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Resumo

Neste trabalho é apresentado um algoritmo de planeamento de trajectória em tempo real. O algo-

ritmo desenvolvido é capaz de gerar rapidamente trajectórias que evitam obstáculos inesperados, tanto

estáticos como em movimento, em tempo real. Este algoritmo tem a capacidade de gerar trajectórias

óptimas em termos de custos operacionais, que são dados por uma combinação do tempo de tra-

jectória com uma estimação da energia consumida. O algoritmo foi integrado com um sistema de TCAS

simplificado, mostrando a capacidade de um algoritmo de planeamento autónomo utilizar um sistema

inicialmente projectado para aeronaves com pilotos humanos. A solução é baseada numa Rapidly-

exploring Random Tree (RRT) modificada e num optimizador de trajectória. A RRT modificada permite

gerar trajectórias que respeitam um raio mı́nimo de curvatura. Foi ainda desenvolvido um processo que

permite diminuir de forma rápida o comprimento das trajectórias geradas pela RRT. O optimizador de

trajectória foi desenhado de forma a utilizar um número reduzido de variáveis de decisão. As trajectórias

geradas por este algoritmo são formadas por uma sequência de splines de segunda ordem. Múltiplas

simulações utilizando uma dinâmica aproximada foram realizadas de forma a avaliar as capacidades

do algoritmo em tempo real. Foram também executadas simulações no simulador Gazebo de forma a

validar a capacidade de um multi-rotor real seguir trajectórias agressivas geradas pelos algoritmos.

Palavras-chave: planeamento online, planeamento de trajectória, RRT, optimização de tra-

jectória, TCAS, custos operacionais, multi-rotor
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Abstract

In the present work a real-time trajectory planning algorithm for multi-rotor is developed. The algorithm is

capable of avoiding both static and moving unexpected obstacles, in real time. The trajectory-planner is

capable of generating optimal trajectories regarding operational costs, which are given by a combination

of the estimated energy consumption and total trajectory time. The algorithm was integrated with a

simplified TCAS system, showing the capability of the autonomous path planner to make use of a system

originally created for manned aircrafts. The solution is based on a modified Rapidly-exploring Random

Tree (RRT) algorithm and a trajectory optimization algorithm. The modified RRT algorithm allows to

compute trajectories respecting a minimum curvature radius. An enhancement process was developed

to quickly improve the length of the trajectory generated by the RRT. The trajectory optimization algorithm

was developed aiming for using a small number of design variables, to improve real-time performance.

The trajectory is defined by a series of 2nd degree splines. Multiple basic simulations were performed to

evaluate the real-time capabilities of the algorithms. A simulation in the physics engine Gazebo was also

analysed to validate the capability of a realistic multi-rotor to follow aggressive trajectories generated by

these algorithms.

Keywords: online planning, trajectory planning, RRT, trajectory-optimization, TCAS, opera-

tional cost, multi-rotor
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Chapter 1

Introduction

In this chapter a description of the potential of autonomous Unmanned Air Vehicles is provided as

a motivation for the current work. Then two of the main areas that are of interest to this work are

introduced: online air-based path planning and sense and avoid systems. This chapter ends with the

presentation of the objectives and outline of the present work, followed by the contribution.

1.1 Context and Motivation

With the constant development of Unmanned Air Vehicles (UAV) there has been an interest in using their

potential for diverse applications. This potential could be further explored if autonomous UAV operation

was possible, without the need for a human pilot. For a UAV to be operational without a human pilot it

would have to be empowered with Artificial Intelligence (AI) that would allow it to deal with complex

problems. Nowadays, the application of AI aiming for autonomous UAV operation is an interesting

research topic. The following challenge is to proof these UAVs as safe and capable in order for them

to be allowed to perform autonomously the desired applications. There is, however, a gap between the

state of the art and these desired capabilities. For example, there has been an effort to integrate these

vehicles in the non-segregated airspace [1]. To accomplish such, it must be ensured that UAVs satisfy

certain safety authority guidelines and regulations [2]. However, there are not established regulations

for unmanned vehicles, current work aiming to make UAVs capable of flying in non-segregated airspace

derive these requirements from the UAVs based on existing regulations for manned aircraft.

Autonomous UAV operation require a diversity of capabilities. To enable the absence of a human

pilot, the system requires some capabilities that are in part provided by humans, namely environment

perception, motion planning and trajectory execution. In the terrain automobile industry, there has been

many advances in the past years. This evolution was partially pushed by technological advancements

in areas such as information technology, data analysis, computer vision, etc. [3].

The scenario for autonomous automobiles is however very different from others. For UAVs this

problem is usually different. For such vehicles the environment is usually not as populated as for the

autonomous cars. For a UAV the obstacles are usually other aircrafts and static ground obstacles. Due
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to the smaller environment population and the greater freedom of movement of the intruder aircrafts it

is usually defined a safe distance to these intruders much greater than the intruder size, making these

algorithms more robust towards sensor uncertainty. On the other hand, for small UAVs, having a powerful

computer on-board is not feasible due to the limited payload of these vehicles. A simple approach is then

desirable to solve this problem because of computational limitations mentioned.

One of the efforts made in this sense is to provide Sense and Avoid (SAA) capabilities for these

unmanned air vehicles, in such a way that the respective requirements for manned aircrafts are met.

There has been, also, a general effort to move from centralized systems into networked and/or dis-

tributed ones. With the increasing complexity it seems advantageous to divide functionality into simpler

components that cooperate among them [4]. It would then be desirable to create a distributed system.

Usually SAA systems for UAVs can be divided in three major components: the aircraft and systems

on-board, the ground station and communication links [4]. Some literature in SAA systems for UAVs

present systems where processing and resolution decisions are taken partially or totally on the ground

station can be found [4] [5]. However, a system based only on the aircraft would be desirable to make

the aircraft behave like an independent component in a major system.

Autonomous systems are however complex, requiring a vast set of capabilities. This work will be fo-

cused in only a portion of that: the generation of collision free trajectories in real-time and the integration

of the trajectory-planning algorithms with existing collision avoidance protocols for manned aircrafts.

1.2 Online air-based path planning

In robotics, path planning in unknown environments is a subject studied for many years [6]. In path

planning problems for UAVs most of the existing solutions, to deal with unknown obstacles, require a

dedicated ground station [4] [5] . This is due to the low computational power available on on-board

computers in small UAVs. On-board path planning for small UAVs has been proposed in [7], using

a field programmable gate array (FPGA) chip. In this work, a solution was created in which genetic

algorithms are used to compute a path plan based on a provided environment and set of start and

goal configuration. In [8], an online path planning algorithm for cooperative aircrafts is developed and

implemented in relatively powerful on-board computers. In some works by Ioannis K. Nikolos et al. [9]

[10], an evolutionary algorithm is developed which allows online path planning in unknown environments

but this work considered static environments and it was never implemented in a vehicle.

Recently, in the end of 2018, Marco Pavone et al. [11] developed an online path planning algorithm

that was shown to be able to compute trajectories in real-time in partially unknown environments with

moving obstacles. The authors claim it was the first experimented algorithm, for multi-rotors, with such

capabilities. The algorithms were, however, ran in a ground station. In another interesting work online

path planning was accomplished with the environment being acquired by a depth camera [12].

The existing work regarding real-time path planning for multi-rotors in partially unknown environments

with moving obstacles is not abundant and several ways of approaching the problem can be explored.
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1.3 Sense and Avoid Systems for UAVs

An effective SAA system needs to supply two services in accordance with agreements reached at the

Sense and Avoid Workshops where US FAA and Defense Agency experts discussed a number of fun-

damental issues [13]. They are a self-separation service that would act before a collision avoidance

maneuver is needed, and a collision avoidance service to protect a small collision zone and usually

achieved by an aggressive maneuver.

To achieve these services, the following list of sub-functions is required as it is described in [4]:

1. Detect any of various types of hazard, such as traffic, terrain or weather. At this step, it is merely

an indication that something is there.

2. Track the motion of the detected object. This requires gaining sufficient confidence that the detec-

tion is valid, and making a determination of its position and trajectory.

3. Evaluate each tracked object, first to decide if its track may be predicted with sufficient confidence

and second to test the track against criteria that would indicate that a SAA maneuver is needed.

The confidence test would consider the uncertainty of the position and trajectory. The uncertainty

could be greatest when a track is started, and again whenever a new maneuver is first detected.

A series of measurements may be required to narrow the uncertainty about the new or changed

trajectory. Also, when a turn is perceived, there is uncertainty about how great a heading change

will result.

4. Prioritize the tracked objects based on their track parameters and the tests performed during

the evaluation step. In some implementations, this may help to deal with limited SAA system

capacity, while in others prioritization might be combined with the evaluation or declaration steps.

Prioritization can consider criteria for the declaration decision that may vary with type of hazard or

the context of the encounter (e.g., within a controlled traffic pattern).

5. Declare that the paths of own aircraft and the tracked object and the available avoidance time have

reached a decision point that does indeed require maneuvering to begin. Separate declarations

would be needed for self-separation and collision avoidance maneuvers.

6. Determine the specific maneuver, based on the particular geometry of the encounter, the maneu-

ver capabilities and preferences for own aircraft, and all relevant constraints (e.g., airspace rules

or the other aircraft’s maneuver).

7. Command own aircraft to perform the chosen maneuver. Depending upon the implementation

of the SAA, this might require communicating the commanded maneuver to the aircraft, or if the

maneuver determination was performed on-board, merely internal communication among the air-

craft‘s sub-systems.

8. Execute the commanded maneuver.
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The main goal of this thesis is to provide a unmanned air vehicle the capability to go from a starting point

to a goal in a dynamic, three-dimensional unknown environment. The Sense and Avoid capabilities in

this work will be provided both by the path planner and a cooperative avoidance system inspired in an

existing one for manned aircrafts.

The path planner approach, by generating collision free-paths, is not suitable for cooperative avoid-

ance. When avoiding cooperative intruders it is highly desirable to follow an avoidance protocol. This

ruled approach avoids situations where both aircrafts take, simultaneously, avoidance trajectories that

lead to a new collision point. For this reason the path-planning algorithms developed in this work were

integrated with existing collision avoidance systems. A simplified implementation of the Traffic Collision

Avoidance System (TCAS) was integrated with the planning algorithms. A brief explanation on the TCAS

system is provided in section 2.9. It will be described, further on in Section 4.10, how to adapt the algo-

rithms developed in this work to empower them with features that makes them suitable for the present

airspace.

1.4 Objectives

The main goal is to create an algorithm capable of planning aggressive trajectories (and for that the

UAV dynamics must be considered) in partially unknown environments with moving obstacles. The

algorithms should be able to quickly react to new detected obstacles (including moving obstacles) and

safely avoid them by quickly adjusting the trajectory without having the need to stop the UAV for such.

The trajectory-planner should also be capable of generating locally-optimal paths and be suitable for

cooperative avoidance.

1.5 Outline of the approach

In this work it is proposed a real-time trajectory-planning algorithm for UAVs. The algorithm is designed

for environments with both static and moving obstacles.

In the field of trajectory planning it is also desirable to compute optimal trajectories. Optimality will be

defined in terms of mission costs (a combination between mission time and fuel/energy consumption).

The algorithm will have anytime capabilities: it is possible to quickly generate a sub-optimal trajectory

and then optimize it for a given period of time. A locally-optimal trajectory is computed if enough com-

putation time is used. The trajectory will also be optimized while the UAV flies in order to improve the

quality of the trajectories if they are not locally-optimal to begin with.

To enable path planning in real time a simplified dynamic model for multi-rotors will be used. In order

to validate that the computed trajectories are suitable for aggressive multi-rotor maneuvering a simulation

will be performed and the position error of the multi-rotor, relatively to the provided references, will be

stored through the simulation and analysed afterwards.

The algorithms make use of trajectory optimization techniques. The optimization is performed by

gradient based solvers that incrementally improve the quality of the trajectory. The first iteration (initial
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trajectory) is computed using a modified RRT algorithm.

Further on the algorithms will be upgraded with other features, such as the capability of generating

leveled trajectories at desired altitudes and follow desired climb rates.

The algorithms will finally be integrated with a simplified implementation of the TCAS system. This

integration illustrates the capability of the proposed solution to respect this collision avoidance system

(TCAS) originally designed for manned aircrafts.

1.5.1 Trajectory planner

The proposed solution consists of an incremental optimization approach. The core idea is based on

continuously optimizing the trajectory while the UAV executes it. This, however, requires some additional

logistics:

• It is required to define at each time which part of the trajectory should be optimized.

• It is required to have a first iteration for the trajectory optimizer.

• It is required to have a tool that prevents the optimizer to get trapped in unfeasible local minima.

It is required to define at each time which part of the trajectory should be optimized because the state

on the trajectory that the UAV is executing in a given moment cannot be changed at that same moment

and also, it makes no sense to optimize a part of the trajectory that was already executed. A practical

implementation of this solution has an additional problem, the optimizer becomes significantly slower

as the number of design variables is increased. For this reason, optimizing the entire trajectory is not

always feasible, it is necessary to define a part of the trajectory that should be optimized at the time.

1.5.2 Example

A series of figures, Fig 1.1 - 1.7, will now be presented to exemplify this concept.

The selection of part of the trajectory that should be optimized at a given time will now be described.

If the UAV is following the trajectory reference corresponding to the current time tC , and the time used

for an optimization increment is ti, then the optimization is performed for the trajectory portion between

tC + ti and tC + ti+ tn where tn is a chosen parameter for a normal optimization scenario. The trajectory

between tC and tC + ti is fixed once the optimization increment result will only be available at tC + ti.

Once the optimization increment is finished, the current time tC is updated and the process restarts (Fig

1.1 - 1.3).

Figure 1.1: Part of the trajectory fixed (orange)
in an initial trajectory computed by an RRT

Figure 1.2: Trajectory is optimized while UAV
flies
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Figure 1.3: New part of the trajectory is fixed and process re-starts

In the case that there is some non-feasible portion in the trajectory (a part of the trajectory exceeds

the maximum allowed speed or acceleration or there are collisions with obstacles) the trajectory is only

optimized around the unfeasible portion (Fig 1.4 - 1.5).

Figure 1.4: Unknown obstacle detected in the
trajectory

Figure 1.5: Trajectory optimizer adjusts the tra-
jectory avoiding the obstacle

If the optimizer cannot make the trajectory feasible in a chosen, limited, number of increments (in this

work it will be called the maximum number of failures MAXf ) the RRT algorithm regrows a trajectory

around the unfeasible portion (Fig 1.6 - 1.7). This might happen if the trajectory falls into an unfeasible

local minima.

Figure 1.6: Unknown complex obstacle de-
tected in the trajectory

Figure 1.7: The maximum number of failures is
reached and a trajectory is regrown around the
obstacle

Finally, in the case that the non-feasible part of the trajectory corresponds to a time interval that is

very close to the current time tC , a different approach should be taken. In this scenario, the optimization

increment might not be performed fast enough to avoid a collision. If this is the case, the UAV enters

an ”emergency mode” which consists in stopping to follow the previous trajectory and recomputing the

trajectory from scratch.

Concerning the first iteration given to the optimizer, it will be used a modified RRT. This RRT will also

be used to regrow critical parts of the trajectory whenever it gets trapped in unfeasible local minima. The

trajectory is computed from the UAV to the goal at the beginning of the mission and every time the robot

discards the old trajectory when entering the ”emergency mode”.
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1.6 Contributions

This thesis presents the following contributions:

• A real-time trajectory planning algorithm for multi-rotors in environments with moving obstacles.

• Integration of a simplified implementation of the TCAS system with the real-time trajectory planner.

• Simulation and evaluation of the algorithm performance.

To the best of the author’s knowledge this work presents the following novelties:

• A curvature constrained RRT algorithm with an enhancement step for environments with moving

obstacles.

• Analytical expressions for the distance to moving spheres with varying radius and the respective

derivatives with respect to position and time.

• The integration of the TCAS system with an online trajectory-planner for multi-rotors.

The work was disseminated in the following ways:

• Presentation of the work: ”Real-Time Path Planning for UAVs Using Improved RRT and Iterative

Trajectory Optimization” in the ”International Conference on Robotics and Robot Intelligence” in

Vancouver, 2019. The work was produced in cooperation with Luis Romeiro, Professor Rodrigo

Ventura, and Professor Afzal Suleman.

• The production of the articles: ”Building the Bridge Between Autonomous and Manned Aircraft”

and ”Online Planner for Multi-Rotors based on Modified RRT and Trajectory-Optimization”, in co-

operation with Professor Rodrigo Ventura and Professor Afzal Suleman.
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Chapter 2

Background

A brief overview of the relevant theoretical background for this work will be made in this chapter. The

overview will cover the different types and categories of path-planning and present the definition of

trajectory planning. Subsequently, it will be discussed mathematical optimization, and in more detail, the

optimizer IPOPT, followed by a brief introduction on trajectory optimization.

The following topics are deeply related with the present work. A literature review on real-time path

planning for UAVs is presented and special attention will be given to two works. Then the concept of

differential flatness is presented before discussing the dynamics of the quad-rotor, followed by a section

on why is the quad-rotor a differentially flat system. Finally, an approximation of the dynamics of the

quad-rotor, which is often used in the literature associated with trajectory planning, is presented.

2.1 Path-planning

Automated planning is a relevant branch of artificial intelligence. It can be defined as the automated

generation of a series of actions for an agent to take in order to accomplish a certain goal, which is

essential in intelligent autonomous systems [6]. In order to keep this overview concise, the scope of this

section will be narrowed to cover only path-planning applied to robots.

The configuration space C of a robot is generated by all the possible configurations a robot can

acquire. The concept of configuration is described in [14] as a set of independent parameters that

describe the position of every point in a body. For example, if a robot is a free point in a two-dimensional

space, the configuration space is two dimensional and represents all the possible locations of the point

on the map. If the robot is a mechanical arm with 7 degrees of freedom, as the one in Figure 2.1,

given by 7 joints, the configuration space has 7 dimensions and corresponds to the robot configurations

generated by any combination of the rotations of each joint.

Path planning for robots consists of generating a feasible path (series of configurations) that enables

the robot to go from a start configuration to a goal configuration. Path planning algorithms are usually

based on configuration space representations, for example, regular/occupancy grids, vertex graphs and

Voronoi diagrams [6]. All the configurations in a path must lie in the free configuration space Cfree, which
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Figure 2.1: Seven degree of freedom robotic arm, taken directly from [15]

can be defined as the space formed by all the configurations that the robot can assume without being in

collision with any obstacle.

Figure 2.2: On the left a pointwise robot (red) in a 2D map. On the right the configuration space (defined
by the x and y coordinates of the center of the robot), free configuration space is represented as yellow.

The path planning algorithm choice is related to the chosen configuration space representation. A

review on path-planning algorithms was performed by Yang et. al. [16]. In this work, path planning

algorithms are separated into five distinct categories:

• Sampling based algorithms - These sort of algorithms work by randomly sampling configurations

(usually referred to as nodes) from a continuous configuration space. These nodes are used to

create a path. These algorithms can fall into two categories: active or passive. Active algorithms,

such as the Rapidly Exploring Random Trees (RRTs) and its variations, sample a series of nodes

from the configuration space and, using these nodes, create a path. Passive sampling-based

algorithms, such as the Probabilistic Road Map (PRM), sample the configuration space, creating

a graph that contains the start and the goal, in order to obtain a path. However, these algorithms

rely on a search algorithm to compute a path from the generated graph.

• Node based optimal algorithms - These algorithms explore the configuration space through a

previously created decomposed graph. It is then possible to find optimal paths within the used

graph. Some popular algorithms in this category are the A* and Dijkstra’s algorithm, which are

also described often as discrete optimal planning, road map or search algorithms.

• Mathematic model based algorithms - In this case, the environment and the system dynamics

are described mathematically. A cost function is defined and a series of bounds are created. After
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modelling the problem mathematically, it is possible to find a locally-optimal solution. In such a

solution, any small disturbances in the final trajectory will increase its cost or violate the problem

constraints.

• Bio-inspired algorithms - These algorithms fall into two categories: Neural Networks and Evo-

lutionary algorithms (Genetic Algorithm GA is an example), which mimic biological behaviour to

solve problems.

• Multi-fusion based algorithms - In [16] this category is used to describe combinations of algo-

rithms, such as the required combination of Probabilistic Road Maps with a search algorithm.

Path-planning algorithms can be further categorized according to their capabilities [17].

• An algorithm has anytime capabilities if it is capable of producing a sub-optimal trajectory at first

and then improve the solution while there is computational time available.

• An algorithm is considered dynamic if it is able to adapt the computed path in changing environ-

ments (partially unknown).

• An online planner interleaves planning and execution. These algorithms adapt the plan as new

information in the agent and/or environment is available. The online capability is related to the

dynamic capability described before. To be able to have an acceptable online performance an

algorithm must be able to quickly adapt/recompute a trajectory and, for this reason, the computa-

tional time is of extreme relevance for these algorithms.

The term online will be used, in this work, interchangeably with real-time.

2.2 Trajectory-Planning

The terms path and trajectory are often used interchangeably. Formally, however, these terms are

distinct. While path refers to, as mentioned before, all the consecutive configurations that a robot has

to assume in order to go from a start to a goal configuration, in a trajectory there has to be a time

moment associated to each of the configurations that define the trajectory. In a trajectory the speed and

acceleration can be obtained simply by derivation [18].

2.3 Mathematical Optimization

Mathematical optimization or mathematical programming has been a studied problem for centuries.

Bradley et al. [19] describe mathematical programming, in a management related perspective, as an

optimal allocation of limited resources under a set of constraints imposed by the nature of the problem.

The problems approached in mathematical optimization will now be described in a more general way.

The concept behind an optimization problem is simple: to determine a series of quantities that minimize
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a cost function while respecting a series of constraints 1. Some very basic nomenclature will now be

presented.

• The quantities to be determined are called design variables.

• The final goal is to minimize a cost function that is a function of the design variables.

• In real problems the design variables cannot usually assume any combination of values, there are

constraints to be respected which are formulated as equalities or inequalities.

Formally, these problems are presented in the following form:

minimize: f(x)
subjected to: c(x) = 0

d(x) ≥ 0

Table 2.1: Traditional optimization problem representation.

where x is the vector of design variables, f(x) the cost function and c(x) = 0 and d(x) ≥ 0 are series

of equalities and inequalities, respectively, that represent the problem constraints. Reinforcing this idea,

the cost function and the constraints (f(x), c(x) and d(x)) are characteristics of the problem and define

the problem. The problem is solved when a combination of design variables xsolution is found such that

f(x) (the cost function) assumes its minimum possible value while respecting c(x) = 0 and d(x) ≥ 0 (the

constraints of the problem).

There are two types of solutions for the optimization problem: global solutions and local solutions.

Intuitively xsolution is a global solution if it originates the minimum possible value of the cost function

while respecting the constraints. On the other hand xsolution is a local solution if it is associated with a

minimum value of a cost function within a certain neighborhood while respecting the problem constraints.

There are multiple methods for solving this sort of problems, they will not, however, be reviewed

in the present work. As stated in [20] most of the methods used for trajectory optimization are based

on Newton’s method for finding the solution to a numerical problem. There are then multiple possible

formulations for considering the problems equalities and inequalities. Some popular formulations for

optimization problems are unconstrained optimization, sequential quadratic programming and barrier

methods [20]. There are also techniques which are not based on Newton’s method, such as genetic

algorithms and particle swarm optimization.

2.3.1 IPOPT

In the present work, the used solver is an implementation of an interior point with a filter line-search

method called IPOPT [21]. The algorithm is complex and uses a primal-dual barrier method, originally

developed by Andreas Wächter in [22], inspired in previous work by Fiacco et al. [23].

In sequential quadratic programming (SQP) there is the need to identify the active bound constraints.

Barrier problems avoid this problem by replacing the constraints for logarithmic terms in the cost function.

Thus being said, barrier methods solve optimization problems of the type:
1This explanation is inspired in the website from IBM: http://ibmdecisionoptimization.github.io/docplex-doc/mp.html
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min: f(x)

s.t.: c(x) = 0

xi > 0 , i ∈ I

(2.1)

where I defines the set of indexes of bounded variables. By converting the problem into the following

one, stated in Equation 2.2, called a barrier problem:

min: φµ(x) = f(x)− µ
∑
i∈I ln(xi)

s.t.: c(x) = 0
(2.2)

where µ is the barrier parameter, which is greater than 0. This formulation imposes that xi > 0 for i ∈ I

because, as xi tends to 0, the value of φµ(x), the barrier function, tends to infinite. The formulation in

Equation 2.2 matches the problem defined in Equation 2.1 for µ → 0. For µ > 0, it becomes clear that

the solution never lies in the boundary of the problem, instead it always lies in the interior of the desired

design variable region. For this reason, the barrier methods are also called interior point methods. In

these methods, multiple sub-problems (barrier problems) are solved for decreasing values of µ. These

optimization sub-problems are converted into a set of equations to be solved. Before presenting those

equations, the reader must notice that the derivatives ∂µ
∑

i∈I ln(xi)

∂xi
are µ

xi
. The terms µ

xi
will be replaced

for υi and an extra constraint will be added to ensure that υi = µ
xi

, these new variables are named as

Lagrangian multipliers for the bound constraints in [21]. The optimization problem is then formulated as

the following series of equations:

∇f(x) +A(x)λ− υ = 0

c(x) = 0

xiυi = µ i ∈ I

(2.3)

where A(x) is the transpose of the Jacobian of c(x), λ stands for the vector of Lagrangian multipliers

for the equality constraints and υ is a vector in which each entry υi is equal to zero except for i ∈ I (in

those cases υi = µ
xi

as stated before). The system is then solved for x, υ and λ. The step sizes for

each of these variables at the kth iteration: ∆k
x, ∆k

υ and ∆k
λ, are determined using Newton’s method.

However, this is not performed directly in the entire equation system. Instead, the system is separated

and ∆k
x and ∆k

λ are calculated separately from ∆k
υ, to improve the computational time. After calculating

the search direction, the line-search filter determines the step size taken in that direction. More details

can be found in [21].

IPOPT allows solving general dual-barrier problems of the type:

min: f(x)

s.t.: c(x) = 0

xil < xi < xiu , i ∈ I

dl < d(x) < du

(2.4)

where xil and xiu are lower and upper boundaries for xi. dl and dj(x) are lower and upper boundaries
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for the inequality functions d(x). In order to convert the typical barrier problem stated in 2.1 into the more

general form shown in 2.4, it is required to, instead of using the variables vi = µ
x , create the variables

vil = µ
xi−xil

and viu = µ
xiu−xi

. Doing this, the equalities forcing these new definitions of vil and viu

become vil ∗ (x− xil) = µ and viu ∗ (xiu − xi) = µ respectively.

In order to explain how IPOPT deals with inequalities defined by general functions d(x), it is defined

an isolated inequality:

djl < dj(x) < dju (2.5)

where dj(x) represents the jth inequality function and djl and dju represent the respective lower and

upper bounds. These inequalities are changed to a set of equalities and inequalities shown in Equation

2.6 by introducing slack variables sj :

dj(x)− sj = 0

djl < sj < dju
(2.6)

The equalities are treated then as regular equalities. The inequalities djl < sj < dju are then

imposed in the same way as the inequalities xil < xi < xiu.

2.3.2 Trajectory Optimization

Optimization techniques can be used to compute trajectories. However, it is required to state an opti-

mization problem in such a way that its solution can be used to compute a trajectory. In [20], an overview

of trajectory optimization techniques and applications is performed. Besides giving an overview in nu-

merical methods for optimization, in [20] a series of traditional formulations of trajectory planning prob-

lems as optimization problems is given. Usually, in these problems, the system dynamics is imposed

using equality constraints such as:

σ̇ = f(σ, u) (2.7)

where σ represents the system state and u the control inputs. Nevertheless, these equalities must

be formulated in a discrete-time domain. To achieve this, the derivatives σ̇ are usually taken using finite

differentiation.

Trajectory optimization has been applied also to multi-rotors. In [11], optimization is only used to

compute splines joining way-points in a previously computed trajectory. On other works, such as [12, 24],

trajectory optimization is used to completely compute trajectories. In [24], the trajectories are discretized

into a series of way-points, unlike in [12] where trajectories are described as a series of high order

splines, which parameters are optimized.

To sum up, in order to perform trajectory optimization it is required to choose a finite set of parameters

to describe the trajectory, such as a set of way-points or a sequence of control inputs, and then formulate

the problem in such a way that the system dynamic and actuation limits of the problem are respected.
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Finally, a cost function to be minimized must be chosen to minimize.

2.4 Real time path planning for UAVs - Literature review

2.4.1 Literature review

Online path planning in unknown environments for UAVs was accomplished before in [25], but it ignored

the vehicle dynamics. Therefore, the UAV would have to fly slowly in order to perform the computed

trajectories. The most commonly used methods for real-time path planning are, arguably, sample-based

methods. For example, basic RRTs allow a fast search for a trajectory, however the solution is sub-

optimal.

For accomplishing a proper path-planning, it is desirable that the algorithm considers the kinody-

namics of the problem. Attempts have been made to apply RRT*, an asymptotically optimal version of

the RRT, for this problem.In [26], a kinodynamic RRT* was proposed, however in this work, the times

required to compute a trajectory were in many cases greater than 100 seconds, making it unsuitable to

use for online path-planning problems.

An interesting approach for path-planning problems is trajectory optimization. It has been used for

many years with diverse applications, for example to define missions of orbit transfer and also launching

space vehicles, like it is referred in [20]. In recent years,there has been a great amount of work regarding

applying these algorithms to robotics. One of the most influential works was done by Matt Zucker et

al. [27], where motion-planning for articulated robots was performed using optimization techniques.

It discretized the trajectory as a series of configurations, and then the algorithm would minimize the

distance to obstacles and maximize the smoothness of the trajectory. However, the trajectory time

would have to be pre-determined. Despite having clear limitations, in a prior work, A. Richards et al. [24]

addressed motion planning for UAVs. More recently, in 2016, Helen Oleynikova et al. [12] developed an

algorithm for UAV path planning in unknown static environments.

Generally, trajectory optimization algorithms require a first iteration. This can be computed in many

different ways, for example, it is possible to use a straight line as a first trajectory, even if this one is not

obstacle free [28]. In the present work, it is presented a first iteration given by a modified RRT algorithm,

which not only guarantees that the local-minimum is feasible as it also provides a trajectory close to

satisfying the kinodynamic constraints of the problem.

Two different works [11, 29] are of particular interest for the current research.

In [11] Marco Pavone et al. developed an algorithm which they claim to be the first successful real-

time path planner for UAVs in unknown dynamic environments physically tested. This work is very recent

(very end of 2018). The processing, however, was made on a ground station and communicated with

the UAV. The authors claim that the algorithms can run in real-time in an on-board computer if their code

is converted from MATLAB to C++. This work combines a series of interesting features such as the use

of machine learning to allow an online performance of a kinodynamic, asymptotically optimal sample-

based planner, in this case, the Fast Marching Tree star (FMT*). In [11], the authors propose the usage
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of three control input terms for the quadcopter: a feed forward, a feed backward and a reactive term.

The feed forward and feed backward terms simply compel the quadcopter to follow the computed path

(the control references and the feedback of the error, as in traditional controllers). The reactive term, like

in a potential field approach, simulates a force that ”pushes” the quadcopter away from the obstacles.

This last control term is, as mentioned by the authors, not essential, however, it has led to improvements

in the performance of the solution.

In [29], the authors explore the fact that trajectory optimization techniques allow the computed tra-

jectory to be continuously improved while the robot executes it. Figure 2.3 shows the timeline of the

solution, directly taken from [29], where the steps 2,3, etc. are similar to step 1.

Figure 2.3: Timeline of the ITOMP solution taken directly from [29]

It was experimented in simulations for high degree of freedom robots and showed to be successful

in achieving real-time path planning in unknown environments. It was also confirmed that this planner

able to deal with moving obstacles, however, it would fail to provide a collision-free trajectory quickly

enough in some scenarios with moving obstacles. To deal with the static obstacles the authors threat

the environment as a voxel map. The robot is treated as a series of overlapping spheres. For moving

obstacles the algorithm does not have information on the distance to those moving obstacles. Instead, it

only checks the distance to those moving obstacles. The moving obstacles trajectory is predicted during

a small period of time. The safety distance to be kept to those obstacles is increased along the time. The

increasing safety distance is used to deal with the uncertainty on the trajectory of the moving obstacles.

The algorithms only allow the robot to execute the trajectory if it is safe within a defined period of time.

2.5 Differential flatness

Many systems are under-actuated, meaning that the systems cannot be commanded to follow arbitrary

trajectories in the configuration space. This happens for example when the input space dimension is

smaller than the output space (configuration space) dimension, in this case, the systems are described

as trivially under-actuated. One example of a trivially under-actuated system is a quad-rotor, with only 4

inputs (speeds of the 4 rotors) and a 12-dimensional configuration space [30].

The concept of differential flatness is now described. A system is considered flat if it is possible to

find a set of outputs, which can be computed from the robot state, and a set of finite derivatives of the

input (equal, in number, to the number of inputs), called flat outputs, such that it is possible to describe
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all the possible trajectories of the system directly from the flat outputs and their derivatives [31]. In a

formal way, in a system:

σ̇ = f(σ, u) , σ ∈ Rm, u ∈ Rn

where σ represents the system state and u, the control input, is differentially flat if it is possible to find

the flat outputs w:

w = g
(
σ, u, u̇, ü, ..., u(l)

)
, u ∈ Rn

Such that it is possible to describe the inputs and outputs as functions of the flat outputs and its

derivatives:

σ = σ
(
w, ẇ, ..., w(l)

)
u = u

(
w, ẇ, ..., w(l)

)
where u(l) and w(l) represent the lth derivative of u and w respectively.

Note that usually in literature, the state vector is usually described by x, however, in the present

work it will be used σ once x will be frequently used for addressing the set of design variables in an

optimization problem.

One example of a differentially flat system is the basic model of a car. Let x and y be the coordinates

of the point between the rear wheels of the vehicle. θ is the orientation of the vehicle, determining the

angle between the symmetry axis of the vehicle (pointing forward) and the x axis. The control inputs of

the system will be the speed of the middle point between the rear wheels of the vehicle v and the angle

between the symmetry axis of the vehicle and the front wheels’ direction δ. Let the distance between

the rear wheel axis and the front wheel axis be b.

σ = [x, y, θ] u = [v, δ]

The system scheme is shown in Figure 2.4

Figure 2.4: Scheme of the car system
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In this system it is possible to use x and y as the variables forming the flat outputs.

w = [x, y]

From this variables and its derivatives it is possible to compute the state of the car and the control inputs,

as shown in Equations 2.8 and 2.9:

σ = [x, y, arctan2 (ẏ, ẋ)] (2.8)

u =

[√
ẋ2 + ẏ2, atan2

(
−ẍ ẏ

ẋ2 + ẏ2
+ ÿ

ẋ

ẋ2 + ẏ2
,

√
ẋ2 + ẏ2

b

)]
(2.9)

2.6 Multi-rotor-rotor dynamics

It is now introduced the concepts of inertial frame and body frame. The inertial frame is, as the name

suggests, a frame that moves in a constant speed (or static), where the zw axis is aligned with the

vertical, pointing upwards. The body frame is fixed to the multi-rotor and the zb is perpendicular to the

rotor plane and points up when the multi-rotor is hovering. A representation of these frames is shown in

Fig 2.6.

As stated in [30], the UAV state can be written as the position of its center of mass (x, y and z),

the speed of the center of mass (ẋ, ẏ and ż), the roll pitch and yaw angles (φ,θ and ψ) and the angular

velocities around the body axis xb, yb and zb (p, q and r respectively).

σ = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, p, q, r]T (2.10)

The inputs are considered to be the resulting force along the zb component of the body frame of

the vehicle (T ) and the moments along xb, yb and zb of the vehicle (Mx, My and Mz). This thrust and

moments are assumed to be given linearly from the square of each rotor speed (ω2
1 , ... , ω2

4). It is

also assumed that the rotor speeds can be directly controlled. Let u = [T,Mx,My,Mz]
T and ω2 = [ω2

1 ,

... , ω2
4 ]T . For multi-rotors with more rotors, the control input u will be the same (thrust along the axis

perpendicular to the rotors plane zb and moments applied to the center of mass), once a series of rotors

that provide thrust in the same direction are only capable of generating force along that same direction.

To map from the squared rotation speed of n rotors ω2 into control inputs u, as described before, it is

used a matrix usually called allocation matrix A 4× n, such as in Equation 2.11.

u = A[ω2
1 , ..., ω

2
n]T (2.11)

For example, for the hexa-copter shown in Figure 2.5, the allocation matrix A that converts the

squared rotation speed of the six rotors [ω2
1 , ..., ω

2
6 ]T into the control input vector u composed by the

18



Figure 2.5: Scheme of the topview of an hexacopter

thrust along the zb axis and the moments around the body axis u = [T,Mx,My,Mz]
T is:

A =


CT CT CT CT CT CT

0 −lCT
√

3
2 −lCT

√
3

2 0 lCT
√

3
2 lCT

√
3

2

lCT lCT

2 −lCT

2 −lCT −lCT

2 lCT

2

−CM CM −CM CM −CM CM

 (2.12)

Where the thrust and momentum along the axis of a rotor are given by T = CTω
2 and M = CMω

2.

It is clear that for more than 4 rotors the matrix does not have an inverse. For that reason, when it is

desired to map u into [ω2
1 , ..., ω

2
n], with n > 4, it is necessary to add some extra constraints to the system,

making it possible to directly obtain [ω2
1 , ..., ω

2
n] from u.

Figure 2.6: Inertial frame (subscript W) and body frame (subscript B) of a multi-rotor. Taken directly from
[30]

2.7 Quad-rotor differential flatness

In [30], it is proven that a quad-rotor is a differentially flat system. This implies that it is possible to

compute the control inputs and the UAV configuration from a trajectory defined in the flat output space.
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The flat outputs chosen in this work were the vehicles center of mass coordinates in the inertial frame

(x, y and z) and the yaw angle (ψ).

w = [x, y, z, ψ]
T (2.13)

The authors provide expressions for computing the quad-rotor state σ and inputs u from the flat

output variables and their derivatives up to the fourth derivative. This means that it is possible for the

under-actuated quad-rotor to follow the computed trajectory in the flat output space (position and yaw)

as long as the inputs are not saturated.

2.8 Approximated dynamics

In this work, like in some others [11, 24], a first approximation is made, considering that the acceleration

of the vehicle can be directly controlled (ignoring attitude information). In such approximated system,

the UAV can be described as a point with a mass, and its state considers only the position of the

center of mass and the speed. This approximation, however, leads to generated trajectories that cannot

be followed by the real quad-rotor. Discontinuities on the acceleration direction would translate into

discontinuities in the vehicle attitude (the zb axis of the body frame must be aligned with the thrust at

all times). If it is desired to make use of the differential flatness propriety, computing directly the control

inputs from the flat output variables (from a trajectory in 3-dimensional space with freedom to control the

yaw angle), it is required to have information on the flat output variables up to the 4th derivative (snap)

with respect to time. This can be achieved by smoothing the trajectory, as it is made in [11].

In the present work, the computed trajectories only provide information up to the 2nd derivative of the

position. It is then desirable to have a suitable controller, once the inputs cannot be directly taken from

the computed trajectory.

2.9 Traffic Collision Avoidance System

The Traffic Alert and Collision Avoidance System (TCAS) is an on-board conflict detection and resolution

system which alerts pilots to the presence of nearby aircraft that pose a mid-air collision threat and

issues conflict resolution advisories, [32]. TCAS is a complex safety-critical system in the area of air

traffic management. TCAS is able to operate independently of the ground-based air traffic control (ATC)

system.

TCAS systems provide different degrees of alerting regarding air-born collision. To do so, these

systems rely on the communication between the beacon transponders on-board of the aircrafts.

The TCAS system provides two types of alerts to the pilot: Traffic Advisories (TA) and Resolution

Advisories (RA). A traffic advisory (TA) is a sound message that alerts the pilot for proximate cooperative

traffic, with possible risk of collision. Resolution advisories (RAs) are sound messages stating actions

for pilots to take in order to avoid collision by assuring a vertical separation between aircrafts (climb,
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descend, level...).

A TCAS display assists the pilot visualising proximate aircrafts. The intruder aircraft are represented

using different color and shape codes accordingly to the alert level associated with themselves. TCAS

displays often include a color-coded climb rate display. In this display pilots can visualize the recom-

mended climb rate by the TCAS (in case of resolution advisory) to avoid collision.

In case of resolution advisory the TCAS systems on board of the conflicting aircraft coordinate the

computed resolutions to avoid collision (for example avoiding that both aircrafts start climbing towards a

new collision point). The TCAS systems will then select complementary resolutions.

Regarding the display symbology, both colour and shape are used to assist the pilot in interpreting

the displayed information. Own-aircraft is depicted as a white or cyan airplane-like symbol. Other aircraft

are depicted using geometric symbols, depending on their threat status, as follows [33]:

• An unfilled diamond, shown in either white or cyan, but not the same colour as own-aircraft symbol,

is used to depict non-threat traffic (labelled as “Other”);

• A filled diamond, shown in either white or cyan, but not the same colour as own-aircraft symbol,

is used to depict Proximate Traffic (non-threat traffic that is within 6 nmi and ±1200 ft from own-

aircraft);

• A filled amber or yellow circle is used to display intruders that have caused a traffic advisory to be

issued;

• A filled red square is used to display intruders that have caused an RA to be issued.

The standardized symbology is shown in Figure 2.7.

In order to declare and resolve conflicts, the TCAS system tracks the intruders range and altitude.

Based on the range measurements, the TCAS computes the time to the closest point of approach (CPA),

which will be described in this section as the range tau τR. τR is calculated simply by dividing the range

by the closure rate. Analogy, the vertical tau τV is the time for altitude-crossing and is calculated by

dividing the altitude difference by the vertical closing rate. There are defined thresholds for issuing

traffic and resolution advisories [33]. If both τR and τV are below these thresholds a traffic advisory or

resolution advisory will be issued. For ranges smaller than a defined range called DMOD the TCAS

behaves like τR is below the corresponding threshold. Analogously, if the altitude separation is smaller

than a certain threshold called ZTHR the TCAS behaves like τV is below the corresponding threshold.

These thresholds are defined by the sensitivity level, which is determined by the altitude of the aircraft.

Table 2.2 shows these thresholds for each sensitivity level and the altitudes corresponding to each

sensitivity level:

To illustrate this alert system, Figure 2.8 is presented. If an intruder aircraft set of parameters falls

below the yellow line in both graphics then a traffic alert is issued. Similarly, if an intruder aircraft set of

parameters falls below the red line in both graphics then a resolution advisory is issued. The slope of

the yellow line and red line is the TA tau and the RA tau respectively.
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Figure 2.7: Symbology regarding intruder aircrafts in TCAS display. Taken directly from [33].

Own Altitude (feet) SL τ (seconds) DMOD (nmi) ZTHR (feet)
TA RA TA RA TA RA

<1000 2 20 N/A 0.30 N/A 850 N/A
1000-2350 3 25 15 0.33 0.20 850 600
2350–5000 4 30 20 0.48 0.35 850 600
5000–10000 5 40 25 0.75 0.55 850 600
10000–20000 6 45 30 1.00 0.80 850 600
20000–42000 7 48 35 1.30 1.10 850 700
> 42000 7 48 35 1.30 1.10 1200 800

Table 2.2: Table defining the thresholds for TA and RA for different Sensitivity Levels (SL) [33].

Figure 2.8: Graphics showing the range threshold for a given closing rate (on the left) and the altitude
separation threshold for a given altitude closing rate (on the right). The yellow line represents the TA
threshold and the red line the RA threshold.
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Chapter 3

Modified RRT

There is a vast literature on different RRT algorithms and the possible applications for each. This work,

however, will fail to make an overview of these algorithms, to keep it concise. Instead, a brief explanation

of the basic RRT algorithms is presented, followed by the description of the proposed algorithm. Finally

an enhancement method is presented, which allows to improve the solution of the proposed algorithm.

3.1 Basic RRT

Rapidly-exploring Random Trees (RRTs) were introduced by LaValle as a family of randomized planners

([34], chapter 5). LaValle introduced RRT algorithms in a general form that allow planning trajectories

for high degree of freedom systems. The original algorithm consisted in expanding a tree of states be

making incremental expansions from those configurations to randomly sampled new states. Each state

in the tree is described as a vertex, each connection between states is described as an edge.

In the year 2000, Kuffner and LaValle [35] proposed an RRT algorithm that outputs a path from a start

to a goal configuration called RRT-connect, this variation uses two trees. It will be explained how the

original algorithm, using a single tree, can be used to compute a path from a start to a goal configuration

while biasing the growth of the algorithm, as it is described in [36].

Initially an empty tree is created, and the start configuration is added to that tree. Then the main

cycle begins. In this cycle configurations are randomly sampled. This sampling is biased in such a way

that the goal configuration has a higher probability of being sampled. Then the closest configuration

(vertex) of the tree, relative to the random configuration, is selected. If the random configuration is

further away than a determined distance ε to the nearest configuration, a new configuration is created

between the nearest and the random configurations, at a distance ε from the nearest vertex. Otherwise,

if the random configuration is at a distance smaller than or equal to ε to the nearest vertex, the random

configuration becomes the new vertex. If it is possible this new vertex is added to the tree, and also

an edge connecting the new vertex to the previously determined nearest vertex. The process continues

until the goal configuration is added to the tree. The pseudo-code for this process is shown in Algorithm

1.
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tree = []
tree.addVertex(Qstart)
while Qgoal not in tree do

Qrand = randomizeConfiguration()
Qnear = nearest(tree, Qrand)
Qnew = expand(Qnear, Qrand)
if possibleExpansion(Qnear, Qnew, Obstacles) then

tree.addVertex(Qnew)
tree.addEdge(Qnew)

end
end
return tree

Algorithm 1: Pseudo-code for the basic RRT algorithm

Figures 3.1-3.6 illustrate the steps taken by the RRT algorithm.

Figure 3.1: Initially only the start configuration
is added to the tree

Figure 3.2: A random configuration is sampled.

Figure 3.3: A new configuration is created that
expands the tree towards the random configu-
ration.

Figure 3.4: The new configuration and a new
edge are added to the tree.

3.2 Proposed algorithm

Kinodynamic RRT* has a high computational cost that prevents it from being used in real time applica-

tions [26], as it was discussed in Section 2.4.1. Therefor, an alternative is proposed. An RRT which

computes paths with a maximum curvature limit is presented. Unlike what is done in some literature,

which consists in using the systems’ dynamics for limiting the curvature of the paths [37], the problem is
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Figure 3.5: In some cases the expansion step
fails, in those cases the new configuration is
rejected

Figure 3.6: The process continues until the
goal configuration is added to the tree.

approached directly. In the present work, geometrical constraints are applied as the tree is grown. In [38]

the maximum curvature problem is also approached directly, however the paths generated between two

vertices are arcs of circumference. In the proposed method, on the other hand, this paths are composed

by a segment with maximum curvature and another with a straight line, generating paths with smaller

length.

In this work the term vertexes describe, as usual in other works about RRTs, the vertices of the tree.

The term edge corresponds to a line segment that connects two vertices. The edges are straight lines.

Figure 3.7: Vertices and edges

However, in this work, unlike what is done in most of the literature, the sequence of way-points that

describe the trajectory is not defined by the vertices of the tree. After the goal position is added to the

tree, the trajectory is computed by using, as way-points, the middle points between consecutive vertices.

The speed associated to each waypoint has the direction of the line that joins consecutive vertices in

the tree, as shown in Figure 3.8.

Figure 3.8: The green points and arrows represent the robot’s position and speed respectively. The
black points represent the vertices of the RRT.
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3.2.1 Geometrical considerations

Acceptable angle between edges

It will now be defined the maximum allowed angle between consecutive edges as a function of the robot

minimum curvature radius. Let d be the edge length, Rmin be the robot minimum curvature radius and

α be the angle (maximum angle) between consecutive edges. The angle α will be given in rad as:

α = π − 2arctan

(
Rmin
d/2

)
(3.1)

It is obvious that the angle α can only take values between 0 and π, in this range the function cos (α)

is always decreasing, therefore limiting a maximum angle between two edges is the same as limiting a

minimum cos (α). Let now e1 represent one edge (position of vertex k minus position of vertex k-1) and

e2 represent its consecutive edge (position of vertex k+1 minus position of vertex k). We can state that

an edge e2 is acceptable after an edge e1 if and only if:

e1 · e2

‖e1‖‖e2‖
≥ cos (αMAX) (3.2)

Maximum curvature step

Sometimes a new vertex is created in such a position that it is not possible to create an edge from the

previous vertex that is aligned with the new vertex (when the condition in equation 3.2 is not respected),

such as in Figure 3.9.

Figure 3.9: The new vertex is in such a position that it is not possible to expand the tree directly towards
it, the tree is expanded than using a maximum curvature step

It will now be described how the tree is expanded in such a scenario. The tree is expanded here

towards an intermediate vertex using a maximum curvature step (maximum angle between consecutive

edges). The position of this intermediate vertex is calculated as follows: The vector u is computed, it

is the projection of the position of the new vertex relatively to the nearest vertex on the direction of the

edge e1.

u = ((qnew − qnear) · e1)
e1

‖e1‖2
(3.3)

The vector v is also computed, it is the projection of the position of the new vertex relatively to the

nearest vertex on the hyperplane normal to e1 that contains the nearest vertex. This computation is
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simply given by:

v = (qnew − qnear)− u (3.4)

An example of the vectors u and v is represented in Figure 3.10.

Figure 3.10: Representation of the vectors u and v in blue

The maximum curvature step can now be defined, let e2 denote this step (such as in figure 3.9) and

let d denote the length of the edges:

e2 = d

(
cos (αMAX)

e1

‖e1‖
+ sin (αMAX)

v

‖v‖

)
(3.5)

Unreachable regions

Finally there is also the need to define reachable regions. In this method of making maximum curvature

turns until the robot is aligned with the new vertex there are some unreachable regions from each vertex,

figure 3.11 is shown for an easier understanding of this concept:

Figure 3.11: Circles describing the unreachable regions for a robot (in green)

This region is the reunion of two circles in the 2D plane and a horn torus in the 3D space. The region

for the acceptable new vertices from the vertex k (in figure 3.11) is however greater, like it is shown in

figure 3.12:

The unreachable region becomes now a spindle torus in three-dimensional space. The radius R2

is given by
√
R2
min +

(
d
2

)2
.We can easily define a condition that dictates if a new vertex is or not

acceptable. Taking into account the figure 3.10 and recalling the concepts of the u, v and e1 vectors

defined before. A new vertex is reachable from a near vertex if and only if:

(
u

e1

‖e1‖
+
d

2

)2

+ (‖v‖ −Rmin)2 ≥ R2
2 (3.6)
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Figure 3.12: Reachable regions in from a certain vertex (bounded by circles in blue), some limit possible
robot positions are represented as green circles

Where u and v are the vectors previously defined in Equations 3.3 and 3.4 respectively, and d is the

length of the edges in the tree.

3.2.2 Integration in the classic RRT algorithm

The basic RRT, shown before in Algorithm 1, was changed in such a way that for a given Qrand the

tree is repeatedly expanded towards that Qrand configuration until that same configuration is reached

or until the expansion fails. The algorithm pseudo-code is presented in Algorithm 2:

tree = []
tree.addVertex(Qstart)
while Qgoal not in tree do

Qrand = randomizeConfiguration()
expand(tree, Qrand, Obstacles)

end
return tree

Algorithm 2: Modified RRT algorithm

The modifications proposed to the algorithm are now described:

New Expand function

The greatest modifications are in this function, the pseudo-code is presented in Algorithm 3:

The first while cycle is now explained (the second is trivial). In the beginning of the method Qnear is

set as the nearest point in the tree to the vertex Q. e1 is the edge that leads to Qnear. d is the length

of an edge. Inside the cycle if the distance between Q and Qnear is smaller than d the expansion fails.

If it is possible to make an expansion directly towards Q from Qnear (line 14) than aligned = True the

step is simply a vector with direction Q − Qnear and euclidean norm d. If the it is not possible to to

make a direct expansion than the step is a maximum curvature one (explained further). It is than tried

to add a new point Qinter = Qnear + step to the tree, if it is possible (considering the obstacles in the

environment) to connect Qnear to Qinter (line 20) than Qinter is added to the tree, Qinter parent is set
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Function expand(tree, Q, Obstacles
Qnear = getNearest(tree, Q)
e1 = Qnear-Qnear.getParent()
totalExpansions = 0
aligned = False
if isReachable(e1, Qnear, Q) == False then

return False
end
//while expansions are not directly towards Q

while True do
if —Q-Qnear —¡d then

return False
end
if isAlignable(e1, Qnear, Q) == True then

aligned = True
step = straightForwardStep(Qnear, Q)

else
step = maximumCurvatureStep(e1, Qnear, Q)

end
Qinter = Qnear + step
if tryConnect(Qnear, Qinter) == True then

totalExpansions = totalExpansions+1
tree.add(Qinter)
Qinter.parent = Qnear
e1 = Qinter-Qnear
Qnear = Qinter

else
pruneTree(tree,totalExpansions)
return False

end
if aligned == True then

break
end

end
//once the expansions are towards Q

//the tree is successively expanded until

//Q is reached or the expansion fails

while Q != Qnear do
step = straightForwardStep(e1, Qnear, Q)
Qinter = Qnear + step
if tryConnect(Qnear, Qinter) == True then

totalExpansions = totalExpansions+1
tree.add(Qinter)
Qinter.parent = Qnear
e1 = Qinter-Qnear
Qnear = Qinter

else
pruneTree(tree,totalExpansions)
return False

end
end

end
Algorithm 3: New expand function

to be Qnear, e1 is now the edge that leads to Qinter and Qnear becomes Qinter, allowing this process

to be repeated until it is possible to expand the tree directly towards Q (until aligned == true).
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isReachable(e1, Qnear, Q)

Verifies if the condition described in equation 3.6 is satisfied.

isAligned(e1, Qnear, Q

Verifies if the condition in equation 3.2 is satisfied.

straightFowardStep(Qnear, Q)

Simply returns e2 = d Q−Qnear
‖Q−Qnear‖

maximumCurvatureStep(e1, Qnear, Q)

Simply returns the vector e2 as computed in equation 3.5

pruneTree(tree, totalExpansions)

The added curvature constraint arises new challenges for the RRT. An example is now shown in figure

3.13:

Figure 3.13: Portion of an environment with an obstacle

In this situation, an algorithm without the prune function tries to expand the tree towards vertex E. The

nearest point of the tree was vertex A. The vertices B, C and D were added to the tree in the expansion,

the expansion failed trying to add a vertex after D. This is a very frequent (and unpleasant) scenario if

the prune function is not used. Any expansion towards a vertex Q that has D as the nearest vertex will

fail. These failures will occur quite often: once D is a leaf vertex is will have a very large Voronoi region.

Therefore, every time an expansion is not successful because of the presence of an obstacle the

tree is pruned. The pruning consists of deleting half (rounded up) of the vertices added to the tree while

trying to reach the vertex Q. In this case, vertices C and D would be deleted.

Goal Obstacle

Without this feature it could be observed that the presented algorithm would often fail. The failures were

due to the fact that the goal vertex was often in an unreachable region of the closest vertex in the tree.

This was quite common, if the tree was successively expanded towards a random vertex behind the
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goal region then there would be a series of aligned vertices that would cross near the goal. Afterwards,

when trying to expand towards the goal one of those vertices would be selected, as it is known the

closest point in a line segment r to a point X is the intersection of the perpendicular hyperplane to r that

contains X. Consequently, the goal would often fall into the unreachable region, as illustrated in figure

3.14.

Figure 3.14: Goal position falls into an unreachable region. Goal position represented as red, vertexes
on the tree as black, vertex nearest to goal as green and the corresponding unreachable region as blue.

The adopted solution to this problem is now presented. Whenever the tree is being expanded towards

a random vertex a goal Obstacle is activated. This consists in a sphere with a radius of 2 times the

minimum curvature radius. This prevents the algorithm from adding vertices to the tree that might place

the goal position in an unreachable region.

3.3 Enhancement step

As it is known, trajectories computed by the RRTs might be very sub-optimal. Optimal RRT related

algorithms require often great computational times like it was mentioned before. An enhancement step

is now proposed. This enhancement step allows the solution computed by the smooth RRT to be

enhanced in a very significant way without requiring much computational time. The method that allows

this will now be studied.

3.3.1 Algorithm

The step consists in trying, from each vertex in the RRT, to reach directly another vertex in the trajectory

as close to the goal as possible. A scheme is now presented in order to demonstrate this concept in

Figure 3.15:

First it is desirable to define two terms. JumpBaseVertex is the vertex from which the direct expan-

sions will be attempted (outlined by a blue circle in figure 3.15). FurthestReachableVertex is the furthest

vertex in the trajectory to which a direct expansion was possible (outlined by a red circle in figure 3.15).

In this algorithm an expansion directly from the JumpBaseVertex is attempted for the vertex after

the previous FurthestReachableVertex. If the expansion is possible than the trajectory with both these

vertices connected is stored and the FurthestReachableVertex is updated. If the expansion fails than

it is tried to expand towards the remaining vertices on the trajectory, if one of them succeeds than

FurthestReachableVertex is updated. After every vertex is tested the JumpBaseVertex is changed to

the next vertex on the trajectory. Sometimes the JumpBaseVertex reaches the FurthestReachableVertex
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Figure 3.15: Consecutive steps in the enhancement algorithm. The blue circle identifies the JumpBa-
seVertex and the red circle identifies the FurthestReachableVertex. A green path represents a doable
connection and a red path an impossible connection.

once expansions to vertexes closer than an expansion step fail in this algorithm. To prevent this every

time JumpBaseVertex reaches the FurthestReachableVertex the FurthestReachableVertex is set as

the next vertex. The process continues until the goal is stored as the FurthestReachableVertex. The

pseudo-code for this is presented in Algorithmn 4.

JumpBase=start
FurthestReachable=start.next()
tryingToReach=FurthestReachable.next()
while FurthestReachable != goal do

if expand(JumpBase, tryingToReach, Obstacles ) then
FurthestReachable=tryingToReach
tryingToReach=tryingToReach.next()

else
if tryingToReach!=goal then

tryingToReach=tryingToReach.next()
else

JumpBase=JumpBase.next()
if(JumpBase==FurthestReachable)
FurthestReachable=FurthestReachable.next()
tryingToReach=FurthestReachable.next()

end
end

end
Algorithm 4: Algorithm of the enhancement step.

3.3.2 Changing environments

This algorithm was also empowered with the capability to deal with moving obstacles. For this purpose

it is necessary to add information about the time correspondent to each vertex of the tree, to allow

checking whether each vertex is in collision with an obstacle at the corresponding moment in time.

Therefore, the starting time has to be propagated through the tree. To implement such, the time for

each new vertex of the tree was computed at the moment it was added to the tree. The time corre-

sponding to the newly added vertex is simply given by the time of its parent vertex plus the distance to

the parent vertex divided by the UAV speed. In this work the term parent vertex is used to refer to the
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existing vertex of the tree to which the new vertex is connected.

tnew = tparent +
distanceparent−new

speed

3.4 Results

The constrained curvature RRT was grown in 2 different environments, the start vertex is the red circle

on the left and the goal is the red circle on the right (Fig. 3.16 - 3.17).

Figure 3.16: Environment 1 Figure 3.17: Environment 2

The algorithms for enhancing the trajectory were performed after growing the RRT 100 times in each

environment. An unrealistic cost is defined as the minimum distance of a trajectory between start

and goal if there were no curvature limitations, the pseudo-sub-optimality measure is then given by
cost−unrealisticcost
unrealisticcost · 100%. The results are now presented:

Environment 1 time (s) total distance pseudo-sub-optimality
First trajectory 0.028 474 38.6%
Trajectory enhancement 0.026 376 9.64%
Final 0.054 376 9.64%

Table 3.1: Results of the application of the RRT algorithm and enhancement step to environment 1

Environment 2 time (s) total distance pseudo-sub-optimality
First trajectory 0.004 435 50%
Trajectory enhancement 0.013 308 6.21%
Final 0.017 308 6.21%

Table 3.2: Results of the application of the RRT algorithm and enhancement step to environment 2

In the first environment there is a narrow passage above the first obstacle which is hard for the

algorithm (due to the constrained curvature) to overcome. For that reason, the algorithm takes more
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time to compute a path than in the second environment. The enhancement step takes approximately as

long as the initial trajectory computation for the environment 1 and almost 3 times more for the second.

The enhanced trajectories have a length close to the unrealistic cost, and even closer to the locally-

optimal cost for a curvature constrained path. Figures 3.18-3.21 show some examples of the computed

trajectories before and after the enhancement step. This enhancement step allows to quickly improve

the length of the trajectory without the need to sample new random configurations, like it is done in the

RRT*.
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Figure 3.18: Example of the trajectory before (on the left) and after (on the right) the trajectory enhance-
ment

Figure 3.19: Example of the trajectory before (on the left) and after (on the right) the trajectory enhance-
ment

Figure 3.20: Example of the trajectory before (on the left) and after (on the right) the trajectory enhance-
ment

Figure 3.21: Example of the trajectory before (on the left) and after (on the right) the trajectory enhance-
ment
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Chapter 4

Trajectory Optimization

Optimization problems consist in minimizing a cost function f(x) while respecting a series of constraints,

as it has been described in section 2.3. These constraints can be equities c(x) = 0 or inequities d(x) ≥ 0.

In 2.3 the solver used is described, and it is a dual-barrier method. The problem will be formalized in the

classical form:

minimize: f(x)

subjected to: c(x) = 0

d(x) ≥ 0

There are multiple ways of solving this sort of problems, however, an exhaustive review on these

methods will not be made in this work. In general optimization methods require an initial value for the

design variable vector x0. It will now be addressed how to formalize the trajectory-optimization problem

as a conventional optimization problem. The approximations and assumptions made for this problem

are:

• The multi-rotor is approximated to a point

• The attitude is, at this point, ignored

• It can move in any direction

• It has limited acceleration

• It has limited speed

• The multi-rotor state σ is defined by the position and speed of its center of mass.

The planning will be performed in a three-dimensional environment. To make use of the differential-

flatness property of the multi-rotors it would be necessary to assure that the control inputs of the vehicle

were not saturated, by evaluating the derivatives, up to the fourth derivative of position [31]. In the

present work, however, for the sake of simplicity and computational performance, the computed trajec-

tories are only differentiable up to the second derivative of the position. Therefore, the limitation on the

speed and acceleration are used as heuristics to avoid saturating the control inputs of the multi-rotor.
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4.1 Nomenclature

It will be now introduced some nomenclature that will be used in this section. Part of this nomenclature

is already defined in Chapter 2. [σ0, ..., σN−1] is the vector with all the N robot states along the trajectory,

excluding the start and the goal states. σs and σg are the start and goal states respectively and these

will not be subjected to optimization. Also σi = [pi,vi], where pi and vi corresponds to the position and

speed vector of the robot in a given moment. This means that σi ∈ R4 for bi-dimensional environment

and σi ∈ R6 for three-dimensional environment (e.g. UAV). Let also pi,j represent the jth component of

the robot position in the ith state and vi,j represent the j component of the robot speed in the ith state.

For example, pi,z is the robot position along the z axis in the ith state and vi,y represents the robot speed

along the y axis in the ith state. Basically: σi = [pi,vi] = [pi,x, pi,y, pi,z, vi,x, vi,y, vi,z] (in 3 dimensional

space).

It will be assumed that the robot acceleration a between two consecutive states is constant. Each

state σi represents the state of the robot at the time t = ts+(i+1)∆t where ts is the start time. Therefore

the total trajectory time is given simply by ttotal = (N + 1)∆t (one time step from start to σ0, N-1 time

steps between the N states and one time step between σN−1 and the goal).

Considering this, the variables subjected to optimization will be x = [∆t, σ0, ..., σN−1]. If it is written

in the form of a vector of scalars (in 3 dimensional space):

x = [∆t, p0,x, p0,y, p0,z, v0,x, v0,y, v0,z, ..., pN−1,x, pN−1,y, pN−1,z, vN−1,x, vN−1,y, vN−1,z]

This will be the design variables of the problem, it is essential for the good comprehension of the

following topics.

4.2 Problem formulation

It is possible to describe a path-planning problem as an optimization problem (trajectory optimization).

This can be done by using, as design variables, the state of the system in different moments of the

trajectory. It is also required to determine a cost function f(x) (which will be minimized) and a series of

constraints that must be respected, these constraints might be equalities or inequalities. This approach

is called direct transcription or direct collocation [20].

It will now be presented the cost function, equalities and inequalities chosen for our problem. The gra-

dients and Hessian matrices of these constraints should also be computed once optimization algorithms

benefit from having analytic expressions for them, however, these calculations will not be presented.

The cost function chosen is the total trajectory time. The constraints will be formulated in order to make

the computed trajectory respect the kinodynamic constraints of the presented problem namely: the kine-

matics, maximum speed and maximum acceleration. There will also be formulated constraints to assure

obstacle clearance.
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4.3 Cost function

The cost function chosen is a linear combination between the trajectory time and energy consumption.

The scalar weights kT and kF allow tuning the relevance given to each of these costs. Such cost

functions are suitable, for example, for minimizing the mission-related costs. The cost function is then:

f(x) = kT fT (x) + kF fF (x) (4.1)

The time component fT (x) is the total trajectory time, which is given as (N+1)∆twhereN represents

the number of states subjected to optimization.

To model the energy consumption fF (x) for the multi-rotor the work by Marins et al. [39] will be anal-

ysed. In this work the authors estimate the energy consumption of a multi-rotor based on its dynamics

and the physical principles of superposition, using a close form expression. The estimation errors ob-

tained were less than 1% concerning experimental results. The energy consumption is divided into three

components: related to hovering, related to acceleration/deceleration and related to the work performed

by drag forces.

The power consumption related to hovering is simply given by a constant hovering power multiplied

by the flight time. To include such cost in the cost function it is possible to simply use the time-related

component, replacing kT in Equation 4.1 by kT + kFP0, where kF is the scalar multiplied by the energy

cost and P0 is the hovering power. It is important to refer that accordingly to [39] the hovering power

represents more than 90% of the power consumption in the tested small multi-rotor in a mission where

the ”cruising speed” was 8 meters per second.

The power related to the acceleration/deceleration can be calculated as the variation of kinetic en-

ergy. In [39] it is assumed that the modulus of this variation is proportional to the energy consumption

(decelerating also consumes energy). For the present work, it is also included the variations on gravita-

tional potential energy, for this reason, this component of the energy consumption will be estimated as

the modulus of the variation of the mechanical energy of the quad-copter. In [39] it is shown that this

component of the energy consumption is the less relevant to determine the optimal speed for a straight-

line path. Equation 4.2 is used to determine the energy consumption due to the variation of mechanical

energy in a trajectory segment.

E = ‖EM (i+ 1)− EM (i)‖

EM (i) = 1
2m‖vi‖

2 +mgpi,z
(4.2)

In this equation, E represents the consumed energy, EM (i) represents the mechanical energy at

state σi, m represents the UAV mass and g represents the gravitational acceleration. vi represents the

speed of the UAV at state σi and pi,z the position of the UAV along the z axis.

Finally, the energy consumption related to the work done by drag forces is approximated in [39], for

straight-line paths, as if the speed of the path was constant and equal to the ”cruise speed”, disregarding

the accelerating and decelerating stages. The drag force was calculated as being a constant (vehicle

dependent) multiplied by the squared speed. Aiming for a better result, and since the speed changes
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linearly between waypoints, it is possible to compute the work done by the drag force between two

consecutive waypoints as:

E =

∫ ti+1

ti

const ‖v(t)‖3 dt ⇔ E =

∫ ti+1

ti

const

∥∥∥∥vi + (vi+1 − vi)
t− ti

ti+1 − ti

∥∥∥∥3

dt (4.3)

The integral presented in Equation 4.3 has a closed-form solution. If the speeds in the consecutive

waypoints were co-linear this equation would have a simple solution. However, that is not the general

case. For the general case there is, indeed, a closed expression solution for the integral in Equation

4.3, however, the expression is quite complex, and so are its partial derivatives. For that reason, an

assumption like the one made in [39] was made. It is assumed that the work done by the drag forces

is proportional to the distance between waypoints times the average speed raised to the power of 2. In

other words, it is assumed that the multi-rotor performs a straight-line trajectory at a constant speed be-

tween waypoints. The resulting expression for this component of the energy consumption in a trajectory

segment is then:

E =
1

2
CDρAef‖pi+1 − pi‖

‖vi+1 + vi‖2

2
(4.4)

In Equation 4.4, E represents the energy consumption in a trajectory segment, CD the drag coeffi-

cient, ρ the air density and Aef the UAV effective area.

The energy consumption is then given by the combination of these components, computed for every

trajectory segment between waypoints (including start and goal).

4.4 Kinematics

The algorithm must respect the kinematics of the problem. It is assumed that the acceleration between

to consecutive states σi and σi+1 is constant. It is also assumed that the time elapsed for the robot to

move from one state to another is ∆t. With these assumptions, the position pi+1 should be given by:

pi+1 = pi +
vi + vi+1

2
∆t (4.5)

Writing this as an equity constraint in the form cK(x) = 0:

pi+1 − pi −
vi+1 + vi

2
∆t = 0⇔

⇔ cK(x) = pi+1 − pi −
vi+1 + vi+1

∆t

(4.6)

Let xs and xg be the start and goal state respectively. It is now possible to write the scalar equations

cK(i, j)(x) = 0 that represent the kinematic constraints between state σi and σi+1 for the jth component

of the position/speed. cK(s, j)(x) = 0 and cK(g, j)(x) = 0 represent the constraints for the segments

between start and the σ0, and between σN−1 and the goal, respectively. Then:

cK(s,j) = p0,j − ps,j −
v0,j + vs,j

2
∆t (4.7a)
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cK(i,j) = pi+1,j − pi,j −
vi+1,j + vi,j

2
∆t (4.7b)

cK(g,j) = pg,j − pN−1,j −
vg,j + vN−1,j

2
∆t (4.7c)

Equation 4.7b applies for i ∈ {0, · · · , N − 2} and j ∈ {x, y, z}. Equations 4.7a and 4.7c apply for

j ∈ {x, y, z}.

Another possible formulation for this constraint is to take the norm or the squared norm of the vec-

torial constraint in Equation 4.6. In this way a smaller number of constraints is required, leading to a

smaller number of Lagrange multipliers. This would lead to the inversion of smaller matrices while op-

timizing, however, the Jacobean and Hessian of the constraint would be denser matrices. In the case

that the squared norm of the vectorial constraint is taken it leads to small values in the derivatives of

the constraint when the constraint is close to being satisfied, which might be a problem. It would be

interesting to test these formulations in future work.

4.5 Maximum speed

It is now required to write the maximum speed constraint in the form: dS(x) ≥ 0. The maximum speed

can be written as:

‖vi‖ ≤ vMAX (4.8)

Re-writing this constraint in the desired form we have, for each state σi:

dS(i) = vMAX − ‖vi‖ ≥ 0 , i ∈ {1, · · · , N − 1} (4.9)

This constraint can also be written in a form that is more efficient computationally while assuring

derivatives different from 0 in the boundary. This new inequality is obtained by squaring both sides of

the inequality in Equation 4.8 (both sides of Equation 4.8 are positive at all times).

dS(i) = v2
MAX − ‖vi‖2 ≥ 0 , i ∈ {1, · · · , N − 1} (4.10)

In this form, the Hessian matrix for the constraint is not as dense because the cross derivatives
∂2sS(i)

∂vi,x∂vi,y
, ∂2sS(i)

∂vi,x∂vi,z
and ∂2sS(i)

∂vi,y∂vi,z
become zero.

4.6 Maximum acceleration

Once again, it is convenient to state that we assume that the UAV has a constant acceleration between

two consecutive states, this acceleration is given by ai = vi+1−vi

∆t . It is intuitive that the maximum

acceleration constraint can be written as:
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‖ai‖ ≤ aMAX ⇔
‖vi+1 − vi‖

∆t
≤ aMAX

To keep the derivatives simple, the form chosen for this inequity to be written was:

‖vi+1 − vi‖ ≤ aMAX∆t (4.11)

The constraint should have the form dA(x) ≥ 0,

dA(x) = aMAX∆t− ‖vi+1 − vi‖ ≥ 0 (4.12)

This constraint is now written in the form of a series of scalar constraints:

dA(s) = aMAX∆t− ‖v0 − vs‖ (4.13a)

dA(i) = aMAX∆t− ‖vi+1 − vi‖ (4.13b)

dA(g) = aMAX∆t− ‖vg + vN−1‖ (4.13c)

Equation 4.13b applies for i ∈ {0, · · · , N − 2}.

These equations can also be formulated in a different, more efficient manner. This can be done by

squaring both sides of the inequality stated in equation 4.11. The resulting scalar constraints are:

dA(s) = a2
MAX∆t2 − ‖v0 − vs‖2 (4.14a)

dA(i) = a2
MAX∆t2 − ‖vi+1 − vi‖2 (4.14b)

dA(g) = a2
MAX∆t2 − ‖vg + vN−1‖2 (4.14c)

This formulation leads to a less dense Hessian matrix of the constraints.

4.7 Obstacle clearance

It is now required to define the signed distance of a point to a convex obstacle. Let this signed distance

s(Ok,pi) represent the distance from a point pi to the closest point on the surface of a convex obstacle

Ok , this distance is negative if the point pi is inside the obstacle Ok and 0 if the point pi lies on the

obstacle Ok boundary. The closest point on the surface of a convex obstacle Ok to a point pi will be

called o(k,i). It can now be given analytic expressions for the signed distance:

s(Ok,pi) =

−‖pi − o(k,i)‖ , if pi is inside Ok
‖pi − o(k,i)‖ , otherwise

(4.15)
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The inequity that assures that the UAV is at least dsafe away from any obstacle is s(Ok,pi) ≥ dsafe.

Writing the constraint in the desired form, let K represent the number of obstacles, then:

dO(i,k) = s(Ok,pi)− dsafe ≥ 0 (4.16)

Equation 4.16 applies for i ∈ {1, · · · , N − 1} and k ∈ {0, · · · ,K − 1}. This formulation for the

obstacle clearance constraints is formulated based on [28]. The signed distance is, however, at the

moment of writing, only available for spheres and cuboids in 3-dimensional environments and circles

and rectangles in 2-dimensional environments. For enabling the computation of the derivatives and

Hessian of the signed distance to a cuboid it was necessary to treat 3 different situations: when the

closest point in the cuboid lies on a face, an edge or a vertex. The algorithm also supports moving

spheres (and circles) to enable the algorithms to avoid other aircraft and moving obstacles. It can be

generalized for convex obstacles using, as in [28], the Gilbert Johnson Keerthi algorithm [40] combined

with the Expanding Polytope Algorithm [41].

In this formulation, the collision is only checked in the waypoints, which limits the spacing between

them. To enable the usage of bigger trajectory segments, which reduce the number of waypoints and

increases the algorithm performance, new constraints were imposed. These new constraints assure that

a defined number of equally spaced intermediate points between waypoints is not close to any obstacle.

It will be used q = P(σi, σi+1,m,M) to describe the intermediate point corresponding to the point placed

in t = ti + ∆tm/M of the trajectory segment between σi and σi+1. M − 1 represents the number of

intermediate points per segment, and m ∈ {1, ...,M − 1}. Figure 4.1 shows the distribution of these

intermediate points between two waypoints when M=4.

Figure 4.1: Intermediate points (blue) in trajectory segment (black) between consecutive waypoints

(green arrows) for M = 4.

The new set of constraints is:

dOI(s,k,m) = s(Ok,P(σs, σ0,m,M))− dsafe (4.17a)

dOI(i,k,m) = s(Ok,P(σi, σi+1,m,M))− dsafe, i ∈ {0, ..., N − 2} (4.17b)

dOI(g,k,m) = s(Ok,P(σN−1, σg,m,M))− dsafe (4.17c)

The Equations 4.17 apply for m ∈ {1, ...,M} and for k ∈ {0, ...,K − 1}. Note that both Equations

4.17 and 4.16 form a total of (N + 1)MK constraints. This number is given by the number of trajectory

segments times the number of checking points per segment (M-1 intermediate points plus waypoint =
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M ) times the number of obstacles. Given that most of these constraints are relaxed at most times, this

formulation might not be the best. Using, instead of constraints, cost fields for imposing the obstacle

clearance, as it is done in [28], might improve the computation time and should be tested in the future.

4.7.1 Moving obstacles

The algorithm was also expanded to deal with moving spheres and circles. For these moving spheres

the signed distance can be computed using Equation 4.18:

d = ‖pi − co(t)‖ − r(t) (4.18)

where co(t) represents the position of the center of the sphere along time and r(t) the radius of the

sphere, both dependent on the time t. The time corresponding to the ith waypoint is given by t =

tstart + (i + 1)∆t. In the implementation level, to allow to incorporate moving obstacles, it was also

required to take the derivatives of the signed distance with respect to ∆t.

There are considered two types of moving obstacles: the ones with known trajectories and the ones

with unknown trajectories. For intruders with known trajectories, the safety distance that the algorithm

keeps to these intruders is the same as the one kept for static obstacles. For intruders with unknown

trajectories, the algorithm assumes that these intruders will fly at a constant speed and creates trajecto-

ries that keep a safety distance kd times greater than the one kept for static obstacles and intruders with

known trajectories. This increased safety distance is used to cope with the unpredictability of intruders

with unknown trajectories.

4.7.2 Variable bounds

IPOPT allows to bound the design variables with both upper and lower bounds. For this problem, how-

ever, only one variable is bounded: the time step. The time step is imposed to be:

∆t ≤ 2dsafe/vMAX (4.19)

This constraint assures that the trajectory does not ”jump” over obstacles like it is presented in Figure

4.2. If Equation 4.19 is not respected than the spacing between two consecutive waypoints is enough to

have one waypoint in each side of an obstacle without any of them being too close to it.

Figure 4.2: Trajectory segment between two waypoints (green arrows) crosses an obstacle (black line)

without any of the waypoints being closer than dsafe to the obstacle.
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However, if the obstacle clearance is also assured in intermediate points, as described in Section

4.7, Equation 4.19 becomes:

∆t ≤ 2Mdsafe/vMAX (4.20)

Where M − 1 is the number of intermediate points for each trajectory segment. That being said,

it is possible to increase the spacing between waypoints by introducing intermediate collision checking

points.

4.8 Tested formulations

The maximum speed and maximum acceleration constraints are written in [24] as a series of linear

constraints. Although the problem is different (in [24] the problem is bi-dimensional), this and other

formulations of the constraints could be tested in the future.

Another interesting formulation for constraints would be to merge the maximum speed and maximum

acceleration constraints by defining a ”maximum thrust” constraint and write the thrust accordingly to the

drag and inertial forces actuating in the UAV, this possibility, however, was not explored.

Two problems were implemented. In the first the energy costs are not considered, the speed con-

straints are formulated accordingly to Equation 4.9, the maximum acceleration constraints are formu-

lated accordingly to 4.13 and the obstacle clearance is only checked at the waypoints (Equation 4.16).

A simplified intuitive statement of this problem, which will be called Problem 1, is presented in Equation

4.21:

minx (N − 1)∆t (trajectory time)

s.t. pi+1 = pi + vi+1+vi

2 ∆t (kinematic constraints)

‖vi‖ ≤ vMAX (maximum speed)

‖vi+1 − vi‖ ≤ aMAX∆t (maximum acceleration)

s(Ok,pi) ≥ dsafe (obstacle clearance)

(4.21)

where the design variables x are the position and speed at each waypoint, pi and vi, and the time step

between waypoints ∆t. In the second problem the energy costs are considered, the speed constraints

are formulated accordingly to Equation 4.10, the maximum acceleration constraints are formulated ac-

cordingly to 4.14 and the obstacle clearance is checked both at the waypoints (Equation 4.16) and at

the intermediate points (Equations 4.1).Problem 2 is shown in a simplified way in Equation 4.22.

45



minx kT fT (x) + kF fF (x) (trajectory cost)

s.t. pi+1 = pi + vi+1+vi+1

2 ∆t (kinematic constraints)

‖vi‖2 ≤ v2
MAX (maximum speed, squared)

‖vi+1 − vi‖2 ≤ a2
MAX∆t2 (maximum acceleration, squared)

s(Ok,pi) ≥ dsafe (obstacle clearance, at waypoints)

s(Ok,P(σi, σi+1,m,M))) ≥ dsafe (obstacle clearance, at intermediate points)

(4.22)

The Hessian matrix was computed for the cost function and the constraints. The algorithm theoret-

ically benefits from the usage of an analytical Hessian, however, if it is not provided one, IPOPT uses

a Hessian approximation. After some testing, it becomes clear that for short optimization periods the

usage of the analytical Hessian makes the algorithm slower. This might be because the algorithm com-

putes, before it starts to optimize, an argument list for the function that returns the Hessian matrix. For

this reason, in both problems, the Hessian matrix is approximated by IPOPT.

4.9 Results

4.9.1 Complete computation

This problem (cost function and constraints) was implemented in Python 2.7. The solver used for this

problem was, as mentioned before, an interior point optimization approach, developed by A. Wächter

and L. T. Biegler called IPOPT [21]. It was integrated on the remaining code using the wrapper pyipopt 1

. Another solver was also tested on this problem. This solver was used through a python wrapper,

available in the scipy module, for an implementation of the Sequential Least SQuares Programming

(SLSQP) Optimization subroutine originally implemented by Dieter Kraft [42]. Both optimizers were

tested in a 3-dimensional scenario with 8 obstacles, the scenario was a Gazebo world, presented in Fig.

4.3 and 4.4. Gazebo is a physics simulator which will be described in Section 6.2.1. Problem 1 was

used in these tests, for both optimizers. The path planning problem was formulated as a 2-dimensional

problem, where the UAV was constrained to flight 1.5 meters above the ground. The experiences were

performed in a desktop with an AMD Ryzen 5 2600X Six-Core Processor 3.60GHz, 16GB installed RAM

and an NVIDIA Quadro P2000. The operative system used was Ubuntu 18.04.

The ”RRT time” corresponds to the time for the execution of both the RRT algorithm and the en-

hancement step. The optimization time corresponds to the time that the optimizer takes to optimize the

trajectory. The results presented in Figure 4.5 are the average times over 50 trials.

1pyipopt github, 2018. https://github.com/xuy/pyipopt
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Figure 4.3: Top view of the tested map Figure 4.4: Tested map with textures

Figure 4.5: Comparison between the two optimizers, the computation time is represented in seconds.

It can be observed that the IPOPT optimizer outperforms the SLSQP. With IPOPT and the proposed

RRT algorithm it is possible to obtain a locally optimal trajectory in less than 300 milliseconds. For

a micro-processor, these times will increase. However, there is no need for the trajectory to be fully

optimized in a single time-interval, the framework can continuously optimize the trajectory while the UAV

flies.
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4.9.2 Comparison between formulations

It will now be compared the performance of IPOPT generating a locally-optimal trajectory using Problem

1 and Problem 2 (described in Equation 4.21 and 4.22 respectively). For both problems, the same initial

iteration (computed by an RRT) was given, shown in Figure 4.6. In the first iteration the safety distance

to 10 and the speed to 10 s−1 (the distance units are defined by the pygame display). The time-step

between waypoints ∆t was set to 2 seconds (maximum allowed for these maximum speed and safety

distance). All the simulations in this section were computed in a laptop using an Intel(R) Core(TM) i5-

8250U CPU @ 1.60GHz, 16Gb ram. The problem cost function, constraints and all the derivatives were

implemented in Python 2.7.

Figure 4.6: Initial trajectory, to be optimized

The trajectory was optimized until the local-minima was achieved 10 times, for both problems. The

locally optimal trajectory is shown in Figure 4.7

Figure 4.7: Final (locally optimal) trajectory.

The computational times are shown in Figure 4.8:
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Figure 4.8: Computational time until local-minima is reached for both problems, using 100 runs for each.

The results suggest that there is no significant difference in computational performance between

both problems. Using the same initial iteration and different number of intermediate checking points, the

time for achieving a local minimum, for Problem 2, is shown in Figure 4.9 :

Figure 4.9: Computational time until local-minima is reached for Problem 2, for different numbers of

intermediate points per trajectory segment, averaged over 10 runs.

As expected the computational time increases with the increasing number of collision checking

points. However, when intermediate collision checking points are introduced, the time-step between

waypoints can be increased. From the initial trajectory shown in Figure 4.6, M − 1 for each M way-

points were deleted before the optimization starts, to make use of the advantage of having intermediate

points. M −1 represents the number of intermediate points per segment. This can be seen as replacing

waypoints for intermediate collision checking points, as shown in Figure 4.10.

Figure 4.10: Trajectory before (top) and after (bottom) exchanging waypoints (green arrows) for inter-

mediate collision checking points (blue circles). In this illustration the number of intermediate points per

trajectory segment chosen was 2 (M=3).

49



Figure 4.11: Computational time until local-minima is reached for Problem 2, for different numbers of
intermediate points per trajectory segment (replacing waypoints), averaged over 10 runs.

Figure 4.11 show the time for computing a locally optimal trajectory when replacing waypoints for

collision checking points:

From Figure 4.11 it is possible to observe that the computational time reduces when one or two

intermediate points are used for collision checking. However, when the number of waypoints replaced

by intermediate points is further increased the computational time starts to increase. This phenomenon

might be because, when removing waypoints from the trajectory, the kinematic constraints are no longer

satisfied and, for that reason, the algorithm takes longer to compute a locally optimal trajectory, given the

fact that it also needs to ”fix” the trajectory. The results from these optimizations are shown in Figures

4.12 - 4.14.

Figure 4.12: Locally optimal
trajectory when 1 out of 2 way-
points are replaced by interme-
diate points.

Figure 4.13: Locally optimal
trajectory when 2 out of 3 way-
points are replaced by interme-
diate points.

Figure 4.14: Locally optimal
trajectory when 4 out of 5 way-
points are replaced by interme-
diate points.

4.10 Parameter tunning

Usually, in path planning, it is desired to achieve an optimal trajectory in terms of smoothness, time,

energy consumption, among others. However, this approach is not suitable for some scenarios where

there are guidelines to be followed. Imagine, for example, a driverless car trying to go from point A to

point B in a city. If its trajectory planning algorithm only tries to minimize the driving time and is only

constrained by the vehicle kinodymamics, then the car will likely drive on the wrong side of the road and
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use inappropriate lanes.

For this reason, in some applications, other concerns must be taken into account. To do so the

optimization problem must be re-formulated. In the present work, the guidelines are considered by

introducing terms in the cost function, multiplied by constants. The guidelines could also be provided

as constraints. They are added as penalizations so that the algorithm prioritizes the other constraints

(collision avoidance for example). To understand this choice the urban driving example will be used once

again. Imagine a narrow road with two lanes, the vehicles should drive on the right lane. Two vehicles

go through that road in opposite directions, one of the vehicles loses control and goes to the other lane,

towards the second vehicle. To avoid a collision the second vehicle must occupy the wrong lane or get

off the road. For such scenarios, the optimization problem should be designed in such a way that it

chooses to violate the guidelines over leading to a collision. To do so, in this work, it was chosen to add

the guidelines as penalizations and the most critical restrictions as constraints.

To do so, the algorithms behaviours can be deliberately biased. In the present work, it was made by

introducing terms in the cost function, multiplied by constants. By tuning the value of these constants it

is possible to adjust the bias. Two examples will be given, in one of them the algorithm will be biased

to generate trajectories at a defined constant altitude, in the other, it will be biased to follow TCAS like

avoidance resolution: by following the desired climb rate in the initial part of the trajectory. This bias is

not added as constraints so that the algorithm does not violate other constraints to satisfy the new ones.

4.10.1 Level Flight

For following the desired altitude, the error between the desired altitude zref and the altitude at each

state was considered as a cost, the modified cost function is:

fnew(x) = f(x) + kh

N−1∑
i=0

‖pi,z − zref‖ (4.23)

Where f(x) is the old cost function and kh the constant that allows tuning the ”strength” of the

altitude suggestion. Figure 4.15 shows how the trajectory evolves for different values of ”kh, for two

different initial iterations.

From Figure 4.15, it can be observed that it is possible to ”suggest” an altitude level for the trajectory

without compromising any of the problem constraints.

4.10.2 Conflict resolution

The TCAS system, as it was discussed in Section 2.9, indicates climb rates for the pilot to follow, to

avoid conflict. The term added to the cost function penalizes errors between the climbing speed and

the desired climbing speed vzref for the first half of the waypoints. If this penalization considers all the

waypoints than it will not change the trajectory because the average climbing speed is only defined by

the start and goal altitudes and the trajectory time. The modified cost function is:
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Figure 4.15: Trajectories for increasing values of kh (from top to bottom) to force following a certain
altitude. The results are shown for two possible first iterations, one that goes above the obstacle (trajec-
tories the left) and another that goes below (trajectories the left).

fnew(x) = f(x) + kc

round((N−1)/2)∑
i=0

‖vi,z − vzref‖ (4.24)

Where f(x) is the old cost function and kc the constant that allows tuning the ”strength” of the climb

rate suggestion. Figure 4.16 shows how this modification allows changing the trajectory.

Figure 4.16: Trajectory before (top) and after (bottom) kc is set from 0 to a positive value.

4.10.3 Tuning the energy cost

It is also interesting to visualize how the locally-optimal trajectory differs for different energy costs. In

Figure 4.17 it is shown 3 different locally-optimal trajectories for the same first iteration and different cost

values attributed to the energy consumption. From left to right the energy cost is increased relative to

the trajectory time cost. As expected, the trajectory becomes slower. It is also possible to observe that

the trajectory becomes shorter and less smooth.
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Figure 4.17: Locally-ptimal trajectories for increasing energy cost (from left to right). Smaller arrows
represent lower speeds.
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Chapter 5

Conceptual architecture

The software architecture for the real-time trajectory planner is now presented. The real-time trajectory

planner launches a thread that continuously updates the trajectory and provides references (accelera-

tion, speed and position) for the UAV to follow. It requires access to three methods. Get time that should

provide a value for the current time when called, in seconds, Get UAV State that should return the UAV

position and state when called and Get Map that should return a representation of the map when called.

To achieve this functionality, it is proposed the following architecture formed by 6 scripts:

• Types and Operations

• RRT

• Optimizer

• Feasibility checker

• Dynamic Avoidance Problem

• Real time trajectory planner

The scheme of the architecture is represented in figure 5.1.

The python script, Types and Operations contains the types declaration (Point, State and Obstacle)

and also useful operations such as tensorial operations. There are 2 Types and Operations scripts

implemented: 2D and 3D, which correspond to the types declarations and useful operations in two-

dimensional and three-dimensional spaces respectively. All the remaining scripts described depend

upon these ones.

The script RRT contains the implementation of the modified RRT algorithm proposed.

The script Optimizer contains the implementation of the trajectory optimization algorithm. There are

already implemented two Optimizer scripts. Both of them use as solver an implementation of interior

point optimization (IPOPT) [21] and each of them implements one of the formulations (formulation 1 and

formulation 2) described in Section 4.8.

The script Feasibility Checker contains methods for determining if a computed trajectory is feasible

for a given UAV. It also provides methods for finding in which part of the trajectory the failures occur and
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Figure 5.1: Architecture of the software implementation

what is the origin of such failures. These can be related to violations of the kinematics of the problem,

maximum speed or maximum acceleration exceeded or parts of the trajectory that are too close to an

obstacle.

The Dynamic Avoidance Problem Script provides an abstraction for the RRT, Optimizer and Feda-

sibility Tester scripts. It enables a centralized and simple way to call the implemented methods.

As mentioned before, the Real Time Path Planner launches a thread that continuously updates the

trajectory and provides references (acceleration, speed and position) for the UAV to follow. It requires

access to 3 methods. Get time , Get UAV State and Get Map.

5.1 Real-time trajectory-planner behaviour

This implementation can be more intuitively described using a simplified state machine diagram, as the

one shown in Figure 5.2.

It will now be explained, with further detail, the behaviour of this script. This explanation will contribute

to a deeper understanding of the developed trajectory planning solution. Each of the states, except the

Decision Maker, have an associated timeout.
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Figure 5.2: State machine describing the real-time trajectory planner. Red, blue and green states use

methods from the RRT, Optimizer and Feasibility Tester scripts respectively.

5.1.1 Initial Computation

Figure 5.3: Initial computation state. It Uses both the RRT and Optimizer methods.

When the algorithm starts (and in some other situations) it enters the Initial Computation state (Fig-

ure 5.3). When this state is entered the UAV position is used as the starting state and if there is a

trajectory, it is cleared. Then, a trajectory is computed using an RRT. If the RRT fails to compute a

trajectory in a given time (initialRRTTimeOut) this state is re-started. If, on the other hand, the RRT

can successfully compute a trajectory, a defined portion of that same trajectory is optimized for a de-

fined time (initialOptimizationTime). This is where the anytime capability of the algorithm is evident, the

initialOptimizationTime parameter controls the equilibrium between computational time and trajectory
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quality.

5.1.2 Regular Optimization

In this state (Figure 5.4) a portion of the trajectory ahead of the UAV is optimized for a period of time

defined by the parameter regularOptimizationTime. When this state is entered the algorithm chooses

a portion of the trajectory between the point regularOptimizationTime ahead of the current time and

another point ahead defined by the parameter regularOptimizationPortion. The portion of the trajectory

which is optimized is shown in Figure 5.5. This choice assures that when the optimization is complete

and the trajectory is updated, the UAV is not executing the updated part of the trajectory.

Figure 5.4: Regular Optimiza-
tion state. Uses Optimizer
script.

Figure 5.5: Portion of trajectory that is optimized in the Regular
Optimization state is represented as a series of blue arrows. The
first and last blue arrows are treated as a local start and a local goal
(these waypoints are fixed during the optimization).
.

5.1.3 Trajectory Fix

The state Trajectory Fix is called when there is an unfeasible portion of the trajectory. It optimizes a

portion of the trajectory for a certain time (trajectoryFixTime) part of the trajectory is controlled by the

parameters beforeFix and afterFix. The trajectory is optimized between the time of the first violation

minus beforeFix and the time of the last violation plus afterFix. Figure 5.7 illustrates this portion:

Figure 5.6: Trajectory Fix state.
Uses Optimizer script.

Figure 5.7: Portion of trajectory (blue) that is optimized in the state
Trajectory Fix. The first and last blue arrows are treated as a local
start and a local goal (these way-points are fixed during the opti-
mization.
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5.1.4 Partial Regrow

This state is called when the planner is trapped in an unfeasible local minima. Unlike the other states,

where the trajectory is segmented based on time, this method separates the trajectory based on dis-

tance. It regrows the trajectory between the state that is at a distance beforeRegrow before the first

violation index until afterRegrow after the last violation index, as shown in Figure 5.9. The time-out

associated with this state is called regrowTimeOut and, if it is not possible to compute a trajectory within

this time, the algorithm jumps to the Initial Computation state.

Figure 5.8: Partial Regrow
state. Uses RRT methods.

Figure 5.9: Portion of trajectory (red) that regrown in state Partial
Regrow. The first and last red arrows are treated as a local start
and a local goal for the RRT algorithm.

5.1.5 Decision Maker

The process behind the Decision Maker defines the logic of this algorithm. It implements the idea for

the real-time trajectory-planning exposed in Chapter ??. Its working principles will now be explained.

This state does not have an associated timeout. Instead, when the algorithm enters this state it

is quickly set to another state. Basically, this state is responsible for determining the future state of

the algorithm. A parameter called failCount is set to 0 after the initial computation. In this state, it is

checked if there are any violations of the constraints in the trajectory (bad kinematics, maximum speed

exceeded, maximum acceleration exceeded or too close to an obstacle). If there is not any violation,

then failCount is set to 0 and the algorithm jumps to the Regular Optimization state. If there is a failure,

it is checked if the first violation time is closer than a defined criticalClearence. If it is then the UAV is

commanded to stop, failCount is set to zero and the algorithm jumps to the Initial Computation state.

This represents an emergency stop of the UAV, to deal with critical situations. If the first violation time is

after the defined criticalClearence than the failCount is incremented. If the failCount reaches a defined

maximum (maximumFailCount), the failCount is set to 0 and the algorithm jumps to the Partial Regrow

state. Otherwise the algorithm jumps to the Trajectory Fix state. To represent this idea in a more

comprehensive way a flow-chart is presented in Figure 5.10.
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Figure 5.10: Flowchart representing the functionality of the Decision Maker state.

5.2 Integration with TCAS

5.2.1 Implemented simplified TCAS

A simplified TCAS system was developed. This system, as a normal TCAS system, tracks intruder

aircrafts’ range, altitude and bearing. A class TCAS and a class transponder were created. Instances of

the class TCAS have one parameter that corresponds to a pointer to a transponder instance. When the

TCAS system acquires an intruder aircraft, a pointer to the intruders transponder is stored. A method

was developed in the trajectory planner that enables the command of climb rates (the execution behind

this is described in Section 4.10.2). A pointer for that same method is provided to the TCAS class,

enabling the TCAS thread to provide resolutions (resolution advisories or RA) to the planner.
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Chapter 6

Simulation

In this chapter several simulations, and their respective results, are presented. It will be explained how a

simplified simulation framework was developed to evaluate the performance of the algorithm in real-time.

Then several results are presented showing the capability of the algorithm to adapt to changes in the

environment, deal with other aircraft and follow resolutions provided by the TCAS system.

To validate the usage of the algorithms for real-vehicles, realistic physics simulations were performed

using Gazebo. The used plugin and controller are briefly explained. A simulation is analysed to eval-

uate the capability of the simulated multi-rotor to follow the desired trajectories. Simulation of both the

planning algorithms and the TCAS is also performed and analysed.

6.1 Simplified Simulation

The simplified model of the UAV used in this testes consisted of a point with a given mass to which

the control inputs were applied as forces. A simple controller was developed to transform the reference

acceleration, speed and position into force inputs for the model.

6.1.1 Real-time avoidance

The following figures (Fig. 6.1-6.12) show the results for real-time testing of the algorithms in a complex

indoor environment with unexpected obstacles appearing in the map as the model follows the trajectory.

Real-time avoidance was also performed using moving obstacles. For avoiding non-cooperative

intruders the algorithm assumes that these intruders travel at a constant speed. Once the trajectories

of these intruders might be unpredictable, the safety distance that the algorithm considers for these

intruders is kd times the one considered for static obstacles and cooperative intruders. The algorithm

was also empowered to be able to simulate sensor delay.

Several simulations were performed to validate the capability of avoiding moving intruders. In Figure

6.13-6.19 the aircraft flies through a map of known obstacles. It was possible in this simulation to

manually insert moving obstacles. These moving obstacles start in a desired position at the top of the

map and they move (at constant speed) towards the bottom of the map. These moving obstacles are
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Figure 6.1: RRT is grown Figure 6.2: Initial trajectory is
computed

Figure 6.3: The algorithm op-
timizes part of the trajectory
ahead of the aircraft, it is visi-
ble that the optimized trajectory
segment is smoother than the
rest

Figure 6.4: Obstacle is detected Figure 6.5: Trajectory optimizer adjusts the tra-
jectory avoiding the obstacle

Figure 6.6: Obstacle is detected Figure 6.7: Trajectory optimizer gets trapped in
an unfeasible local minima, signalized by the
red dashed ellipse (between the sphere and
the cuboid obstacles).

represented as circles. As it is possible to observe the algorithm was capable of avoiding these obstacles

as well.

There is also the need for simulating intruders that do not move with constant speed. For that, the

trajectory of an aircraft moving in a cluttered map was stored. It was then possible to manually insert

an intruder that would follow this trajectory, unknown to the algorithm. The algorithm only knows the

position and speed of the intruder with one second of delay, to simulate sensor processing time. Two
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Figure 6.8: RRT algorithm regrows the critical
part of the trajectory

Figure 6.9: A feasible trajectory is found

Figure 6.10: Obstacle is de-
tected critically close, trajec-
tory optimizer would not have
time to react in real time

Figure 6.11: All references are
turned off to prevent the UAV
from colliding. Previous trajec-
tory is discarded

Figure 6.12: RRT algorithm re-
grows a new trajectory from the
UAV position to the goal.

Figure 6.13: Before unex-
pected obstacle appears

Figure 6.14: Unexpected ob-
stacle appears (top left of the
figure), moving from the top to
the bottom of the figure.

Figure 6.15: Trajectory is ad-
justed and aircrafts ”waits” for
the obstacle to pass before
proceeding.

runs are now shown, in the first one (Figures 6.20-6.22) the intruder is launched later than in the second

(Figures 6.23-6.25):

To test the limits of the algorithm a 2D simulation was run with an intruder traveling in a zig-zag trajec-

tory towards the aircraft using the produced algorithm. This represents a very challenging situation since

the intruder trajectory is constantly changing direction, making it difficult for the algorithm to determine

if the aircraft should go above or below the intruder. This simulation was run 10 times and the algorithm

failed 4 times (collision happened). One successful simulation is presented in Figures 6.26-6.32. This
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Figure 6.16: Before the last moving obstacle
appearance.

Figure 6.17: New obstacle appears, moving
from the top to the bottom of the figure

Figure 6.18: Trajectory is adjusted. Figure 6.19: The obstacle is avoided.

Figure 6.20: Trajectory while
intruder flies to the right

Figure 6.21: Trajectory
changes as intruder changes
direction

Figure 6.22: Intruder is avoided

Figure 6.23: Initially algorithm
plans to go below the intruder

Figure 6.24: Algorithm plans to
go above the intruder

Figure 6.25: Intruder is avoided

poor performance in this situation arises mainly from two factors. First, the ideal avoidance trajectory

for the obstacle, when it is climbing/descending goes under/above the obstacle, once the obstacle is

constantly changing direction the computed trajectories quickly become unsuitable for the avoidance.
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Secondly, the simulated sensor delay originates a significant error in the prediction of the position of the

obstacle, once this prediction is based on a constant speed assumption.

Figure 6.26: Intruder is detected. As the intruder descends the algorithm does not detect a trajectory

conflict

Figure 6.27: The trajectory is adjusted as the intruder starts to climb

Figure 6.28: Intruder starts to increase the climb rate. Trajectory is further adjusted.

Figure 6.29: Intruder starts to climb with such a rate that it becomes (apparently) impossible to go above

it. Trajectory is adjusted to go under the intruder.

Figure 6.30: Intruder starts to descend

Figure 6.31: Algorithm (one second later) is informed that intruder is descending and tries to avoid it

from above
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Figure 6.32: Avoidance is successful

6.1.2 Simulating an unknown environment

To simulate an unknown environment the algorithm was used to compute the trajectories in an environ-

ment, without knowing the position or number of obstacles in that environment. It was then assumed

that the algorithm would acquire information on an obstacle when the aircraft was at a distance to the

obstacle smaller than a certain detection range. The evolution of one of these simulations is now shown

in Figures 6.33-6.38.

Figure 6.33: Complete map Figure 6.34: Initially only two
obstacles are visible, none of
them interferes with the trajec-
tory

Figure 6.35: An obstacle is de-
tected and the trajectory is ad-
justed.

Figure 6.36: New obstacle is
detected and the trajectory ad-
justed

Figure 6.37: Another obstacle
is detected and the trajectory is
adjusted

Figure 6.38: The final obsta-
cle from the map is detected,
it does not, however interfere
with the trajectory.

6.1.3 Random maps

For preforming a statistical analysis of the performance of the algorithm several simulations were run

in random maps, Figures 6.39 and 6.40 show one of these random maps and the computed trajectory

through it, respectively. Notice that the trajectory is sub-optimal once the algorithm does not know the

map beforehand.

Each map has 20 randomly generated circles, with a radius between 10 and 40 (display units). The

distance from start to goal was 370 display units. Figure 6.41 shows the time taken to reach the goal.
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Figure 6.39: Random unknown map. Figure 6.40: Final executed trajectory.

The algorithm was not able to compute a trajectory once, in that case, the aircraft stopped at a distance

smaller than the safe distance, relative to an obstacle. For that reason, the RRT algorithm could not

output any safe trajectory.

Figure 6.41: Time, in seconds, taken for the agent to reach the goal position, on the unknown random

maps.

6.1.4 Multi-Aircraft

In a realistic scenario, several aircraft share the same air-space. In a future where urban transportation

is also accomplished using aircraft, the algorithms must enable safe circulation. Once this work aims

for a decentralized approach it is expected that algorithms running independently in several aircraft can

provide collision-free paths, without a centralized entity making a decision.

The decentralized traffic avoidance was tested on the map in Figure 6.42, and two different scenarios

where analysed:

• Both aircraft know the other aircraft position and planned trajectory. (Fig. 6.43-6.45)

• Aircraft number 2 knows aircraft number 1 position and planned trajectory. Aircraft number 2 is

invisible to aircraft no 1. (Fig. 6.46-6.48)

The second scenario represents the case in which one of the aircraft (aircraft number 1) has priority

and therefore it is not compelled to change its path to avoid the lower priority aircraft (aircraft number 2).

The algorithms are constantly replanning the trajectories over time, therefore knowing an aircraft X

trajectory at a given moment is only temporarily useful for aircraft Y, once aircraft X trajectory will be

re-planned.

The experiment was conducted 10 times for each of the scenarios and both aircrafts managed to

arrive at the destination without any collisions in all trials.
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Figure 6.42: Map with the starting and goal positions for aircrafts number 1 and number 2

Figure 6.43: Initial trajectories, computed si-
multaneously, in collision route. Both aircraft
communicate their trajectories (scenario 1).

Figure 6.44: The algorithm, in an independent
process for each aircraft, enables the genera-
tion of collision free trajectories (scenario 1).

Figure 6.45: The aircrafts avoid each other (scenario 1).

Figure 6.46: Initial trajectories, computed si-
multaneously, in collision route. Aircraft 2 is in-
visible for aircraft 1 (scenario 2).

Figure 6.47: The algorithm running for aircraft
2 plans a trajectory that avoids aircraft 1. Air-
craft 1 plans a trajectory without considering
the other aircraft (scenario 2).

Figure 6.48: The aircrafts avoid each other (scenario 2).
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6.1.5 TCAS simulation

The previous results are motivating from the perspective of testing the planner in demanding, changing

environments. However, for cooperative systems, the approach taken must be different. Airborne avoid-

ance of cooperative aircraft will ultimately be done by integrating existing collision avoidance systems

based on protocols, specifically the TCAS.

For the TCAS testing, an environment without obstacles was used. One of the aircraft follows a

trajectory from point A to point B, the other from point B to point A. The aircraft are in collision route. The

aircraft do not have any information on the other aircraft, except for the data traditionally provided by the

mode-S transponders for the TCAS system (range, altitude and bearing, the bearing is not used in this

simulation).

In this test, as illustrated in Figures 6.49-6.51 and as expected, the TCAS systems identified the

possible conflict and provided resolutions. One of the aircraft was commanded to climb and the other

to descend. The real-time path planner followed these resolutions successfully until the TCAS system

declared clearance of conflict.

Figure 6.49: Both aircrafts are in collision route

Figure 6.50: TCAS systems determine resolutions and the trajectory-planner adapts the trajectories

Figure 6.51: TCAS systems determine that the conflict is cleared and both aircrafts fly once again

towards the goal.

69



6.2 Physics simulation

The previous algorithms were developed taking as assumptions that the UAV could be described as a

body subjected to forces as inputs. The resulting trajectories are a sequence of constant acceleration

segments. Such a formulation of the problem leads to the existence of discontinuities in the acceler-

ation. A physical multi-rotor cannot, however, provide discontinuities in the acceleration, even if it is

considered that the rotor velocities can change instantaneously. For this reason, some works use poly-

nomials with higher degrees, to provide continuity of the acceleration and jerk (3rd derivative of the

position) [11, 12, 43]. This is associated with the fact that the multi-rotor can only produce thrust in the

axis perpendicular to the rotors’ plane, meaning that discontinuities in the acceleration and jerk would

correspond to discontinuities in the multi-rotor attitude and angular rate respectively. In [12] and [43]

the authors use 11th and 9th order polynomials for computing the trajectories, respectively. In [11] the

authors use a spline that assures continuity up to the 4th derivative of the position for smoothing the

trajectory.

The multi-rotor dynamics will not be deeply discussed in this work, for keeping it concise. How-

ever, there is a need to verify the capability of a realistic multi-rotor to follow the computed trajectories,

once the simplified model used to validate the real-time capability of the algorithms does not rigorously

approximate a real UAV.

6.2.1 RotorS Gazebo

The Robotics Operative System (ROS) 1 supports a physics engine named Gazebo [44]. A plugin for

Gazebo, RotorS, was developed in the Autonomous Systems Lab of ETH Zurich university [45]. This

plugin includes multi-rotor models and example controllers, that are used in the current work. This open-

source simulator also has the advantage of enabling the simulation of a variety of sensors and allow a

posterior straight forward implementation in real multi-rotors.

6.2.2 Controller

The controller was adapted from the one described in the work by Lee et al. [46]. This controller has

an inner and an outer loop. The outer loop is the position controller, it is responsible for transforming

a reference speed and a reference position into a desired resulting thrust vector. The inner loop is

responsible for tilting the quad-rotor to such an attitude that the desired thrust vector is produced. The

outer loop determines what should be the acceleration of the quad-rotor and the inner loop is responsible

for making the vehicle acquire that same acceleration. Fig. 6.52 presents a scheme of that same

controller.

The desired acceleration is then computed using the expressions presented in Equation 6.1.

ad = aref + (kv(vref − v) + kp(pref − p))
1

m
− g (6.1)

1 ROS (robot operating system), documentation. accessed in 8th July, 2019. URL http:wiki. ros.org.
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Figure 6.52: Controller structure, taken directly from [46]. xd represents the desired position speed and
acceleration, b3d

represents the axis perpendicular to the rotors’ plane and b1d
is related to the UAV

heading.

In equation 6.1 ad represents the desired acceleration vector. aref , vref and pref represent the

reference acceleration, speed and position respectively, v, p represent the vehicle measured speed and

position, m represents the vehicle mass and finally g represents the gravitational acceleration.

6.2.3 Testing trajectory tracking

Map

It was chosen a simple map for validation of the algorithm. The map consisted of a gazebo model of

a fast-food chain restaurant. Fig. 6.53 and 6.54 represent the simulation scenario and the top view

scheme respectively.

Figure 6.53: Map visualization on the Gazebo
simulator environment

Figure 6.54: Scheme of the top view of the
Map.

Results

The results of four runs are now presented. The runs differ in maximum acceleration allowed and the

side of the building taken to arrive at the goal position. In all the runs the minimum distance allowed

between the UAV and an obstacle was set to 3 meters and the maximum speed allowed for the UAV to

travel was 15 m/s ( 54 km/h). The run identifiers are defined in table 6.1.

For each run, it is now presented the trajectory taken by the vehicle in Fig. 6.55-6.58.
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Run Identifier Maximum Speed (m/s) Maximum Acceleration (m/s2) Side taken
1 15 6 Left
2 15 6 Right
3 15 10 Left
4 15 10 Right

Table 6.1: Simulation run identifiers

Figure 6.55: Trajectory taken in run 1 (Max. ac-
celeration = 6m/s2).

Figure 6.56: Trajectory taken in run 2 (Max. ac-
celeration = 6m/s2).

Figure 6.57: Trajectory taken in run 3 (Max. ac-
celeration = 10m/s2).

Figure 6.58: Trajectory taken in run 4 (Max. ac-
celeration = 10m/s2).

The norm of the difference between the aircraft position and the reference position provided by the

algorithm was stored over time for every time an update was received on the aircraft position. The

evolution of the position error along the time is now presented for the four runs in Fig. 6.59-6.62.

Figure 6.59: Position error along the simulation
time in run 1 (Max. acceleration = 6m/s2).

Figure 6.60: Position error along the simulation
time in run 2 (Max. acceleration = 6m/s2).
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Figure 6.61: Position error along the simulation
time in run 3 (Max. acceleration = 10m/s2).

Figure 6.62: Position error along the simulation
time in run 4 (Max. acceleration = 10m/s2).

It is possible to observe in Fig. 6.59-6.62 that the position error is low and stabilized while the UAV is

hovering, before and after executing the trajectory. The error does not tend to zero because the controller

expression does not contain an integral term. During the trajectory execution, the position error rises

but it is never greater than one meter except for brief moments in run 3. As expected the error is greater

when the maximum acceleration allowed is greater (for runs 3 and 4).

It is now presented also the error distributions (Fig. 6.63-6.66). The graphs were created by counting

the number of position readings that verified a position error within a 0.02 meter interval (for example,

the number of readings corresponding to the error 0.12 corresponds to the number of readings in which

the error falls between 0.12 and 0.14 meters). The same conclusions obtained for Fig.6.59-6.62 can be

drawn.

Figure 6.63: Position error distribution in run 1. Figure 6.64: Position error distribution in run 2.

Figure 6.65: Position error distribution in run 3. Figure 6.66: Position error distribution in run 4.

The presented results suggest that the algorithms are suitable for computing aggressive trajectories.

73



Figure 6.67: Vehicle assuming an attitude to
accelerate from the initial hovering position

Figure 6.68: Vehicle assuming an attitude to
perform a curve trajectory segment

The discontinuities in the acceleration do not lead to unacceptable errors for many applications, once

the position error is always smaller than 1.2 meters. Besides, it can be observed that for trajectories with

smaller acceleration the position error is also smaller, as expected. By limiting the maximum speed and

acceleration it is possible to reduce the position error, for applications that require so.
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6.3 TCAS system testing

A simulation was performed to validate the correct function of the TCAS system and its proper integration

with the remaining solution. Some parameters were changed on the traditional TCAS system to obtain

a less conservative behavior. These changes are shown in Table 6.2.

Tested Solution Conventional TCAS

RA tau (s) 10-15 15-35

TA tau (s) 20-30 20-48

RA DMOD (m) 80-100 370-2037

TA DMOD (m) 160-200 556-2408

RA ZTHR (m) 15-20 182-244

TA ZTHR (m) 30-40 259-336

Interrogation rate (Hz) 1 0.1-1

Table 6.2: Changed TCAS parameters for testing purposes. These parameters are explained in Sec-

tion 2.9.

These changes were performed once the algorithms showed being able to quickly follow the desired

resolutions provided by the TCAS. Similarly, to the test performed with the simplified dynamics (Section

6.1.5), in the present test two aircraft are set to travel in collision route. The aircraft only share the

information that is usually available to the TCAS system, from the mode-S transponders (range, bearing

and altitude). The simulated interrogation rate was 1Hz, the same as for commercial aircraft [33]. The

aircraft were now simulated in Gazebo to enable a test with realistic multi-rotor dynamics. Figure 6.69

shows the simulated aircraft.

A virtual display was developed to emulate the TCAS display usually available for human pilots. This

display allows a better understanding of the TCAS system state at each moment. The evolution of the

display is shown in Figures 6.70-6.73.

Figure 6.69: Simulated multi-rotor.

6.3.1 Results

Several measures were stored along the time to allow an analysis of the simulation. Figure 6.74 presents

the altitude of each of the aircraft (vertical axis) corresponding to their horizontal position (horizontal
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Figure 6.70: Intruder aircraft is detected. Figure 6.71: TCAS declares proximate aircraft.

Figure 6.72: Resolution is provided by the
TCAS. Figure 6.73: Clear of conflict.

axis) along the simulation. It is possible to see in Figure 6.74 that the conflict was cleared by the TCAS

systems. The TCAS system corresponding to the aircraft that departed from the right (orange in the

graphic in Figure 6.74) resolved the conflict by determining a certain climb rate. The TCAS system

corresponding to the other aircraft (blue) determined a descend rate to solve the conflict. It is now

presented the altitude and climb rate of one of the aircraft (orange in the previous graphic) along the

time in Figures 6.75 and 6.76. In these graphics, the vertical lines represent the moments for which the

TCAS system declared the traffic alert (TA), the resolution advisory (RA) and the conflict clearance, from

left to right respectively.

Figure 6.74: Trajectory of the aircrafts (altitude in the vertical axis and horizontal coordinate in the

horizontal axis).

It is clear from Figures 6.75 and 6.76 that the aircraft starts climbing after the resolution advisory.

There is however a certain delay of approximately 3 seconds, due to the processing time of the optimizer.
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Figure 6.75: Altitude of one of the aircrafts over
time with advisory markings.

Figure 6.76: Climb rate of one of the aircrafts
over time with advisory markings.

In Figure 6.76 it is also possible to see the desired climb rate (green horizontal line) that is correctly

maintained by the aircraft during the avoidance.
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Chapter 7

Conclusions

In this work, it was aimed to create an online planning algorithm, to allow multi-rotors to fly safely and

efficiently in diverse changing environments.

In this work a real-time trajectory-planning algorithm was developed, using a modified RRT algorithm

and a trajectory optimization algorithm. An enhancement step was also implemented, which allows a

quick improvement of the trajectory generated by the RRT. The trajectory optimization algorithm allows

generating locally-optimal trajectories, once it considers a cost function that is a combination of energy

consumption and trajectory time. The developed algorithm was further integrated with a feature that

stops the multi-rotor in critical scenarios until a feasible trajectory is found. A simplified testing frame-

work was developed to access the capabilities of the developed algorithms. The real-time path-planner

showed to be capable of creating collision-free trajectories in partially unknown environments by quickly

adjusting the trajectory when new obstacles are detected. To validate that the algorithm is fit for a vari-

ety of maps, the planner was tested in random maps, where the obstacles are initially unknown and the

information about their position is revealed only within a certain range. This algorithm is also capable of

avoiding unexpected moving obstacles, considering also sensor delay.

Besides these dynamic capabilities, the developed trajectory planner allows selecting the amount of

computational time spent in an initial optimization. This gives the algorithm anytime capabilities, allowing

the user to choose between computational time and trajectory cost.

To validate that a real-multi-rotor is capable of following the computed trajectories, a simulation in

Gazebo was performed. In this simulation, the virtual UAV was capable of following the trajectory while

keeping a position error smaller than one meter at all times, in an aggressive manoeuvre.

The developed algorithms were then adapt to being more suitable for non-segregated air-space.

This integration includes the possibility of computing trajectories that promote the flight at a certain flight

level and the integration with a simplified TCAS system. The algorithm showed to be able to follow the

resolutions provided by the TCAS system. This interesting feature shows how the algorithms can follow

protocols designed for human pilots.

The algorithms at the time are only capable of considering spheres and cuboids as obstacles. For

future work, an extension of the algorithm will be made to provide a better abstraction regarding the
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environment representation. This extension will allow the planner to function correctly using external

environment representations, which can be derived from sensor data, such as LIDAR data. It would also

be interesting to test different formulations for the optimization problem, in an attempt to further improve

the computational speed of the algorithm. Regarding the implementation, migrating the algorithms to

C++ might significantly improve the real-time performance of the planner, opening the possibility to run

the code in an on-board processor.

Further testing will be performed on physical vehicles. The algorithm will be tested on multi-rotors

and, afterward, in fixed-wing aircraft. The planner can be extended to fixed-wing aircraft by, for instance,

limiting the minimum speed (stall speed) and the climb rate of the aircraft.
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Appendix A

Cost function, constraints and

derivatives

In this appendix the partial derivatives of the cost function and the constraints are presented. It is

required to compute these derivatives if it is desired to solve the optimization problem using classic

gradient based solvers.

A.1 Cost function

A.1.1 Time component

Time cost corresponds to the total trajectory time:

f(x) = (N + 1)∆t (A.1)

Where N represent the number of states subjected to optimization. The gradient of this function is 0

for every entrance except for:

δf

δ∆T
= N + 1 (A.2)

A.1.2 Energy consumption

Energy consumption relative to the work produced by the thrust forces is given by:

Ei =

m
2 (‖vi+1‖2 − ‖vi‖2) +mg(pi,z − pi+1,z) , if ‖vi+1‖2 + 2gpi+1,z > ‖vi‖2 + 2gpi,z

0 , otherwise
(A.3)

In equation A.3 m represents the mass of the vehicle and g the gravitic acceleration. Notice that

sometimes these expressions are wrong once F(t)·v(t) can change signal between two states, however
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this will be ignored. The term Mi will now refer to the mechanical energy associated to the ith state:

Mi = 2

(
‖vi+1‖2

2
+ gpi+1,z

)

Equation A.3 can now be re-written as:

Ei =

Mi+1 −Mi , if Mi+1 > Mi

0 , otherwise
(A.4)

The total energy consumption will be given by:

E = Es +

N−2∑
i=0

Ei + Eg

Where Es represents the energy spent between the start state and the state 0, Ei represents the

energy spent between state i and state i+1, and Eg represents the energy spent between the N-1 state

and the goal state.

For the derivatives:

∂E

∂v0,j
=


mv0,j ,if M0 > M1 and M0 > Ms

−mv0,j ,if M0 < M1 and M0 < Ms

0 , otherwise

(A.5a)

∂E

∂p0,z
=


mg ,if M0 > M1 and M0 > Ms

−mg ,if M0 < M1 and M0 < Ms

0 , otherwise

(A.5b)

∂E

∂vi,j
=


mvi,j ,if Mi > Mi+1 and Mi > Mi−1

−mvi,j ,if Mi < Mi+1 and Mi < Mi−1

0 , otherwise

(A.5c)

∂E

∂pi,z
=


mg ,if Mi > Mi+1 and Mi > Mi−1

−mg ,if Mi < Mi+1 and Mi < Mi−1

0 , otherwise

(A.5d)

∂E

∂vN−1,j
=


mvN−1,j ,if MN−1 > Mg and MN−1 > MN−2

−mvN−1,j ,if MN−1 < Mg and MN−1 < MN−2

0 , otherwise

(A.5e)

∂E

∂pN−1,z
=


mg ,if MN−1 > Mg and MN−1 > MN−2

−mg ,if MN−1 < Mg and MN−1 < MN−2

0 , otherwise

(A.5f)

The energy consumption due to the drag forces is given by:
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E = −
∫ ti+1

ti

D(t) · ‖v(t)‖dt ⇔

the problem was simplified, it was assumed that the aircraft travels in a straight line at constant speed

between waypoints, the energy consumption due to drag is now given by:

ED = k‖pi+1 − pi‖
∥∥∥∥vi+1 + vi

2

∥∥∥∥2

The derivatives can now be taken:

∂ED
∂p0,j

=
p0,j − p1,j

‖p1 − p0‖
+
p0,j − ps,j
‖p0 − ps‖

(A.6a)

∂ED
∂pi,j

=
pi,j − pi+1,j

‖pi+1 − pi‖
+
pi,j − pi−1,j

‖pi − pi−1‖
(A.6b)

∂ED
∂pN−1,j

=
pN−1,j − pg,j
‖pg − pN−1‖

+
pN−1,j − pN−2,j

‖pN−1 − pN−2‖
(A.6c)

∂ED
∂v0,j

= 2(v0,j − v1,j) + 2(v0,j − vs,j) (A.6d)

∂ED
∂vi,j

= 2(vi,j − vi+1,j) + 2(vi,j − vi−1,j) (A.6e)

∂ED
∂vN−1,j

= 2(vN−1,j − vg,j) + 2(vN−1,j − vN−2,j) (A.6f)

Equations A.6b and A.6e apply for i ∈ {1, ..., N − 2}. Equations A.6 apply for j ∈ {x, y, z}.

A.2 Kinematics

The position pi+1 should be given by:

pi+1 = pi +
vi + vi+1

2
∆t

Writing this as an equity constraint in the form fK(x) = 0 we have:

pi+1 − pi −
vi+1 + vi

2
∆t = 0⇔ fK(x) = pi+1 − pi −

vi + vi+1

∆t
(A.7)

The kinematic constraints can be now written as scalar equations:

fK(s,j) = p0,j − ps,j −
v0,j + vs,j

2
∆t , j ∈ {x, y, z} (A.8a)

fK(i,j) = pi+1,j − pi,j −
vi+1,j + vi,j

2
∆t , j ∈ {x, y, z} i ∈ {0, · · · , N − 2} (A.8b)
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fK(g,j) = pg,j − pN−1,j −
vg,j + vN−1,j

2
∆t , j ∈ {x, y, z} (A.8c)

The constraints in equation A.8 represent a total of 3(N + 1) constraints. It will now be presented the

gradient of each of this constraints.

δfK(s,j)

δ∆t
= −v0,j + vs,j

2
, j ∈ {x, y, z} (A.9aa)

δfK(s,j)

δp0,j
= 1 , j ∈ {x, y, z} (A.9ab)

δfK(s,j)

δv0,j
= −∆t

2
, j ∈ {x, y, z} (A.9ac)

δfK(i,j)

δ∆t
= −vi+1,j + vi,j

2
, j ∈ {x, y, z} i ∈ {0, · · · , N − 2} (A.9ba)

δfK(i,j)

δpi,j
= −1 , j ∈ {x, y, z} i ∈ {0, · · · , N − 2} (A.9bb)

δfK(i,j)

δpi+1,j
= 1 , j ∈ {x, y, z} i ∈ {0, · · · , N − 2} (A.9bc)

δfK(i,j)

δvi,j
= −∆t

2
, j ∈ {x, y, z} i ∈ {0, · · · , N − 2} (A.9bd)

δfK(i,j)

δvi+1,j
= −∆t

2
, j ∈ {x, y, z} i ∈ {0, · · · , N − 2} (A.9be)

δfK(g,j)

δ∆t
= −vg,j + vN−1,j

2
, j ∈ {x, y, z} (A.9ca)

δfK(g,j)

δpN−1,j
= −1 , j ∈ {x, y, z} (A.9cb)

δfK(g,j)

δvN−1,j
= −∆t

2
, j ∈ {x, y, z} (A.9cc)

A.3 Maximum speed

It is now required to write the maximum speed constraint in the form: fS(x) ≥ 0. The maximum speed

can be written as:

‖vi‖ ≤ vMAx

Re-writting this constraint in the desired form we have:

fS(i) = vMAX − ‖vi‖ ≥ 0 , i ∈ {1, · · · , N − 1} (A.4)

Taking the derivative of this constraints:
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δfS(i)

δv(i,j)
= −

v(i,j)

‖vi‖
, j ∈ {x, y, z} i ∈ {1, · · · , N − 1} (A.5)

Another formulation for the maximum speed constraints is:

fS(i) = v2
MAX − ‖vi‖2 ≥ 0 , i ∈ {1, · · · , N − 1} (A.6)

Taking the partial derivatives for this constraint:

δfS(i)

δv(i,j)
= −2v(i,j) , j ∈ {x, y, z} i ∈ {1, · · · , N − 1} (A.7)

A.4 Maximum acceleration

The acceleration between consecutive states is given by ai = vi+1−vi

∆t . It is intuitive that the maximum

acceleration constraint can be written as:

‖ai‖ ≤ aMAX ⇔
‖vi+1 − vi‖

∆t
≤ aMAX

The constraint should have the form fA(x) ≥ 0, to keep the derivatives simple, the form chosen for

this inequity to be written was:

fA(x) = aMAX∆t− ‖vi+1 − vi‖ ≥ 0 (A.8)

This constraint is now written in the form of a series of scalar constraints:

fA(s) = aMAX∆t− ‖v0 − vs‖ (A.9a)

fA(i,j) = aMAX∆t− ‖vi+1 − vi‖ , i ∈ {1, · · · , N − 2} (A.9b)

fA(g,j) = aMAX∆t− ‖vg + vN−1‖ (A.9c)

Taking the partial derivatives of these constraints:

∂fA(s)

∂∆t
= aMAX (A.10aa)

∂fA(s)

∂v0,j
= − v0,j − vs,j
‖v0,j − vs,j‖

, j ∈ {x, y, z} (A.10ab)

∂fA(i)

∂∆t
= aMAX , i ∈ {1, · · · , N − 2} (A.10ba)

∂fA(i)

∂vi,j
=

vi+1,j − vi,j
‖vi+1,j − vi,j‖

, j ∈ {x, y, z} i ∈ {1, · · · , N − 2} (A.10bb)

∂fA(i)

∂vi+1,j
= − vi+1,j − vi,j
‖vi+1,j − vi,j‖

, j ∈ {x, y, z} i ∈ {1, · · · , N − 2} (A.10bc)
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∂fA(g)

∂∆t
= aMAX (A.10ca)

∂fA(g)

∂vN−1,j
=

vg,j − vN−1,j

‖vg,j − vN−1,j‖
, j ∈ {x, y, z} (A.10cb)

Alternatively, the maximum acceleration constraints can be re-written by squaring both sides of the

original inequality.

fA(s) = a2
MAX∆t2 − ‖v0 − vs‖2 (A.4a)

fA(i,j) = a2
MAX∆t2 − ‖vi+1 − vi‖2 , i ∈ {1, · · · , N − 2} (A.4b)

fA(g,j) = aMAX∆t2 − ‖vg + vN−1‖2 (A.4c)

The partial derivatives for this alternative formulation:

∂fA(s)

∂∆t
= 2a2

MAX∆t (A.5aa)

∂fA(s)

∂v0,j
= −2(v0,j − vs,j) , j ∈ {x, y, z} (A.5ab)

∂fA(i)

∂∆t
= 2a2

MAX∆t, i ∈ {1, · · · , N − 2} (A.5ba)

∂fA(i)

∂vi,j
= 2(vi+1,j − vi,j) , j ∈ {x, y, z} i ∈ {1, · · · , N − 2} (A.5bb)

∂fA(i)

∂vi+1,j
= −2(vi+1,j − vi,j) , j ∈ {x, y, z} i ∈ {1, · · · , N − 2} (A.5bc)

∂fA(g)

∂∆t
= 2a2

MAX∆t (A.5ca)

∂fA(g)

∂vN−1,j
= 2(vg,j − vN−1,j) , j ∈ {x, y, z} (A.5cb)

A.5 Obstacle clearance

The inequality that assures that the UAV is at least dsafe away from any obstacle is s(Ok,pi) ≥ dsafe,

writing the constraint in the desired form, let K represent the number of obstacles, then:

fO(i,k) = s(Ok,pi)− dsafe ≥ 0 , i ∈ {1, · · · , N − 1} k ∈ {1, · · · ,K − 1} (A.4)

A.5.1 Spheres

For a sphere the signed distance is given by:

s(Ok,pi) = ‖pi − ck(t)‖ − rk(t) (A.5)
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Where ck(t) represents the center of the sphere Ok and rk(t) its radius. Taking the derivatives we

obtain:

∂fO(i,k)

∂p(i, j)
=
p(i,j) − c(k,j)
‖pi − ck‖

(A.6a)

∂fO(i,k)

∂∆t
= −(i+ 1)vck ·

pi − ck
‖pi − ck‖

− vrk (A.6b)

Where vck corresponds to the speed of the center of the sphereOk and vrk is drk
dt . The reader should

keep in mind that i corresponds to the index of the state in the trajectory.

A.5.2 Sataic cuboids alligned with referential

It is desirable to have the signed distance implemented for this type of obstacles in an efficient way. It will

now be described how this can be done. If pi is a generic point and Ok a cuboid with its edges aligned

with the world referential then let ok,i be the closest point the boundary of the obstacle Ok to the point

pi and o′k,i be the closest point the inside the obstacle Ok to the point pi. Let also p(i,j), o(k,i,j) and

o′(k,i,j) be the j th component of the points pi, o(k,i) and o′(k,i) respectively. Let also xmin, ymin, zmin,

xmax, ymax and zmax define the cuboid Ok (as being the minimum and maximum components x,y,z for

a point belonging to the obstacle).

It is than straight forward to define the point o′(k,i). (notice that if pi is inside Ok than o′(k,i,j) = pi)

o′(k,i,j) =


jmin, if p(i,j) < jmin

p(i,j), if jmin < p(i,j) < jmax

jmax, if p(i,j) > jmax

, j = {x, y, z} (A.7)

If the point is outside the obstacle then the closest point in the cuboid can fall in:

• A vertex, if jmin < p(i,j) < jmax does not occur for any component.

• An edge, if jmin < p(i,j) < jmax occurs for only one component.

• A face if jmin < p(i,j) < jmax occurs for two components.

If jmin < p(i,j) < jmax is true for the tree components (x,y,z) then the point is inside the obstacle.

The derivatives of the signed distance can be taken in the following way:

• If the closes point lie on a vertex then the derivatives are taken assuming a static closest point in

the obstacle boundary.

• If the closest point lie on an edge the previous gradient is projected in the plane orthogonal to that

edge.

• If the closest point lie on a face the previous gradient is projected in direction orthogonal to that

face.
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