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Resumo

A Drosophila melanogaster produz várias proteínas que se regulam em cascada ao longo das

duas primeiras horas de desenvolvimento embrionário: enquanto que as primeiras a expressarem-

-se têm um perfil difuso, as últimas já exibem um padrão de alta frequência. A penúltima classe de

proteínas que se expressa são as pair-rule, com um padrão de sete riscas, e que inclui as proteí-

nas Even-skipped e Fushi-tarazu, com padrões exactamente complementares. A última classe de

proteínas a estabelecer-se é a dos segment-polarity, que se identificam por um padrão de catorze

riscas.

Este trabalho teve como objetivo modelar a formação da proteína Even-skipped através de meca-

nismos de reacção e de difusão. Mostrou-se que os mecanismos de reacção pelas proteínas anteri-

ores não são suficientes para produzir um padrão de riscas. Por outro lado, ao considerar-se que os

pair-rule são regulados por reacção-difusão – i.e., um mecanismo de padrões de Turing - obtiveram- -

se padrões transientes e um estado estacionário semelhantes aos experimentais. Para tal, utilizou-se

o modelo do Brusselator para descrever o sistema. Estendendo a abordagem aos segment-polarity,

foi possível simular um padrão de catorze riscas, que só se definiu totalmente quando se considerou

um mecanismo de reacção-difusão, sendo as reacções locais novamente insuficientes.

De modo a determinar o sistema dinâmico desconhecido que regula estes genes, utilizou-se um

algoritmo de regressão ao estado estacionário, que identificou os termos de interacção. No entanto,

esta solução divergiu quando integrada, o que significa que é necessária uma melhor caracterização

da validade das soluções deste algoritmo.

Palavras Chave

Drosophila melanogaster, segmentos, pair-rule, segment-polarity, reacção-difusão, padrão de Tu-

ring
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Abstract

Drosophila melanogaster produces several proteins throughout its first two hours of embryonic

development, which are regulated in a cascade manner: the first have an ill-defined profile and the

last to appear have a high-frequency pattern. The second to last of these embryonic proteins to be

expressed are the pair-rule proteins, with a seven-stripes pattern, and these include Even-skipped

and Fushi-tarazu, which have perfectly complementary patterns. The last proteins to be expressed

are the segment-polarity, with a pattern of fourteen stripes.

The purpose of this work was to model the development of the Even-skipped protein considering

both reaction and diffusion mechanisms. We showed that reaction mechanisms, controlled by the

earlier proteins, are not sufficient to produce a striped pattern. Nevertheless, when we considered an

interaction between the pair-rule as well as diffusion processes – that is, a Turing pattern mechanism

- we obtained transient patterns and a steady-state that closely resemble the experimental data. For

this, we used the Brusselator model to describe the system. Thereafter, we extended this approach for

the segment-polarity genes and we were able to obtain a fourteen-stripes pattern, which only became

completely defined when we considered a reaction-diffusion mechanism, and the local reactions were

once more insufficient.

In order to determine the unknown dynamical system that regulates these genes, we used a re-

gression algorithm that clearly identified the interaction terms. Nonetheless, the solution diverged

when integrated, which means that the validity of the algorithm’s solutions needs to be better charac-

terized.

Keywords

Drosophila melanogaster, segments, pair-rule, segment-polarity, reaction-diffusion, Turing pat-

terns
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1.1 Drosophila early development

In insects, the definition of periodic band structures along the antero-posterior axis of the body

occurs early in embryo development. This periodic structure determines the segment organisation of

the embryo, conditioning the following morphogenic processes. These processes are going to set the

differentiation of adult functional areas that follow the insect development.

For this periodic structure to emerge, just like all morphological structures, several complex net-

works of gene regulatory pathways need to be developed at the cellular level. Drosophila malanogaster,

also known as the fruit fly, is a commonly used insect in experimental biology due to its simple ge-

netic structure. Due to this, it has a large amount of experimental data sources. It is, therefore, a

good choice for the object of study if one aims to make a mathematical model of the gene regulation

mechanisms [1].

The first coordinates of Drosophila’s shape are set before fertilisation. The mother places mRNA

at the poles of the oocyte: a concentration of caudal (bcd) mRNA is set at the future anterior pole,

and a concentration of cad is set at the future posterior pole. Thus, when the mature egg is laid, it is

both morphologically and molecularly polarised.

After fertilisation, the maternal genes are translated into proteins. In this stage, both bcd and cad

mRNAs are transcribed into Bcd and Cad proteins, that diffuse away from the poles and become

gradually distributed over about one-half of the length of the egg - see figure 1.1 for the evolution

of their profile. These maternal proteins are going to determine large body parts: Bcd defines the

anterior axis while Cad defines the posterior axis [1] [2]. The first 13 nuclear divisions (that are not

followed by cytoplasm division) give rise to a syncytial blastoderm, in which all the nuclei share the

same cytoplasm and have migrated along the cell’s surface. It is, therefore, very easy for morpho-

genes and nutrients to spread between nuclei [1]. During this stage, the zygotic genes are expressed:

these are responsible for the definition of large body parts, just like the maternal genes, but are also

responsible for progressively differentiation in the fly’s body pattern.

The zygotic genes are transcribed in certain regions of the embryo’s syncytial blastoderm, and the

resulting proteins will act as transcription factors that regulate genes that will be transcribed afterwards

[1]. Accordingly, we observe a hierarchy, or cascade, of genes: the genes to be expressed earlier

regulate the activity of those to be expressed later, where the former control large domains - entire

body regions - and the later control minor domains, that result in segmentation patterns [2] [1]. The

first zygotic genes to be expressed the are the gap genes, that affect entire regions of the body, and

these are regulated by maternal-effect and gap proteins. These gap genes include giant (gt), kruppel

(kr), hunchback (hb) and knirps (kni) - for their concentration evolution, see figures 1.1 and 1.2. These

plots were made with fluorescence images from the FlyEx database, and the concentration profiles

for the different proteins were normalized to Eve maximum at cycle 14A8; we used the central part of

the embryo, and the noise was filtered. After that, the expression of pair-rule genes occurs, which are

the first proteins to show a periodic structure,creating a seven band structure perpendicularly to the

antero-posterior axis; these include fushi-tarazu (ftz), even-skipped (eve), runt (run), sloppy-paired

2



(slp), odd-paired (opa), odd-skipped (odd), hairy (h) and paired (prd) - see figure 1.3 for the evolution

of the concentration profile of the first two, together with maternal bcd and cad. In figure 1.4, we show

the pair-rule and the gap genes profile at stages 14A1 and 14A8 for comparison.

3



Out[371]=

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A1

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A3

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A4

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A5

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A6

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A7

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A8

Figure 1.1: Normalized concentration through normalized embryo length of gap proteins Bcd (red), Cad (green), Kr (blue) and Kni (black) in relation to Eve concentration. These
data, shown in several phases of 14th cycle, was taken from the FlyEx database and was convolved with a gaussian filter. Code at export data to excel.nb - this code file, as all
the others in this thesis, are available from the corresponding authors, beatriz.albergaria@tecnico.ulisboa.pt and ruidilao@tecnico.ulisboa.pt, on reasonable request.

4



Out[377]=

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A1

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A3

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A4

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A5

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A6

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A7

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
14A8

Figure 1.2: Normalized concentration through normalized embryo length of gap proteins Bcd (red), Cad (green), Gt (blue) and Hb (black) in relation to Eve concentration. These
data, shown in several phases of the 14th cycle, was taken from the FlyEx database and was convolved with a gaussian filter. Code at export data to excel.nb.
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Figure 1.3: Normalized concentration through normalized embryo length of maternal proteins Bcd (red), Cad (green), Eve (blue) and Ftz (black) in relation to Eve concentration.
These data, shown in several phases of the 14th cycle, was taken from the FlyEx database and was convolved with a gaussian filter. Code at export data to excel.nb.
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Figure 1.4: Gap, maternal and pair-rule profiles at cycle 14A1 (left top and bottom) and at cycle 14A8 (right top and bottom). Code at export data to excel.nb.
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Finally, the expression of the segment-polarity genes takes place: these genes affect every single

segment and are responsible for the doubling of the fly’s stripes from seven to fourteen; these include

the engrailed (en), wingless (wg), gooseberry (gsb), patched (ptc) and hedgehog (hh) genes [2] [3] -

see figure 1.5 for the pattern of en as an example.

Figure 1.5: Adjacent sections of an embryo approximately 2h after gastrulation hybridized with 35S-probes for
en. Taken from figure 2F at [4].

At this stage - interphase of the 14th mitotic cycle, approximately 2 hours after fertilization - occurs

cellularization: the cytoplasmic membranes begin to form around the nuclei of the syncytial blasto-

derm, the individual cells become allocated into one of the of the fourteen visible segments giving

rise to a cellular blastoderm [1] [2]. In figure 1.6 we show a summary of these development stages of

Drosophila’s genetic expression.

Figure 1.6: Summary of Drosophila development stages and the genetic expression that occurs in each. Images
from the FlyEx database and figure adapted from [5].

1.2 Bibliographic review on stripe formation

1.2.1 Principle stripe mechanism

The majority of experiments made in order to understand pair-rule’s stripe formation have a bi-

ological approach, and are based on the principle stripe mechanism. According to this view, the
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pair-rule gene expression is controlled in transcription, such that transcript levels are enhanced within

stripe domains and diminished between them, that is, the stripe region itself is activated whereas the

interstripe region is repressed. Taking into account that the Drosophila genes are expressed in a

cascade manner, the pair-rule genes are thought to respond directly to gap gene positional cues via

extensive upstream promoters with independent regulatory elements for individual stripes. In other

words, the stripes are thought to be formed individually - each of them is activated and repressed in

its boundaries by a specific set of genes [6].

1.2.2 Eve regulation

In order to understand how the gradient concentration of maternal-effect, gap and pair rule genes

define the periodic structure of seven bands that characterize eve and ftz expression, several experi-

ments have been made inhibiting one gene expression and checking how the Eve pattern is modified.

The maternal products that are reported to have the greater impact in the evolution of Eve pattern

are the Bcd and the Cad proteins. Conversely, the more important gap genes are gt, kr, hb and kni

[7]. We shall now analyze what is the role that each of these maternal and zygotic proteins has in

each of the seven stripes by analyzing some of these experiments.

1.2.2.A Maternal proteins regulation

Bcd protein

Firstly, in what concerns experiences with maternal genes, we start by analyzing the experiences

made with bcd mutation. In [8], stripes 3 and 7 were stained for the control eve pattern (with no

muations) and for the embryo with bcd-: in this paper, it is reported an enormous reduction of stripe 7

intensity and an anterior expansion and shift of stripe 3 – see figures 1.7 and 1.8 for the reproduction

of these results.

Figure 1.7: Control pattern: wild-type, cellulariz-
ing embryo hybridized with an eve antisense RNA
probe. The staining pattern consists of seven trans-
verse stripes along the antero-posterior axis. Taken
from figure 3 A of [8].

Figure 1.8: Mutant lacking bcd+ function. Cellular-
ized embryo carrying the 500-bp eve stripe 3/7 en-
hancer attached to the eve–lacZ fusion gene. Taken
from figure 3 C of [8].

Moreover, in [9], besides stripe 3 and 7, stripe 2 was investigated as well. Firstly, the bcd binding

site for stripe 2 (bcd2) was inhibited and there was not a repported change in stripe 2 (results not
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shown in the paper). The inhibition of kr binding site for stripe 3 (kr3) and bcd binding site for stripe 1

– which the authors claim to be the same – did not cause a discernible effect in stripe 2 as well. On

the contrary, the inhibition of both binding sites bcd2 and kr3/bcd1 resulted in a decreasing staining

of stripe 2 and no alterations for stripes 3 and 7 – see figures 1.9 and 1.10.

Figure 1.9: Control pattern: P-transformed hy-
bridyzed embryo expressing the wild-type 5.2-kb eve-
lacZ fusion gene. Taken from figure 2 A in [9].

Figure 1.10: Pattern obtained with the double mutant
in the bcdl-kr3 sequence and the bcd2 site. Taken
from figure 2 B in [9].

1.2.2.B Gap proteins regulation

Kr protein

We now move to the experiences concerning mutations with gap genes. In mutants lacking kr

function, it is reported in [9] that there is a more pronounced expression of stripe 2, when stripes 2, 3

and 7 are stained – compare figures 1.11 and 1.12. The very same result for stripe 2 is reported in

[10].

Figure 1.11: P-transformed embryo expressing the
wild-type 5.2-kb eve-lacZ fusion gene. Stripes 2, 3,
and 7 are stained to the same extent. Taken from fig-
ure 3 A in [9].

Figure 1.12: Expression of the eve-lacZ fusion gene
containing point mutations in all six high-affinity Kr
protein binding sites. There is a more pronounced ex-
pansion of stripe 2. Taking from figure 3 C in [9].

These results are confirmed by [11], in which the authors followd eve pattern (in time) in Kr -

embryos. Indeed, if we compare the Kr mutant with the wild-type, we see that the former has a stripe

2 which is enlarged as it is extended to the posterior part of the body. Moreover, the structures of

stripes 4, 5, 6 and 7 are transformed into two new different stripes. These results are reproduced in
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figures 1.13 and 1.14, and in 1.16 we make an overlap of the final patterns of both Kr - and wild-type

for a more clear comparison.

Figure 1.13: Control: one-
dimensional eve integrated pat-
tern in 8 time classes of cycle 14
(6.5 min long each). Taken from
figures 1 Q-X in [11].

Figure 1.14: eve expression in
Kr - embryo. Taken from figures
1 G1-N1 in [11].

Figure 1.15: eve expression in
kni- embryo. Taken from figures
1 W1-D2 in [11].

Figure 1.16: Overlap of the expression of eve in wild-type (figure 1 X in [11]) and Kr - embryo (figure 1 N1 in [11])
at stage 14.
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Kni protein

In what concerns the gap gene kni, it is reported in [8] that the eve pattern shows significant

alterations in the posterior part of its mutants: although stripes 1 and 2 remain normal, there is a

broad staining that encompasses stripes 3 through 7 – this result is replicated in figure 1.17.

Figure 1.17: eve staining pattern in a kni mutant at the midpoint of nuclear cleavage cycle 14. This staining
pattern was visualized by in situ hybridization using an eve anti-sense RNA probe. The wild-type expression in
not shown at this stage. Taken from figure 5 A in [8].

Once again, this result is supported in [11] with experiences made with kni-, analogous to the

ones described before for Kr -. In figure 1.15, we see that eve pattern in kni- mutants initially develops

as in the wild-type but, in later stages, the most posterior stripes are unable to form; in figure 1.18 we

show the overlap of the final patterns of both kni- and wild-type for a more clear comparison.

Figure 1.18: Overlap of the expression of eve in wild-type (figure 1 X1 in [11]) and kni- embryo (figure 1 D2 in
[11]) at the last time class of cycle 14.

In a later stage of development, the cellularizing embryo, it is reported in [8] that this eve pattern

(in kni- mutants) persists, nevertheless, the intensity of staining which covers stripes 3-7 is reduced,

so that the posterior border of stripe 3 has formed.

Figure 1.19: Wild-type cellularizing embryo visualized
by in situ hybridization using an eve anti-sense RNA
probe. Taken from figure 2 A in [8].

Figure 1.20: eve pattern in a kni- mutant which has
completed cellularization – same as figure 1.17 but the
embryo is 20-30 min older. Taken from figure 5 B in [8].
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Hb mutants

In [8] it is also presented the stripes 3 and 7 of eve in hb mutants, where it is observed that the

anterior border stripe 3 is expanded (toward the anterior region), whereas the posterior border of

stripe 7 is also extended (toward the posterior region); moreover, the staining of the latter stripe is

intensified. We can roughly observe that the stripe 3 extended stain covers stripe 2 and perhaps 1

as well, nevertheless, this is not a very precise conclusion since the paper does not present the eve

control pattern for this stage of development.

Figure 1.21: Staining pattern in mutants lacking the zygotic component of hb gene activity. Stage is not specified
but, from the sequence, we assume it is a cellularizing embryo. Taken from figure 4 C in [8].

These results are not in agreement to what is reported in [12], where there is a complete or partial

deletion of parasegments from 2 to 7 (which include eve stripes 2, 3 and 4) as well as a reduction in

stripe 7 intensity, in both cellular blastoderm stage and gastrulating embryos.

Recalling the results shown for kni and hb mutants, we saw that the absence of the former gene

resulted in a broad staining which encompassed stripes 3 to 7 (and no alterations for stripes 1 and 2),

while mutations in the latter gene were followed by an extended stain in stripe 3 towards the anterior

part and in stripe 7 towards the posterior region. This way, we can predict that the inhibition of both

hb and kni transforms eve striped pattern into a broad stain. In fact, [12] reports that, in hb- and

kni- cellular blastoderm-stage embryos, eve and ftz proteins are not longer distributed within stripes

but form a continuous staining between 13% and 74% of the embryo length - see figures 1.23 and

1.24 respectively, figure 1.22 for control staining at the same stage -, with the exception of a few

discontinuities (arrows in the figures).

Figure 1.22: Cellular blastoderm-stage wild-type em-
bryo after staining with anti-eve. Taken from figure 1 b
in [12].

Figure 1.23: Cellular blastoderm-stage double mutant
stained with anti-eve. Taken from figure 1 a in [12].
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Figure 1.24: Cellular blastoderm-stage double mutant stained with anti-ftz. Taken from figure 1 c in [12]

Gt mutants

In what concerns gt mutants, we see from the experiment made in [9] that without the expression

of this gap gene the anterior border of eve’s stripe 2 becomes substantially extended to the anterior

part – see figure 1.9 for the 2, 3 and 7 stripe control and figure 1.25 for the same staining but in gt

mutants.

Figure 1.25: The expression pattern from an eve-lacZ fusion gene containing two small deletions that remove
all three Gt protein binding sites. Taken from figure 2 C in [9].

The very same result was obtained in [10], where only stripe 2 was tracked - see figure 1.26 for

the control and 1.27 for the gt mutant.

Figure 1.26: Expression of the lacZ reporter gene
was detected by staining with an anti-β-galactosidase
antibody. Staining is restricted to stripe 2; none of the
other eve stripes are observed including 7. Taken from
figure 2 C in [10].

Figure 1.27: Stripe 2 expression in a gt- embryo. The
eve-lacZ fusion gene shown in B was crossed into a
gtY As2 mutant background. Taken from figure 2 E in
[10].
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In [12], there is additional information for cellular blastoderm stage embryos lacking gt function,

as all stripes were tracked: firstly, we come to know that the anterior expansion of stripe 2 is in fact a

composite band of stripes 1 and 2; furthermore, in gt mutants, eve’s stripes 5 and 7 are merged into

a broad staining; finally, in the mutant embryo there is a reduced intensity of stripe 7 expression. In

figure 1.28, we see the staining pattern which results from this mutation, and we recall figure 1.22 for

the control pattern.

Figure 1.28: Cellular blastoderm-stage embryo after staining with anti-eve. Taken from figure 7 A in [12].

Pair-rule regulation

Moving to the pair-rule genes, it is reported in [12] that prd, odd, opa and slp do not appear to affect

neither the establishment nor the maintenance of the eve pattern (results not shown in the paper).

Yet, h and run are essential for the normal maintenance of the eve expression during gastrulation

- no abnormalities during our stage of study, i.e., until the end of syncytial blastoderm stage, are

reported [12]. In run- embryos, the first alteration is detected after cellularization, where stripe 5 is

narrower and has a less intense staining than in wild-type. However, on the onset of gastrulation, eve

stripes (except 5) broadens an average of five cells. In h mutants, on the contrary, there is an overall

decreasing of intensity and narrowing of stripes from the end of cellularization until gastrulation, and

only weak staining of stripes 1, 3 and is observed at the beginning of long germ band elongation.

In summary, in run- gastrulating embryos, eve pattern is over-expressed and ftz products disappear

prematurely; in contrast, in h- the eve expression fades prematurely while ftz is overexpressed [12].

We do not reproduce this results here since, as we mentioned, these stages are not very relevant

for the development period we are studying, nonetheless these results can be consulted in figures 9

A, B, C and D of [12]. We should note that, in all these mutants (gap and pair-rule), whatever is the

alteration in eve pattern, a complementary expression of ftz is always observed [12].

In what respects eve itself, genetic studies also suggest that this gene contains auto-regulatory

elements [13] [14]. In what concerns eve and ftz, it is mentioned in [12] that ftz does not appear to

affect the establishment or the maintenance of the eve pattern, and these results are not shown in the

paper. On the contrary, it is reported in [15] that, although ftz pattern initiation and evolution does not

require eve function, its maintenance and refinement does.

More specifically, in early stage 14, the eve- embryos presents four broad bands of ftz expression,

while in the wild-type embryo the anterior-most band is half the width of the three more posterior

bands, as we can see in figure 1.29. After that, at mid-point of stage 16, both eve- and wild-type

embryos have seven equally spaced ftz stripes; nonetheless, in eve- embryos, the anterior-most
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stripe shows reduced labeling after the stripes are established, as we show in figure 1.30. At the

cellularization stage, the mutating embryos show a further reduction of ftz expression in the anterior

part, when comparing to the wild-type pattern - see figure 1.31. After cellularization is complete, the

ftz pattern in eve- embryos shows particular abnormalities and irregularities in width and spacing of

stripes, and the overall ftz expression in eve- is less stable than in wild-type. Finally, in gastrulation

stage, the ftz stripes persist in wild-type embryos, while in eve- mutants the stripes rapidily diminish,

such that by the onset of germ band elongation there is, at least, two to fourfold reduction (comparing

with wild-type), as we show in figure 1.32 [15]. The corresponding figures for the ftz expression in

wild-type embryos (at the same stages and in the same sections) are not presented in the paper.

Figure 1.29: Df(2R)eve1.27 homozygotes (eve−) af-
ter hybridization with the ftz probe (figures 1.29-1.32).
Horizontal section through an early stage 14 eve- em-
bryo. Taken from figure 4 a in [15].

Figure 1.30: Horizontal section through an eve- em-
bryo at the midpoint of stage 14 of development.
Taken from figure 4 b in [15].

Figure 1.31: Sagittal section through a late stage 14
eve- embryo undergoing cellularization. Taken from
figure 4 c in [15].

Figure 1.32: Sagittal section through an eve- embryo
at the start of germ band elongation. Taken from figure
4 d in [15].

1.2.3 Ftz regulation

Unlike eve, ftz regulation is typically studied with the expression of other pair-rules. Eve is com-

monly classified as a primary pair-rule, together with h and runt, since its expression is determined

by gap and maternal genes that are regionally distributed. These primary genes are then going to

act as a mediator: they are going to translate non-periodic information of gap and maternal proteins

into periodic information. Conversely, ftz and prd are classified as secondary pair-rule genes, as their

pattern of expression is thought to be regulated directly by the primary pair-rule, and are responsible

for the further establishment of the segment-polarity genes pattern [16]. This classification was first

proposed by Philip William Ingham and Alfonso Martinez-Arias in [17], but there are evidences that,

although this hierarchically-acting pair-rule mechanism may be conceptually appealing, it is not likely
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that it is what happens in Drosophila’s pattern formation [16]. In [16], the ftz pattern was observed

as mutations in the primary pair-rule eve, run and h were separately made, and the conclusion was

barely the same for the three of them: none of these genes is key for ftz pattern formation, as the

stripes’ initial elaboration is not affected by the mutations, nonetheless, the pattern fades faster when

the mentioned pair-rule are not present. Concerning h, a contradictory information is presented in

[18], that reports an enlargement of ftz stripes in early stages of development in the absence of the

former gene.

The ftz gene has also been studied on the genetic level, and its regulation is reported to be con-

trolled by two cis-acting elements (that is, regions of non-coding DNA which regulate the transcription

of neighboring genes [19]): the zebra element, which confers the striped pattern by mediating the

effects of other genes, as the pair-rule mentioned above, and the upstream element, an enhancer

element requiring ftz activity for its auto-regulatory action [20]. Concerning the latter, [20] states that

these sequence for positive auto-regulatory feedback mechanism are only important for the enhanc-

ing and maintenance of the pattern, wheres its initial formation is set by the interaction of the pair-rule

with the zebra element. In summary, there are evidences that the pair-rules ftz and eve are regu-

lated by other genes as well as by themselves, but no pair-rule has shown to be fundamental for their

development.

1.3 Motivation and objectives

The maternal and the gap genes have been analytically modeled and calibrated, considering their

genetic regulatory network [21] [22]. For the even-skipped gene, several proposals have been made

for the complete regulatory network that underlines eve development, taking into account the muta-

tion experiments described above, and according to the principle stripe mechanism. Via statistical

relationships between the stripes positions and the concentration profiles of gap and maternal genes,

each of Eve stripe’s expression has been successfully predicted, and a group of repressors and ac-

tivators for each has been identified [23] [24]. Enhancers and promoters for stripes have also been

identified [13] [25], but it is not clear that each stripe has an individual set of promoters.

The objective of this thesis is, therefore, to model both the pair-rules steady-state profiles and

their evolution in time without recurring to the principle stripe mechanism. In chapter 2, we propose a

model which considers activation and repression of Eve by the earlier stage proteins, since this is the

approach considered in the majority of the literature. In chapter 3, we move to test a reaction-diffusion

model, where Eve pattern is produced by a Turing mechanism. Finally, in chapter 4, we propose a

dynamical system identification algorithm to accurately identify the model equations.
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2.1 Basics of protein synthesis

The central dogma of molecular biology is a well-established theory for the transmission of infor-

mation in living organisms, originally presented by James Watson and Francis Crick: DNA is copied

to other DNA molecules in cell division in replication, and it is also copied to an mRNA molecule via

transcription in order to form a template for protein synthesis through translation [26].

We now focus on how activation and repression mechanisms may happen in gene expression. In

the original DNA molecule there is a binding site for a specific gene, to which a transcription factor

(TF), which is a protein, may bind. There are DNA sequences, the enhancers, which are binding

sites for regulatory proteins that affect RNA polymerase activity. If the TF is a promoter, the RNA

polymerase is free to bind to the binding site and initiate the transcription process; if the TF is a

repressor, the RNA polymerase is unable to connect and gene expression does not occur. There

is also the possibility that the protein which is translated is the promotor or the repressor of its own

transcription, and in these situations we are dealing with self-activation or auto-catalysis and self-

repression, respectively [27][28]. A scheme of these regulatory activities can be found in figure 2.1.

Figure 2.1: Description of the activation and repression mechanisms.

2.2 The reaction mechanism - law of mass action

In order to study chemical and biological processes in a quantitative manner, we need to describe

the kinetics of the reactions that are involved: that is, given the individual reactions that are likely to

occur between all possible chemical species in the system, if we want to model the rates at which the

system’s species concentrations evolve with time, and how these rates depend upon those concen-

trations, we then need to write the reaction rate equations [29]. These reactions are the elementary

steps that make a possibly more complex reaction, being envisaged as occurring in a single collision
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between the reactants. The rate at which these reactions occur is k, the reaction rate constant : nor-

mally, these rates are independent of concentration but are not independent of temperature, but we

will not analyze the latter case. To derive these equations, we assume that in this system [30]:

• substances have low density and are homogeneous in solution;

• all reactions occur at constant pressure and temperature;

• the individual motion of the molecules in the media is independent from the other molecules,

behaving as Brownian particles, and their collision frequency is proportional to the local concen-

trations;

• while reactions occur, the instantaneous densities do not vary.

In what concerns the formalism of a chemical reaction, the system we consider has a total number

of m chemical substances and n chemical reactions. Representing the species labeled j by Aj , the

reaction rate of the ith reaction by ki and the stoichiometric coefficients of the reactants and products

by νij and µij respectively, the reactions occurring in the media can be represented by n collision

diagrams [30]:

νi1A1 + . . .+ νimAm →ki µi1A1 + . . .+ µimAm (i = 1, ..., n). (2.1)

Furthermore, if νij = µij > 0, the corresponding substance Aj is a catalyst and, if µij > νij > 0,

Aj is an autocatalyst [31]. Under these conditions, the time evolution of the concentration of all the

chemical substances is described by the set of m ordinary differential equations - the law of mass

action [30]:
dAj
dt

=

n∑
i=1

ki(µij − νij)Aνi11 . . . Aνimm . (2.2)

From these equations, we see that the modulus of the rate of time evolution of Aj will be greater the

greater is the reaction rates ki (that is, the faster is the reaction), and the greater is the difference of

this species’ stoichiometric coefficients as reactant - νij - and product - µij - (that is, the greater is the

amount of Aj created or lost).

If there is mass conservation, we can also write the conservation equations:

n∑
j=1

αjkAj = constantk, (2.3)

where k = 1, . . . , s, for some constants αjk and an integer s.

2.3 A mathematical model for protein gradients

In order to write the differential equations for the mathematical model that will translate a genetic

network into a gradient of protein concentrations, we need to have the kinetic diagrams (2.1) that

represent the interactions of the system, that will afterwards return the differential equations according

to the law of mass action (2.2) and according to the conservations of the system (2.3). When these
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equations are solved, with a numerically method in the large majority of the cases, the steady-state

solutions will describe the experimental steady-state of protein concentration.

We start by defining a model for protein production from mRNA, and mRNA production from DNA.

We consider that transcription factors may bind to a binding site associated to a given gene: if this

transcription factor happens to be an activator, the gene transcription into mRNA is promoted; if this

transcription factor is a repressor, the gene transcription is inhibited. The complex binding site plus

gene will be called an operon - see figure 2.2 [27].

Figure 2.2: Jacob and Monod operon model where transcriptional regulators bind to the regulator binging sites,
repressing or activating the translation of the gene into mRNA. Image taken from [27].

If we call G, M and P the gene, mRNA and protein, respectively, C1 and C2 catalysts that are

not consumed in the reactions, and k1, k2, d1 and d2 the reaction rates, the simplest model of protein

production from a DNA template without any regulation mechanism is:

C1 + G
k1 C1 + G + M

C2 + M
k2 C2 + M + P

M
d1

P
d2

(2.4)

Furthermore, if we only consider protein degradation - that is, mRNA and catalysts which concentra-

tions are constant - the above kinetic diagram can be simplified to:

G k G + P

P d
(2.5)

We now consider the case where a transcription activator binds to an operon site, following the initi-

ation of transcription and translation - the case of positive regulation. If we represent the activator’s

concentration byA, the concentration of the gene to be transcribed byG and the binded DNA-activator

complex by GA, the mechanism for protein production is:

A + G
k1

k2
GA

GA
a GA + P

P d

A
dA

(2.6)

where the last reaction may be omitted if we do not consider that the activator degrades.

We now consider the special case where the protein favors its own production, that is, a case of

self-activation. In a similar manner, we say that GP will be the DNA-activator complex and, for this

case, the mechanism is:
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P + G
k1

k2
GP

GP
a GP + P

P d

(2.7)

The case for negative regulation will be analogous, but instead of considering an activator A, we

consider a repressor R, and instead of considering the complex GA, we consider GR:

R + G
k3

k4
GR

G a G + P

P d

R
dR

(2.8)

Once again, just like in the positive regulation case, the last reaction is omitted if the repressor

concentration is constant and not omitted if there is degradation. Analogously to the positive regulation

case, we also consider the situation where the protein itself inhibits its own production - the case of

self-repression. If then, the considered mechanism shall be [27]:

P + G
k3

k4
GP

G a G + P

P d

(2.9)

2.4 Reaction only model

In [22], an analytical model based on the mass action law (local reaction type) is shown to be suf-

ficient to reproduce gap and maternal proteins regulatory network and their expression. [23] is also

able to reproduce maternal, gap and pair-rule expression using a thermodynamic description for the

genes regulation by transcription factors and, assuming independent contribution from multiple en-

hancers, it is able to calibrate experimental data and predict unknown parts of the regulatory network.

The data prediction for Eve’s pattern is very accurate: the underlying regulatory network is show in

figure 2.3 and the result is reproduced in figure 2.4.
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Figure 2.3: Networks of [23] showing regulatory influences of TFs on individual stripes of Eve. Red edges
denote repressive and green edges denote activating role of the corresponding TF. Solid edges denote predicted
influences in that are already known in the literature. Edges with large dashes denote predicted influences that
were not reported in the literature before, while edges with small dashes denote predicted influences already
known in literature but missed by the model (false negatives). Taken from figure 7 A of [23].

Figure 2.4: Eve model prediction at 14A8 by [23].
.

Nevertheless, the assumption that each stripe border is independently regulated by a given group

of maternal and gap proteins [23] does not have a clear biological ground. It is possible that this is

an ad hoc theory to explain the sudden increase of spatial frequency that we observe from gap to

pair-rule proteins. Therefore, we keep the theory that Eve is the result of a set of local activations

and repressions, but we consider that these mechanisms occur through all embryo length, which

seems more biological plausible than having a specific set of controlling proteins for each stripe. Still,

if we look at figure 1.4, we perceive some regularities between the gap genes final pattern and Eve

repressed regions: Kr has a maximum between stripes 3 and 4, Kni has a maximum between stripes

5 and 6, Gt has a local maximum concentration between stripes 1 and 2, and then between stripes

6 and 7 and Hb increases its concentrations after stripe 7. This means that, although we abandon

the hypothesis of different groups of promoters and repressors, the assumption of global activation or

repression by the maternal products and a localized repression by the gap genes seems promising.

2.4.1 Implementation

Following the mathematical model for protein production in 2.3, we consider that each pair-rule

gene is positively regulated - see mechanism (2.6) - by a set of n gap or maternal genes, A1(x), . . . , Ai(x),

. . . , An(x), that have too a distribution over the embryo length x; moreover, we consider that the gene
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is also negatively regulated - see mechanism (2.8) - by a set of m gap or maternal genes, R1, . . . , Rm.

The set of activators can be replaced by an effective activator, A(x) = A1(x)+· · ·+Ai(x)+· · ·+An(x),

and the set of activators can be replaced by an effective repressor, R(x) = R1(x) + · · ·+Ri(x) + · · ·+

Rn(x). As Eve and Ftz proteins disapear later in development, we consider their degradation; on

the contrary, since gap and maternal proteins are approximately constant in time, we do not consider

the degradation neither of the effective activator nor of the effective repressor. This way, our global

mechanism for the production of a pair-rule protein is going to be:

G + A
l1
l–1

GA

GA
kp

GA + P

G + R
k1

k–1
GR

P δ

(2.10)

According to the law of mass action (2.2), the time evolution equations are going to be:

A′(t) = l−1GA(t)− l1A(t)G(t)

R′(t) = k−1GR(t)− k1G(t)R(t)

P ′(t) = kpGA(t)− δP (t)

G′A(t) = −l−1G
′
A(t) + l1A(t)G(t)

G′R(t) = −k−1GR(t) + k1G(t)R(t)

G′(t) = k−1GR(t) + l−1GA(t)−A(t)G(t)l1 −G(t)R(t)k1,

(2.11)

with the conservation equations, according to (2.3):

A(t)−G(t) +R(t) = A0 −G0 +R0

−A(t) +G(t) +GR(t) = −A0 +G0

A(t) +GA(t) = A0,

(2.12)

where R0 = R(t = 0), A0 = A(t = 0) and G0 = G(t = 0). We also consider that the transcription

starts at t = 0, so that GR(t = 0) = GA(t = 0) = P (t = 0) = 0. For the positive and negative

regulations, we should have l1 � l−1 and k1 � k−1. We start by considering the evolution in time

only, that is, the activator, the repressor and the gene initial concentration have a uniform distribution

is space. The numerical solution of the equations for A(t), R(t) and P (t) until steady-state (t ≈ 50) is

reached is depicted in figure 2.5.
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Figure 2.5: Evolution of the concentrations of the activator, repressor and protein, for R0 = 2.0, A0 = 1.0 and
G0 = 1.0, according to (2.11) and (2.12).

We then investigate how a pattern with a spatial distribution is altered by the action of an acti-

vator and a repressor. We propose an activator and a repressor with the initial spatial distribution

of A(x, 0) = 0.5 + 0.1 exp− (x−0.8)2

0.001 and R(x, 0) = 0.5 + 0.3 exp− (x−0.5)2

0.001 (respectively), which are

depicted in figure 2.6.
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Figure 2.6: Proposal of an initial spatial distribution of the activator and the repressor. Code at
model_activators_repressors.nb.

The steady-state distribution in space of the protein, at t = 50, can be seen in figure 2.7.
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Figure 2.7: Solution of the steady state (t = 50) distribution of the protein for G0 = 1.0, in the presence of an
activator and a repressor with the initial distribution seen in figure 2.6, according to (2.11) and (2.12). Code at
model_activators_repressors.nb.

The results are what we intuitively predict: the protein has an increasing of concentration at the

position of the activator, and a decreasing of concentration at the position of the repressor.

2.4.2 Results

We use this model to fit the normalized Eve pattern at cycle 14A8, with the maternal proteins Bcd

and Cad, plus the gap genes Kr, Kni, Gt, Hb and Tll as possible activators or repressors, with their

profiles at cycle 14A1. For this fit, the rate constants of activation and repression will be proportional to

a random number between 0 and 10. We started by making 500 combinations of this kind, subtracted

the intercept, normalized the result and chose the combination which gave the best χ2. If, for a given

protein, its repressing rate was at least twice its activation rate at that combination, we concluded it

was a repressor and, in the next set of random rate constants, that protein had its activation rate set

at 0 (and vice-versa for an activator); if not, it would have a random rate constant between 0 and 10

once more. Each time we set a protein as an activator or repressor, we iterated the procedure twice

the times we had before, and we stopped iterating when all proteins were fixed as either repressors

or activators. The results are shown in figure 2.8.
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Figure 2.8: The best fit was obtained with χ2 = 18.2 after 8000 loops using 112 points, with the rate constants
of table 2.1. Code at model_activators_repressors_14A1_v2.nb.

Bcd Cad Kr Kni Gt Hb Tll
Activation 2.6 4.4 3.2
Repression 8.9 1.2 6.8 2.1

Table 2.1: Activating and repressing proteins for the best fit, depicted in figure 2.8, and their respective rate
constants ratios.

This way, we conclude that, although we perceive some regularities between the gap and the

maternal proteins pattern, as well as correspondences between possible regions for activation and

repression of the pair-rule stripes, these proteins’ profiles are not sufficient to produce such a high

frequency spatial pattern.
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3.1 Reaction-diffusion mechanisms

Alan Turing proposed in his seminal work that morphogenesis, which is the ensemble of processes

that determines form, shape and patterns in organisms, is the result of a dynamical system that

considers not only reaction but also diffusion [32].

We begin with an homogeneous system with the presence of irregularities, including statistical

fluctuations in the number of molecules undergoing those various reactions, which are going to break

this homogeneity in the presence of the appropriate kind of instability. This instability is going to

trigger reaction and diffusion mechanisms, that may result in a steady-state patterns. Without the

presence of these triggering instabilities no pattern is formed. Moreover, the pattern that is formed in

the steady state may depend on form of the irregularities that prompted it. In what concerns diffusion,

this reaction-diffusion system typically produces stable patterns when the two species diffuse at very

different rates, nonetheless, systems with species diffusing at the same rate have been found too [33].

Here, we should note that the innovative aspect in this model is that diffusion is presented with an

essential role in pattern formation, whereas it is typically thought to have a homogenizing effect as,

for example, the dispersion of as ink droplet in water. A scheme of this process is presented in figure

3.1.

Figure 3.1: Example and illustration of the emergence of a Turing pattern. A: The system is homogeneous at
first but there are some irregularities. B: Two species of this system are going to react with each other and diffuse
as well, forming a spatial profile. C: The 2D distribution of the species and the 1D Turing pattern result in the
formation of spots. Scheme adapted from [34].

3.1.1 Model for pattern formation

We shall then consider a system of n species, each jth species Aj with a diffusion coefficient Dj :

the evolution of a species concentration is a result of a source term due to the reactions with all the

other substances plus a term concerning the diffusion, according to the Fick’s equation:

dAj
dt

= fj(A1, . . . , An) +Dj∆Aj , (3.1)

where ∆ =
(
∂2

∂x2
1

+ . . .+ ∂2

∂x2
k

)
is the k-dimensional Laplace operator. From now on, we will consider

a 1-dimensional system, i.e. k = 1. If the jth substance diffuses (that is, Dj > 0) we say that this

substance is a morphogene, form producer or evocator. If Dj = 0, we identify this species as a

non-diffusing substance [30].
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3.2 The Brusselator model

The Brusselator is a simple model able to produce Turing patterns with two species. It mimics an

autocatalytic process and has the following kinetic mechanism:

A
k1−−→ X

B + X
k2−−→ Y + D

2 X + Y
k3−−→ 3 X

X
k4−−→ E,

(3.2)

whereX is the autocatalytic species. If we apply the law of mass action (2.2), we obtain the differential

equations which will determine the reaction part of the reaction-diffusion system:

dX

dt
= k1A− k2BX + k3X

2Y − k4X

dY

dt
= k2BX − k3X

2Y

dA

dt
= −k1A

dB

dt
= −k2BX

dE

dt
= k4X

dD

dt
= k2BX.

(3.3)

According to (2.3), this system obeys to the conservation laws:

B(t) +D(t) = B(0) +D(0)

X(t) + Y (t) +A(t) + E(t) = X(0) + Y (0) +A(0) + E(0).
(3.4)

If we now assume that A and B are constants, we obtain the following one-dimensional reaction-

diffusion system for species X and Y , taking the first two equations from (3.3) as the reaction terms:

∂X(x, t)

∂t
= k1A− k2BX(x, t) + k3X

2(x, t)Y − k4X(x, t) +DX
∂2X(x, t)

∂x2

∂Y (x, t)

∂t
= k2BX(x, t)− k3X(x, t)2Y (x, t) +DY

∂2Y (x, t)

∂x2
,

(3.5)

where DX and DY are the diffusion coefficients for species X and Y respectively.

The local component of the vector field associated to the equation (3.5) has one fixed point at

(X0, Y0) = (Ak1
k4
, BA

k2k4
k1k3

) and a supercritical Hopf bifurcation for B = BHB = k4
k3

+ A2 k
2
1k3
k2k24

, so that if

B < BHB the fixed point is a stable focus, and if B > BHB the fixed point is an unstable focus.

For the numerical integration of the system, we use Euler’s method for time evolution and finite

differences for space evolution - for the latter, we consider Neumann boundary conditions (zero flux).

We used dt = 0.001 for Euler’s method step and dx =
√

max(DX ,DY )
γ dt for the finite differences, with

γ = 1
6 , since this relationship is reported to lead to optimal convergence to the solution of the system

[35]. In figure 3.2, we present the bifurcation diagram of the solutions of the Brusselator model (3.5),
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for the parameter values A = 2, k1 = k2 = k3 = k4 = 1 and D2 = 1: Turing patterns, at the dark grey

region, only appear when we have D1 > D2 and arise on both sides of the Hopf bifurcation.

Figure 3.2: Bifurcation diagram of the solutions of the Brusselator model (3.5), for the parameter values A = 2,
k1 = k2 = k3 = k4 = 1 and D2 = 1, in a one-dimensional domain of length S = 19.365. Taken from figure 2 of
[30].

In figure 3.3, we reproduce the Turing pattern obtained at P of diagram 3.2, that is, with the

parameters

A = 2.0

B = 15.0

DX = 0.1

DY = 1.0

k1 = k2 = k3 = k4 = 1,

(3.6)

and, for this arrangement of parameters, the local system (3.3) has one unstable fixed point and one

limit cycle in the phase space. We chose to simulate the system with M = 250 lattice sites, thus

the length of the spatial domain is M
√

∆t
γ max(DX , DY ) ≈ 19.52; the simulation was run until the

concentrations of both species in all lattice sites were less that 0.001% different that its previous value

(time), and this was our criterion to detect the steady-state while taking into account small numerical

deviations. Moreover, for the instabilities that are going to trigger the reaction-diffusion mechanisms

we chose an initial profile with the values at the fixed point plus a random profile δ(x) with values

between 0.0 and 0.5, X(0, x) = k1A
k4

+ δ(x) and Y (0, x) = k2 k4B
Ak1 k3 + δ(x)[30].
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Figure 3.3: Turing pattern of the Brusselator reaction-diffusion system (3.5) with parameters (3.6). Code at
brusselator_cycle14_copy2.py.

3.3 Reaction-diffusion model

3.3.1 Development of the initial pattern

Since it was not possible to form a pair-rule’s pattern via local activation or repression by the gap

and maternal genes, we now propose that these early stage proteins are only responsible for the

setting of the initial pattern, which then develops stripes via a Turing mechanism. This hypothesis has

already been proposed in [36] and [37]. Moreover, [6] also suggests that these two pair-rule genes

are subject to positive auto-regulation control, and [38] and [39] suggest that the stripe-like activation

of genes is a result of an autocatalytic feedback, which is experimentally supported as we mentioned

in section 1.2.2 of chapter 1.

For the setting of the initial pattern, and following the method described in 2.4.2, we fitted Eve

pattern at cycle 14A1: the result is shown in figure 3.4 and the reaction constants in table 3.1.
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Figure 3.4: The best fit was obtained with χ2 = 20.7 after 8000 loops, using 112 points, with the rate constants
of table 3.1. The experimental profile is normalized. Code at model_activators_repressors_14A1_RD.nb.
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Bcd Cad Kr Kni Gt Hb Tll
Activation 0.9 0.3
Repression 9.4 4.3 0.4 0.8 6.4

Table 3.1: Activating and repressing proteins for the best fit, depicted in figure 3.4, and their respective rate
constant ratios.

We have obtained the anterior protein Bcd and the posterior proteins Cad and Tll as major repres-

sors, whereas the other gap genes have a residual influence on this pattern formation, and we also

observe an odd concavity at x ≈ 0.6, caused by Tll repression. The fact that Bcd and the majoriity

of gap genes are repressors meets very well the experiments with mutations described in chapter

1.2, where the mutations of these caused and enlargement of Eve stripes. The exceptions are the

gap genes Gt and Hb, which are here identified as activators instead of repressors. We got a very

good fit for the anterior part of the profile, until x ≈ 0.3, where the concentration has its maximum,

as the intersept and the second derivatives (positive at first and negative at last) very closely match

the experimental data. To further analyze the strange concavity at x ≈ 0.6, we check how the pattern

of Eve at 14A1 would be, in general terms, with Bcd repression only - figure 3.5 - and then with the

repressors Bcd and Cad - figure 3.6 .
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Figure 3.5: Test profile ("fit Eve 14A1") if we had a constant activator and Bcd as a repressor. Code at
model_activators_repressors_14A1_RD.nb.

Out[812]=

0.0 0.2 0.4 0.6 0.8 1.0
Embryo length (n.u.)

0.2

0.4

0.6

0.8

1.0
Concentration (n.u.)

fit Eve 14A1

Bcd 14A1

Cad 14A1

Eve 14A1

Figure 3.6: Test profile ("fit Eve 14A1") if we had a constant activator plus Bcd and Cad as repressors, with the
same reaction constants. Code at model_activators_repressors_14A1_RD.nb.

From fit 3.5, we see that Bcd is (almost) sufficient to produce the anterior part of the profile alone,

except for the very anterior end x < 0.1. If we add Cad as a repressor, see figure 3.6, our profile

meets the experimental one very well until x ≈ 0.6. In fact, this test profile diverges immensly at the

edges (x < 0.1 and x > 0.9), because of a sudden change in the derivative of the repressors Bcd and
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Cad, where their concentrations start decreasily abruptly. This is a systematic error we will have in

these regions, and it is due to a shadow present in all photographs from which we extracted the data

- see figure 3.7.

Figure 3.7: Example of a FlyEx database file - notice the shadow at the embryo’s border.

Thereafter, we fitted Ftz pattern at cycle 14A1: the result is shown in figure 3.8 and the reaction

constants in table 3.2.
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Figure 3.8: The best fit was obtained with χ2 = 1.7 after 16000 loops using 112 points, with the rate constants
of table 3.2.The experimental profile is normalized. Code at model_activators_repressors_14A1_RD.nb

Bcd Cad Kr Kni Gt Hb Tll
Activation 9.1 0.5 3.5 6.7
Repression 9.2 6.0 5.9

Table 3.2: Activating and repressing proteins for the best fit, depicted in figure 3.8, and their respective rate
constant ratios.

In what concerns Ftz, our fit very closely matches the experimental data, and we once again

obtained Bcd as a major repressor, and Cad is now an activator instead. Moreover, the gap genes

Kni, Gt, Hb and Tll no longer have a residual influence on the profile initiation. Nonetheless, the fit

does not reproduce the small irregularities in central part: this suggests that, even at this early stage,

the proteins Eve and Ftz have already started interacting.

In summary, these eary stage fits improved very much when compared to the last stage fit at figure

2.8, which means our reaction-diffusion hypothesis may have a closer match to reality.

3.3.2 Development of stripes

As the initial pattern of Eve and Ftz are already established, we propose that these two proteins

start interacting with each other, using the Brusselator (3.5) as a template for this reaction, where the

two species that feed the system, A and B, are going to be a combination of maternal and gap genes.
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Since this combination alone is going to set the initial pattern for Eve and Ftz, we are the going to use

A(x) = Eve14A1 and B(x) = Ftz14A1. We tested all the combinations of 0.01, 0.1 and 1.0 for the

diffusion coefficients of species X (DX ) and Y (DY ), and we obtained three different patterns, which

are depicted in figures 3.9, 3.10 and 3.11.

Figure 3.9: Steady-state pattern of (3.5) using
A(x) = Eve14A1 and B(x) = Ftz14A1. This pat-
tern was obtained for DY = 0.01, (DX , DY ) =
(0.1, 0.1),(1.0, 0.1),(1.0, 1.0).

Figure 3.10: Steady-state pattern of (3.5) using
A(x) = Eve14A1 and B(x) = Ftz14A1. This pattern
was obtained for (DX , DY )=(0.01, 0.1),(0.1, 1.0).

Figure 3.11: Steady-state pattern of (3.5) using
A(x) = Eve14A1 and B(x) = Ftz14A1. This pat-
tern was obtained for (DX , DY )=(0.01, 1.0). Code at
brusselator_XY_eve14A1_ftz14A1.py.

This way, we conclude that we only obtain a Turing pattern (3.10 and 3.11) when DY is 10 or 100

bigger than DX , which was expected since in the majority of Turing patterns one diffusion coefficient

is way larger than the other. More specifically, if we fix DY = 1.0, there will be Turing patterns for (at

least) DX ∈ [0.01, 0.1], where DX = 0.01 gives 6 stripes (figure 3.10) and DX = 0.1 gives 12 (figure

3.11), and the number of stripes for other intermediary DX can be checked in table 3.3.
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DX(×10−2) 1 2 3 4 5 6 7 8 9 10
Nr. stripes 12 10 8 7 7 7 6 6 6 6

Table 3.3: Number of stripes of the simulated pattern as a function of DX , for DY = 1.0.

Therefore, we find a 7 stripe pattern for DX ∈ [0.04DY , 0.06DY ], and the pattern for these is

depicted in figure 3.13. In order to explore if this is a strict or a reasonable range for the diffusion

coefficient, further experiments to measure this constant are necessary. In figure 3.12 we recall Eve

and Ftz steady-state pattern, and in figure 3.14 we show the same pattern as in 3.12 but with Y

pattern at a more similar scale to X for comparison.

Figure 3.12: Eve and Ftz protein pat-
terns at cycle 14A8. Code at brussela-
tor_XY_eve14A1_ftz14A1_plot.py

Figure 3.13: Steady-state pattern of (3.5)
using A(x)=Eve14A1, B(x)=Ftz14A1 and
(DX , DY )=(0.05, 1.00). Code at brussela-
tor_XY_eve14A1_ftz14A1.py

Figure 3.14: Same as figure 3.13, but with pattern of
Y at a different scale for better comparison.

For the identification with the time evolution of figure 1.3, in figures 3.15 and 3.16 we show eight

frames of the integration of the system for which the steady-state is depicted in figure 3.13, sepa-

rated in equal time intervals. The first four stages match quite closely the experimental data: the

maximum concentration increases from 1 to 2 and is constant from that time onwards, and the first
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stripe projections appear in stage 2 in both experimental data and simulations. In the pattern which

derives from the Brusselator model, these projections begin to elongate, forming stripes, like what

happens in the Eve evolution. This way, we conclude that a model that considers reaction-diffusion,

with auto-catalysis and interactions for the two species, suits the biological formation of Eve stripes.

We also supposed that the species Y with which X interacts and forms a Turing patterns would

be the pair-rule complementary Ftz. Nonetheless, the Y concentration pattern at cycle 14A8 in figure

3.13 does not exactly match the steady-state pattern of Ftz (see figure 3.12): although both patterns

have the same maximums and minimums (that is, both are complementary with Eve or X), their

second derivatives have opposite signs in the striped region and, in the side regions without the

pattern (for embryo length ∼< 5.0 and ∼> 17.5), Y concentration decreases towards the center,

while Ftz increases towards the center. This means that the interaction term in the Brusselator model

±X2Y does not describe the pair-rule interaction, and a correct identification of the dynamical system

is required. Furthermore, this interaction is essential to form both species’ stripes, and it was observed

experimentally that Eve and Ftz can form their patterns without each other, which means that these

two proteins may interact with other pair-rules.
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Figure 3.15: Normalized oncentration through normalized embryo length. Eve experimental patterns for cycles 14A1, 14A2, 14A3 and 14A4 (top figures) and comparison with
four initial frames from the numerical intergation of the Brusselator model (3.5) (bottom figures), using A(x)=Eve14A1, B(x)=Ftz14A1 and (DX , DY ) = (0.05, 1.00). Code at
brusselator_XY_eve14A1_ftz14A1_frames.py and scheme at frames_simulation_data.pptx.
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Figure 3.16: Normalized concentration through normalized embryo length. Eve experimental patterns for cycles 14A5, 14A6, 14A7 and 14A8 (top figures) and comparison with
four final frames from the numerical intergation of the Brusselator model (3.5) (bottom figures), using A(x)=Eve14A1, B(x)=Ftz14A1 and (DX , DY ) = (0.05, 1.00).
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3.3.3 Segment-polarity stripes

We also propose a similar mechanism for the formation of the segment-polarity stripes. These are

the last genes to be expressed in the Drosophila embryo, and their establishment occurs during the

late cellular blastoderm stage (recall scheme 1.6), such that their pattern should be determined by

the pair-rule proteins, and they have twice the number of stripes (fourteen) as these (seven). Studies

have shown that one of these segment polarity, en, is activated by both Eve and Ftz, whereas another

segment-polarity protein that develops at its side, wg, is repressed by the same pair-rule [7]. These

two proteins are reported to react with each other and diffuse [40], what is also consistent with the

Turing pattern formation mechanism. Moreover, in Eve and Ftz embryo mutants, en and wg have

few and broader stripes than in wild type, which tells us that these pair-rule have an important role in

these segment-polarity setting [7].

Analogously to what we did with the development of the pair-rule, we propose that these initialize

the segment polarity pattern, which then evolves into stripes via a reaction-diffusion mechanism. With

the same model for transcription and translation we used for the initiation of Eve in section 2.4.1, we

present in figure 3.17 a protein (at green) which was activated by Eve and Ftz, in equal proportions,

and another proteins (at red) which was repressed by the same pair-rule. Accordingly, these may

mimic the initial pattern of wg and en respectively.
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Figure 3.17: Possible initial pattern for en in red (repressed by Eve and Ftz) and for wg in green (activated by
same proteins). Code at en_wg_init.nb.

For the reaction-diffusion part which is going to refine the stripes, we use the Brusselator as a

template model once again plus A(x) = wg and B(x) = en. We tested all the combinations of 0.01,

0.1 and 1.0 for the diffusion coefficients DX and DY , and we obtained three different patterns, which

are depicted in figures 3.18, 3.19 and 3.20.
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Figure 3.18: Steady-state pattern of (3.5) using
A(x) = wg(simulation) and B(x) = en(simulation).
This profile was obtained for DX = 1.0,
(DX , DY )=(0.1, 0.1), (0.1, 0.01) and (0.01, 0.01).

Figure 3.19: Steady-state pattern of (3.5) using
A(x) = wg(simulation) and B(x) = en(simulation).
This profile was obtained for (DX , DY ) = (0.1, 1.0)
and (0.01, 0.1).

Figure 3.20: Steady-state pattern of (3.5) using
A(x) = wg(simulation) and B(x) = en(simulation).
This profile was obtained for (DX , DY ) = (0.01, 1.0).
Code at brusselator_cycle14_original.py

As it happened before with the pair-rule, we obtained a Turing pattern when DY is 10 or 100 bigger

than DX . For this reason, we looked for Turing patterns once more fixing DY = 1.0 and searched in

the range DX ∈ [0.01, 0.1], and we could only find 14 stripes for DX = 0.03, for which steady-state

profile is depicted in figure 3.21. We once more suggest that this protein’s diffusion coefficient should

be measured in order to evaluate this result.
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Figure 3.21: Steady-state pattern of (3.5) using A(x) =
wg(simulation) and B(x) = en(simulation). This profile was ob-
tained for (DX , DY ) = (0.03, 1.0).

We should note that, in en- embryos, wg shows a broader ectopic transcription (vice-versa for

en and wg- mutants), nonetheless, the same results are obtained for mutant embryos of nkd an ptc,

which means that the refinement and maintenance processes does not happen only between these

two, just like we proposed for the Eve and Ftz development [4].
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4
Identification of the dynamical

system
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4.1 The SINDy algorithm

In order to understand a system behavior and regulation, accurately predict its outcomes and

generalize its basic mechanisms for similar structures, it is essential to comprehend the system’s

fundamental dynamical relationships. In the present chapter, we aim to identify the system which

regulates the pair-rule formation by taking advantage of an algorithm that gives a sparse identification

of nonlinear dynamical systems - this is the SINDy algorithm, proposed by S. L. Brunton and col-

leagues [41]. In their work, the authors combine sparsity-promoting techniques and machine learning

with nonlinear dynamical systems to discover governing equations from input data, where the only

assumption made on the system is that its equations are sparse in the number of terms, which is rea-

sonable to expect for the great majority of physical systems. The algorithm, which we now proceed

to detail, provides candidate parsimonious models that balance accuracy with complexity, therefore

avoiding overfitting.

4.1.1 Implementation

To construct this method we start by considering a dynamical system of the form

d

dt
x(t) = f(x(t)), (4.1)

where x(t) ∈ Rn = [x1(t)x2(t) . . . xn(t)]
T is the state of the system at time t and f(x(t)) are the

dynamic equations of the system. Thereafter, we collect a series of data at m time instances in order

to construct the matrix X ∈ Rm×n:

X =


xT (t1)
xT (t2)

...
xT (tm)

 =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)

 (4.2)

and calculate the numerical derivatives in the matrix

Ẋ =


ẋT (t1)

ẋT (t2)
...

ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 . (4.3)

Since we aim to construct a nonlinear dynamical system for the model, we choose a set of p

candidate functions, that consist in linear and nonlinear combinations of the data x(t), in which are

the few terms that will give the dynamical regime of the system. If, for instance, the nonlinear candi-

date functions we choose are x2
1(t), . . . , x2

n(t) and cos(x1(t)), . . . , cos(xn(t)), we then shall construct a

Θ(X) ∈ Rm×p with the candidate functions at the several m time instances:

Θ(X) =


x2

1(t1) . . . x2
n(t1) cos(x1(t1)) . . . cos(xn(t1))

x2
1(t2) . . . x2

n(t2) cos(x1(t2)) . . . cos(xn(t2))
...

...
...

...
. . .

...
x2

1(tm) . . . x2
n(tm) cos(x1(tm)) . . . cos(xn(tm))

 . (4.4)
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This way, our candidate dynamical system, with all possible (within the chosen set) functions, is going

to be given by Ẋ = Θ(X) but, since, only a few functions are going to be active in our system, we need

to determine the sparse matrix of coefficients Ξ ∈ Rp×n, so that the real dynamical system is going to

be a solution of:

Ẋ = Θ(X)Ξ. (4.5)

Alternatively, we can also compute the second derivative of X in (4.2), so that the input data is solution

of the system [41]:

Ẍ = Θ(X)Ξ. (4.6)

Hence, the key approach in this model is that it enables us to fit nonlinear functions through a linear

fit.

4.1.1.A Determining the sparse matrix Ξ and sparsification parameter λ

We now proceed to explain how the Ξ matrix is determined. Firstly, we calculate Ξ with the method

of least squares - in practice, we compute Ξ = Θ+(X)Ẍ, where Θ+(X) is the Moore-Penrose inverse,

commonly refered as pseudoinverse. Then, we threshold all Ξ coefficients that are smaller then a

chosen sparsification parameter λ. Once again, we obtain another least-squares solution for Ξ onto

the remaining non-zero indices - this procedure is continued until the coefficients converge.

Figure 4.1: Example representing the sequential thresholding method for determining Ξ.

Moreover, the authors of [41] propose to determine the parameter λ as the one which represents

a compromise in both accuracy and complexity (i.e., number of terms in the equations). This way, λ

should be at the Pareto front of these two quantities.

4.2 Identification of the Brusselator steady-state Turing pattern

The SINDy model is reported to be effiecient to determine the dynamical system of the damped

oscillator, of the Lorenz system and of the Navier-Stokes equations. As benchmarking, we test if

this algorithm is able to identify the equations for the steady-state Turing pattern of the Brusselator

model, depicted in figure 3.3. Since this pattern is achieved at a steady-state, the solution verifies a
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one-dimensional system according to (3.5):

d2X(x)

dx2
= − 1

DX

(
k1A− k2BX(x) + k3X

2(x)Y − k4X(x)
)

∂2Y (x)

∂x2
= − 1

DY

(
k2BX(x)− k3X(x)2Y (x)

)
.

(4.7)

Choosing the same parameters as before (3.6), the system in these equations reads:

d2X(x, t)

dx2
= −20.0 + 160.0X(x)− 10.0X2(x)Y (x)

d2Y (x)

dx2
= −15.0X(x) +X2(x)Y (x).

(4.8)

We now import the data of the steady-state pattern into the SINDy algorithm in order to see how it

detects the linear and non-linear functions of this system. Firstly, we take the second derivatives for

the altered SINDy model, so that we apply the proposal (4.6): taking into account the Neumann (zero

flux) boundary conditions, we use central derivatives for the input of SINDy equation (4.6). We used

as candidate functions combinations until 4th order of X and Y . Running the algorithm for several

values and orders of magnitude of the cut-off parameter λ, we found that we could only achieve a

convergence to the solution for one species at a time.

In what concerns species X, if we compare the second derivatives computed with the SINDy

output functions - see table 4.1 - and the ones computed directed from the data, we obtain a fit quality

of χ2 = 0.011. Here we note that we cannot compare directly the data computed by the SINDy model

with the original data because the evolution of the system depends on the initial profile, therefore it

cannot be integrated. The values in table 4.1 were obtained for a range of sparsification parameters,

which were λ ∈ [1.2, 6.7].

λ ∈ [1.2, 6.7], χ2
X = 0.011

X X - SINDy
1 −20.0000 −19.9997
X 160.0000 159.9983
X2Y −10.0000 −9.9999

Table 4.1: SINDy functions identification for the species X equation (4.12). All the other terms are identified as
0.0.

Nevertheless, as we mentioned previously, in order to obtain functions for X that would resemble

very much the original ones, we obtained a very distant prediction for Y . This comparison, as well as

the respective fit qualities, is made in table 4.3.
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λ ∈ [1.2, 2.8] , χ2
Y = 0.112

Y - SINDy Y
1 −643.7 0.0
X 14.7 −15.0
Y 538.9 0.0
X2 0.0 0.0
XY 7.1 0.0
Y 2 −149.1 0.0
X3 0.0 0.0
X2Y 0.0 1.0
XY 2 −5.1 0.0
Y 3 13.7 0.0
X4 0.0 0.0
X3Y 0.0 0.0
X2Y 2 0.0 0.0
XY 3 0.0 0.0
Y 4 0.0 0.0

λ ∈ [2.9, 3.5] , χ2
Y = 0.145

Y - SINDy Y
1 160.1 0.0
X −19.2 −15.0
Y −82.3 0.0
X2 0.0 0.0
XY 22.9 0.0
Y 2 10.8 0.0
X3 0.0 0.0
X2Y 0.0 1.0
XY 2 −7.2 0.0
Y 3 0.0 0.0
X4 0.0 0.0
X3Y 0.0 0.0
X2Y 2 0.0 0.0
XY 3 0.0 0.0
Y 4 0.0 0.0

λ ∈ [3.6, 6.7] , χ2
Y = 4.511

Y - SINDy Y
1 −546.0 0.0
X 33.6 −15.0
Y 277.0 0.0
X2 0.0 0.0
XY −8.3 0.0
Y 2 −35.2 0.0
X3 0.0 0.0
X2Y 0.0 1.0
XY 2 0.0 0.0
Y 3 0.0 0.0
X4 0.0 0.0
X3Y 0.0 0.0
X2Y 2 0.0 0.0
XY 3 0.0 0.0
Y 4 0.0 0.0

Table 4.2: SINDy functions identification for the species Y equation (4.12) when X is correctly identified.

In this model, we had to compromise Y results in order to obtain a good prediction for X terms:

we attain a good prediction for the latter species for a minimum of λ = 1.2, which is bigger than one

of the parameters in Y system, 1.0.

In other respects, the good values for Y were obtained when λ ∈ [0.1, 0.6], and these are detailed

in table 4.3.

λ ∈ [0.1, 0.6], χ2
Y = 2.8× 10−6

Y Y - SINDy
X −15.0000 −15.0000
X2Y 1.0000 1.0000

Table 4.3: SINDy functions identification for the species Y equation (4.12).

In this λ range, the predicted terms for X are not accurate, just like it happened in the opposite

situation. The description of the terms for X in these λ range is made in table 4.4.

λ ∈ [0.1, 0.6] , χ2
Y = 0.010

X - SINDy X
1 −4772.9 −20.0
X 2053.0 160.0
Y 4773.6 0.0
X2 −0131.3 0.0
XY −1679.2 0.0
Y 2 −1790.0 0.0
X3 2.5 0.0
X2Y 69.0 −10.0
XY 2 502.1 0.0
Y 3 296.5 0.0
X4 0.0 0.0
X3Y −0.7 0.0
X2Y 2 −12.0 0.0
XY 3 −50.5 0.0
Y 4 −18.3 0.0

Table 4.4: SINDy functions identification for the species X equation (4.12) when Y is correctly identified.
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In summary, we obtained a correct prediction for the X species system when λ ∈ [1.2, 6.7] and for

Y species when λ ∈ [0.1, 0.6], and we recall that we had to fit each species separately, since each

time the algorithm converged for one of them the system identification was rather poor for the other.

In the these ranges, the algorithm was quite successful in finding the equations of the dynamical sys-

tem. In all cases, the second derivatives from the algorithm visually matched the second derivatives

calculated directly from the data, and this is shown in figure 4.2.
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Figure 4.2: Data plot of the second derivatives computed with the SINDy output functions and the ones computed
directly from the data for the steady-state of the system (4.12). Code at Brusselator_benchmarking_1.m.

We also verified if the first fit to the data (that is, the Moore-Penrose pseudoinverse when λ = 0)

- see table 4.5 - was able to produce Turing patterns. It was not: setting an initial random profile

for both species, we tested all combinations for diffusion coefficients 1.0, 0.1 and 0.01; in all these

arrangements, occurred a numeric overflow almost immediately.

χ2
X = 8.471× 10−6, χ2

Y = 8.159× 10−6

X Y
1 −5.00 0.05
X 2.17 0.03
Y 4.99 0.05
X2 −0.17 0.00
XY −1.79 0.01
Y 2 −1.87 0.02
X3 0.01 0.00
X2Y 0.09 0.00
XY 2 −0.54 0.00
Y 3 0.31 0.00
X4 −0.00 0.00
X3Y −0.00 0.00
X2Y 2 −0.02 0.00
XY 3 −0.05 0.00
Y 4 −0.02 0.00

χ2
X = 1.092× 10−5, χ2

Y = 1.007× 10−5

Y - SINDy Y
1 −344.58 7.30
X 225.00 −16.89
Y 240.11 −5.38
X2 −2.94 0.10
XY −41.31 1.20
Y 2 −59.00 1.32
X3 0.03 −0.00
X2Y −8.96 0.97
XY 2 6.86 −0.20
Y 3 4.80 −0.17

Table 4.5: Moore-Penrose inverse of Ξ for the Brusselator system (4.12) with polynomials until 4th order (left)
and 3rd order (right).

4.2.1 Relationship between λ, sparsity and fit quality

As we have mentioned before, [41] proposes that the sparsifying parameter is the one which

represents a compromise between the sparsity of the system and the fit quality to the data. In order
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to study this hypothesis, and taking advantage of the fact that we know a priori what is the good λ for

the SINDy algorithm in this system, we analyze how both sparsity and fit quality evolve with λ. We

made this analysis until λ = 80, where all terms cancel: the results for species X are shown in figures

4.3 and 4.4, and in figures 4.5 and 4.6 for species Y . The points which correspond to λ values where

the prediction of the system is correct are plotted in dark green.
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Figure 4.3: Evolution of fit quality to X species with λ.
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Figure 4.4: Evolution of the number of terms of species
X, nX , with λ.
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Figure 4.5: Evolution of fit quality to Y species with λ.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

Figure 4.6: Evolution of the number of terms of
species Y , nY , with λ.

Hence, we did not find the correct solution as a compromise between sparsity and fit quality, as

it was proposed by the authors of the SINDy algorithm. This means that we need a more profound

study on how to choose the sparsification parameter that correctly identifies the dynamical system.

4.3 Brusselator as a template model

Since we prospect that the pair-rule pattern is the result of activations or repressions by the space-

dependent gap or maternal proteins, plus tandem regulation between them, we start by testing if the

SINDy algorithm is able to identify a forced system, that is, a system with functions that have a
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space dependency, as the proteins’ profiles are. To do that, we are going to test the pattern which is

produced by the Brusselator system when we use the parameters (3.6), but making A = Cad(x) and

B = Bcd(x) instead. This way, the equations we want to identify are

d2X(x)

dx2
= −10.0Bcd(x) + 10.0X(x)Cad(x) + 10.0X(x)2 − 10.0X(x)2Y (x)

d2Y (x)

dx2
= −X(x)Cad(x) +X(x)2Y (x),

(4.9)

and this system produces a steady-state profile which is depicted in figure 4.7.

Figure 4.7: Turing pattern of the Brusselator system (4.3) with damping terms. Code at brussela-
tor_A_Bcd_B_Cad.py.

Using this steady-state profile as input for the algorithm, and for candidate functions polynomials

until 3rd order of X(x), Y (x), Bcd(x) and Cad(x), there is an interval of λ ∈ [0.1, 0.9] where both

species’ equations are correctly identified, unlike what happened in the identification of the simple

Brusselator system. In table 4.6, the predicted terms are compared with the original ones, and the

plot of the second derivatives from the SINDy algorithm and the derivatives computed from the data

are depicted in figure 4.8.

λ ∈ [0.1, 0.9] , χ2
X = 0.008, χ2

Y = 2.276× 10−6

X X - SINDy Y Y - SINDy
X 10.000 9.996 0.000 0.000
Bcd −10.000 −9.996 0.000 0.000
X Cad 10.000 9.999 −1.000 −1.000
X2Y −10.000 −9.999 1.000 1.000

Table 4.6: SINDy functions identification for the species X and Y for the (4.3). All the other terms were correctly
identified as 0.000.
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Figure 4.8: Data plot of the second derivatives computed with the SINDy output functions and the ones computed
directly from the data for the steady-state of the system (4.3). Code at Brusselator_benchmarking_bcd_cad.m

Hence, we conclude that SINDy is able to identify the equations of a forced system. In order to

identify the interaction between the pair-rule, we now fit the central part of the pattern only, which for

simplicity we approximate with:

X(x) = 1 + sin(x)

Y (x) = 1 + sin(x− π),
(4.10)

and this regulation was identified by the algorithm as

d2X(x, t)

dx2
= 0.125(−X3 −X2Y +XY 2 + Y 3)

d2Y (x)

dx2
= 0.125(X3 +X2Y −XY 2 − Y 3),

(4.11)

when we used until 3rd combinations of X and Y as candidate functions. These equations can also

be written as

d2X(x, t)

dx2
= 0.125(Y 2 −X2)(X + Y )

d2Y (x)

dx2
= 0.125(X2 − Y 2)(X + Y ).

(4.12)

This system was identified in the interval λ ∈ [0.00, 0.15], with χX = χY = 0 and, for bigger values of

λ, all terms cancel, which means that in this particular case we do not need a criterion to balance fit

quality and sparsity. The comparison between the original second derivatives and the ones computed

from the identified system is shown in figure 4.9.
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Figure 4.9: Data plot of the second derivatives computed with the SINDy output functions and the ones computed
directly from the data for the steady-state of the system (4.3). Code at sin_and_cos.m.

Although the system’s terms are clearly identified, the reaction-diffusion equations diverged with

all combinations of 1.00, 0.1 and 0.01 for the diffusion coefficients, using constant profiles with noise

as initial conditions as before.

This means that, at least for some systems, the convergence may depend on more specific initial

profiles. Moreover, for further identification of the complete pair-rule pattern, other solutions that we

lose when we make the system reduction should also be studied, which can be done by using the

transient states.
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5.1 Conclusion

The genetic network of Drosophila is regulated in a cascade manner and the first two classes

of proteins, maternal and gap, have already been analytically modeled [22], considering activation

and repression interactions between the genes and proteins of the regulatory network, as well as the

diffusion of these proteins. Statistical relationships between the pattern of the gap genes and the

pattern of the pair-rule have also been studied, and a group of repressors and activators for each

stripe has been found. Nevertheless, it has not been proven that each stripe is regulated individually,

and it is physically more plausible that each protein is globally regulated by a group of repressors and

a group of activators. In this sense, a model with this assumption and that could predict the pair-rule

evolution and steady-state still misses.

In chapter 2 we reviewed the model presented in [27] which translates a genetic network of acti-

vation and repression mechanisms into protein gradients, and used it to fit the steady-state of Even-

skipped what would, in principle, enable us to find which proteins would be activators and which

proteins would be repressors. This fit was rather poor, and the resulting pattern was nowhere near

to produce a seven stripe pattern. For this reason, we concluded that local type reactions were not

sufficient to produce such regularities, and a more robust model would be necessary.

Accordingly, in chapter 3, we tested if the gap and maternal proteins can regulate the 14A1 pattern

of the pair-rule proteins Eve and Ftz, and this earlier stage fit was in a closer agreement with the

experimental data. We proposed that these initial patterns, as they were the combination of repressing

and activating proteins, were feeding the evolution of the pair-rule; moreover, we considered diffusion

and an interaction between them - which means that we proposed that the seven stripes are a Turing

pattern, developed via a reaction-diffusion mechanism. Based on the Brusselator, an extensively

studied reaction-diffusion system with Turing patterns for a relatively flexible range of parameters, and

using the initial patterns for A and B - the intermediary species of the Brusselator - we were able to

obtain steady-state and transient profiles which were in a very good agreement with the experimental

data. Different number of stripes were obtained for different values of the diffusion coefficients, and

seven stripes patterns were achieved when DX ∈ [0.04DY , 0.06DY ].

We also extended this approach for the segment-polarity proteins. The biological experiments

indicate that there is one segment-polarity, en, which is activated by both Eve and Ftz, and another

segment-polarity, wg, which is, in contrary, repressed by the same two pair-rule. Once more, be-

ginning with the reaction model for these regulations, we were able to outline the initial patterns for

these proteins. From these early patterns on, and considering the Brusselator system for the reaction-

diffusion mechanism, we were able to obtain the fourteen stripe pattern when DX = 0.03DY .

Finally, in chapter 4, we aimed to identify the dynamical system which regulates the interaction be-

tween the pair-rule or between the segment-polarity. To do this, we took advantage of the regression

algorithm SINDy which, from steady-state profiles, is able to identify the nonlinear functions that com-

pose the system, balancing fit quality and the system sparsity (i.e., avoiding overfitting). This algorithm

was able to correctly identify the Brusselator system as well as a modification with space-dependent
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functions, and the interaction terms for the pair-rules and segment-polarity were then successfully

identified. Nonetheless, this system diverged when integrated, for all combinations of 1.0, 0.1 and

0.01 for the diffusion coefficients.

5.1.1 Achievements

Here, we briefly summarize the major achievements of this work. Firstly, we showed that, despite

what is suggested in most literature, the local regulation via activation and repression by the earlier

proteins, gap and maternal, is not sufficient to produce a high frequency pattern as the seven stripes

pattern is. Moving to our second hypothesis of protein formation, the reaction-diffusion hypothesis,

we simulated the development and setting of the pair-rule pattern, as well as the segment-polarity

steady-state pattern, using as a template model a very established system for Turing patterns, the

Brusselator. Our simulations were in a very good agreement with the experimental data, as well as

with the regulatory mechanisms proposed in the literature. Using a regression algorithm for nonlin-

ear systems, the proper interaction terms which generate the central part of the pattern were also

identified, but the system was not integrated.

5.2 Future work

In order to make a deeper analysis of the results found, we suggest a series of experiments and

studies to be made in the future:

• The fit of the Ftz initial pattern was in a very good agreement with the experimental data, and a

group of repressors and activators was identified. Since the majority of biological experiments

concerning Ftz were made with pair-rule proteins, we suggest to observe the resulting pattern

of this protein with mutations in the maternal and gap, in order to see if the repressors and

activators were correctly identified. The identification of the Eve pattern was not as good as

the Ftz ’s, in part due to a shadow defect in the data collection, which we also suggest to be

corrected in future experiments.

• According to this reaction-diffusion hypothesis, the stripes are only formed when the two pair-

rule species interact with each other. Nonetheless, it is observed experimentally that a mutation

in Ftz does not affect substantially the pattern of Eve and vice-versa, which is not in complete

agreement with our model. Due to this, we suggest further experiments considering simultane-

ous mutations in several pair-rule, to observe if the interaction mechanisms happen not between

two species but between more, and this suggestion applies to the segment-polarity as well.

• To analyze if the proteins’ diffusion coefficients found by our model are realistic or not, these

constants need to be measured experimentally.

• We could not compare the evolution of our simulation with the transient profiles of the segment

polarity, and we suggest to analyze this data.
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• Although the regulatory terms for the pair-rule/segment-polarity were identified, the system did

not converge into a Turing pattern, therefore, the solution space of the algorithm, as well as their

dependence on the initial profile, need a more complete characterization. Ideally, if we had a

criterion to determine whether a reaction-diffusion system is able or not to produce Turing pat-

terns, this test could be immediately made on the SINDy solutions and no numerical integration

would be necessary.
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