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Abstract

The Intermediate Representation (IR) of a compiler has become an important aspect of optimizing
compilers in recent years. The IR of a compiler should make it easy to perform transformations while
also giving portability to the compiler. One aspect of IR design is the role of Undefined Behavior (UB).
UB is important to reflect the semantics of UB-heavy programming languages, like C and C++, namely
allowing multiple desirable optimizations to be made and the modeling of unsafe low-level operations.
Consequently, the IR of important compilers, such as LLVM, GCC or Intel’s compiler, supports one or
more forms of UB.

In this work we focus on the LLVM compiler infrastructure and how it deals with UB in its IR, with
the concepts of “poison” and “undef”, and how the existence of multiple forms of UB conflict with each
other and cause problems to very important “textbook” optimizations, such as some forms of “Global
Value Numbering” and “Loop Unswitching”, hoisting operations past control-flow, among others.

To solve these problems we introduce a new semantics of UB to the LLVM, explaining how it can
solve the different problems stated, while most optimizations currently in LLVM remain sound. Part
of the implementation of the new semantics is the introduction of a new type of structure to the LLVM
IR – Explicitly Packed Structure type – that represents each field in its own integer type with size
equal to that of the field in the source code. Our implementation does not degrade the performance of
the compiler.

Keywords: Compilers, Undefined Behavior, Intermediate Representations, Poison Values, LLVM, Bit
Fields

1. Introduction
A compiler is a complex piece of computer software
that translates code written in one programming
language (source language) to another (target lan-
guage, usually assembly of the machine it is running
on). Aside from translating the code, some compil-
ers, called optimizing compilers, also optimize it by
resorting to different techniques.

When optimizing code, compilers need to worry
about Undefined Behavior (UB). UB refers to the
result of executing code whose behavior is not de-
fined by the language specification (document that
defines its behaviors) in which the code is written,
for the current state of the program, and may cause
the system to have a behavior which was not in-
tended by the programmer.

1.1. Motivation
The motivation for this work is the countless bugs
that have been found over the years in LLVM1 due

1Some examples are https://llvm.org/PR21412,
https://llvm.org/PR27506, https://llvm.org/PR31652,
https://llvm.org/PR31632 and https://llvm.org/PR31633

to the contradicting semantics of UB in the LLVM
intermediate representation. Since LLVM is used by
some of the most important companies in the com-
puter science area, these bugs can have dire conse-
quences in some cases.

1.2. Goals

The goal of our work is to implement new UB se-
mantics for the LLVM IR. The current UB seman-
tics diverge between different parts of LLVM and
are sometimes contradicting with each other. The
PLDI’17 paper [1] proposes semantics that elimi-
nates a form of UB and extends the use of another.
These new semantics will be the focus of this report,
in which we will describe them, and the benefits and
flaws they might have. We will also explain how we
implemented them, and the way we measured and
evaluated their performance.

2. Background

In this section we present important compiler con-
cepts and some work already done on this topic, as
well as current state of LLVM regarding UB.

1



2.1. Compilers

Optimizing compilers, aside from translating the
code between two different programming languages,
also optimize it by resorting to different optimiza-
tion techniques. However, it is often difficult
to apply these techniques directly to most source
languages, and so the translation of the source
code usually passes through intermediate languages
[2, 3], that hold more specific information, until it
reaches the target language.

These intermediate languages are referred to as
Intermediate Representations (IR). Aside from en-
abling optimizations, the IR also gives portability
to the compiler by allowing it to be divided into
front-end, middle-end and back-end. The front-end
analyzes and transforms the source code into the
IR. The middle-end performs CPU architecture in-
dependent optimizations on the IR. The back-end
is the part responsible for CPU architecture specific
optimizations and code generation. This division
of the compiler means that we can compile a new
programming language by changing only the front-
end, and we can compile to the assembly of different
CPU architectures by only changing the back-end,
while the middle-end and all its optimizations can
be shared be every implementation.

Some compilers have multiple IR’s, and each one
retains and gives priority to different information
about the source code that allows different opti-
mizations, which is the case with LLVM. In fact,
we can distinguish three different IR’s in the LLVM
pipeline: the LLVM IR2,; the SelectionDAG3; and
the Machine-IR4.

Optimizing compilers need an IR that facili-
tates transformations and offers efficient and pre-
cise static analyses. To be able to do this, one of the
problems optimizing compilers have to face is how
to deal with Undefined Behavior (UB), which can be
present in the source programming language, in the
compiler’s IR and in hardware platforms. UB re-
sults from the desire to simplify the implementation
of a programming language. The implementation
can assume that operations that invoke UB never
occur in correct program code, making it the re-
sponsibility of the programmer to never write such
code. This makes some program transformations
valid which gives flexibility to the implementation.
Furthermore, UB is an important presence in com-
piler’s IR’s not only for allowing different optimiza-
tions but also as a way for the front-end to pass
information about the program to the back-end.

In LLVM, UB falls into two categories: immedi-
ate UB and deferred UB. Immediate UB refers to

2https://llvm.org/docs/LangRef.html
3https://llvm.org/docs/CodeGenerator.htmlintroduction-

to-selectiondags
4https://llvm.org/docs/MIRLangRef.html

operations whose results can have lasting effects on
the system. If the result of an instruction that trig-
gered immediate UB reaches a side-effecting opera-
tion, the execution of the program must be halted.
This characteristic gives freedom to the compilers
to not even emit all the code up until the point
where immediate UB would be executed. Deferred
UB refers to operations that produce unforeseeable
values but are safe to execute otherwise.

Deferred UB is necessary to support speculative
execution of a program. Otherwise, transforma-
tions that rely on relocating potentially undefined
operations would not be possible. The division be-
tween immediate and deferred UB is also important
because deferred UB allows optimizations that oth-
erwise could not be made. If this distinction was not
made, all instances of UB would have to be treated
equally and that means treating every UB as imme-
diate UB, i.e., programs cannot execute them since
it is the stronger definition of the two.

2.2. Undefined Behavior in Current Opti-
mizing Compilers

The recent scientific works that propose formal def-
initions and semantics for compilers that we are
aware of all support one or more forms of UB.

LLVM

As discussed before, the LLVM IR (just like the IR
of many other optimizing compilers) supports two
forms of UB that allows it to be more flexible when
UB might occur and maybe optimize that behavior
away.

Deferred UB comes in two forms in LLVM [1]:
an undef value and a poison value. The undef

value corresponds to an arbitrary bit pattern for
that particular type, i.e., an arbitrary value of the
given type, and may return a different value each
time it is used. The undef (or a similar concept) is
also present in other compilers.

The other form of deferred UB in LLVM is the
poison value, which is a slightly more powerful
form of deferred UB than undef, and taints the
Data-Flow Graph [4, 5], meaning that the result of
every operation with poison is poison. For exam-
ple, the result of an and instruction between undef

and 0 is 0, but the result of an and instruction be-
tween poison and 0 is poison. This way, when a
poison value reaches a side-effecting operation, it
triggers immediate UB.

Having both forms of deferred UB permits dif-
ferent optimizations. However, the presence of two
forms of deferred UB is unsatisfying and the inter-
action between them has often been a persistent
source of discussions and bugs.
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CompCert

CompCert, introduced in [6], is a formally verified,
realistic compiler, developed using the Coq proof
assistant [7]. CompCert holds proof of semantic
preservation, meaning that the generated machine
code behaves as specified by the semantics of the
source program.

Behaviors reflect accurately what the outside
world the program interacts with can observe. The
behaviors we observe in CompCert include termi-
nation, divergence, reactive divergence, and “going
wrong”5. Termination means that the compiled
code has the same behavior of the source code, with
a finite trace of observable events and an integer
value that stands for the process exit code. Di-
vergence means the program runs on forever (like
being stuck in an infinite loop) with a finite trace
of observable events, without doing any I/O. Re-
active divergence means that the program runs on
forever with an infinite trace of observable events,
infinitely performing I/O operations separated by
small amounts of internal computations. Finally,
“going wrong” behavior means the program termi-
nates but with an error, by running into UB, with
a finite trace of observable events performed before
the program gets stuck.

Unlike LLVM, CompCert does not have the
undef value nor the poison value to represent Un-
defined Behavior, using instead “going wrong” to
represent every UB, which means that it does not
exist any distinction between immediate and de-
ferred UB. This is because the source language,
Clight, is deterministic and specified the majority
of the sources of UB in C, and the ones that Clight
did not specify are serious errors that can have dev-
astating side-effects for the system and should be
immediate UB.

Vellvm

The Vellvm (verified LLVM) introduced in [8] is
a framework that includes formal semantics for
LLVM and associated tools for mechanized verifi-
cation of LLVM IR code, IR to IR transformations,
and analyses, built using the Coq proof assistant,
just like CompCert. But, unlike the CompCert
compiler, Vellvm has a type of deferred Undefined
Behavior semantics (which makes sense since Vel-
lvm is a verification of LLVM): the undef value.

This form of deferred UB of Vellvm, though, re-
turns the same value for all uses of a given undef,
which differs from the semantics of the LLVM. The
presence of this particular semantics for undef,
however, creates a significant challenge when verify-
ing the compiler - being able to adequately capture

5http://compcert.inria.fr/doc/html/compcert.common.-
Behaviors.html

the non determinism that originates from undef

and its intentional under-specification of certain in-
correct behaviors. Vellvm doesn’t have a poison

value which means that it suffers from the same
problems that LLVM has without it - some im-
portant textbook transformations are not allowed
because using undef as the only semantics for UB
does not cover every transformation when it comes
to potentially undefined operations.

Concurrent LLVM Model

With the arrival of the multicore era, programming
languages introduced first-class platform indepen-
dent support for concurrent programming. LLVM
had to adapt to these changes with a concurrency
model of its own to determine how the various con-
currency primitives should be compiled and opti-
mized. The work by [9] proposes a formal definition
of the concurrency model of LLVM, how it differs
from the C11 model and what optimizations the
model enables.

A concurrency model is a set of premises that a
compiler has to fulfill and that programmers can
rely upon [9]. The LLVM compiler follows the con-
currency model of C/C++ 2011, in which a data
race between two writes results in UB, but with a
crucial difference: while in C/C++ a data race be-
tween a non-atomic read and a write is declared to
be immediate UB, in LLVM such a race has defined
behavior - the read returns an undef value. Despite
being a small change, this has a profound impact in
the program transformations that are allowed.

2.3. Problems with LLVM and Basis for this
Work

As we discussed in the previous section, the pres-
ence of two kinds of deferred Undefined Behavior
is the cause of inconsistencies in the compilation of
programs in LLVM. In this section we will take a
look at these inconsistencies and why they exist.

2.3.1 Benefits of Poison

Some optimizations are not correct with only one
form of UB in the IR. Suppose we have the fol-
lowing code: a + b > a. We can easily conclude
that a legal optimization is b > 0. Now suppose
that a = INT_MAX and b = 1. In this case, a + b

would overflow, returning undef, and a + b > a

would return false (since undef is an arbitrary value
of the given type and there is no integer value
greater than INT_MAX), while b > 0 would return
true. This means that the semantics of the program
were changed, making this transformation illegal.

The poison value solves these types of problems.
Suppose that a = INT_MAX and b = 1, just like be-
fore. But now, overflow results in a poison value.
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This means that a + b > a evaluates to poison

and b > 0 returns true. In this case, we are re-
fining the semantics of the program by optimizing
away the Undefined Behavior, which makes the op-
timization legal.

To be able to perform this optimization (among
others) the poison values were introduced. Al-
though this solved some optimizations, like the two
previous cases we have observed, there are many
more that are also inconsistent with the semantics
of poison. Aside from that, some optimizations
that poison values and undef values provide be-
come inconsistent when both types of deferred UB
are present.

2.3.2 Loop Unswitching and Global Value
Numbering Conflicts

Loop unswitching is an optimization that consists
in switching the conditional branches and the loops,
if the if-statement condition is loop invariant, as in
the following example:

while(c) {

if(c2) {foo}

else {bar}

}

to

if(c2) {

while(c) {foo}

} else {

while(c) {bar}

}

For loop unswitching to be sound, branching on
poison cannot be UB, because then we would be
introducing UB if c2 was poison and c was false.

Global value numbering (GVN) [10] corresponds
to finding equivalent expressions and then pick a
representative and remove the remaining redundant
computations. For example in the following code:

t = x + 1;

if (t == y) {

w = x + 1;

foo(w);

}

if we apply GVN, the resulting code would be:

t = x + 1;

if (t == y) {

foo(y);

}

Consider now that y is poison and w is not. If
the semantics say that branching on poison is not
UB, but simply a non-deterministic choice, as we
did for loop unswitching, in the original program

we would not have UB but in the optimized version
we would pass a poison value as a parameter to the
function. However, if we decide that branching on
poison is UB, then loop unswitching will become
unsound while GVN becomes a sound transforma-
tion, since the comparison t == y would be poison
and therefore the original program would already be
executing UB.

In other words, loop unswitching and GVN re-
quire conflicting semantics for branching on poison

in the LLVM IR to become correct. Hence, by as-
suming conflicting semantics they perform conflict-
ing optimizations, which enables end-to-end mis-
compilations.

2.3.3 Select and the Choice of Undefined
Behavior

The select instruction, which, just like the ternary
operation ?: in C, uses a Boolean to choose between
its arguments, is another case where the conflict-
ing semantics of UB in LLVM are apparent. The
choice to produce poison if any of the inputs is
poison, or just if the value chosen is poison can
be the basis for a correct compiler, but LLVM has
not consistently implemented either one. The Sim-
plifyCFG pass performs a transformation of condi-
tional branches to select instructions, but for this
transformation to be correct select on poison can-
not be UB if branch on poison is not. Sometimes
LLVM performs the reverse transformation, and for
that case to be correct, branch on poison can only
be UB if select on a poison condition is UB.

Since we want both transformations to be achiev-
able, we can conclude that select on poison and
branching on poison need to have the same behav-
ior.

2.3.4 Bit Fields and Load Widening

Another problem poison creates is accessing bit
fields. Some programming languages, such as
C/C++, allow bit fields in their structures, that
is, a bit or group of bits that can be addressed in-
dividually but that are usually made to fit in the
same word-sized field.

struct {

unsigned int a : 3;

unsigned int b : 4;

} s;

In this example, we can observe that both vari-
ables a and b fit in the same 32-bit word. While this
method saves space, if one of those fields is poison,
then the other bit will become poison as well if we
access either one, since they are both stored in the
same word. Since every store to a bit field requires
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a load to be done first, because the shortest store
that can be done is the size of the bit width of the
type, we need to load the entire word, perform the
operation needed and then combine the different
fields and store them. Since a load of an uninitial-
ized position returns poison, if we are not careful,
the first store to a bit field will always result in
poison being stored.

Another complication that poison generates is
about load combining/widening. Sometimes it is
useful to combine or widen the loads to make them
more efficient. For example, if the size of a word in
a given processor is 32 bits, and we want to load a
16-bit value, it is often useful to load the entire 32-
bit word at once. If we do not take care, however,
we might end up “poisoning” both values if one of
them is poison.

3. Semantics
In the previous section we showed that the cur-
rent state of UB in LLVM is unsatisfactory, in the
sense that a considerable part of optimizations that
should be made possible by representing UB in the
IR are actually unsound for many cases.

The solution proposed by [1] to resolve these is-
sues was:

• Discard undef and only use poison.

• Introduce a new instruction freeze that non-
deterministically chooses a value if the input is
poison, and is a nop otherwise.

• All operations over poison return poison ex-
cept freeze, select and phi.

• Branching on poison is immediate UB.

The freeze instruction was already created as
patches678 to the LLVM by the authors of [1].

The choice to eliminate either poison or undef

was made because the presence of both forms of
UB created more problems than the ones it solved.
According to [1], phi and select were made to
conditionally return poison because it reduces the
amount of freeze instructions that had to be im-
plemented. Defining branch on poison to be UB
enables analyses to assume that the conditions used
on branches hold true inside the target block (e.g.,
when we have if(x > 0) { ... } we want to be
able to assume that inside the if block, x is greater
than 0).

One problem with the use of the freeze instruc-
tion though is that it disables further optimizations
that take advantage of poison.

6https://reviews.llvm.org/D29011
7https://reviews.llvm.org/D29014
8https://reviews.llvm.org/D29013

3.1. Semantics

The paper by [1] defines the semantic domain of
LLVM as follows:

Num(sz) ::= {i | 0 ≤ i < 2sz}
isz ::= Num(sz) ] { poison }
ty∗ ::= Num(32) ] { poison }
〈sz×ty〉 ::= {0, . . . , sz − 1} → ty

Mem ::= Num(32) 9 〈8×i1〉
Name ::= {%x, %y , . . . }
Reg ::= Name→ { (ty, v) | v ∈ ty }

Here, Num(sz) refers to any value between 0 and
2sz, where sz refers to the bit width of the value. isz
refers to the set of values of bit width sz or poison
(disjoint union). ty corresponds do the set of val-
ues of type ty, which can be either poison or fully
defined value of base types, or element-wise defined
for vector types. ty∗ denotes the set of memory
addresses (we assume that each address has a bit
width of 32 for simplicity). 〈sz × ty〉 is a function
representing a vector of sz elements, each one of
type ty, meaning that the vector itself is of type ty.
The memory Mem is a partial function and it maps
a 32 bit address to a byte (partial because not ev-
ery address is allocated at a given instance). Name
alludes to the space of names fit to be a variable
name. And finally, the register file Reg corresponds
to a function that maps the name of a variable to a
type and a value of that type.

The new semantics for selected instructions are
defined in Figure 1, where they follow the standard
operational semantics notation. It shows how each
instruction updates the register file R ∈ Reg and
memory M ∈Mem, in the form R, M ↪→ R’, M’. The
value opR of operand op over register R is given by:
rR = R(r), for a register; CR = C, for a constant;
and poisonR = poison, for poison.

In Figure 1, there can also be seen two meta oper-
ations, used to define the semantics of instructions:
ty ↓ and ty ↑. ty ↓ transforms poisonous base types
into a bitvector of all poison bits, and into their
standard low-level representation, otherwise. On
the other hand, ty ↑ transforms base types bitvec-
tors with at least one poison bit into poison, and
non-poisonous bitvectors into the respective base
type value. For vector types, ty ↑ and ty ↓ trans-
form the values element-wise.

3.2. Illustrating the New Semantics

In this section, we will see how the new proposed
semantics deals with those problems and what new
problems arise by eliminating the undef values.
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Figure 1: Semantics of selected instructions [1].

3.2.1 Loop Unswitching and GVN

It was previously showed that Loop Unswitching
and GVN required conflicting UB semantics for
both optimizations to be correct, making it impos-
sible for them to be sound simultaneously. With
the introduction of the freeze instruction this is no
longer the case. The new semantics say that branch
on a poison value is UB, making the GVN opti-
mization sound, while loop unswitching becomes
unsound. However, freeze can be used to effec-
tively “freeze” the value of the conditional branch,
which would be the cause of UB in case the loop
unswitching optimization was made.

3.2.2 Select

As was said before, the select instruction is simi-
lar to the ternary operator ?:, in C. In some CPU
architectures, it is beneficial to transform a select

instruction into a series of branches. This transfor-
mation is made correct by “freezing” the condition
of the select.

3.2.3 Bit Fields

As was addressed before, some programming lan-
guages allow bit fields in their structures: a bit or
group of bits that can be addressed individually but
that are usually made to fit in the same word-sized
field.

Since every store to a bit field requires a load to
be done first, because the shortest store that can
be done is the size of the bit width of the type, we
need to load the entire word, perform the operation

needed and then combine the different fields and
store them.

Our proposed solution is to create a new type of
structure in the LLVM IR where each bit field is
stored in its own word. As an example, the current
IR of a structure s with two integer bit fields, sizes
3 and 4, would be:

%struct.s = type { i8, [3xi8] }

while the new structure would be represented by:

%struct.s = type { i3, i4, i1, [3xi8] }

where the last 1-bit word corresponds to padding so
that the final size of the word where the bit fields
are stored is a multiple of 8 bits, and the array of
3 8-bit elements is another padding introduced to
bring the total size of the structure to 32 bits, which
is the space the type of the field in the structure, in
this case an integer, would occupy.

By expressing the structures this way in the IR,
the bit-wise operations that are needed to access bit
fields would not need to be emitted here. What we
are doing with this solution is to delay the emission
of all the bit field operations, and emitting them
further down the pipeline, in the next IR - the Se-
lectionDAG - where exists much less UB. Although
we try to optimize away poison in the LLVM IR, it
still exists in the SelectionDAG, giving our solution
to stop the spreading of poison between bit fields
in the LLVM IR only a temporary status, in the
sense that this same bit field problem can appear
later in the pipeline. In theory we can propagate
this new bit field type to the SelectionDAG, get-
ting rid of the problem completely, as the next IR
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in the LLVM pipeline - the MachineIR - does not
contain poison.

3.2.4 Load Combining and Widening

We previously discussed the cautions we must have
to not “poison” adjacent values when combining or
widening loads. To deal with this, load combining
and widening is lowered using vector loads. In a
CPU architecture where a word is 32 bits, instead
of just loading 16 bits:

%a = load i16, %ptr

we could load the entire 32 bit word with a vector
type, like this:

%tmp = load <2 x i16>,

%ptr = extractelement %tmp, 0

3.3. Cautions to have with Freeze
There are some problems that arise when we take
the freeze instruction into account.

The first one is that the duplication of freeze

instructions should not be allowed. Since freeze

may return a different value every time it is used,
if its input is poison we cannot do some optimiza-
tions that rely on sinking instructions into a loop,
for instance, which can be helpful when the loop is
rarely executed.

Another problem comes from static analyses of
programs. In LLVM, static analyses return a value
that only holds if none of the analyzed values are
poison. Static analyses do not take poison into
account because in the case where one of the possi-
ble values is poison, the analysis returns the worst
case scenario - a poison value - therefore making it
useless. This is not a problem when the analysis are
used for expression rewriting because in that case
both the original and transformed expressions will
return poison if any of its inputs is poison. How-
ever, if we use the analysis to hoist an expression
past control-flow, for example, if it does not take
poison into account and it says that the expression
is safe to hoist, then we might be introducing UB
into the program.

4. Implementation
We started the implementation of the solution by
taking care of poison in the bit fields. That task,
however, proved to be complex enough to be in a
document of its own.

4.1. The Explicitly Packed Structure Solu-
tion

The goal of this new type was to represent each bit
field separately, delaying the emission of the bit wise
operations needed to access bit fields to the next
intermediate representation in the pipeline (Selec-
tionDAG). In this new representation we separate

the bit fields, associating each with its own word (in
the LLVM IR), eliminating the worry of propagat-
ing poison to the other bit fields if any of them was
poison, since now each load or store only targets
an individual bit field. We also decided to calculate
the padding (if needed) in between words and insert
it in the array that contained the types of the fields
(hence the name Explicitly Packed: the structure
is already packed with padding, even though the
structure might not be a packed structure). This
padding in between words refers, for example, to
the padding of 3 bytes after a char field so that
every field is stored in a multiple of 4 address. We
use slashes to denote that a particular structure has
explicit packing.

So if we have the following structure in the C
programming language:

struct {

char c : 2;

int i : 2;

}

The corresponding LLVM IR will become:

%s = type \{ i2, i2, i4, [3 x i8] }/

Instead of:

%s = type { i8, [3 x i8] }

With this new type of structure, if we want to
store a 1 into the integer field i, the new LLVM IR
will be:

%1 = i2* getelementptr %s* @s, 0

store i2 1, i2* %1

where in the old LLVM IR (current representation
used by Clang) we have:

%1 = i8* getelementptr %s* @str, 0

%2 = load i8, i8* %1

%3 = and i8 %2, -13

%4 = or i8 %3, 4

store i8 %4, i8* %1

where @str is the name of the variable of the struc-
ture type. The getelementptr instruction returns
the address of a subelement of an aggregate data
structure (arrays, vectors and structures), mean-
ing that it only performs address calculation and
does not access memory, as opposed to the load

and store instructions. The other instructions are
self explanatory.

The current representation used by Clang emits
to the IR the bit wise operations, while our new
implementation doesn’t. Of course this does not
mean that we have less instructions in the end, it
just means that the bit arithmetic that was previ-
ously done in the IR is not there anymore. However,
it still needs to be emitted. We now emit those in-
structions in the SelectionDAG.
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4.2. Benefits of the Explicitly Packed Struc-
ture

The main benefit of this new representation is to
stop of propagation of poison to the adjacent bit
fields. Aside from that, the Explicitly Packed Struc-
ture type gives readability to the IR code by repre-
senting the bit fields like the C programming lan-
guage, while also telling the programmer the exact
size the structure will have in memory by showing
in the IR type the entire padding.

One major difference is the size of the IR code
and the optimizations that it entails. This new type
delays the emission of the bit wise operations to
the SelectionDAG, meaning that the size of the IR
will usually be smaller than the size of the current
representation used by Clang. However, if we are
storing or loading multiple adjacent bit fields the
previous IR could emit less instructions since only
one store and load was needed for adjacent bit fields.
This difference will affect some optimizations that
take the size of the code into account to decide when
to fire, as is the case with Inlining, an optimization
that replaces the call site of a function with the
body of that same function.

There are other optimizations that will benefit
from this representation: ones that depend on anal-
ysis of the program and can more easily track the
values of adjacent bit fields, since they are now sep-
arate as opposed to being bundled in a single word.

As a last note, by changing the way a type is
represented and used across all the different parts
of LLVM means that the community will have to
understand and get used to this new IR, since it
affects all of the LLVM pipeline.

5. Results

We tested our implementation with the LLVM
Nightly test-suite. The LLVM Nightly test-suite
is a test suite that contains thousands of different
benchmarks and test programs. Unfortunately, in
our case, only the tests that contained bit fields
were relevant to measure, which brought our num-
ber of tests down to 121. From this 121 tests, 113
were single source micro-benchmark tests, designed
to mostly test the correctness of the compiler, and
8 were multi-source benchmarks and applications,
more important to test the performance of the com-
piler.

Aside from these tests we also decided to use ver-
sion 4.0.0 of the GCC compiler as a benchmark,
since we had access to its single file source code9.
This GCC file has over 754k lines of C code and
over 2700 structures that contain bit fields, making
it arguably the most important benchmark.

9https://people.csail.mit.edu/smcc/projects/single-file-
programs/

5.1. Experimental Setup
To evaluate our compiler we measured running time
and peak memory consumption, running time of
compiled programs, and generated object file size.
In addition we also measured number of instructions
in the LLVM IR of the programs.

To estimate compilation and running time, we
ran each test three times and took the median value.
To estimate peak memory consumption, we used
the ps tool and recorded the RSS and VSZ columns
every 0.02 seconds. To measure object file size, we
recorded the size of .o files and the number of IR
instructions in LLVM bitcode files. All programs
were compiled with -O0 and -O3 and the compari-
son was done between our prototype and the version
of LLVM/Clang from which we forked.

We disabled Fast Instruction Selection for the
getelementptr instruction, and the optimizations
SCCP (Sparse Conditional Constant Propagation)
and GVN (Global Value Numbering). We swapped
the SROA (Scalar Replacement of Aggregates) for
the Mem2Reg optimization and disabled the Inst-
Combine Optimization in our implementation for
functions that contained access to bit fields.

These changes were made because these algo-
rithms cannot yet recognize the Explicitly Packed
Structure, leading to wrong code being generated.
Even with these changes, there were some tests that
did not pass with the -O3 flag, bringing the total
number of tests down to 96, from 122 (including the
GCC single file program). Of the 96 remaining pro-
grams, only 3 were regular benchmarks while the
other 93 were micro-benchmarks.

The machine we used to run the tests on had an
Intel Xeon CPU at 2.40GHz, 86.3GB of RAM and
was running CentOS Linux 8.

5.2. Compile Time
Compile time was largely unaffected by our changes,
either with the -O0 or the -O3 flag. Most bench-
marks were in the range of ±2%.

With the micro-benchmarks any small change in
the tests would equate to a big difference that does
not represent the reality. In micro-benchmarks that
took more than 5 seconds to compile we observed a
maximum change in +6%.

The results with the -O3 flag were identical to
the ones with -O0. The benchmarks were in the
range of ±1%. The micro-benchmarks saw a −10%
maximum difference.

5.3. Memory Consumption
For all benchmarks with the -O0 flag peak memory
consumption was unchanged, both RSS (Resident
Set Size) and VSZ (Virtual Memory Size), all within
the ±1% range. The micro-benchmarks saw a RSS
value fluctuating between ±4% while the VSZ value
maintained values in the ±0.4%.
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Figure 2: RSS value changes in benchmarks with
the -O3 flag.

-2

-1

0

1

2

3

4

5

6

7

bu
lle

t

co
ns

um
er

-la
m

e

pa
q8

p

Ch
an

ge
 in

 V
SZ

 (%
)

Figure 3: VSZ value changes in benchmarks with
the -O3 flag.

Regarding the results with the -O3 flag, the peak
memory consumption for the benchmarks kept a
±2% range with a single exception, a test called
“paq8p” that saw a significant increase to 11% in
the RSS value and 6% in the VSZ value, as shown
in Figures 2 and 3. We verified that this differ-
ence in peak memory consumption remained even
when we transformed the bit fields of the program
into regular structure fields. This indicates that the
problem is in one of the classes of the LLVM source
code, where new fields and functions were intro-
duced to accommodate the Explicitly Packed Struct
type. This test generates millions of instances of
different structures, which might mean that other
tests with these conditions might see a similar rise
in peak memory consumption.

On the other hand, the micro-benchmarks stayed
unchanged.

5.4. Object Code Size
We measured the size of .o files and the number of
IR instructions in the LLVM bitcode files to esti-
mate the size of the object code.

Regarding the size of the .o files compiled with
the -O0 flag most benchmarks were unchanged :

only GCC and the benchmark “consumer-typeset”
were smaller than the original by about 0.71% and
0.75%, respectively. The micro-benchmarks were
also mostly unchanged with a maximum increase of
1.37% in the size of .o file for the micro-benchmark
“GCC-C-execute-pr70602”.

When compiling with the -O3 flag, only the
benchmark “bullet” saw an increase of the original
by 0.37% while the rest of the benchmarks stayed
identical. The micro-benchmarks also remained
mostly unchanged with a variation of ±1.6% with
the exception of the “GCC-C-execute-990326-1”
micro-benchmark which saw an increase of 31%
compared to the original. The reason for this out-
lier is that this benchmark relied extensively on the
InstCombine and the subsequent optimizations to
reduce the code.

About the number of instructions in the LLVM
bitcode file, there was no benchmark/micro-
benchmark with a number of instructions superior
to their original counter-parts, when compiling with
the -O0 flag..

When compiling with the -O3 flag to enable op-
timizations, the benchmarks remained mostly un-
changed, with a maximum increase of 2% for the
“bullet” benchmark. However, most of the micro-
benchmarks experienced an increase in number of
IR instructions, to a maximum of 3000%, simply
because of the aforementioned not firing of the In-
stCombine and subsequent optimizations.

5.5. Run Time
The run time performance was mostly unchanged
for benchmarks compiled with the -O0 flag with a
maximum decrease in run time of 2%. The compi-
lation with -O3 flag however saw an increase in one
of the tests by 4.7%. The increase can be explained
by the lack of optimizations after the InstCombine
disabling.

5.6. Differences in Generated Assembly
Aside from the measurements taken, we think that
it is also important to discuss the differences in the
generated assembly, even though the compiled pro-
grams have the same behavior when ran.

We witnessed two major differences when com-
paring the assembly: the code generated when
accessing some bit fields, and the extra number
of spills and reloads our implementation produced
when compared to the LLVM/Clang from which we
forked, especially in large programs like GCC and
bullet.

The rise in spills and reloads is a consequence
of the fact that the heuristic that is in charge of
register and memory allocation is not familiar with
our implementation.

The reason to why the code to access the bit fields
is different is quite simple: even though the load

9



and store instructions are the only bit field access-
ing operations that continue present in the LLVM
IR, these too were changed. Now they only need to
target integers with the size of the actual bit field,
and not a whole word. So when the nodes of the
bit field accessing instructions in the SelectionDAG
are created, we decided to only load or store the
minimum amount of bits necessary.

6. Conclusions

The representation of Undefined Behavior (UB) in
a compiler has become a very important topic in
compiler design. In this work we discuss the pros
and cons of having two types of UB representation
in the IR and present new semantics to solve these
problems, introduced by [1]. In this new semantics
we propose to eliminate the undef keyword and ex-
pand the use of poison while also introducing a
new instruction, freeze, that can simulate the use
of undef, by “freezing” a poison value. This pro-
vides a solution to the problems identified with the
current representation of UB in the LLVM compiler.

We introduced and implemented a new type of
structure type in the LLVM IR - the Explicitly
Packed Structure. This new type represents each
field of the structure in its own integer with size
equal to that of the field. Aside from that, it also
shows the padding and packing (if needed) that
would eventually appear in the assembly code, di-
rectly in the structure type in the IR, while not
impacting significantly the performance and gener-
ated code of the compiler.

6.1. Future Work

As future work is concerned our solution to the
problem of propagating poison to the adjacent bit
fields is not yet finished. Firstly, and as was men-
tioned before, the new Explicitly Packed Struc-
ture type only stops the propagation in the LLVM
IR, meaning that the same problem still exists in
the next intermediate representation - the Selec-
tionDAG. So a reproduction of this solution in the
SelectionDAG is still needed. Furthermore, there
are still optimizations that do not take our im-
plementation into account, which needs to be ad-
dressed.

Finally, the rest of the semantics still need to be
implemented as we only worked on part of the over-
all poison value implementation. Loop Unswitch-
ing, GVN and Select have to be updated and other
optimizations need to be aware of this new seman-
tics to be able to optimize the new IR, which is a
crucial aspect of an optimizing compiler.
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