirements described as follows:

• basic8, basic12, basic16, basic20: to comply with policy
basicN, passwords must have at least N characters or
greater in length. No other requirements.

• 2class12, 2class16, 3class12, 3class16: to comply with
policy NclassM, passwords must be M characters or
greater in length and contain at least N of the four
character classes (uppercase letters, lowercase letters,
digits and symbols).

• 2word12, 2word16: to comply with policy 2wordN,
passwords must be N characters or greater in length and
consist of at least two strings of one or more letters
separated by a non-letter sequence.

• comp8: password must be 8 characters or greater in
length and contain uppercase letters, lowercase letters,
digits and symbols. When all non-alphabetic characters
are removed the resulting word cannot appear in a dictio-
nary, ignoring case (we used the Openwall “tiny” English
wordlist).

• dict8: same as comp8, but doesn’t need to contain all
LUDS character classes.

In addition, we also considered the cracklib and passwdqc
Linux Pluggable Authentication Modules (PAM), because
they consist of software packages which enforce composition
policies that are used by default in widely deployed Linux
systems [23].

D. Password Datasets

The datasets of leaked passwords that we consider in this
study are the following: 1) RockYou, compromised in plain-
text from the RockYou online gaming service of the same name
around the year 2009 [15]. The version we obtained contained
32,603,048 passwords; 2) 000webhost, compromised from a
free web space provider for PHP and MySQL applications.
The data breach became public in October 2015. The version
we obtained contained 15,271,208 passwords; 3) LinkedIn,
compromised from the professional social networking site
LinkedIn around the year 2012 [16]. Unsalted password hashes

4zxcvbn Python module: https://github.com/dwolfhub/zxcvbn-python



in SHA-1 format were compromised and ≈ 98% of these have
subsequently been cracked. These cracked passwords make
up the LinkedIn dataset we use in this work. The version we
obtained contained 172,428,238 passwords.

Data cleansing and filtering: As recommended in this type
of studies [24], each dataset was first filtered according to the
password composition policy it is known to have been created
under [25]. Passwords containing non-ASCII characters were
then removed to avoid encoding issues that might arise due
to multi-byte characters being stored as multiple characters,
artificially inflating password length. Finally, as shown by
Bonneau [10], approximating strength for unlikely passwords
is error-prone. As such, each dataset was filtered once again by
taking into account its own password frequency distribution,
thus resulting in two separate datasets: one with relaxed con-
ditions (without taking into account password frequency) and
one with unrelaxed conditions (that only includes passwords
whose frequency is at least 10). After filtering, RockYou,
LinkedIn and 000webhost unrelaxed and relaxed datasets
ended up with 43.4% and 99.7%, 36.8% and 91.3%, 12.9%
and 99.8% passwords of their original dataset, respectively.

E. Attack Tools

To study password guessing resistance we selected two dif-
ferent conceptual approaches widely popular in the password-
cracking community and in the academic literature. We locally
ran two heuristic cracking tools: JohnTheRipper (JtR, v1.8.0.9-
jumbo) and Hashcat (v5.1.0). We also used three probabilistic
cracking tools (Probabilistic Context-Free Grammar, Markov
Model and Neural Network-based) from the Password Guess-
ability Service (PGS) by CMU.5 While JtR and Hashcat
include wordlists and rule lists samples, they are far smaller
than those used in typical attacks and far more ineffective [7].
Therefore we adopted an advanced configuration, by making
use of wordlists far more extensive6 (with near 304,000 and
1,600,000 common password entries and natural-language dic-
tionaries). Moreover, we combined the stock (151), SpiderLabs
(5,146) and Megatron (15,329) mangling rules for JtR and
the Best64 (77), T0XlC (4,085) and Generated2 (65,117)
mangling rules for Hashcat. The PGS probabilistic cracking
tools were trained as detailed in the PGS website and we used
their recommended configurations.

F. Data Collection and Analysis

In order to answer the proposed research questions, we:
1) randomly sampled 10,000 passwords from each previously
filtered RockYou, LinkedIn and 000WebHost publicly leaked
datasets (with both relaxed and unrelaxed frequency condi-
tions), having a grand total of 60,000 random passwords for
the first experiment; 2) randomly sampled 2,500 passwords
from our PCP selection for each previously filtered RockYou,
LinkedIn and 000WebHost publicly available datasets, having
a grand total of 105,000 random passwords for the second
experiment; 3) we queried the 13 password strength meters

5PGS service: https://pgs.ece.cmu.edu
6https://github.com/berzerk0/Probable-Wordlists

Fig. 1. PSMs Classification Distributions

considered in this study with those 165,000 passwords. Each
meter produced its own password classification distribution
(for each dataset sample) according to its own quantization
scale; 4) we then set out to attack those passwords by using
the attack tools described above; 5) finally, by relating pass-
word guessing resistance with their respective meters’ strength
classifications and filtered policy, we analyzed each meters’
password distribution in light of cracked and uncracked pass-
words per bin.

Experimental setup: 7 All the experiments were per-
formed in a MacBook Pro laptop, running macOS Catalina
(version 10.15.1) with a 2,7 GHz Intel Core i5 dual-core CPU,
8 GB RAM and Intel Iris Graphics 6100 1536 MB GPU.

IV. PSM-BASED ANALYSIS (RQ1)

This section presents the results of the experiment carried
out in order to analyze the accuracy of PSMs.

A. Password Meter Classification Results

We start with the password classification distributions for
each PSM. These are showcased under two different perspec-
tives: first, according to the whole sample of 60,000 random
passwords and then according to each dataset sample of 20,000
random passwords. These results are useful because they give
us information about the estimation behaviour of each PSM.

Figure 1 shows the password classification distributions for
each PSM on the whole sample of 60,000 random passwords.
Each percentage corresponds to the number of passwords
under each meters’ classification quantization bin.

Each meter has its own quantization scale which is repre-
sented by a different colour. The great majority of these bins
are represented by a textual or numerical representation, where
the lowest bins are commonly called “too short”, “weak” or
“1 / 4”, whereas the highest bins are commonly named as
“good”, “very strong” or “4 / 4”. We clustered the categories
“too short”, “too long” and “cannot contain ˜ or spaces” (from

7All the code used is available: https://github.com/davidfbpereira/pws repo



Fig. 2. PSMs Classification Distributions for all Datasets

the PSMs twitter, facebook and target) into one single bin
dubbed “other”. We made this decision because there are few
passwords with these assigned classifications and because it
simplifies data analysis.

Moreover, since haveibeenpwned outputs the number of
occurrences for each password, we decided to map that number
to one of 5 bins: a password not found was deemed “very
strong”, 1 occurrence was deemed “strong”, 2 to 5 occurrences
deemed “medium”, 6 to 50 occurrences deemed “weak” and
over 50 deemed “very weak”.

The PSMs dropbox, cryptowallet and reddit produce
almost the same password classification distribution results as
zxcvbn(dropbox seems to combine the two weaker bins, but
maintains the remaining ones intact). This suggests that these
service meters make use of the zxcvbn meter internally.

Finally, we can observe four distinct meter groups, namely:
conservative meters in both the lower and higher bins (bestbuy
and target services); less conservative meters in the lower bins
but not the higher ones (airbnb, facebook, thehomedepot and
microsoftV3); conservative meters in the lower bins but not
the higher ones (slack); and less conservative meters in both
lower and higher bins (twitter, zxcvbn and its derivatives).

The quantization scale used for haveibeenpwned shows that
nearly half of the randomly sampled passwords appears at least
51 times in their database, while the other half appears less
that 50 times. Almost 12% were found only once and less than
0.5% were not found in their password database.

Figure 2 shows the password classification distribution
divided into the RockYou, LinkedIn and 000WebHost dataset
samples of 20,000 random passwords. In particular, it illus-
trates the relative classification differences between each indi-
vidual datasets. In general, the passwords from the 000Web-
Host dataset sample were classified as being stronger than the
ones from the LinkedIn and RockYou dataset samples. The
LinkedIn dataset sample also had slightly better ratings when
compared to the RockYou dataset sample.

B. Password Guessing Attack Results

The overall cracking results are depicted in Figure 3, where
the total percentage of the number of cracked passwords is
plotted as a function of the number of attempted guesses tried
by each tool. This figure shows that the Probabilistic Context-
Free Grammar (PCFG) tool cracked the largest number of

Fig. 3. Password Guessing Resistance Results

Fig. 4. Cracked PSMs Classification Distributions with JtR (left) and PCFG
(right) tools

passwords (almost 90%), while the other tools success rate
ranged from 60% to 70% cracked passwords. Moreover,
the PCFG and Markov Model tools needed fewer attempted
guesses to reach a higher success rate; the neural network-
based probabilistic tool took many orders of magnitude higher
in terms of number of guesses, but still had a lower success
rate than the former tools.

Table I shows the number of passwords cracked under each
dataset sample for this current experiment. As expected, the
number of cracked passwords under the unrelaxed conditions
was higher, with the exception being for the neural network-
based tool. A possible reason for this might be because
these passwords are more frequent in leaked datasets and
are, therefore, used as low-hanging fruits in the wordlists and
training data of password guessing tools.

C. Password Classification and Guessing Results Combined

Finally, we relate the PSMs classifications with the percent-
age of passwords cracked. Due to space limitations, we focus
on the best performing tool of each cracking approach: JtR
and PCFG.

Figure 4 shows the percentage of cracked (dotted bars)
and uncracked (clear bars) passwords relative to each PSM
classification.

When considering the JtR password guessing results, most
passwords classified in the lowest bins were cracked. More-
over, a little more than half and a very small part of the
passwords classified in the middle and top bins were cracked,



TABLE I
PASSWORD GUESSING RESISTANCE BY DATASET SAMPLE

relaxed conditions unrelaxed conditions
Dataset Sample RockYou LinkedIn 000WebHost RockYou LinkedIn 000WebHost Total (out of 60k passwords)
JohnTheRipper 5.5k 4.8k 2.4k 9.6k 9.2k 7.4k 38.9k (65%)

Hashcat 4.7k 3.7k 2.1k 9.6k 9.1k 7.2k 36.4k (61%)
Markov Model 9.9k 3.7k 1.9k 10k 9.5k 7k 42k (70%)

PCFG 9.7k 8.4k 6.3k 10k 9.8k 9.3k 53.5k (89%)
Neural Network 6.7k 7.7k 8.9k 4.1k 5.8k 7.8k 41k (68%)

respectively. A similar pattern is observed when considering
the PCFG tool (Figure 4, right), but the number of cracked
passwords is considerably higher.

This confirms the expectation that passwords classified in
the lower bins (very weak, weak, and medium) are indeed
easy to guess, whereas passwords classified in the stronger
bins (strong and very strong) are harder to guess. This suggests
that services should only accept passwords classified as strong
and very strong. Nevertheless, both JtR and the PCFG tools
cracked passwords in the stronger bins, suggesting that all
meters can (and should) improve their password estimation
methods.

D. Discussion

Strength Estimation: Regarding password strength esti-
mation between meters, our results show that some meters are
considerably more conservative than others (Figure 1).

Moreover, when considering the dataset samples individu-
ally (Figure 2), all meters, except haveibeenpwned, consider
the 000WebHost passwords stronger than those in the other
two datasets. Moreover, the LinkedIn password samples were
classified as being stronger when compared to RockYou. This
is likely due to the use of more stringent password composition
policies under which the passwords contained in 000WebHost
(lowercase and digits required and length≥6) and LinkedIn
(length≥6) were created [13], [25].

Meter’s Accuracy: Overall, we observe that passwords
classified in the lower bins are more easily cracked than
passwords classified in the upper bins (Figure 4). This suggests
that password guessing resistance to off-the-shelf attacks of
similarly labelled passwords relate to their password strength
estimated by meters.

Finally, the results show that only a small percentage of
passwords classified as strong/very strong by zxcvbn have
been cracked. This suggests that zxcvbn might be the best
PSM in terms of accuracy and security. Nevertheless, a sig-
nificant percentage of passwords classified as strong were
cracked by the aforementioned cracking tools, suggesting that
password strength estimation can be improved.

Moreover, since Reddit, Cryptowallet and Dropbox online
services take advantage of zxcvbn as its PSM, improving it in
terms of accuracy might also have a positive impact on these
services.

Finally, and by bridging our results with those of the
CCS’18 work [13], we confirmed the weighted Spearman
correlation sensitivity to the effects of quantization. According

Fig. 5. Password Guessing Resistance Results

to our results, although some meters have almost identical
password classification distributions (such as the zxcvbn and
Dropbox or the Facebook and The Home Depot meters),
they are classified very differently according to this metric
(“ok” vs “very bad” and “ok” vs “bad”). This shows that
small variations of the same password distribution can lead
to a considerate discrepancy between results according to this
metric, making it not tolerant to quantization effects.

V. PCP-BASED ANALYSIS (RQ2)

This section presents the results of the experiment carried
out in order to analyze the effectiveness of PCPs.

A. Password Guessing Attack Results

First, we determined the guessing resistance of the 105,000
randomly sampled passwords. The overall cracking results
are depicted in Figure 5. It shows that the Neural Netword-
based tool cracked the largest number of passwords by far. In
fact, even though it took many orders of magnitude more in
terms of guessing attempts in relation to the other cracking
tools, it managed to crack almost 100% of the whole 105,000
password sample. Furthermore, both the PCFG and Markov
model probabilistic cracking tools and the JohnTheRipper and
Hashcat heuristic cracking tools had approximately the same
success rate (around 38%,37% and 16%,12%, respectively),
even though the PCFG and JohnTheRipper cracking tools
computed a higher number of guessing attempts before ex-
haustion. Moreover, Figure 6 shows the number of passwords
cracked under each dataset sample for this current experiment.

As expected, the number of cracked passwords under the
000WebHost dataset sample were lower when compared to the
RockYou and LinkedIn dataset samples, with the exception



Fig. 6. Password Guessing Resistance by Dataset Sample

Fig. 7. Password Guessing Resistance by Dataset Sample

being for the Neural Network-based tool. This confirms the
observation made in the previous chapter regarding the relative
password strength for these publicly available datasets.

B. Composition Policy Ranking Results

Here we present the password composition policy rankings
according to the previously gathered guessing attack results.
Figure 7 shows the composition policy rankings according
to the 000WebHost dataset of 35,000 randomly sampled
passwords. Each composition policy is ranked independently
by to each cracking tool according to the number of cracked
passwords under that same policy when compared to the
others. Lower ranks mean higher guessing resistance against
the aforementioned cracking tools used in this work.

Despite small policy ranking variations between each crack-
ing tool, possibly derived from their different success rates,
all policy rankings converge to the same results. As can be
seen in both figures, we can divide these results into 3 distinct
guessing policy ranking groups: weaker policies, composed by
PAM cracklib, basic8, basic12, dict8 and 2class12; stronger
policies, composed by 2word16, 3class16 and basic20; and
the remaining policies in between.

We also validate Shay’s recommendations [8]. Our results
show that comprehensiveness combined with longer-length
requirements (such as 2word16 and 3class16 policies) led to
fewer easily guessed passwords than policies purely based
on length (basic8, basic12 and basic 16), while still being
more secure than a comprehensive policy with shorter length
requirements (comp8).

These results suggest that more complex PCPs (with special
emphasis on length plus character class requirements) provide
a way for breaking users’ predictable password selection habits
for longer-length only requirements, thus making them more
resistant against offline guessing attacks. On the other hand,
simple policies (such as basic8 or dict8) and the PAM modules
(that are widely deployed in Linux systems) should be avoided
as they reveal little guessing resistance.

Fig. 8. Cracked PSMs Classification Distributions with PCFG tool

Fig. 9. PSMs Classification Distributions for Top-3 Worst PCPs According
to PCFG

C. Password Classification and Guessing Results Combined

Finally, we relate the PSMs classifications with the percent-
age of passwords cracked. Due to space limitations, we focus
our attention on the results produced by the PCFG probabilistic
cracking tool under the RockYou dataset sample.

Figure 8 shows the percentage of cracked (dotted bars)
and uncracked (clear bars) passwords relative to each strength
meter classification distribution of the 35,000 RockYou dataset
random sample, after attacking them with the PCFG cracking
tool. A great number of passwords are classified in the top
bins. When comparing these password meter distributions with
those from Figure 4 (left side), regarding the cracked pass-
words from the RockYou dataset under the PCFG tool of the
previous chapter, we observe that filtering of passwords under
composition policies yielded better overall scoring between
meters.

Finally, Figures 9 and 10 showcase the PSMs distribution
classifications according to both the top-3 worst (basic8, dict8
and PAM cracklib) and best (2word16, 3class16 and basic20)
composition policies. As can be seen in both figures, the way
the top-3 worst and best composition policies are evaluated
and portrait by PSMs differs completely.

On one hand, almost all passwords within to the basic8,
dict8 and PAM cracklib password policy samples have been



Fig. 10. PSMs Classification Distributions for Top-3 Best PCPs According
to PCFG

cracked and more than half of these passwords were also
classified in the lower bins by each meter. Moreover, even
though there’s still a small number of passwords classified in
the top bins, these same passwords were nonetheless cracked,
suggesting that, once again, the strength estimation methods
employed in these meters could be further upgraded.

On the other hand, the great majority of the password
policy samples from the top-3 composition policies (2word16,
3class16 and basic20) were classified in the top bins, with
very few passwords being classified as being either “weak” or
“medium”. Even so, a non-negligible part of those passwords
were still cracked, suggesting that some of these passwords
were wrongly classified by meters.

D. Discussion

Robustness of Composition Policies: Regarding the ro-
bustness of password composition policies against offline
guessing attacks, our results validate previous empirical re-
search on this matter [8]. Not only did we show that composi-
tion policies such as basic8 and dict8, based on more relaxed
requirements, are highly vulnerable against offline guessing
attacks, but also that composition policies such as 2word16
and 3class16, relying on a mixture of both longer-length
and comprehensiveness requirements, rendered more resistant
composition policies against these type of attacks (Figure 7).
These results suggest PCPs that place greater emphasis on
length plus character class requirements helps breaking users’
predictable password selection habits.

In addition, we also found that the cracklib and passwdqc
Linux modules, should be rendered unsuitable for utilization
(Figure 7). Since many Linux distributions have long been
used in critical systems, such as industry servers/devices,
telecommunication equipment and other embedded systems,
stricter policy modules (with tighter requirements) should be
developed and shipped within these distributions.

Policy Strength Estimation: Regarding policy strength
estimation, our results show that filtering passwords under
composition policies yielded better overall scoring between
meters (Figures 1 and 8).

Overall, we observe that composition policies belonging to
the weakest ranking group are both classified in the lower
bins by meters and fairly vulnerable against offline guessing
attacks (since the number of cracked passwords classified as

medium or below is high), whereas the ones belonging to the
strongest ranking group are classified in the top bins and harder
to crack (Figures 9 and 10). This suggests that services should
not only reject passwords classified in the lower bins but
also incorporate more complex composition policies into their
PSMs, as they provide an explicit and safe way for filtering
weak passwords beforehand.

Finally, even though 2word16, 3class16 and basic20 top-
3 best composition policy samples in the experiment had
most of its passwords classified in the top bins by each
PSM, our results show that a non-significant percentage of
these passwords were still cracked. This adds the following
insight: only accepting passwords classified in the top bins and
incorporating more complex composition policies into PSMs
is not enough to further guarantee password safety against
guessing attacks. Services should also focus their attention in
improving the accuracy of their meters’ strength estimation
methods, especially in the strongest bins.

VI. SECURITY MECHANISM ENHANCEMENT (RQ3)

The conducted experiments enabled us to gather a lot of
useful data regarding the behavior of each PSM studied in
this work. Not only did we gain information on how meters
rate passwords in a general sense, but also which passwords
are well and badly evaluated according to their guessing
resistance.

We decided to focus our attention on the zxcvbn meter as
our targeted security mechanism since, in addition to being an
open-source8 strength meter backed up by scientific work [12],
our results showed that a significant percentage of passwords
classified as strong by this meter were cracked, suggesting that
it could be further improved.

To do this, we first detail how the zxcvbn internal strength
estimation methods work. After this, we leverage the pre-
viously gathered results and filter them in relation to their
guessing resistance, in order to identify passwords that were
both cracked and evaluated as strong/very strong. Finally, after
pinpointing these inconsistencies and their associated issues,
we suggest further improvements that could be made to the
zxcvbn meter in order to upgrade its accuracy.

A. zxcvbn Internal Architecture

zxcvbn’s internal structure is composed by 3 sequential
phases: match, estimation and search. Given an input plaintext
password, it first models that password as consisting of one or
more concatenated pattern matches. Next, during the estima-
tion phase, each pattern is assigned an heuristic guess attempt
estimation independently. Finally, the final phase searches for
the sequence of adjacent matches that fully covers the input
password while minimizing a total guess attempt figure.

B. Inconsistencies and Possible Improvements

1) Repeat Matching Function. This function searches for
repeated blocks of one or more characters within the password.
However, it only recognizes adjacent repeated blocks (such

8GitHub repository: urlhttps://github.com/dropbox/zxcvbn



as “abcabc”). Even more, the presence of a single character
between repeated blocks (such as “abc1abc”) is sufficient to
prevent this matching function to not recognize repeated but
separated blocks, and subsequently to assign it its correspond-
ing repeat guess estimate heuristic.

Possible Improvements: zxcvbn does not model inter-
dependencies between pattern matches after the matching
phase. This means that each pattern match is independently
evaluated in the estimation phase without its associated context
within the password itself. In order to solve this, we recom-
mended the implementation of an extra layer in between the
matching and estimation phase, capable of identifying non-
adjacent repeated tokens (and other possible dependencies) of
the same password. The guess attempt estimation heuristic for
repeated blocks would then be applied correctly.

2) Sequence Matching Function. This function identifies
sequences by looking for fixed Unicode codepoint differences
between characters. For instance, the password “abcde” has
a fixed Unicode codepoint difference of 1 between each
character. However, it has two distinct problems.

Firstly, despite working fine for most regular sequences
with a fixed Unicode codepoint difference, this matching
function does not take into account sequences with Unicode
codepoint differences regarding uppercase letters within it
(such as “Abcdefgh1” found in our results).

Secondly, this matching function also does not take into
account intercalated sequences, that is, sequences wrapped
up in other sequences (“a9b8c7d6”) or non-sequence strings
(“1r2r3r4r”).

Possible Improvements: lowercase all letters in the begin-
ning of the sequence matching function, in order to properly
identify the sequence pattern within the password, and then
add the proper capitalization heuristic bonus in the estimation
phase. Moreover, this function could be extended in order to
calculate the Unicode codepoint distance of both adjacent and
non-adjacent characters (every two or even three characters for
instance). Moreover, each identified sequence pattern match
would then be evaluated independently in the estimation phase.

3) Reverse Dictionary Matching Function. This function
reverses the input password and then calls the dictionary
match function which searches for common passwords, En-
glish/wikipedia words and names and surnames, in its inter-
nal dictionaries. However, this function does not recognize
l33t speak substitutions if password is reversed (such as
“n0itutitsbus”), thus matching it as a brute force pattern instead
and assigning it a higher password strength estimation (as if
it were recognized as a reverse pattern in the first place).

Possible Fix: this matching function should first call the
l33t matching function and then reverse the password before
calling the dictionary matching function in order to properly
identify l33t speak substitutions and then correctly apply their
corresponding heuristic strength estimations.

4) Date Matching Function. This function looks for dates
recognized as any 3-tuple day-month-year mappings with 2
or 0 separator characters (such as “01-01-95” or “010195”).
However it does not recognize dates with written-out months

(“feb 31st”) and odd delimiters other than “\, / -”. There were
a significant number of cracked (English and non-English)
passwords who exhibit such unidentified date patterns in our
results.

Possible Fix: convert (different language) month dictionary
words into their corresponding numeral month date, in order
to properly match the password as a date pattern. Moreover,
current delimiters regex expressions should be extended to
the date match function in order to recognize any repeated
delimiter within the recognized mapping splits.

5) Unmatched Scoring Function.
Firstly, and as addressed by Johnson [26], passwords recog-

nized as single tokens are inconsistently rewarded for capital-
ization. Matched dictionary tokens with non-letter characters
(such as: “12345qwert”) are not stripped before computing the
capitalization heuristic multiplier. In this particular example,
the meter awards the capital Q letter as if it were in the middle
of the token (instead of its terminal position after stripping
non-letter characters), thus granting it a higher multiplier score
than predicted.

Furthermore, and as stated by the author of the zxcvbn
work [12]: “Unmatched regions are treated equally based on
length(...) and unmatched digits and symbols are treated equally
even though some are more common than other”. This means
that the overall placement of non-lowercase letters within
unmatched regions is not taken into account, as can be seen
in the examples of Table II.

Passwords zxcvbn Ranks
desenho 7, 2 / 4 1100

Desenho, desEnho, desenhO 7, 2 / 4 4, not found, not found
desenho1, 1desenho, dese1nho 8, 2 / 4 183, 9, not found
desenho!, des!enho, !desenho 8, 2 / 4 8, not found, not found

TABLE II
ZXCVBN NON-LOWERCASE LETTER PLACEMENT SCORING

This issue might be even more problematic because com-
mon user-chosen pattern behaviors (such as using digit
padding at the end of passwords, symbols as separators,
uppercase letters at the start) being wrongly evaluated.

After analyzing the non-lowercase letter placement in our
password datasets, we were able to confirm some of these
user-chosen pattern behaviors. More specifically, from the
RockYou, LinkedIn and 000WebHost datasets, respectively:
57%, 66% and 28% of passwords containing uppercase letters,
end up placing them at the start; 57%, 63% and 61% of
passwords containing digits, end up placing them at the end:
and 48%, 51% and 52% of passwords containing symbols, end
up placing them in the middle as a single separator.

Moreover, these patterns were also present in the cracked
passwords classified as strong and very strong by zxcvbn from
our results. Taking as an example the results from the ex-
periment conducted in Section IV, when considering cracked
passwords containing digits and classified as “3 / 4” by the
zxcvbn meter from the 000WebHost relaxed password dataset
sample against the PCFG cracking tool, our results showed
that the top-15 most common cracked password structures



Fig. 11. Common Cracked Password Structures From Section IV

(depicted in Figure 11) were all composed by a group of
lowercase characters followed by a group of digits used as
padding. This pattern is also repeated in other samples as well.

Examining this particular example with more detail, from
the 338 different structures regarding these cracked passwords:
151 structures end with a group of digits, 53 start with a group
of digits, 36 have a group of digits separating between 2 groups
of lowercase letters and 25 structures have a group of digits
separating between lowercase letters and symbols. That is,
taking only into consideration the four most common cracked
password structures from this sample, at least 78% of these
structures have predictable patterns concerning digit placement
therein. Further analysis could be done for uppercase letter and
symbol placements within cracked passwords in other samples
from our work.

This issue hints that the password partitioning method and
the usage of heuristic multipliers are not enough in order to
accurately evaluate passwords in the stronger bins as they
should be extended in order to better evaluate overall non-
lowercase letter placement in unmatched regions.

Possible Fix: add a new data-driven estimation mechanism
for evaluating non-lowercase letter placements in unmatched
regions, and thus complement the already existing estimation
methods for matched regions. By leveraging current rich data
from publicly available passwords datasets, we would recom-
mend performing a mapping of the underlying distributions
of non-lowercase letter password placements and in order to
identify predictable patterns contained therein. From there, a
penalization/bonus could be applied to any unmatched region
in function of the number of occurrences of those common
pattern in relation with the overall frequency of all non-
lowercase letter placement patterns. This way, the zxcvbn
internal strength estimation methods would accurately model
the effects of user password selection behaviors, instead of
relying solely on heuristic guesses.

Accuracy Testing.: Finally, the accuracy impact produced
by the actual implementation of the aforementioned set of
improvements in the zxcvbn’s internal strength estimation
methods could be later tested and compared using both our
methodology and the one formulated by Golla and Dürmuth
in their CCS’18 work [13].

VII. CONCLUSION

We have addressed the main problem of analyzing strength
estimation of password security mechanisms currently used in
online services and academia. Our motivation was to study the
relationship between PSMs and PCPs and password guessing
resistance, while providing new feedback to service providers
and extending supporting evidence on how to develop better
password security mechanisms in today’s digital world.

We defined a precise methodology in order to assess cur-
rently used password security mechanisms and to analyse and
compare their results with previous research work. We made
use of publicly available dataset leaks, which were evaluated
and filtered according to different PSMs and PCPs and then
matched against their respective guessing resistance through
the use of off-the-shelf offline-guessing attacks in order to
better assess their accuracy on strength estimation and overall
effectiveness.

After conducting several experiments, we were able to
gather results that helped us pointing out a set of relevant
insights about password security mechanisms. Furthermore, it
provided us with answers regarding our initially defined re-
search questions. Namely, we were able to show that guessing
resistance to off-the-shelf offline guessing attacks of similarly
labelled passwords relate to their password strength estimated
by PSMs. We also validated previous research on the robust-
ness of PCPs against this type of attack, while examining how
these filtered passwords are evaluated by PSMs. Moreover,
we were able to identify several issues regarding the accuracy
of the zxcvbn meter and also suggested improvements to its
internal password strength estimation methods.

We therefore conclude that the initial research questions
were properly addressed, as they provided a better under-
standing on the relationship between password guessing resis-
tance and strength estimation of both PSMs and PCPs, while
providing new supporting evidence on how to develop better
password security mechanisms in today’s digital world.

Finally, we also shared a public library of different utility
Python scripts that were developed and used throughout this
thesis9, in order to attest the reproducibility of our results and
to allow future extension by the password security community.

A. Ethical Considerations

The set of available password datasets used throughout this
thesis were illicitly stolen from breaches of several online web
services [27], [28], [17], which culminated in users’ credentials
being publicly leaked and then shared throughout the digital
space. Thus, the usage of this sensitive information in this
work also raised some ethical concerns.

Taking this into account, we obtained the publicly available
datasets, but we ensured that our use of this data would not
inflict any further harm on its victims by excluding from this
research any personal identifiable information, such as user-
name credentials or email accounts and by not redistributing
them in the wild.

9GitHub Repository: https://github.com/davidfbpereira/pws repo



Furthermore, since this data is widely shared after dis-
closure, any attacker with bad intentions could also take
advantage of it by knowing in advance which tools are more
effective at cracking passwords or by upgrading their cracking
tools with better configurations. Moreover, these guessing
attack methods are already available on the Internet and ready
to be used off-the-shelf.

Our results might be used to inform attackers on which
password guessing tools are more effective. However, our
objective is to produce relevant information on how to improve
the robustness of PSMs and similar security tools in order to
reduce the success of these offline guessing attacks and thus,
to mitigate further harm against users’ sensitive data.

B. Future Work

The material presented in Section IV was published in
RSDA 2020 [29], the 5th IEEE International Workshop on
Reliability and Security Data Analysis co-located with the
31th Annual IEEE International Symposium on Software
Reliability Engineering (ISSRE 2020). As a first next step,
we are producing an extended version with the material from
Sections V and VI that will be submitted soon.

We also consider that future password security mechanism
analysis, with regards to the application of our methodology,
could be further augmented by extending the selection of
PSMs and PCPs under study. As been previously said in
Section III, we only included online web service meters in
this thesis, but there are other online and offline services
that make use of PSMs, such as academic meters, password
manager applications and operating systems. Moreover, we
envisage that this methodology could be further extended in
order to design and compare improved variants of PCPs not
only with regards to guessing resistance, but also to determine
their impacts on usability.

Finally, and taking into account the set of identified issues
and their possible adjustments suggested in Section VI, an
upgraded version of the zxcvbn open-source meter could be
developed in order to improve password strength estimation
methods. Furthermore, its accuracy impact produced by the
actual implementation could be later tested and compared
using both our methodology and the one formulated by Golla
and Dürmuth [13].

REFERENCES

[1] C. Herley and P. C. van Oorschot, “A research agenda acknowledging the
persistence of passwords,” in Published in IEEE Security and Privacy
Magazine, Volume 10 Issue 1, Jan.-Feb. IEEE, 2012, pp. 28–36.

[2] D. Florêncio, C. Herley, and P. C. van Oorschot, “An administrator’s
guide to internet password research,” in Proc. LISA, 2014.

[3] D. Malone and K. Maher, “Investigating the distribution of password
choices,” in Proc. WWW, 2012.

[4] A. Vance, “If your password is 123456, just make it hackme,” The
New York Times, 2010. [Online]. Available: https://nyti.ms/3guN6WH

[5] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in Proc. CHI,
2011.

[6] P. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. López, “Guess again (and again and
again): Measuring password strength by simulating password-cracking
algorithms,” in Proc. IEEE Symp. Security & Privacy, 2012.

[7] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,
D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring
real-world accuracies and biases in modeling password guessability,” in
Proc. USENIX Security, 2015.

[8] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek, S. M.
Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor, “Designing pass-
word policies for strength and usability,” in ACM Journal Transactions
on Information and System Security (TISSEC), Volume 18 Issue 4, May.
ACM, 2016, p. Article No. 13.

[9] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics
for password creation policies by attacking large sets of revealed
passwords,” in Proc. CCS, 2010.

[10] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus
of 70 million passwords,” in Proc. IEEE Symp. Security & Privacy, 2012.

[11] M. Bishop and D. V. Klein, “Improving system security via proactive
password checking,” in Computers and Security, Volume 14, Issue 3.
IFIP, 1995, pp. 233–249.

[12] D. L. Wheeler, “zxcvbn: Low-budget password strength estimation,” in
Proc. USENIX Security, 2016.

[13] M. Golla and M. Dürmuth, “On the accuracy of password strength
meters,” in Proc. CCS, 2018.

[14] X. de Carné de Carnavalet and M. Mannan, “From very weak to very
strong: Analyzing password-strength meters,” in Proc. NDSS, 2014.

[15] N. Cubrilovich, “Rockyou hack: From bad to worse,” https://tcrn.ch/
2PoXZNW, Dec 2009, (Accessed on 02/08/2020).

[16] M. Burgess, “Check if your LinkedIn account was hacked,” https://bit.
ly/33qwps0, May 2016, (Accessed on 02/08/2020).

[17] T. Brewster, “13 million passwords appear to have leaked from this
free web host,” Forbes, 2015, (Accessed on 02/08/2020). [Online].
Available: https://bit.ly/33saroy

[18] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaabane,
“Omen: Faster password guessing using an ordered markov enumerator,”
in Engineering Secure Software and Systems (ESSoS 2015). Springer,
2015, pp. 119–132.

[19] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor, “Fast, lean, and accurate: Modeling password guess-
ability using neural networks,” in Proc. USENIX Security, 2016.

[20] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in 30th IEEE
Symposium on Security and Privacy. IEEE, 2009, pp. 391–405.

[21] D. Goodin, “Anatomy of a hack: How crackers ransack
passwords like “qeadzcwrsfxv1331”,” Ars Technica, 2013.
[Online]. Available: https://arstechnica.com/information-technology/
2013/05/how-crackers-make-minced-meat-out-of-your-passwords/

[22] ——, “Why passwords have never been weaker—and
crackers have never been stronger,” Ars Technica, 2012.
[Online]. Available: https://arstechnica.com/information-technology/
2012/08/passwords-under-assault/

[23] J. F. Ferreira, S. A. Johnson, A. Mendes, and P. J. Brooke, “Certified
password quality - A case study using Coq and Linux pluggable
authentication modules,” in Proc. Integrated Formal Methods, 2017.

[24] S. Johnson, J. F. Ferreira, A. Mendes, and J. Cordry, “Skeptic: Au-
tomatic, justified and privacy-preserving password composition policy
selection,” in Proc. AsiaCCS, 2020.

[25] S. Johnson, J. F. Ferreira, A. Mendes, and J. Cordry, “Lost in disclosure:
On the inference of password composition policies,” in Proc. Symposium
on Software Reliability Engineering Workshops (ISSREW), 2019.

[26] S. A. Johnson, “Passwords recognized as single tokens inconsistently re-
warded for capitalization - issue #232 - dropbox/zxcvbn,” https://github.
com/dropbox/zxcvbn/issues/232, 6 2018, (Accessed on 06/21/2018).

[27] J. Leyden, “Rockyou hack reveals easy-to-crack passwords,” The
Register, 2010. [Online]. Available: https://www.theregister.co.uk/2010/
01/21/lame passwords exposed by rockyou hack/

[28] R. Hackett, “Linkedin lost 167 million account credentials in data
breach,” Fortune, 2016. [Online]. Available: http://fortune.com/2016/
05/18/linkedin-data-breach-email-password

[29] D. Pereira, J. F. Ferreira, and A. Mendes, “Evaluating the accuracy of
password strength meters using off-the-shelf guessing attacks,” in 2020
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), Aug 2020.


