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Abstract

New advancements in manufacturing methods such as 3D printing, allow the construction of novel
metallic foams suitable for the improvement of heat exchangers performance that outperform those
typically used. The Triply Periodic Minimal Surfaces (TPMS) are great candidates for the foam
structure because they separate the space into two different channels that continually interconnect with
a minimum surface area, promoting the minimum use of material. The present work deals with the
numerical simulations of 3D incompressible flow through periodic porous structures, consisting of cubic
cells based on the Schwarz-D (SD) and Schoen-Gyroid (G) topologies with multiple porosities between
60 and 100%. Simulation results are obtained covering a range of Reynolds numbers from laminar
steady flow (Darcy and moderate Forchheimer regime) to laminar unsteady flow (strong Forchheimer
regime). Multiple Representative Elementary Volume (REV) simulations in different positions were
conducted to validate calculations of macroscopic parameters for porous media models carried out
employing a unit periodic cubic cell (single REV). Transition region location to a laminar unsteady
regime, as a function of porosity, is obtained. A correlation for the Nusselt number is proposed for the
Gyroid surface in laminar steady flow. Finally, heat transfer, pumping power, and material efficiency
were compared with the usual case of the parallel flat-plate covering the laminar unsteady flow.
Keywords: porous media, heat exchanger, triply periodic minimal surface, CFD, laminar flow

1. Introduction

Heat exchangers are one of the vital types of equip-
ment used in various industries, including automo-
tive and aerospatial, oil and gas, power genera-
tion, refrigeration, among others. Because there
are many important applications, heat exchanger
research and development, it always has put effort
to achieve the best performance based on two ap-
proaches. The first one with the use of new fluids
like the nanofluids in order to increase the fluid ther-
mal conductivity. The second one is the approach
used in this work , which includes the study for
unique heat exchanger surfaces through heat trans-
fer enhancement may be achieved [4]. Triply pe-
riodic minimal surfaces (TPMSs) are great candi-
dates because they separate the space into two dif-
ferent channels that continually interconnect with a
minimum surface area, promoting the minimum use
of material with a high flow mix and can be studied
as a porous media [8].

The study of porous media started in the XIX
century with Darcy experimental approach to
studying beds of sand. Nevertheless, the study of
Darcy was limited by an upper limit of the validity

of the flow velocity [1]. Attempting to solve this
issue and determining a more extensive equation,
Forchheimer proposed adding a quadratic term
in the average velocity at high velocities as a
mechanism to improve Darcy’s expression [5]. Er-
gun [3] demonstrated the Forchheimer hypothesis
experimentally and expanded the equation with
the introduction of the hydraulic radius model.
Dybbs and Edwards [2] did a major experimental
study in porous media defining a Reynolds number
with a characteristic pore length and interstitial
velocity and were able to distinguish between four
different regimes in the Reynolds spectrum.

Figure 1: Shell and tube heat exchanger (Left); Gy-
roid heat exchanger (Right)
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A minimal surface is a surface that is locally area-
minimizing; that is, a small section has the lowest
possible area for a surface crossing the boundary of
that section. The first description of minimal sur-
faces started with Euler and Meusnier in the XVIII
century. The catenoid geometry discovered by the
former and the helicoid by the latter [9]. Especially
fascinating is that this kind of surface arises in nat-
ural structures such as soap films, bone tissue, and
butterfly wings. In 1885, Schwartz and Neovius, de-
scribed the first minimal surfaces that have a crys-
talline structure in the sense of repeating themselves
in three dimensions, in other words being triply pe-
riodic. The first Triply Periodic Minimal Surface
include the Schwartz-D (SD). In 1970, the Schoen-
Gyroid (G) - Figure 1 - , is obtained by an algorithm
derived by Schoen [11].

The advances in computational processing power,
that has been growing every year, allows for more
precise numerical simulations leading to a better
understanding of the physics behind the flow and
heat transfer in such geometries. For that reason,
Computational Fluid Dynamics (CFD) analysis is
the tool of this work. The main objective of this
work is to cover details of the pore-scale flow and
heat transfer through TPMS to quantify physical
parameters relevant for the design and performance
evaluation of this type of surface applied to heat
exchangers. The focus of the work can be divided
into the following steps: develop geometries from
mathematical well defined TPMS with various wall
thicknesses; study the influence of the REV on the
accuracy of the numerical estimations; estimation
of the permeability coefficients of TPMSs to use for
the prediction of transition region; develop a cor-
relation that covers the inertial and Darcian region
for various Prandtl and porosities; heat exchanger
design (heat transfer, pumping power, and material
compactness), and identification of optimal minimal
surfaces with focus on different flow regimes (cov-
ering laminar and unsteady flow regimes).

2. Background
2.1. Modeling transport in porous media
At a microscopic scale, the continuity, momentum
transport, and energy equations can be used if a
representative number of pores is considered. Ka-
viany [6] presented the Representative Elementary
Volume (REV) to obtain meaningful values and re-
lies on the condition that a change in volume in any
given position does not affect the averaged quan-
tity, and the REV size must be small enough to
avoid fluctuations on the averaged quantity due to
macroscopic heterogeneity’s - Figure 2.

For porous media, there is no consensus among
authors on either the velocity or characteristic
length for defining Reynolds number. Several au-
thors have modified Re for incorporating structural

Figure 2: REV (Left) ; REV definition (Right)

features to better characterize the flow inside the
medium. Due to a lack of consensus, it is diffi-
cult to choose a Re to compare and validate results.
Following the work of several authors [10, 2] the hy-
draulic diameter used in this work is defined by:

Dh =
4φ

asf
, (1)

According to Dybbs and Edwards [2] there are
four flow regimes based on the pore and hydraulic
diameter Reynolds number:

Rep,Dh
=
ρ〈u〉Dh

µ
, (2)

• Rep,Dh
< 1, Darcy or creeping regime - Lami-

nar steady,

• 1− 10 < Rep,Dh
< 150, moderate Forchheimer

(or inertial) regime - Laminar steady,

• 150 < Rep,Dh
< 300, strong Forchheimer

regime - Laminar unsteady,

• Rep,Dh
> 300, unsteady chaotic - Turbulent.

Henry Darcy in his experimental work with re-
spect to groundwater flow has great importance,
and his work led to the description of an experi-
mental law [1]: (

dp

dx

)
=

1

k1
µuDa, (3)

With the departure from the low velocities
regime, the inertial forces cannot be neglected.
Forchheimer [5] predicted that a non-linear term
would have to be added:(

dp

dx

)
=

1

k1
µuDa +

ρ

k2
u2Da, (4)

where k1 is Darcian permeability parameter, and k2
are referred to as non-Darcian permeability parame-
ter. With the Darcy-Forchheimer law, the complete
laminar regime is covered until Re = 300. Although
it is accepted that for steady-unsteady transition,
Retr is around 150, can deviate from this value de-
pending on the geometry, and the transition can be
gradual and not a well-defined point [12].
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2.2. Fully Developed Internal Flow
Fully developed flow refers to fluid flow in which
both the velocity profile and temperature profile are
fully developed (i.e., hydrodynamically and ther-
mally developed flow). In heat transfer, the tem-
perature is continuously changing with x, and it
would seem that a fully developed condition could
never be reached. A dimensionless form of the tem-
perature is given to overcome that:

∂

∂x

[
Ts(x)− T (x, y, z)

Ts(x)− Tm(x)

]
= 0 (5)

where Tm(x) is the temperature mass flow average
over the cross-section area, Ts is the solid tempera-
ture and T (x, y, z) is the temperature in a point.

The pressure drop needed to sustain an inter-
nal flow is essential, as it is directly related to
the pump or fan power requirements. It is con-
venient to work with the Moody friction factor,
which is a dimensionless parameter defined from the
Darcy–Weisbach equation:

f =
2

ρ

Dh

u2m

∆P

L
, (6)

The wall conductivity κs is high enough, com-
pared to the fluid conductivity, to be considered in-
finite according to Shah and London [13], and hence
the proper boundary condition to use in this work
is constant wall temperature.

Energy balance applied to the porous media can
be related to the difference in temperatures at the
REV inlet and outlet to arrive to the heat transfer
coefficient. Considering the flow inside the pore,
moving at a constant flow rate and convection heat
transfer occurring at the inner surface. The energy
balance over a entire REV is given by:

qconv = ṁcp(Tm,o − Tm,i) + qcond, (7)

where qcond can be neglected for a higher Pe (dis-
cussed later in Section 4.1).

The parallel flat plate geometry is a limiting ge-
ometry for the family of rectangular ducts and it
forms an upper bound for fluid friction and heat
transfer. Nusselt number is constant and given for
practical calculations and comparison:

NuDh,Tm
= 7.54, (8)

This value is calculated considering the temperature
mass flow averaged Tm. In this work, the Nusselt
is calculated with the temperature volume average
〈T 〉, for a proper comparison with the results ob-
tained for the TPMSs. For the parallel plate, the
Nu value is slightly different from the above:

NuDh,〈T 〉 = 9.26, (9)

3. Implementation
3.1. Geometry Creation
Minimal surface structures are designed using
MathMod software. The minimal surface represen-
tation of the Schwartz-D and Schoen-Gyroid are ap-
proximated by the following nodal equations:

G : cos(X)sin(Y ) + cos(Y )sin(Z) + cos(Z)sin(X) − n = 0 (10)

SD : cos(X)cos(Y )cos(z) − sin(X)sin(Y )sin(Z) − n = 0 (11)

where X = 2πx/L, Y = 2πy/L , and Z = 2πz/L.
The parameter L decides the length of the cube
in which the unit is located. The parameter n is
introduced to create a solid surface wall with a ho-
mogeneous thickness, the surface are offset in the
perpendicular direction to the surface normal vec-
tors. When n = 0 the surface divides the space
into two equal domains and approximates very well
a truly minimal surface.

The minimal surfaces obtained with the software
for a single unit cell are shown in Figure 3. The files
are saved in stl and then imported into the CAD
software SolidWorks to create the geometry of the
fluid domain (Figure 4). Finally, the fluid domain
is transferred onto the CFD software to perform the
simulation.

Figure 3: Surfaces created with MathMod ; Gyroid
(left), Schwartz-D (right).

3.2. Numerical Model
Star-CCM+® was the software used to create the
domain of the porous media and run the numerical
analysis.

To preserve the flow a creation of multiple pe-
riodic interfaces in the fluid domain boundaries is
necessary. The periodic interface between the in-
let and outlet is then specified as a fully devel-
oped interface in which one period of the geometry
is treated with the fully developed flow condition,
both hydrodynamic and thermal. Mass flow rate
and bulk inflow temperature (293K) are specified
in the inlet. Another two periodic interfaces are de-
fined in the boundaries normal to the y and z-axis
with the symmetry condition. That together with
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the constant temperature condition defined in the
wall boundary (328K) provide all the necessary ex-
tra equations required to close the system of equa-
tions. The simulations are only performed for the
cold fluid domain as seen in Figure 4.

Figure 4: Hot, cold and solid domain (Left); Cold
domain (Right).

Regarding the physical model, the follow-
ing assumptions were taken into account:
Steady/Implicit unsteady (depending on the
simulation), three dimensional, constant properties
(ρ, µ, cp and κf ), laminar, segregated flow and
segregated fluid energy. Fluid properties were:
ρ = 1kg/m3, µ = 2× 105Pa · s, cp = 1000J/kg ·K
and kf = 0.01W/m ·K. These values were chosen
for having the resulting Prandtl number equal to
2. These properties were used throughout the work
of this thesis for almost every simulation, except
in Section 4.3 as the influence of the Prandtl is
studied.

A polyhedral cell mesh is used and a prism layer
is was also added to the mesh generation. The
SIMPLE algorithm (Semi-Implicit Method Pres-
sure Linked Equations) is used to numerically solve
the discretized equations. The convective term
is computed with a second-order upwind scheme.
The diffusive term is computed with the second-
order central difference scheme. The transient term,
which is zero during a steady-state solution, is ap-
proximated by a first-order temporal scheme. For
the steady simulations, the convergence criteria
were set for a minimum of 10−5 per iteration.

3.3. Verification and Validation

To perform the verification, a grid independence
study was executed on a Gyroid REV with a char-
acteristic length of L = 7mm. The geometry was
designed to have a porosity of 100%. In order to
evaluate grid convergence, a group of six meshes was
evaluated. The mesh base sizes start at 0.6mm and
was further refined to an end base size of 0.1mm.

In order to evaluate whether convergence is at-
tained the Darcy friction factor, and the Nusselt
number based on the hydraulic diameter, were
quantities calculated for each mesh. The results
calculated for Re = 100 are shown on Figure 5.

The validity of the model can be proven by com-
paring the present work results against literature
values for a parallel flat plate. On the top and bot-
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Figure 5: Grid convergence for Rep,Dh
= 100 (Gy-

roid, φ = 100%).

tom walls, constant wall temperature is imposed
and the flow was assumed to be fully developed.

In Figure 6(a), it is shown the evolution of the
friction factor with Re, and the results obtained are
similar in relation to the theoretical curve described
by f = 96/Re. For Nu, the results are compared
with the values referred in literature by Shah and
London [13], and obtained considering the temper-
ature mass flow averaged Tm. The results of the
simulations compare very well with the theoretical
values, particularly from Pe > 30, when the Nu
tends towards a constant value of 7.54.

0 50 100 150 200 250 300

Re

0

2

4

6

8

10

(a) Friction factor f .

10
0

10
1

10
2

10
3

Pe

7

7.5

8

8.5
Shah and London

Present calculation

(b) NuDh
.

Figure 6: Results of fully developed flow in parallel
flat plates with constant wall temperature (Pr = 2).

Since the agreement is satisfactory, the model as-
sumptions hold, and the discretization errors are
low enough for the intended analysis.

4. Results

The TPMSs chosen to be analyzed in this work are
the G and SD surfaces (Figure 7 and 8). The case
test performed to be compared with the TPMSs
geometries analyzed is an internal flow compacted
with flat plates (top and bottom) with a cubic REV
similar to the TPMSs.

In Figure 9, porosity φ, and specific surface area
asf , as function of the wall thickness dimension-
less with the length of the REV (t/L) is shown
for the different surfaces. The parallel flat plate
REV porosity and specific surface area have an ex-
act function.
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(a) Cubic REV (b) Domain of study

Figure 7: Schoen-Gyroid.

(a) Cubic REV (b) Domain of study

Figure 8: Schwartz-D.
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Figure 9: Porosity φ, and Specific surface area asf ,
function of the wall thickness.

Table 1 summarizes the most important properties
of some analyzed geometries:

G100 G60 SD95 SD60

φ 1.00 0.61 0.94 0.59

Vf [mm3] 172 103 162 101

Aw [mm2] 151.0 140.4 187.3 172.6

asf [m−1] 888.2 825.8 1092.1 1006.4

Dh [mm] 4.50 2.94 3.45 2.34

Ai [mm2] 24.5 16.1 21.7 12.3

Aavg [mm2] 24.5 14.5 23.0 14.4

Table 1: Geometric properties of the analysed ge-
ometries.

4.1. Representative Elementary Volume
For a proper study using a macroscopic approach,
the choice of the correct averaging volume is essen-
tial. A relevant question is whether with the choice
of a periodic unit cell for the REV, the results ob-
tained for macroscopic parameters, such as NuL,
are within an acceptable range of error. The defini-
tion of the Pe adopted is the following:

PeDa,L = ReDa,LPr =
ṁL

ρADaα
(12)

Following the work of Teruel and Dı́az [14], sim-
ulations for different locations of the averaging vol-
ume are carried out. Different positions for the
volume inlet were chosen along the x-axis as seen
in Figure 10, giving different elementary volume
shapes and a different inlet surface. For each differ-
ent inlet position, a simulation was performed.

Figure 10: Movement of the REV along x-axis.

Figures 11 and 12 shows the NuL as a function of
each REV inlet position (note that the abscissa cor-
responds to a non-dimensional length x∗ = x/L).
The dashed horizontal lines represent the calculated
values of the NuL,avg and NuL,est.

NuL,avg =

∫ L

0
NuL(x∗)dx∗

L
(13)

Studying Figures 11(a) and 12(a), we can see that
the variations in the parameters tend to decrease
with the increase of the Pe, validating the results
obtained by Teruel and Dı́az [14]. For low Pe, the
fluctuations in the parameters are higher and a sin-
gle REV simulation can give results less approxi-
mate to the real value. Figure 11(b) and 12(b) com-
pares the same surface with different porosities. For
each one, the Pe is the same, i.e., the forced mass
flow rate is equal for each Figure.

The variation in the thermal parameters can be
explained due to the inlet boundary conduction.
For different averaging volume inlet, the conduc-
tion in the inlet varies, and, for that reason, the
heat transfer in the wall boundaries also has to vary
because the first law of thermodynamics cannot be
infringed.

The variation of macroscopic parameters is only
relevant for a low Péclet number. For this range
of flows, the simulation of a single REV is not
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Figure 11: NuL for each different Gyroid surface
REV (Pr = 2.0).
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Figure 12: NuL for each different Schwartz-D sur-
face REV (Pr = 2.0).

sufficient to compute and obtain the most accu-
rate results for the thermal macroscopic parame-
ters. A procedure will be presented with a less com-
putational cost than doing the multiple simulations
throughout the domain for different REV location.

In Figure 13 (results obtained for the G100 geom-
etry),we can see that there is a relationship between
the magnitude of the velocity at the REV inlet and
the result obtained for NuL.
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Figure 13: Correlation between velocity magnitude
inlet and NuL (Gyroid, phi = 100).

The method proposed (Figure 14) starts with the
creation of one periodic unit cell in any location of
the porous media and performing a fluid flow sim-
ulation. This first simulation is needed to obtain
the average velocity magnitude data along the REV
cross-sections. Process the data to get the cross-
section locations of the maximum (x1) and mini-

mum (x2) average velocity magnitude. This loca-
tions are the same independently of the location of
the periodic cell volume due to the flow similarity.
After that, perform two more simulations, each one
with the REV inlet location in the cross-sections ob-
tained in the first simulation. Take the value of the
NuL for each one and use the definition of equation
14 to calculate the NuL,est. The method described
consists in making a total maximum of three simu-
lations and has a much lower computational cost in
contrast to the multiple simulations needed to get
the NuL,avg.

NuL,est =
NuL(Umax) +NuL(Umin)

2
(14)

Figure 14: Scheme of the method proposed to com-
pute NuL for a low Péclet number.

To calculate NuL,avg the simulations needed was
always higher than 10, and the proposed method in
this section only needs three simulations. Compu-
tational cost and time are greatly reduced with the
method proposed in this section.

4.2. Steady to unsteady flow transition
The transition from steady to unsteady flow does
not have a well-defined point so that we will define
in this work two distinct transition points [12].

The first critical transition point is defined by
running the steady solver, increasing the mass flow
rate ṁ (Reynolds), until reaching a point where the
residues diverge Retr,1. The transition point using
the definition of Rep,L is approximately constant
because depends only on the fluid flow inside the
pore. The second definition for the transition point
Retr,2 is established by running the solution with
the unsteady solver from the point where the steady
solver simulation diverges, checking to what extent
the simulation continues to converge.

Following the work of Eric et al. [15], we will
use the definition of the number of Forchheimer and
the ratio between the inertial and the total pressure
losses, to identify the transition zone and check if
the method used earlier in this section coincide with
the results obtained by Eric et al.
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Figure 15: Transition location for the Gyroid sur-
face depending on the porosity.

Fo =
ρuDak1
µk2

, (15)

pinertial
ptotal

=
Fo

1 + Fo
, (16)

Eric et al. [15] concluded that the transition
point for unsteady flow occurs when the inertial
losses correspond to approximately 60% of the total
losses. In Figure 16 the data obtained for two differ-
ent geometries of the Gyroid are represented - G100
and G60. All considered simulations are indicated
on a curve that shows the variation in the ratio be-
tween the inertial and the total pressure drop as a
function of the Fo. The green dots represent the
results obtained with the steady solver. The blue
dots represent the points for simulations with the
unsteady solver, but that converge. We term this
the transition zone. The red dots already represent
points in the unsteady regime. As we can see, the
transition zone is around the point where the in-
ertial losses correspond to 60% of the total losses,
validating the results obtained.

Figure 16: Schoen-Gyroid. Variation of the ra-
tio between the inertial and the total pressure
drop identifying the steady, transition and unsteady
regime (φ = 100% and φ = 60%).

In Figure 17 the data obtained for two differ-
ent geometries of the Schwartz-D are represented
- SD95 and SD60. The transition zone, like the G
surface, is around the point where the inertial losses
correspond to 60% of the total losses. For a higher
porosity, the transition zone begins for a lower Fo.
Due to this reason, the SD has a higher range of val-
ues in the transition zone in comparison with the G
surface.

Figure 17: Schwartz-D. Variation of the ratio be-
tween the inertial and the total pressure drop iden-
tifying the steady, transition and unsteady regime
(φ = 95% and φ = 60%).

4.3. Correlations to Steady Laminar regime

In Section 4.2 we saw that the transition point
varies for different porosities but is practically con-
stant using the definition of Rep,L. Due to this fac-
tor, the correlation that is obtained for the Gyroid
in this work takes the form of Equation:

NuL = a+ bRemp,LPr
n, (17)

In Figure 18(a), the results obtained for various
Gyroid surface porosities are shown. Before ob-
taining a expression for the coefficients a and b is
necessary to work with this results and obtain the
coefficients m and n. Processing and fitting the
plots obtained, the achieved values is m = 0.79 and
n = 0.36.
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(a) Results obtained for the
Gyroid surface in the laminar
steady regime.
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Figure 18: Processing and fitting the data obtained.
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The next step is to obtain the coefficients a and
b. For that, a fitting is done and a value is obtained
for the coefficients. This procedure is done for every
porosity with a constant Pr.

The coefficients a and b obtained for different
porosities are plotted in Figure 18(b) to investigate
the porosity dependency and obtain expressions for
this coefficients.

a = 9.89 + 39.62(1− φ)3.91, (18)

b = 0.19 + 0.16(1− φ)0.62, (19)

Final step is to combine the expressions and ob-
tain the correlation with the Re, Pr and φ as vari-
ables. A universal correlation for the Nusselt num-
ber, which agrees well with available experimen-
tal data, has been established using the results ob-
tained for a range of porosity, Prandtl and Reynolds
numbers. The correlation obtained for the Gyroid
surface, in the laminar steady regime, for a region
30 < Rep,L < 150, porosities 0.6 < φ < 1.0, and
0.7 < Pr < 7 is the following:

(20)NuL = 9.89 + 39.62(1− φ)3.91

+(0.19+0.16(1−φ)0.62)Re0.79p,L Pr
0.36

In Figure 19 the data obtained in the numerical
simulation for the multiple Prandtl numbers, and
two different porosities (φ = 100% and φ = 80%)
are compared with the correlation obtained in this
work (Equation 20). It can be seen that the expres-
sion agree well for a region of Rep,L > 30 in the
laminar steady regime. Can be concluded that the
correlation achieved in the current work is better
than those of Kuwahara et al. [7] to describe the
Nusselt for a porous media with a Gyroid structure.
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Figure 19: Correlation and results obtained com-
parison.

4.4. Heat exchanger thermal performance
For the analysis of heat transfer in an internal flow,
the principal parameter to be calculated is the Nu

based on the hydraulic diameter as a function of
Rep,Dh - Figure 20. One of the conditions of that
analysis is that for the same surface and with a sim-
ilar mass flow rate, but varying the porosity, both
the hydraulic diameter and the interstitial velocity
change, which leads us to conclude that the basis
for comparison may not be the most appropriate.

In Figure 20, from Re = 80 − 200 the G60 ge-
ometry overcomes the counterpart G100 geometry
in the value of the NuDh

. This behavior can be
explained due to the transition from steady to un-
steady flow starting earlier for the lower porosity,
and the G100 geometry is still in the steady regime
when the G60 is already in an unsteady flow regime.
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Figure 20: NuDh vs Rep,Dh.

Another way to make comparisons and that bet-
ter reflects the convection in each geometry is Fig-
ure 21. Presents the energy density exchanged
across the REV, i.e., heat transfer across the wall
per volume.
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Figure 21: qw/L
3 vs ṁ/L2.

Analyzing Figure 21 and comparing different sur-
faces with the same porosity, the G60 with the SD60
geometry. For the steady regime, the SD surface
has a higher energy transfer than the G surface.
The transition for the unsteady regime happens for
a lower mass flow rate in the G60 geometry and
for that reason, the energy exchanged overtakes the
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SD60 geometry. For a higher mass flow rate, both
geometries are in the unsteady regime and the en-
ergy exchanged is highest again for the SD60 geom-
etry. The TPMSs have superior convection proper-
ties to the full extent of the laminar steady regime,
validating the results obtained by Passos [8]. Af-
ter the transition to the unsteady laminar regime,
the increase in convection properties of the TPMSs
is even larger when compared with the flat plate
that holds the laminar regime up to a Re ≈ 2000
where the convection coefficient is constant. This
means that the difference will be even larger in the
turbulent flow regime.

In Figure 22 an optimization study for the max-
imization of the effectiveness and heat transfer per
volume is presented. Analyzing the Figure, we
can conclude that the points in the transition zone
(solver unsteady) are a good choice because the line
slope is accentuated. This means that a small in-
crease in the energy density, the increase in the ef-
fectiveness is higher than in other zones for the same
increase in the energy density.
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Figure 22: 1− ε vs L3/qw.

The final study is to compare the energy trade-off
between the heat exchanged (what one gets) and the
pump power required to move the fluid across (what
one pays). A multi-objective optimization study
(Pareto efficiency) is carried out to minimize the
volume per heat transferred across the wall while
minimizing pumping power.

Analyzing Figure 23, the parallel flat-plate has
a better ratio between volume and heat exchanged
at lower pumping power. With increasing pumping
power the TPMS surpasses the flat plate perfor-
mance and is the best solution when a high transfer
rate is needed. The SD surface is the best choice for
the steady regime allowing for greater heat transfer
with lower space, and this conclusion is in agree-
ment with the work of Passos and Femmer et al.
[8, 4]. In the unsteady regime we can see that the
conclusion is distinct from the steady regime be-
cause the G surface takes up the SD surface, hold-
ing both a very comparable ratio in this regime.
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Figure 23: L3/qw vs (∆PV̇ )/L3 (Pr = 2).

For the equivalent pumping power and space used,
a higher porosity has a higher energy transfer, be-
sides the region when the G60 geometry has already
transited for the unsteady regime and the G100 ge-
ometry is still in the steady regime. For this region,
a lower porosity can have a better ratio.

Another interesting analysis to do is the compari-
son between multiple heat exchanger working fluids,
i.e. between various Prandtl numbers. In Figure
24, the results achieved for the G100 geometry with
Pr = 7.0 (water), and Pr = 0.7 (air) are displayed.
An important conclusion is that for the water, one
of the most used working fluids in the industry of
heat exchangers, the energy exchanged for the same
pumping power is even greater in contrast with the
flat plate. These results confirm once more that the
use of TPMS for novel heat exchangers geometries
is very promising.
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Figure 24: L3/qw vs (∆PV̇ )/L3 (Gyroid, φ =
100%).

From the results presented here in this Section,
the SD surface presents itself as the best geometry
for a laminar steady flow. To manufacture a heat
exchanger, for a laminar unsteady flow ,the choice
can be between the two TPMSs.
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5. Conclusions
Modeling of Triply Periodic Minimal Surfaces
(Schwartz-D and Schoen-Gyroid) within a repre-
sentative elementary volume with periodic bound-
aries was numerically investigated. Internal flow of
pore-scale is considered throughout all the work.
Multiple unit cubic cells were modeled on different
positions, giving different structures for the rep-
resentative elementary volume, in order to access
the influence of the axial conduction in low veloc-
ity flows. For the same surface, different geometries
are modeled for having different values of porosity
and concluded about the influence of the geometric
parameters on fluid flow.

The process of geometry creation was performed
and subsequently imported to implement the nu-
merical simulation and subsequent grid dependence
and validation studies. The finite volume method
code is adequate to solve pore-scale flow details us-
ing polyhedral cells, and the software Star-CCM+
is used. The concept of volume averaging ensured
meaningful computational values and the computed
parameters needed to study the pressure drop and
heat transfer.

Transition to the laminar unsteady regime has
studied and validated with the Forchheimer ratio
between the inertial and total forces acting on the
fluid inside the porous media. At lower porosities,
the transition occurs at a lower mass flow rate inlet.

For the Nusselt number based on the character-
istic length, a correlation is developed based on the
porosity and Prandtl number as a function of the
Reynolds. The present correlation bettered several
weaknesses of the existing correlations for porous
media, being more accurate for the Schoen-Gyroid
surface.

An analysis of heat transfer in the laminar un-
steady regime was made for the two different TPMS
geometries and porosities. The heat transfer across
the wall, thermal effectiveness, and pumping power
was obtained and compared with the typical case of
the parallel flat plate heat exchanger.
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