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Drosophila produces, in its early development, a series of proteins which regulate themselves in a cascade
manner, such that the first have an ill defined pattern and the last have a high frequency pattern. The first two
groups of these proteins have already been modeled considering reaction and diffusion mechanisms. Nonethe-
less, the pair-rule class, with a seven stripes profile and which includes the Even-skipped protein, is still missing
a model to predict its steady-state and time evolution. In this thesis, we show that the local reaction mechanisms
of the preceding proteins are insufficient to regulate such profile. Moving to reaction-diffusion mechanisms,
and using the Brusselator as a toy model for Turing patterns formation, we are able to qualitatively predict the
pair-rule pattern evolution and the setting of the final seven stripe profile. This same approach is undertaken for
the last class of embryonic proteins, the segment-polarity, and its fourteen stripe pattern is obtained was well.

I. Introduction

A. Drosophila early development
In insects, the definition of periodic band structures along

the antero-posterior axis of the body occurs early in embryo
development. This periodic structure determines the segment
organisation of the embryo, conditioning the following mor-
phogenic processes. These processes are going to set the dif-
ferentiation of adult functional areas that follow the insect de-
velopment. For this periodic structure to emerge, just like all
morphological structures, several complex networks of gene
regulatory pathways need to be developed at the cellular level.
Drosophila melanogaster, also known as the fruit fly, is an ex-
ample of one of these insects.

Drosophila’s shape is firstly set before fertilisation, when
the mother places mRNA of bicoid (bcd) and caudal (cad) at
the poles of the oocyte. After fertilisation, the maternal genes
are translated into proteins, and these are going to determine
the larger body parts (Bcd defines the anterior axis while Cad
defines the posterior).

The first 13 nuclear divisions (that are not followed by cy-
toplasm division) give rise to a syncytial blastoderm, in which
all the nuclei share the same cytoplasm and have migrated
along the cell’s surface. It is, therefore, very easy for mor-
phogenes and nutrients to spread between nuclei. During this
stage, the zygotic genes are expressed, and these are going to
be responsible for the progressive differentiation of the fly’s
body pattern. The zygotic genes are transcribed in certain re-
gions of the embryo’s syncytial blastoderm, and the resulting
proteins will act as transcription factors that regulate genes
that will be transcribed afterwards. Accordingly, we observe a
hierarchy, or cascade, of genes: the genes to be expressed ear-
lier regulate the activity of those to be expressed later, where
the former control large domains - entire body regions - and
the later control minor domains, that result in segmentation
patterns [1] [2].

The first zygotic genes to be expressed the are the gap
genes, that affect entire regions of the body, and these are reg-
ulated by maternal-effect and gap proteins. These gap genes
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include giant (gt), kruppel (kr), hunchback (hb) and knirps
(kni). After that, the expression of pair-rule genes occurs,
which are the first proteins to show a periodic structure, cre-
ating a seven band structure perpendicularly to the antero-
posterior axis; these include fushi-tarazu (ftz), even-skipped
(eve), runt (run), sloppy-paired (slp), odd-paired (opa), odd-
skipped (odd), hairy (h) and paired (prd) - see figure 1 for the
final concentration profile of the first two, together with ma-
ternal bcd and cad.
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Figure 1. Normalized concentration through normalized embryo
length of maternal proteins Bcd (red), Cad (green), Eve (blue) and
Ftz (black) in relation to Eve concentration. These plots were made
with fluorescence images from the FlyEx database, and the concen-
tration profiles were normalized to Eve maximum at cycle 14A8. We
used the central part of the embryo and convolved the data with a
gaussian filter.

B. Stripe regulation
The majority of experiments made in order to understand

pair-rule’s stripe formation have a biological approach, and
are based on the principle stripe mechanism. According to
this view, the pair-rule gene expression is controlled in tran-
scription, such that transcript levels are enhanced within stripe
domains and diminished between them, that is, the stripe re-
gion itself is activated whereas the interstripe region is re-
pressed. Taking into account that the Drosophila genes are
expressed in a cascade manner, the pair-rule genes are thought
to respond directly to gap gene positional cues via extensive
upstream promoters with independent regulatory elements for
individual stripes. In other words, the stripes are thought to be
formed individually - each of them is activated and repressed
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in its boundaries by a specific set of genes [3].
Accordingly, several experiments have been made where a

control pattern of eve with some stripes is observed, together
with an embryo where selected genes have been mutated. The
experiments typically concern the genes bcd, kr, kni, gt and
hb. For mutations in bcd, it is observed an enormous reduc-
tion of stripe 7 intensity and an anterior expansion and shift of
stripe 3 [4].

Moving to the gap genes, in mutants lacking kr function it is
reported that there is a more pronounced expression of stripe
2, and stripes 4, 5, 6 and 7 are transformed into two new differ-
ent stripes [5]. In what concerns gap gene kni, [4] reports that
eve pattern shows significant alterations in the posterior part
of its mutants: although stripes 1 and 2 remain normal, there is
a broad staining that encompasses stripes 3 through 7. In [4],
stripes 3 and 7 of eve in hb mutants are presented, where we
observe that the anterior border of stripe 3 is expanded, as well
as the posterior border of stripe 7. Concerning gt mutants, [5]
reports that, without the expression of this gap gene, the ante-
rior border of eve’s stripe 2 becomes substantially extended to
the anterior part. Furthermore, in these mutants stripes 5 and
7 are merged into a broad staining.

Moving to the pair-rule regulation, it is reported that prd,
odd, opa and slp do not appear to affect the establishment or
the maintenance of the eve pattern. Yet, h and run are essen-
tial for the normal maintenance of the eve expression during
gastrulation: in run gastrulating embryos, eve pattern is over-
expressed and ftz products disappear prematurely; in contrast,
in h- the eve expression fades prematurely while ftz is over-
expressed [6]. In what respects eve itself, genetic studies also
suggest that this gene contains auto-regulatory elements [7].
In what concerns eve and ftz mRNAs, it is reported in [8] that,
although ftz pattern initiation and evolution does not require
eve function, its maintenance and refinement does. Regarding
ftz regulation, in [9] its pattern was observed as mutations in
the primary pair-rule eve, run and h were separately made, and
the conclusion was barely the same for the three of them: none
of these genes is key for ftz pattern formation, as the stripes’
initial elaboration is not affected by the mutations, nonethe-
less, the pattern fades faster when the mentioned pair-rule are
not present. The ftz gene has also been studied on the genetic
level, and its regulation is reported to be controlled by two el-
ements: the zebra element, which confers the striped pattern
by mediating the effects of other genes, and the upstream el-
ement, an enhancer element requiring ftz activity for its auto-
regulatory action [10]. In summary, there are evidences that
the pair-rules ftz and eve are regulated by other genes as well
as by themselves, but no pair-rule has shown to be fundamen-
tal for their development.

II. Motivation and structure

The maternal and the gap genes have been analytically
modeled and calibrated, considering their genetic regulatory
network [11] [12]. For the eve gene, several proposals have
been made for the complete regulatory network that under-
lines eve development, taking into account the mutation exper-
iments described above, and according to the principle stripe
mechanism. Via statistical relationships between the stripes

positions and the concentration profiles of gap and maternal
genes, each of Eve stripe’s expression has been successfully
predicted, and a group of repressors and activators for each
has been identified [13] [14]. Enhancers and promoters for
stripes have also been identified [7] [15], but it is not clear
that each stripe has an individual set of promoters.

The objective of this thesis is, therefore, to model both the
pair-rule steady-state profile and its evolution in time, without
recurring to the principle stripe mechanism. In section IV, we
propose a model which considers activation and repression of
Eve by the earlier stage proteins, since this is the approach
considered in the majority of the literature. In section VI, we
move to test a reaction-diffusion model, where Eve pattern is
produced by a Turing mechanism. Finally, in section VII, we
propose a dynamical system identification algorithm to accu-
rately identify the model equations.

III. Protein regulation

The central dogma of molecular biology is a well-
established theory for the transmission of information in liv-
ing organisms: DNA is copied to other DNA molecules in
cell division in replication, and it is also copied to an mRNA
molecule via transcription in order to form a template for pro-
tein synthesis through translation [16]. We now focus on how
activation and repression mechanisms may happen in gene ex-
pression. In the original DNA molecule there is a binding
site for a specific gene, to which a transcription factor (TF),
which is a protein, may bind. There are DNA sequences, the
enhancers, which are binding sites for regulatory proteins that
affect RNA polymerase activity. If the TF is a promoter, the
RNA polymerase is free to bind to the binding site and initiate
the transcription process; if the TF is a repressor, the RNA
polymerase is unable to connect and gene expression does not
occur. There is also the possibility that the protein which is
translated is the promotor or the repressor of its own transcrip-
tion, and in these situation we are dealing with self-activation
or auto-catalysis and self-repression, respectively [17].

In order to study these processes in a quantitative manner,
we need to describe the kinetics of the reactions involved:
given the individual reactions that are likely to occur between
all possible chemical species in the system, if we want to
model the rates at which the system’s species concentrations
evolve with time, and how these rates depend upon those con-
centrations, we then need to write the reaction rate equations.
The rate at which these reactions occur is k, the reaction rate
constant: normally, these rates are independent of concentra-
tion but are not independent of temperature (and we will not
analyze the latter case). Regarding the formalism of a chem-
ical reaction, the system we consider has a total number of m
chemical substances and n chemical reactions. Representing
the species labeled j by A j, the reaction rate of the ith reaction
by ki and the stoichiometric coefficients of the reactants and
products by νi j and µi j respectively, the reactions occurring in
the media can be represented by n collision diagrams [18]:

νi1A1 + . . .+νimAm→ki µi1A1 + . . .+µimAm (i = 1, ...,n).
(1)

Furthermore, if νi j = µi j > 0, the corresponding substance A j
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is a catalyst and, if µi j > νi j > 0, A j is an autocatalyst [19].
Under these conditions, the time evolution of the concentra-
tion of all the chemical substances is described by the set of m
ordinary differential equations, the law of mass-action [18]:

dA j

dt
=

n

∑
i=1

ki(µi j−νi j)A
νi1
1 . . .Aνim

m . (2)

If there is mass conservation, we can also write the conser-
vation equations ∑

n
j=1 α jkA j = constantk, where k = 1, . . . ,s,

for some constants α jk and an integer s.

A. A mathematica model for protein gradients
In order to write the differential equations for the mathe-

matical model that will translate a genetic network into a gra-
dient of protein concentrations, we need to have the kinetic
diagrams (1) that represent the interactions of the system, that
will afterwards return the differential equations according to
the mass-action law (2) and according to the conservations of
the system. When these equations are solved, with a numer-
ically method in the large majority of the cases, the steady-
state solutions will describe the experimental steady-state of
protein concentration.

We start by defining a model for protein production from
mRNA, and mRNA production from DNA. The complex
binding site plus gene will be called an operon - see figure
2 .

Figure 2. Jacob and Monod operon model where transcriptional reg-
ulators bind to the regulator binging sites, repressing or activating
the translation of the gene into mRNA. Image taken from [17].

We start by considering the case where a transcription acti-
vator binds to an operon site, following the initiation of tran-
scription and translation - the case of positive regulation. If
we represent the activator concentration by A, the concentra-
tion of the gene to be transcribed by G and the binded DNA-
activator complex by GA, the mechanism for protein produc-
tion is:

A + G
k1

k2
GA

GA
a GA + P

P d

A
dA

(3)

where the last reaction may be omitted if we do not consider
that the activator degrades.

The case for negative regulation will be analogous, but in-
stead of considering an activator A, we consider a repressor R,
and instead of considering the complex GA, we consider GR:

R + G
k3

k4
GR

G a G + P

P d

R
dR

(4)

IV. Reaction only model

In [12], an analytical model based on the mass action law
(local reaction type) is shown to be sufficient to reproduce
gap and maternal proteins regulatory network and their ex-
pression. [13] is also able to reproduce maternal, gap and
pair-rule expression using a thermodynamic description for
the genes regulation by transcription factors and, assuming
independent contribution from multiple enhancers, it is able
to very accurately calibrate experimental data and predict un-
known parts of eve’s regulatory network. Nevertheless, the
assumption that each stripe border is independently regulated
by a given group of maternal and gap proteins [13] does not
have a clear biological ground. It is possible that this is an ad
hoc theory to explain the sudden increase of spatial frequency
that we observe from gap to pair-rule proteins. Therefore, we
keep the theory that Eve is the result of a set of local acti-
vations and repressions, but consider that these mechanisms
occur through all embryo length, which seems more biolog-
ical plausible than having a specific controlling proteins for
each stripe.

A. Implementation
Following the mathematical model for protein production

in III, we consider that each pair-rule gene is positively reg-
ulated - see mechanism (3) - by a set of n gap or maternal
genes, A1(x), . . . ,Ai(x), . . . ,An(x), that have too a distribution
over the embryo length x; moreover, it is also negatively reg-
ulated - see mechanism (4) - by a set of m gap or maternal
genes, R1, . . . ,Rm. The set of activators can be replaced by an
effective activator, A(x) = A1(x) + · · ·+ Ai(x) + · · ·+ An(x),
and the set of activators can be replaced by an effective re-
pressor, R(x) = R1(x)+ · · ·+Ri(x)+ · · ·+Rn(x). As Eve and
Ftz proteins disapear later in development, we consider their
degradation; on the contrary, since gap and maternal proteins
are approximately constant in time, we do not consider the
degradation neither of the effective activator nor of the effec-
tive repressor. This way, our global mechanism for the pro-
duction of a pair-rule protein is going to be:

G + A
l1
l2

GA

GA
kp

GA + P

G + R
k1

k–1
GR

P δ

(5)

According to the mass-action law (2), the time evolution equa-
tions are going to be:
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A′(t) = l−1GA(t)− l1A(t)G(t)

R′(t) = k−1GR(t)− k1G(t)R(t)

P′(t) = kpGA(t)−δP(t)

G′A(t) =−l−1G′A(t)+ l1A(t)G(t)

G′R(t) =−k−1GR(t)+ k1G(t)R(t)

G′(t) = k−1GR(t)+ l−1GA(t)−A(t)G(t)l1−G(t)R(t)k1,
(6)

with the conservation equations:

A(t)−G(t)+R(t) = A0−G0 +R0

−A(t)+G(t)+GR(t) =−A0 +G0

A(t)+GA(t) = A0,

(7)

where R0 = R(t = 0), A0 = A(t = 0) and G0 = G(t = 0).
We also consider that the transcription starts at t = 0, so that
GR(t = 0) = GA(t = 0) = P(t = 0) = 0. For the positive and
negative regulation, we should have l1 � l−1 and k1 � k−1.
We start by considering the evolution in time only, that is, the
activator, the repressor and the gene initial concentration have
a uniform distribution is space. The numerical solution of the
equations for A(t), R(t) and P(t) until steady-state (t ≈ 50) is
reached is depicted in figure 3.

We start by considering the evolution in time only, that is,
the activator, the repressor and the gene initial concentration
have a uniform distribution is space. The numerical solution
of the equations for A(t), R(t) and P(t) until steady-state (t ≈
50) is reached is depicted in figure 3.
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Figure 3. Evolution of the concentrations of the activator, repressor
and protein, for R0 = 2.0, A0 = 1.0 and G0 = 1.0, according to (6)
and (7).

We then investigate how a pattern with a spatial distribu-
tion is altered by the action of an activator and a repres-
sor. We propose an activator and a repressor with the ini-
tial spatial distribution of A(x,0) = 0.5+0.1exp

(
− (x−0.8)2

0.001

)
and R(x,0) = 0.5 + 0.3exp

(
− (x−0.5)2

0.001

)
respectively, which

are depicted in figure 4, as well as the steady-state distribu-
tion in space of the protein, at t = 50.
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Figure 4. Solution of the steady state (t = 50) distribution of the
protein for G0 = 1.0, in the presence of an activator and a repressor
with the initial distribution seen in figure 4, according to (6) and (7).
We subtracted -1.74 to the protein profile for better visualization.

The results are what we intuitively predict: the protein has
an increasing of concentration at the position of the activator,
and a decreasing of concentration at the position of the repres-
sor.

B. Results
We use this model to fit the normalized Eve pattern at cy-

cle 14A8, with the maternal proteins Bcd and Cad, plus the
gap proteins Kr, Kni, Gt, Hb and Tll as possible activators
or repressors, with their profiles at cycle 14A1. We looped
possible values for the rate constants between 0 and 10, and
thresholded these until a given protein was either an activator
or a repressor, and repeated the procedure until the best χ2

was obtained.The results are shown in figure 5.
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Figure 5. The best fit was obtained with χ2 = 18.2 after 8000 loops
(5 rounds) using 112 points, with the rate constants of table I.

Bcd Cad Kr Kni Gt Hb Tll

Activation 2.6 4.4 3.2

Repression 8.9 1.2 6.8 2.1

Table I. Activating and repressing proteins for the best fit, depicted
in figure 5, and their respective rate constants ratios.

This way, we conclude that, although we perceive some reg-
ularities between the gap and the maternal proteins pattern, as
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well as correspondences between possible regions for activa-
tion and repression of the pair-rule stripes, these proteins’ pro-
files are not sufficient to produce such a high frequency spatial
pattern.

C. Model for pattern formation
V. Reaction-diffusion mechanisms

Alan Turing proposed in his seminal work that morphogen-
esis, which is the ensemble of processes that determines form,
shape and patterns in organisms, is the result of a dynamical
system that considers not only reaction but also diffusion [20].

We begin with an homogeneous system with the presence
of irregularities which are going to break this homogeneity
in the presence of the appropriate kind of instability. This is
going to trigger reaction and diffusion mechanisms, that may
result in a steady-state patterns, contrary to what happens in
the majority of systems with diffusion, which tend to homo-
geneity. Without the presence of these triggering instabilities,
no pattern is formed. Moreover, the pattern that is formed
in the steady state may depend on form of the irregularities
that prompted it. In what concerns diffusion, this reaction-
diffusion system typically produces stable patterns when the
two species diffuse at very different rates, nonetheless, sys-
tems with species diffusing at the same rate have been found
too [21].

A. Model for pattern formation
We shall then consider a system of n species, each jth

species A j with a diffusion coefficient D j: the evolution of
a species concentration is a result of a source term due to the
reactions with all the other substances plus a term concerning
the diffusion, according to the Fick’s equation:

dA j

dt
= f j(A1, . . . ,An)+D j∆A j, (8)

where ∆ =

(
∂ 2

∂x2
1
+ . . .+ ∂ 2

∂x2
k

)
is the k-dimensional Laplace

operator. From now on, we will consider a 1-dimensional sys-
tem, i.e. k = 1. If the jth substance diffuses (that is, D j > 0)
we say that this substance is a morphogene, form producer or
evocator. If D j = 0, we identify this species as a non-diffusing
substance [18].

B. The Brusselator model
The Brusselator is a simple model able to produce Turing

patterns with two species. It mimics an autocatalytic process
and has the following kinetic mechanism:

A
k1 X

B + X
k2 Y + D

2 X + Y
k3 3 X

X
k4 E,

(9)

where X is the autocatalytic species. If we apply the law of
mass action (2), we obtain the differential equations which

will determine the reaction part of the reaction-diffusion sys-
tem:

dX
dt

= k1A− k2BX + k3X2Y − k4X

dY
dt

= k2BX− k3X2Y

dA
dt

=−k1A
dB
dt

=−k2BX

dE
dt

= k4X
dD
dt

= k2BX .

(10)

This system obeys to the conservation laws:

B(t)+D(t) = B(0)+D(0)
X(t)+Y (t)+A(t)+E(t) = X(0)+Y (0)+A(0)+E(0).

(11)If we now assume that A and B are constants, we obtain
the following one-dimensional reaction-diffusion system for
species X and Y , taking the first two equations from (10) as
the reaction terms:

∂X(x, t)
∂ t

=k1A− (k2B+ k4)X(x, t)+ k3X2(x, t)Y (x, t)

− k4X(x, t)+DX ∆X(x, t)

∂Y (x, t)
∂ t

=k2BX(x, t)− k3X(x, t)2Y (x, t)+DY ∆Y (x, t),

(12)

where DX and DY are the diffusion coefficients for species X
and Y respectively. For the numerical integration of the sys-
tem, we use Euler’s method for time evolution and finite dif-
ferences for space evolution - for the latter, we consider Neu-
mann boundary conditions (zero flux). We used dt = 0.001

for Euler’s method step and dx =
√

max(DX ,DY )
γ

dt for the fi-

nite differences, with γ = 1
6 , since this relationship is reported

to lead to optimal convergence to the solution of the sys-
tem [22]. In figure 6, we reproduce the Turing pattern with
the parameters A = 2.0, B = 15.0, DX = 0.1 and DY = 1.0,
k1 = k2 = k3 = k4 = 1. We chose to simulate the system with
M = 250 lattice sites, thus the length of the spatial domain
is M

√
∆t
γ

max(DX ,DY ) ≈ 19.52; the simulation was run until
the concentrations of both species in all lattice sites were less
that 0.001% different that its previous value (time), and this
was our criterion to detect the steady-state while taking into
account small numerical deviations. Moreover, for the insta-
bilities that are going to trigger the reaction-diffusion mecha-
nisms, we chose an initial profile with the values at the fixed
point plus a random profile δ (x) with values between 0.0 and
0.5, X(0,x) = k1A

k4
+δ (x) and Y (0,x) = k2k4B

Ak1k3 +δ (x)[18].

VI. Reaction-diffusion model

A. Development of the initial pattern
Since it was not possible to form a pair-rule’s pattern via

local activation or repression by the gap and maternal genes,
we now propose that these early stage proteins are only re-
sponsible for the setting of the initial pattern, which then de-
velops stripes via a Turing mechanism. This hypothesis has
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Figure 6. Turing pattern of the Brusselator reaction-diffusion system
(12).

already been proposed in [23] and [24]. Moreover, [3] also
suggests that these two pair-rule genes are subject to posi-
tive auto-regulation control, and [25] and [26] suggest that
the stripe-like activation of genes is a result of an autocatalytic
feedback, which is experimentally supported as we mentioned
in I B.

For the setting of the initial pattern, and following the
method described in IV B, we fitted Eve pattern at cycle 14A1:
the result is shown in figure 7 and the reaction constants in ta-
ble II.
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Figure 7. The best fit was obtained with χ2 = 20.7 after 8000 rounds,
using 112 points, with the rate constants of table II. The experimental
profile is normalized.

Bcd Cad Kr Kni Gt Hb Tll

Activation 0.9 0.3

Repression 9.4 4.3 0.4 0.8 6.4

Table II. Activating and repressing proteins for the best fit, depicted
in figure 7, and their respective rate constant ratios.

We have obtained the anterior protein Bcd and the posterior
proteins Cad and Tll as major repressors, whereas the other
gap genes have a residual influence on this pattern formation,
and we also observe an odd concavity at x≈ 0.6, caused by Tll
repression. The fact that Bcd and the majoriity of gap genes
are repressors meets very well the experiments with mutations

described in chapter I B, where the mutations of these caused
and enlargement of Eve stripes. The exceptions are the gap
proteins Gt and Hb, here identified as activators instead of re-
pressors. We got a very good fit for the anterior part of the
profile, until x ≈ 0.3, where the concentration has its maxi-
mum, as the intersept and the second derivatives (positive at
first and negative at last) very closely match the experimental
data. Thereafter, we fitted Ftz pattern at cycle 14A1: the result
is shown in figure 8 and the reaction constants in table III.
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Figure 8. The best fit was obtained with χ2 = 1.7 after 16000 rounds,
with the rate constants of table III.The experimental profile is nor-
malized.

Bcd Cad Kr Kni Gt Hb Tll

Activation 9.1 0.5 3.5 6.7

Repression 9.2 6.0 5.9

Table III. Activating and repressing proteins for the best fit, depicted
in figure 8, and their respective rate constant ratios.

In what concerns Ftz, our fit very closely matches the ex-
perimental data, and we once again obtained Bcd as a major
repressor, and Cad is now an activator instead. Moreover, the
gap proteins Kni, Gt, Hb and Tll no longer have a residual in-
fluence on the profile initiation. Nonetheless, the fit does not
reproduce the small irregularities in central part: this suggests
that, even at this early stage, the proteins Eve and Ftz have
already started interacting.

In summary, these eary stage fits improved very much when
compared to the last stage fit at figure 5, which means that
our reaction-diffusion hypothesis may have a closer match to
reality.

B. Development of stripes
As the initial pattern of Eve and Ftz are already established,

we propose that these two proteins start interacting with each
other, using the Brusselator (12) as a template for this reaction,
where the two species that feed the system, A and B, are going
to be a combination of maternal and gap genes. Since this
combination alone is going to set the initial pattern for Eve
and Ftz, we are the going to use A(x) = Eve14A1 and B(x) =
Ftz14A1. We tested all the combinations of 0.01, 0.1 and 1.0
for the diffusion coefficients of species X (DX ) and Y (DY ),
and we obtained three different patterns.

We only obtain a Turing pattern when DY is 10 or 100 big-
ger than DX , which was expected since in the majority of Tur-
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ing patterns one diffusion coefficient is way larger than the
other. If we fix DY = 1.0, there will be Turing patterns for (at
least) DX ∈ [0.01,0.1], with 12 stripes for DX = 0.01 and 6
stripes for DX = 0.1; more specifically, we find a 7 stripe pat-
tern for DX ∈ [0.04DY ,0.06DY ], and the pattern for the values
in this interval is the same, and it is depicted in figure 9.

In order to explore if this is a strict or a reasonable range for
the diffusion coefficient, further experiments to measure this
constant are necessary.

Figure 9. Steady-state pattern of (12) using A(x)=Eve14A1,
B(x)=Ftz14A1 and DY =1.00, DX ∈ [0.04,0.06]. Y pattern has been
enlarged ×8 for better comparison.

For the identification with the time evolution of figure 1, in
figures 10 and 11 we show eight frames of the integration of
the system for which the steady-state is depicted in figure 9,
separated in equal time intervals. The first four stages match
quite closely the experimental data: the maximum concen-
tration increases from 1 to 2 and is constant from that time
onwards, and the first stripe projections appear in stage 2 in
both experimental data and simulations. In the pattern which
derives from the Brusselator model, these projections begin to
elongate, forming stripes, like what happens in the Eve evo-
lution. This way, we conclude that a model that considers
reaction-diffusion, with auto-catalysis and interactions for the
two species, suits the biological formation of Eve stripes.

We also supposed that the species Y with which X interacts
and forms a Turing patterns would be the pair-rule comple-
mentary Ftz. Nonetheless, the Y concentration pattern at cycle
14A8 in figure 9 does not exactly match the steady-state pat-
tern of Ftz (see figure 1): although both patterns have the same
maximums and minimums (that is, both are complementary
with Eve or X), their second derivatives have opposite signs in
the striped region and, in the side regions without the pattern
(for embryo length ∼< 5.0 and ∼> 17.5), Y concentration
decreases towards the center, while Ftz increases towards the
center. This means that the interaction term in the Brusselator
model ±X2Y does not describe the pair-rule interaction, and
a correct identification of the dynamical system is required.
Furthermore, this interaction is essential to form both species’

stripes, and it was observed experimentally that Eve and Ftz
can form their patterns without each other, which means that
these two proteins may interact with other pair-rules.
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Figure 10. Normalized concentration through normalized embryo
length. Eve experimental patterns for cycles 14A1, 14A2, 14A3 and
14A4 (left figures) and comparison with four initial frames from the
numerical integration of the Brusselator model (12) (right figures),
using A(x)=Eve14A1, B(x)=Ftz14A1 and (DX ,DY ) = (0.05,1.00).

C. Segment-polarity stripes
We also propose a similar mechanism for the formation of

the segment-polarity stripes. These are the last genes to be
expressed in the Drosophila embryo, and their establishment
occurs during the late cellular blastoderm stage, such that their
pattern should determined by the pair-rule proteins, and they
have twice the number of stripes (fourteen) as these (seven).
Studies have shown that one of these segment polarity, en,
is activated by both Eve and Ftz, whereas another segment-
polarity protein that develops at its side, wg, is repressed by
the same pair-rule [27]. These two proteins are reported to
react with each other and diffuse [28], what is also consistent
with the Turing pattern formation mechanism. Moreover, in
Eve and Ftz embryo mutants, en and wg have few and broader
stripes than in wild type, which tells us that these pair-rule
have an important role in these segment-polarity setting [27].

Analogously to what we did with the development of the
pair-rule, we propose that these initialize the segment polar-
ity pattern, which then evolves into stripes via a reaction-
diffusion mechanism. With the same model for transcription
and translation we used for the initiation of Eve in section
IV A, we present in figure 12 a protein (at green) which was
activated by Eve and Ftz, in equal proportions, and another
proteins (at red) which was repressed by the same pair-rule.
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Accordingly, these may mimic the initial pattern of wg and en
respectively.
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Figure 11. Normalized concentration through normalized embryo
length - same as figure 10 but for 14A5, 14A6, 14A7 and 14A8.
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Figure 12. Possible initial pattern for en in red (repressed by Eve and
Ftz) and for wg in green (activated by same proteins).

For the reaction-diffusion part which is going to refine the
stripes, we use the Brusselator as template once again, plus
A(x) = wg and B(x) = en. We tested all combinations of 0.01,
0.1 and 1.0 for the diffusion coefficients DX and DY , and we
obtained three different patterns.

As it happened before with the pair-rule, we obtained a Tur-
ing pattern when DY is 10 or 100 bigger than DX . Hence,
we looked for Turing patterns once more fixing DY = 1.0 and
searched in the range DX ∈ [0.01,0.1], and we could only find
14 stripes for DX = 0.03, for which steady-state profile is de-
picted in figure 13. We once more suggest that this protein’s
diffusion coefficient should be measured in order to evaluate
this result.

Figure 13. Steady-state pattern of (12) using A(x) = wg(simulation)
and B(x) = en(simulation). This profile was obtained for (DX ,DY ) =
(0.03,1.0).

We note that, in en- embryos, wg shows a broader ectopic
transcription (vice-versa for en and wg mutants), but the same
results are obtained for mutant embryos of nkd and ptc, which
means that the refinement and maintenance processes does not
happen only between these two, just like we proposed for the
Eve and Ftz development [29].

VII. The SINDy algorithm

We now aim to identify the system which regulates the pair-
rule formation by taking advantage of an algorithm that gives
a sparse identification of nonlinear dynamical systems, the
SINDy algorithm, proposed by S. L. Brunton and colleagues
[30]. In their work, the authors combine sparsity-promoting
techniques with nonlinear dynamical systems to discover gov-
erning equations from input data, where the only assumption
made on the system is that its equations are sparse in the
number of terms, which is reasonable for the great majority
of physical systems. For this method, we give as input data
the n-dimension system values at m different time instances,
X ∈ Rm×n. With this, we create a matrix with p candidate
functions, Θ(X) ∈ Rm×p. Since only a few candidate func-
tions are going to be selected to describe the dynamical sys-
tem, we are left with determining the sparse matrix Ξ ∈Rp×n.
This matrix is successively thresholded by a parameter λ , un-
til a solution which provides both sparsity and fit quality is
obtained. The authors propose to determine this parameter
as a compromise in these two quantities, so that it is in their
Pareto front.

VIII. Identification of the Brusselator steady-state Turing
pattern

The SINDy model is reported to be efficient to determine
the dynamical system of the damped oscillator, of the Lorenz
system and of the Navier-Stokes equations. As benchmarking,
we test if this algorithm is able to identify the equations for the
steady-state Turing pattern of the Brusselator model, depicted
in figure 6, using combinations of X and Y until 4th order as
candidate functions. Since this pattern is achieved at a steady-
state, the solution verifies a one-dimension system. We then
imported the data of the steady-state pattern into the SINDy
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algorithm in order to see how it detects the linear and non-
linear functions of this system. By running the algorithm for
several values and orders of magnitude of the cut-off param-
eter λ , we found that we could only fit one species at a time:
each time the algorithm converged for one of them, the sys-
tem identification was rather poor for the other. We obtained a
correct prediction of the X species system when λ ∈ [1.2,6.7]
and for Y species when λ ∈ [0.1,0.6]. Besides this, we did
not find the correct solutions as a compromise between spar-
sity and fit quality, as it was proposed by the authors of the
algorithm. This means that we need a more profound study
on how to choose the sparsification parameter that correctly
identifies the dynamical system.

After that, we test the Brusselator system but with forced
terms, using the same parameters as before (reaction and rate
constants), but making A = Cad(x) and B = Bcd(x) instead.
Using polynomials until 3rd order of X(x), Y (x), Bcd(x) and
Cad(x) as candidate functions there is an interval of λ ∈
[0.1,0.9] where both species’ equations are correctly identi-
fied, unlike what happened in the identification of the simple
Brusselator system. Hence, we conclude that SINDy is able
to identify the equations of a forced system.

In order to identify the interaction between the pair-rule,
we now fit the central part of the pattern only, which for sim-
plicity we approximate with X(x) = 1+ sin(x), Y (x) = 1+
sin(x−π), and this regulation was identified by the algorithm

as d2X(x,t)
dx2 = 0.125(Y 2 − X2)(X +Y ), d2Y (x)

dx2 = 0.125(X2 −
Y 2)(X +Y ) (λ ∈ [0.00,0.15], with χX = χY = 0). For big-
ger values of λ , all terms cancel, which means that in this
particular case we do not need a criterion to balance fit quality
and sparsity. Although the system’s terms are clearly identi-
fied, the reaction-diffusion equations diverged with all com-
binations of 1.00, 0.1 and 0.01 for the diffusion coefficients,
using constant profiles with noise as initial conditions as be-
fore.

This means that, at least for some systems, the convergence
may depend on more specific initial profiles. Moreover, for
further identification of the complete pair-rule pattern, other
solutions that we lose when we make the system reduction to
one-dimensional should also be studied, which can be done
by using the transient states.

IX. Conclusion

The genetic network of Drosophila is regulated in a cas-
cade manner and the first two classes of proteins, maternal
and gap, have already been analytically modeled [12], consid-
ering activation and repression interactions between the genes
and proteins of the regulatory network, as well as the diffu-
sion of these proteins. Statistical relationships between the
pattern of the gap genes and the pattern of the pair-rule have
also been studied, and a group of repressors and activators
for each stripe has been found. Nevertheless, it has not been
proven that each stripe is regulated individually, and it is phys-
ically more plausible that each protein is globally regulated by
a group of repressors and a group of activators. In this sense,
a model with this assumption and that could predict the pair-
rules evolution and steady-state still misses.

Firstly, we reviewed the model presented in [17] which

translates a genetic network of activation and repression
mechanisms into protein gradients, and used it to fit the
steady-state of Eve what would, in principle, enable us to
find which proteins would be activators and which proteins
would be repressors. This fit was rather poor, and the result-
ing pattern was nowhere near to produce a seven stripe pattern.
For this reason, we concluded that local type reactions were
not sufficient to produce such regularities, and a more robust
model would be necessary.

Accordingly, we then tested if the gap and maternal pro-
teins can regulate the 14A1 pattern of the pair-rule proteins
Eve and Ftz, and this earlier stage fit was in a closer agree-
ment with the experimental data. We proposed that these ini-
tial patterns, as they are the combination of repressing and
activating proteins, are feeding the evolution of the pair-rule;
moreover, we consider diffusion and an interaction between
them - which means that we proposed that the seven stripes
are a Turing pattern, developed via a reaction-diffusion mech-
anism. Based on the Brusselator, a reaction-diffusion system
with Turing patterns, and using the pair-rules initial patterns
for the intermediary species of the Brusselator, we were able
to obtain steady-state and transient profiles which were in a
very close agreement with the experimental data. Different
number of stripes were obtained for different values of the dif-
fusion coefficients, and seven stripes patterns were achieved
when DX ∈ [0.04DY ,0.06DY ].

We also extended this approach for the segment-polarity
proteins. The biological experiments indicate that there is one
segment-polarity, en, which is activated by both Eve and Ftz,
and another segment-polarity, wg, which is, in contrary, re-
pressed by the same two pair-rule. Once more, beginning
with the reaction model for these regulations, we were able
to outline the initial patterns for these proteins. From these
early patterns on, and considering the Brusselator system for
the reaction-diffusion mechanism, we were able to obtain the
fourteen stripe pattern when DX = 0.03DY .

Finally, we aimed to identify the dynamical system which
regulates the interaction between the pair-rule or between the
segment-polarity. To do this, we used the regression algorithm
SINDy which, from steady-state profiles, is able to identify
the nonlinear functions that compose the system, balancing fit
quality and the system sparsity. This algorithm was able to
correctly identify the Brusselator system as well as a modi-
fication with space-dependent functions, and the interaction
terms for the pair-rules and segment-polarity were then suc-
cessfully identified. Nonetheless, this system diverged when
integrated, for all combinations of 1.0, 0.1 and 0.01 for the
diffusion coefficients.

In summary, we showed that, despite what is suggested by
most literature, the local regulation via activation and repres-
sion by the earlier proteins, gap and maternal, is not sufficient
to produce a high frequency pattern as the seven stripes pattern
is. Moving to the reaction-diffusion hypothesis, we simulated
the development and setting of the pair-rule pattern, as well as
the segment-polarity steady-state pattern, using the Brussela-
tor system as template model. Our simulations were in a very
good agreement with the experimental data, as well as with
the regulatory mechanisms proposed in the literature. Using
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a regression algorithm for nonlinear systems, the proper in-
teraction terms which generate the central part of the pattern
were also identified, but the system was not integrated. For
this reason, we suggest a more complete characterization of
the solution space of the algorithm in the future, as well as
their dependence on the initial profile.

Also as an extension of this work, the investigation of a cri-
terion to determine whether a reaction-diffusion system is able
or not to produce Turing patterns would be usefull, because it
would enable us to immediately test the SINDy solutions, and
no numerical integration would be necessary. Additionally,
the observation of Ftz pattern with mutations in the gap and
maternal proteins would enable us to determine if we correctly

identified its repressors and activators. Still concerning the bi-
ological part, according to our reaction-diffusion hypothesis
the stripes are only formed when the two pair-rule interact
with each other. Nonetheless, it is observed experimentally
that a mutation in Ftz does not affect substantially the pattern
of Eve and vice-versa. We then suggest to mutate several pair-
rules simultaneously, to observe if the interaction mechanisms
happen not between two species but between more, and this
suggestion applies to the segment-polarity as well. Since we
could not compare the evolution of our simulation with the
transient profiles of the segment polarity, we suggest to ana-
lyze this data.
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