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Abstract

Huntington’s Disease (HD) is a neurodegenerative disorder characterized by motor, cognitive and

psychiatric progressive dysfunctions, caused by a genetic mutation on a protein whose function remains

incompletely understood. The evolution of HD through time is marked by great variability, which makes

it of difficult management. One highly incident psychiatric impairment in HD is depression. While, unlike

other symptoms of the disease, it is not correlated to disease progression, it has been linked to greater

functional damage and worse cognitive performance. Furthermore, it has an extreme impact on the

quality of life of both the patient and family.

In the present study, a Deep Learning model for detecting if depression was ever a part of a patient’s

medical history, based on sequential clinical data, was developed. For that, longitudinal data of 9474 HD

patients and 1481 controls from the Enroll-HD database was used. The gathered data comprises infor-

mation from annual clinical visits where several questionnaires are answered and exams are performed,

regarding the evaluation of all clinical aspects of HD.

With the main objective of understanding if it was possible to distinguish, from the evolution of the

disease, cases where depression had been present from those that did not suffer from it, several Re-

current Neural Network architectures were tested. It was also observed that adding "profile" data about

the patient and family contributed to an enhanced detection ability. With the implementation of a GRU

model an accuracy of 80% was achieved, with a sensitivity of 85% and a specificity of 69%.
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Resumo

A doença de Huntington é uma doença neurodegenerativa caracterizada por disfunções progres-

sivas do foro motor, cognitivo e psicológico, causadas por uma mutação genética numa proteína cuja

função não é totalmente compreendida. A evolução desta doença ao longo do tempo pauta-se de uma

grande variabilidade, o que a torna difícil de controlar e prever. Um distúrbio psicológico muito incidente

nesta doença é a depressão. Embora, ao contrário de outros sintomas, não esteja correlacionada com

a progressão da doença, tem sido associada a um pior desempenho funcional e cognitivo. Ademais,

tem um impacto extremo na qualidade de vida, tanto do paciente como da família.

No presente estudo, foi desenvolvido um modelo de Aprendizagem Profunda para a deteção de

um historial de depressão, baseado em dados clínicos. Para tal, foram usados dados longitudinais,

provenientes da base de dados "Enroll-HD", de 9474 pessoas com HD e 1481 controlos. Os dados

recolhidos abrangem informação de visitas clínicas anuais nas quais são realizados exames e vários

questionários são preenchidos, no sentido de avaliar as diferentes componentes da doença.

Com o principal objetivo de perceber se seria possível distinguir, a partir da evolução da doença,

casos de depressão, testaram-se várias arquiteturas de Redes Neuronais Recorrentes. Observou-se

ainda que adicionar dados de perfil do paciente e respetiva familía contribuia para uma capacidade

de deteção melhorada. Com a implementação de um modelo de Unidades Recorrentes de Porta,

conseguiu-se uma exatidão de 80%, uma taxa de verdadeiros positivos de 85% e uma taxa de verda-

deiros negativos de 69%.

Palavras Chave

Doença de Huntington, Depressão, Aprendizagem Profunda, Redes Neuronais Recorrentes

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Huntington's Disease 5

2.1 Huntington's Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Etiology of the disease: the Huntingtin (HTT) gene and protein . . . . . . . . . . . 6

2.1.2 Symptoms, clinical onset and evolution of the disease . . . . . . . . . . . . . . . . 7

2.1.2.A Motor symptoms and signs . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2.B Cognitive symptoms and signs - dementia . . . . . . . . . . . . . . . . . 9

2.1.2.C Behavioural and psychiatric symptoms and signs . . . . . . . . . . . . . 9

2.1.3 Standard clinical assessment procedures and severity measures . . . . . . . . . . 10

2.2 Huntington's Disease (HD) and Depression . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 What is depression? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1.A Clinical assessment and treatment . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1.B Cognitive changes in depression . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1.C Biological etiology: Where is depression? . . . . . . . . . . . . . . . . . . 11

2.2.1.D Depression in the presence of a medical diagnosis . . . . . . . . . . . . . 12

2.2.2 Depression in Huntington's Disease . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Deep Learning for sequential data classi�cation 14

3.1 Theoretical Concepts behind sequence classi�cation . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Machine Learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1.A Training a Machine Learning model . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Arti�cial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2.A Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2.B Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 The problem of long-term dependencies . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Long Short-Term Memory (LSTM) Networks . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Gated Recurrent Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



3.2.4 State of the Art applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Methods 24

4.1 Technological Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Studies brief description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3.A Visits assessments - sequential data . . . . . . . . . . . . . . . . . . . . 26

4.2.3.B "Pro�le" data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Feature Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Handling Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.3 Final Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Building the Deep Learning model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1.A LSTM network for processing sequential data . . . . . . . . . . . . . . . 34

4.4.1.B Combining sequential and non-sequential data . . . . . . . . . . . . . . . 35

4.4.1.C Trying other RNNs: the GRU and "SimpleRNN" . . . . . . . . . . . . . . 35

4.4.2 Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.2.A Learning, Validation and Early Stopping . . . . . . . . . . . . . . . . . . . 37

4.4.2.B Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.2.C Class imbalance problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.2.D Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3 Model Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Results and Discussion 41

5.1 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Deep Learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 LSTM models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.2 Combining sequential and pro�le data - the functional model . . . . . . . . . . . . 47

5.2.3 Comparison with other RNNs: "SimpleRNN" and GRU . . . . . . . . . . . . . . . . 47

5.2.4 HD vs controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.5 What is giving useful information to the network? . . . . . . . . . . . . . . . . . . . 49

6 Conclusions and Future Work 52

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55

vii



List of Figures

2.1 Schematic illustration of the functioning of the Huntingtin (HTT) protein. . . . . . . . . . . 7

2.2 Damage in brain volume caused by HD (left); comparison with a healthy brain (right). . . . 8

2.3 Simpli�ed illustration of the evolution of the different symptomatic domains of Huntington's

Disease (HD) through time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Basic structure of an ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Schematic representation of an arti�cial node. . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Graphical representation of the linear, logistic sigmoidal and hyperbolic tangent activation

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Schematic representation of an RNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Schematic representation of an LSTM cell. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Schematic representation of the vanishing gradient problem. . . . . . . . . . . . . . . . . 21

3.7 Schematic representation of the preservation of the information over time with LSTM. . . 21

3.8 Schematic representation of a GRU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Part of the "Variable Items" form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Part of the motor section of the UHDRS form. . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Part of the "Pro�le" questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Schematic representation of the data removed from the original Dataset. . . . . . . . . . . 30

4.5 Illustration of the one hot encoding method applied to the categorical features. . . . . . . 31

4.6 Representation of the dataset as a 3D tensor. . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Histogram of the distribution of the number of visits attended per patient. . . . . . . . . . . 33

4.8 Schematic representation of the samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 LSTM network "many-to-one" architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 Schematic illustration of an LSTM Sequential model structure. . . . . . . . . . . . . . . . 35

4.11 Schematic representations of the keras (a) sequential and (b) funcional API models. . . . 36

4.12 Schematic representation of the architecture of a GRU network, built with the keras Func-

tional API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.13 Representation of the training data division into training and validation sets. . . . . . . . . 37

5.1 Density distributions of the participants' ages from the two classes. . . . . . . . . . . . . . 42

5.2 Density distribution of the depscore feature. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



5.3 Density distribution of the hads_depscore feature. . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Functional assessments density distributions: (a) emplany is the binary variable wich

answers the question "Could subject engage in any kind of gainful employment?", (b)

chores is the categorical variable regarding the capability to do the domestic chores (0-

unable; 1- impaired; 2- normal) and (c) tfcscore Total Functional Capacity Score (from the

UHDRS, see section 4.2.3.A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Density distribution of the dysttrnk feature, a motor assessment regarding the trunk dysto-

nia (0- absent; 1- slight intermittent; 2- mild common or moderate intermittent; 3- moderate

common; 4- marked prolonged). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Density distribution of the chorface feature, a motor assessment regarding facial choreatic

movements (0- absent; 1- slight intermittent; 2- mild common or moderate intermittent; 3-

moderate common; 4- marked prolonged). . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Density distribution of the swrt (stroop word reading test) scores. . . . . . . . . . . . . . . 44

5.8 Density distribution of the sdmt (symbol-digit modality test) scores. . . . . . . . . . . . . . 44

5.9 Comparison of the validation and training loss curves from training 3 LSTM networks only

differing in the number of nodes. Each is composed of 3 LSTM layers with the following

number of nodes: red: 512, 256, 128; blue: 256, 128, 62; green: 128, 64, 32. . . . . . . . 45

5.10 Comparison of the validation and training loss curves from training the same network

without dropout (blue), with a dropout rate of 0.1 (red) and with a dropout rate of 0.2 (green). 46

5.11 Comparison of the accuracy obtained with the different sets of features. . . . . . . . . . . 50

5.12 Comparison of the speci�city obtained with the different sets of features. . . . . . . . . . . 51

5.13 Comparison of the sensitivity obtained with the different sets of features. . . . . . . . . . . 51

ix



List of Tables

4.1 Visits' forms and respective number of items and number depression diagnosis related

items (DEP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Number of participants of each group and correspondent percentage of female partici-

pants, total number of visits and mean number of visits per participant. . . . . . . . . . . . 34

4.3 Classes representativity in each group of participants. . . . . . . . . . . . . . . . . . . . . 38

4.4 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Comparison between using samples of 3 timesteps each or of 15 timesteps each. . . . . 45

5.2 Number of data samples available for training, validation and testing, when using samples

of 3 and 15 timesteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Model Performance after encoding the categorical features using a one-hot scheme. . . . 46

5.4 Model Performance after adding the "pro�le" information. . . . . . . . . . . . . . . . . . . 47

5.5 Performance comparison of different RNN models (mean and standard deviation of the

metrics obtained when using different train and test sets). . . . . . . . . . . . . . . . . . . 48

5.6 Sizes of the models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 Model performance comparison between groups. . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Number of data samples available for training, validation and testing, when using each of

the datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.9 Performance metrics obtained using different sets of features. . . . . . . . . . . . . . . . . 50

x



Acronyms

Adam Adaptive Moment Estimation

AI Arti�cial Intelligence

CAG cytosine, adenine and guanine

GRU Gated Recurrent Unit

HD Huntington's Disease

HTT Huntingtin

JHD Juvenile Huntington's Disease

LSTM Long Short-Term Memory

ML Machine Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

TNR True Negative Rate

TPR True Positive Rate

xi



UHDRS Uni�ed Huntington's Disease Rating Scale

xii



1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1



1.1 Motivation

Huntington's Disease is a neurodegenerative terminal disease for which there exists no cure. The

evolution of the disease is extremely heterogeneous and is still very poorly understood. The most fre-

quently occurring psychiatric sign is depression but no relation to disease progress has been evidenced

[1], [2]. Very often the neuropsychiatric symptoms are described as one of the most distressing aspect

of Huntington's disease, having a great impact in quality of life and contributing to functional decline.

Suicide is estimated to be the cause of 5-10% of the deaths in HD [3].

Depression, despite being one of the most common mental disorders worldwide, after decades of

research is also still incompletely demysti�ed and many different physiological mechanisms have been

linked to it [4]. Consequently, it is dif�cult to localize the anomalies and to make a diagnosis based

on objective parameters, being usually made using standardized questionnaires and interviews which

are often of subjective interpretability. Like HD, it is characterized by a heterogeneous symptomatology.

For all these reasons, the clinical treatment approach is usually a trial and error approach, which is

extremely unadvantageous as antidepressants may have very adverse secondary effects [5]. Moreover,

depression has consistently been linked to cognitive impairments [6], [7].

In the presence of HD, depression is even more dif�cult for a clinician to diagnose as apathy, lack of

initiative and weight loss are also frequent signs of HD alone [8]. Many hypothesis have been formulated

for the prevalence of this psychiatric disorder in HD but no conclusions have been found. There exists,

this way, the necessity to understand if there are speci�c patterns in the disease that are linked to

depression and to develop objective mechanisms for this purpose. Machine learning offers the ability to

recognize these patterns in what is, for the human perspective, simply heterogeneous information and

model it, creating high-level abstractions, and �nally giving useful outputs [9].

1.2 Objectives

The main objective of this dissertation was to develop a model able to detect HD cases where there

is a medical history of depression (with or without a formally stated diagnosis), from sequential clinical

data. While most studies regarding this issue focus on statistically associating speci�c phases of the

disease and/or speci�c symptoms and signs to depression, this work aims to be a "proof of concept"

and a starting point in the use of Deep Learning for processing longitudinal clinical data (with no a priori

patient strati�cation) to obtain conclusions about the presence of depression in Huntington's Disease. In

a near future, similar methods may be applied to the diagnosis process.

More concretely, these are the main objectives of the present dissertation:

� To develop an RNN model that best suits the task of detecting depression based on longitudinal

clinical data. For that, standard RNNs, LSTMs and GRUs models will be tested.

� To use information regarding the patient's family history, demographics, �rst noted symptoms and

age at which they appeared, to provide additional information to the model.

2



� To compare the predictability of this condition in the HD and control participants separately, using

the same method.

1.3 Thesis Outline

This dissertation is composed of 6 chapters. Chapters 2 and 3 are introductory theoretical chapters

covering the state of the art of the topics upon which this dissertation relies. Chapter 2 is about Hunt-

ington's Disease, providing the necessary information for the comprehension of the developed work

regarding its general description and relation with depression. Chapter 3 introduces the theoretical con-

cepts behind sequence classi�cation with Deep Learning, including introductory notions about Machine

Learning and Recurrent Neural Networks. In Chapter 4 the followed methods are described and the

results are presented and discussed in Chapter 5. The last chapter summarizes the outcomes of the

study and main conclusions that can be drawn, describes its limitations and suggests future steps to

take following this work.

3



4



2
Huntington's Disease

Contents
2.1 Huntington's Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Huntington's Disease (HD) and Depression . . . . . . . . . . . . . . . . . . . . . . . . 10

5



2.1 Huntington's Disease

Huntington's Disease is a rare neurodegenerative disorder characterized by involuntary choreatic

movements, behavioural and psychiatric disturbances and dementia [10]. It is a terminal illness with an

autosomal dominant inheritance (50% probability of being transmitted through generations), described

by a progressive course of a combination of motor, cognitive and behavioural impairments, which make

it devastating both to patients and their families [11].

HD is caused by an elongated CAG trinucleotide repeat in the gene coding for the protein Hunt-

ingtin [12]. Prevalence rates vary geogra�cally: the overall worldwide prevalence is 2.7 per 100,000 but

considering the two subgroups (1) North America, Europe and Australia and (2) Asia, in the �rst the

estimated prevalence is 5.7 per 100,000 and in the second it is only 0.4 per 100,000 [13]. The reason

for this great difference is thought to be in part due to differences in CAG tract size (in populations with

lowered prevalence rates of HD, CAG sequence size in the wild-type HTT gene is shorter) [14].

Genetic predictive testing can inform whether, but not precisely when, the disorder will manifest itself

[15]. The onset of symptoms is in most cases between the ages of 30-50 years old, but in some rare

cases (around 5% of all HD cases) the symptoms start before the age of 20 and it is called Juvenile

Huntington's Disease (JHD) [16].

There is no cure for this illness: management is multidisciplinary and based on treating symptoms

with the aim of improving the patients' quality of life. Medication and non-medical care for depression

and aggressive behavior and also to improve motor anomalies is used. The evolution of the disease

leads to an increasing dependency in daily life, which results at some point in patients requiring full-time

care, and �nally death [10]. The most common cause of death is pneumonia [17].

2.1.1 Etiology of the disease: the Huntingtin (HTT) gene and protein

As previously mentioned, HD is an autosomal dominant inherited disease caused by an expanded

CAG repeat (36 repeats or more) on the short arm of chromosome 4p16.3 in the Huntingtin gene (gene

IT-15) [10]. CAG is a trinucleotide (composed of citosine, adenine and guanine) that codes for the amino

acid glutamine. There is a negative relation between the number of CAG repeats and the age of onset

[18] but it gives no indication about the initial symptoms, the course or the duration of illness [10].

The wild-type HTT gene contains a DNA segment of 6 to 26 CAG repeats. From 27 to 35 CAG

repeats it is unstable and has the potential to expand into the abnormal range in future generations; from

36 to 39 it is abnormal but there may be reduced penetrance; over 40 repeats, there will unequivocally

be clinical manifestations. In cases of JHD the number of repeats often exceeds 60 [19]. There's also

evidence that about 1% of suspected Huntington's Disease cases emerge as phenocopy syndromes:

patients presenting with the features of HD but lacking the genetic mutation [20].

Although the exact function of the Huntingtin protein remains uncompletely understood, it appears to

have an important role in the neurons functioning and it is essential for the normal development before

birth [21].

Huntingtin is found in many of the body's tissues, and expressed at its highest levels in the brain
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and testes. Within the brain, it is found in all neurons, as well as glial cells. Evidences have shown

that it interacts with a large number of effector proteins to mediate many physiological processes, such

as in axonal traf�cking (transport of cellular organelles and molecules through the neuron's cytoplasm

- from the cell body to the axon), regulation of gene transcription, and cell survival (protecting it from

self-destruction, called aptoptosis). HTT has also been suggested to have both pre- and post-synaptic

roles [22]. Figure 2.1 illustrates the role of this protein within a neuron.

The presence of the expanded CAG segment leads to the production of an abnormally long version of

the huntingtin protein [11], resulting in a cascade of cell death and cerebral degeneration. Although other

parts of the brain are also affected, the basal ganglia appears to be the most heavily damaged [8]. Figure

2.2 shows the damage caused by HD in the brain volume. The elongated protein is cut into smaller, toxic

fragments that bind together and accumulate in neurons and this process particularly affects regions of

the brain that help coordinate movement and control thinking and emotions (the striatum and cerebral

cortex) [22]. Summarily, HD is caused both by a toxic gain-of-function due to the expanded protein and

the loss of normal HTT function [11].

Figure 2.1: Schematic illustration of the functioning of the HTT protein [22].

2.1.2 Symptoms, clinical onset and evolution of the disease

A person with one parent with HD is at risk of also being a gene mutation carrier: if a genetic test

con�rms this, the person is at the pre-clinical or pre-manifest stage of the disease until the symptoms

appear and a clinical diagnosis is done. Note that not only those with a parent suffering from HD could

develop the disease, as a de novo mutation could also lead to the expanded form of the HTT gene.

The progression of symptoms in HD is not well understood but the overall clinical course of the
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Figure 2.2: Damage in brain volume caused by HD (left); comparison with a healthy brain (right) [8].

disease is characterized by a decrease in independence and an increase of severity in motor, cognitive

and behavioural impairments, as illustrated in Figure 2.3.

In the past, the diagnosis was only suggested after the �rst motor signs had started. However, it

has become clear that psychiatric and cognitive changes can be the �rst signs, even many years before

motor impairments become visible [15], [23]. Many patients mention a gradual change in behaviour and

performance at work (for example, staying home due to experiencing the symptoms of a burn-out or a

depression). Although these signs are non-speci�c and may have a different plausible explanation, it

has become clear that these signs can be the �rst manifestation of HD [10].

As already mentioned, the age at onset is usually between 30 and 50 years, but it can happen any

time between the ages of 2 to 85. The mean duration of the disease is around 17-20 years [10].

Figure 2.3: Simpli�ed illustration of the evolution of the different symptomatic domains of HD through time [11].

Although the nuclear features of HD consist of motor, cognitive and psychiatric disturbances, there
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are other less known, but prevalent and debilitating symptoms which include unintended weight loss,

sleep disturbance and autonomic nervous system impairment.

2.1.2.A Motor symptoms and signs

One of the main signs of the motor impairment in patients with HD is the emerging of involuntary

movements. Initially, the movements occur in the distal extremities (like �ngers and toes) and in small

facial muscles; walking becomes unstable and the person may look as if inebriated. No pattern exists

and facial choreatic movements lead to a continuous movement of facial muscles [10].

Alterations in oculomotor performance are also among the �rst observable physical alterations during

initial stages of HD. In fact, quanti�able measurements of oculomotor performance have been used to

distinguish controls, pre-symptomatic and manifest patients [24]. Dysarthria (speech impairments result-

ing from neurologic disease or damage [25]) and dysphagia (dif�culty in swallowing) become prominent

during the course of the disease. Talking and swallowing gradually become dif�cult tasks (frequently

leading to choking) and often in later stages of the disease the patient becomes mute [10].

All patients develop hypokinesia, a primary motor control impairment characterized by slow move-

ment (bradykinesia) or no movement due to dif�culty in starting it (akinesia) [26]. Also, falling becomes

frequent. The involuntary choreiform movements tend to decrease in later stages of the disease, while

rigidity and bradykinesia increase [27].

2.1.2.B Cognitive symptoms and signs - dementia

As previously mentioned, cognitive impairments very often emerge before the motor ones. It has

been shown that neurocognitive tests are robust clinical indicators of the disease process prior to reach-

ing criteria for motor diagnosis of HD [28]. Like motor disability, cognitive decline progresses gradually.

The features of cognitive damage in Huntington's Disease are similar to disorders associated with stri-

atal–subcortical brain pathology (such as Parkinson's disease) but are dissimilar to Alzheimer disease -

for example, rapid forgetting is not a pronounced characteristic of HD [29].

Common cognitive decline features in HD include de�cits in attention, emotion recognition, visuomo-

tor processing, decreased ability to learn and retrieve new information [23], [28], [30]. These cognitive

impairments with simultaneous psychiatric problems result many times in lack of initiative, social disen-

gagement, impulsivity and lack of awareness [31].

2.1.2.C Behavioural and psychiatric symptoms and signs

Along with motor and cognitive changes, psychiatric problems complete the triad of signs and symp-

toms that characterize HD. Due to the burden they cause on the daily life, the psychiatric issues have

a highly negative impact on functioning and on the family of the patients [32]. Psychiatric symptoms,

particularly depression, can develop during the prodromal stage or when the disease is manifest. It has

been suggested as a signi�cant prognostic component in HD patients (these symptoms frequently arise

before motor onset, like cognitive impairments) and may present several years prior to disease onset

[33], [34].
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The most frequently occurring psychiatric sign is depression [1]. The diagnosis is often dif�cult

because apathy, lack of initiative and weight loss also occur in HD alone (a correlation between weight

loss and the length of the cytosine, adenine and guanine (CAG) repeat has been described [35]). Usually

there is low self-esteem, feelings of guilt and anxiety [36]. Apathy is correlated to disease progress

(cognitive deterioration and functional decline), whereas anxiety and depression are not [2].

Since the original description of HD in 1872, a tendency to suicide has been reported as a peculiarity

of the disease [37]. Suicidal ideation is most common when patients start experiencing symptoms

(before formal clinical diagnosis) and in the stage of HD following diagnosis when patients become less

independent [38].

Obsessions and compulsions are a very common sign and also lead to irritability and aggressive be-

haviour [10]. Psychosis (presence of delusions and/or hallucinations) is also a psychiatric manifestation

for some patients, mainly in the later stages of the disease [39]. The prevalence of psychotic symptoms

in HD patients varies between 3 and 11% [40].

Overall, due to this combination of motor, cognitive and psychiatric de�cits, for patients with HD, the

activities of daily living (ADL) such as getting out of bed, taking a shower, getting dressed, cooking or

eating become increasingly dif�cult.

2.1.3 Standard clinical assessment procedures and severity measures

The Uni�ed Huntington's Disease Rating Scale (UHDRS) is a standardized clinical rating scale to

assess four domains of clinical performance and capacity in HD: motor function, cognitive function,

behavioral abnormalities, and functional capacity [41].

The motor scale assesses eye movements, motor control, rigidity, bradykinesia, dystonia, chorea,

and gait. The cognitive section is composed of a test of verbal �uency, the Symbol Digit Modalities Test

and the Stroop Test. The behavior section assesses the frequency and severity of psychiatric symptoms

(like depression, delusions). Frequency and severity of these symptoms are scored on a scale from 0

to 4 with lower numbers indicating less frequent and less severe psychiatric symptoms. A brief health

history is obtained which asks whether treatment has been sought for depression and whether any

suicide attempts have been made [38], [42].

The Total Functional Capacity (TFC) scale is a standard measure of functional capacity employed in

HD research. The TFC scale consists of �ve items assessing occupation, capacity to handle �nancial

affairs, to manage domestic responsibilities, to perform activities of daily living, etc. Scores range from 0

to 13, with higher scores indicative of higher functioning and greater independence. Some studies use

TFC as the basis in the determination of the stage of illness of the patient [38].

2.2 HD and Depression

2.2.1 What is depression?

Depression is one of the most common mental disorders in the general population and it is the

leading cause of disability worldwide. It is a major contributor to the overall global burden of disease
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with more than 264 million people affected [43]. Its presence is linked to diminished physical health and

quality of life [44] and higher risk of suicide [45].

Also called Major Depressive Disorder (MDD), depression is a prevalent heterogeneous illness char-

acterized by depressed mood, anhedonia (lack of interest or pleasure) and altered cognitive function [4].

Risk factors for the development of depression include biological (like genetics, neurological alterations -

both functional and structural alterations), cognitive (such as beliefs, information processing, personality)

and social factors (life experiences, stress) [46].

2.2.1.A Clinical assessment and treatment

The diagnosis of MDD is largely based on application of criteria from the Diagnostic and Statistical

Manual of Mental Disorders (DSM) and clinician judgment; upon diagnosis most patients are started

on �rst-line antidepressant agents (such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic

antidepressants (TCAs)) which is largely a trial and error process [47]. Although there is a high rate

of ef�cacy in treating MDD with antidepressants, the neurobiological mechanisms of their ef�cacy are

not well understood and one problem with this approach relies on the secondary effects that are adja-

cent to these drugs, such as gastrointestinal disturbances, hepatotoxicity and hypersensitivity reactions,

metabolic and sexual dysfunctions [5].

Health-care providers may also offer non-pharmacological treatments, such as cognitive behavioural

therapy, naturopathic interventions, psychotherapy and exercise-based interventions, which do not have

secondary adverse effects but are usually not as ef�cacious as the use of antidepressants, so in most

cases both kinds of treatment should be considered [48].

2.2.1.B Cognitive changes in depression

As previously mentioned, it is known that depression is associated with changes in cognitive abilities.

Depression is characterized by general cognitive de�cits - for example, impairments in executive func-

tioning, attention and memory - and negative cognitive biases, such as in the processing of emotional

information. Also, patients with this disorder tend to increase the use of maladaptive emotion regulation

strategies, like rumination, and not to use adaptive ones, like reappraisal [49].

More concretely, considering the general cognitive impairments, one study showed that individuals

with MDD scored signi�cantly lower than an age and IQ-matched group of control subjects in the areas

of verbal �uency, visual memory tasks, spatial span tasks, working memory tasks, and tasks involving

executive function [6].

2.2.1.C Biological etiology: Where is depression?

Despite decades of research, to date, the biological bases for the presence and heterogeneity of

depression remain poorly understood [4]. Many different regions of the brain have been linked to de-

pression. Decreased metabolism in the prefrontal cortex (especially dorsolateral and dorsoventral brain

regions), structural and functional impairments in limbic brain regions (amygdala, hippocampus and
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dorso-medial thalamus) and an abnormal metabolism in the brain stem and basal ganglia are only some

examples of brain activity abnormalities found in different studies [50], [51], [52].

As in other disorders of higher mental functions, it is dif�cult to localize the anomalies. The abnormal-

ity in depression may also lie at a molecular level affecting neurotransmission and consequently neurons

in several brain regions simultaneously. Another possibility is that the abnormality lies in a brain system

that in�uences the functioning of multiple brain regions or even different symptoms of depression may in-

volve different brain regions in varying degrees [50]. Furthermore, recent studies have shown evidences

of a link between depression and functional connectivity abnormalities [53], [54].

2.2.1.D Depression in the presence of a medical diagnosis

Depression is a frequent feature of many terminal illnesses. One study showed that patients with any

medical diagnosis were more than twice as likely to have depression than patients without a medical

diagnosis [55]. In neurological diseases, the rates of depression are recognized as higher than in the

general population, however, there is much debate about the etiology of this depression: if on one hand,

the impact of a medical diagnosis in the patient's life may increase the risk for depression, on the other,

there may be physiological impairments related to the disease that would be on its origin [38].

2.2.2 Depression in Huntington's Disease

As previously mentioned in section 2.1.2.C, depression is the most common psychiatric comorbidity

in HD. Moreover, depressive mood has been considered one of the most impacting factors in the quality

of life of patients with this illness [56].

Estimates of the prevalence of depressed mood in Huntington's Disease vary widely, ranging from

33% [57] to 69% [36]. One reason for this discrepancy is the fact that the rate of depression in HD

has been measured using different assessments, which makes the interpretation across studies more

dif�cult.

Many of the symptoms of HD resemble and may potentially disguise the symptoms of depression

(for example, changes in appetite, fatigue, changes in sleep). It can be dif�cult to tell whether a person's

symptoms are depression, HD or a combination of both [8].

Depressive symptoms in HD do not correlate well with motor or cognitive measures of the disease

progression, which suggests that different neuropathological processes may be involved [38]. Nonethe-

less, it has been observed to have higher prevalence in speci�c periods of the illness and to be less

frequent in late stages, possibly due to greater cognitive impairments and, consequently, decreasing

illness awareness [40].

As explained in section 2.2.1 depression (not in the presence of HD) has been associated with some

changes in cognitive abilities. In light of the observed cognitive decline in HD, the high incidence of

depression in HD, and the association of cognitive decline with depression, questions emerge about a

possible impact of depression on cognition in individuals who are HD-presymptomatic, which would lead

to the exacerbation of cognitive impairments during the illness development [58].
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The etiology of HD depression is unclear and may be due to a number of factors: the development

of depressive symptoms in Huntington's disease could be a direct result of cerebral degeneration, for

which several neuropathological mechanisms have been proposed [1], [59], it could be related to the

disease associated alterations in the neurotransmitters in the brain that regulate mood [8] or it could be

a psychological reaction to being at risk for Huntington's disease, having grown up in an insecure and

harmful environment, and/or the awareness of disease onset [40].
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3.1 Theoretical Concepts behind sequence classi�cation

3.1.1 Machine Learning (ML)

Machine Learning is a branch of the wide �eld of Arti�cial Intelligence (AI). François Chollet de�nes

AI as "the effort to automate intellectual tasks normally performed by humans" [60]. ML is an approach

of AI to solve complex problems which could not be determined by explicit rules, making the use of

computers to statistically estimate complicated functions [61].

As the name suggests, a Machine Learning algorithm should be able to learn. In Machine Learning,

Tom M. Mitchell de�nes learning as follows: "A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E" [62].

ML algorithms can be broadly divided in two categories: supervised and unsupervised. A supervised

learning algorithm uses a dataset containing features and each example is associated with a label;

unsupervised learning algorithms use datasets containing features and from them learn characteristics

of the structure of the dataset, without using explicitly-provided labels [61].

A wide variety of tasks can be solved with Machine Learning. Classi�cation is one of them and in

this type of task, the computer program is asked to specify which of k categories some input belongs to.

3.1.1.A Training a Machine Learning model

The training phase is when the learning takes place. In order to train a machine learning model, it's

necessary to have access to a training set. The ML system is presented with many examples relevant

to a task and �nds the statistical structure that determines the rules behind this task [60].

For this, it is necessary to have for each training sample an associated expected output (in the case

of supervised learning) and some error measure (loss function) to compute the training error (which

compares the algorithm's output to the expected one) - the idea is to reduce this error. Neverthless,

the aim is to make the algorithms perform well on previously unseen inputs - in other words, the aim is

to achieve good generalization. This way, after the training phase, the performance of the algorithm is

measured on a test set of new examples. If the training error is small but the test error is large it is called

over�tting [61].

Most machine learning algorithms have several settings that control the behavior of the learning

model. These settings are called hyperparameters.

While the loss function is the error measure that will be minimized during training, the optimizer is

the method that determines how the model will be updated, based on that measure.

3.1.2 Arti�cial Neural Networks

An Arti�cial Neural Network (ANN) is a software reproduction of the neuronal structure of the human

brain [63]. Biological neurons spread electrochemical signals along neural pathways through synapses

- some of the transmitted signals tend to excite the reached neurons, others to inhibit them. For each

neuron, if the cumulative effect exceeds a de�ned threshold, the neuron �res and sends a signal to other
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neurons. An arti�cial neuron mimics this biological functioning: it receives a set of inputs and each input

is multiplied by a weight, equivalent to the synaptic strenght [64], and then maps it to an output, through

an activation function. An ANN is represented by a set of nodes (which represent the neurons) and

connections with coef�cients (weights) [65]. Figure 3.1 illustrates the basic structure of an ANN.

Figure 3.1: Basic structure of an ANN.
Figure 3.2: Schematic representation of an
arti�cial node.

Figure 3.2 shows the structure of a single arti�cial neuron that receives input from sources that are

either other neurons or data input. Each input of the node is multiplied by the correspondent weight and

the sum passes through the activation function to compute the output of the node (as in expression 3.1),

which will be used as an input for the next layer's nodes. The output of the network is the output of the

�nal layer. The number of successive layers is what conceives "depth" to the network and it is the reason

why this �eld of Machine Learning is called Deep Learning.

hW;b (X ) = f (w1 � x1 + w2 � x2 + w3 � x3 + b) = f (W � X + b) (3.1)

where f is the chosen activation function of the node and b is the bias. The activation function serves to

introduce non-linearity in the modeling capabilities of the network and it is usually a sigmoid, hyperbolic

tangent (tanh), recti�ed linear (ReLU) or max-pooling function [60]. The sigmoid function converts the

node's inputs to simple probabilities between 0 and 1 and most of its output will be very close to the

extremes of 0 or 1. The tanh function is also a sigmoid-like curve but unlike the sigmoid function, the

normalized range of tanh is between -1 and 1, which has the advantage of including negative values. In

�gure 3.3, the linear, sigmoidal and hyperbolic tangent functions are represented.

Figure 3.3: Graphical representation of the linear, logistic sigmoidal and hyperbolic tangent activation functions.
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3.1.2.A Gradient descent

Gradient descent is an optimization technique used to minimize the training error, by iteratively chang-

ing the parameters of the model in steps with opposite sign of the partial derivatives of the loss function,

in order to �nd the values for these parameters that make the loss reach its minimum. It is often nec-

essary to optimize complex functions that may have many local minima or that have multidimensional

inputs - this makes optimization dif�cult and, therefore, it is usual to de�ne a stopping criteria different

from �nding the global minimum.

A problem in machine learning is that large training sets are necessary for good generalization, but

large training sets are also more computationally expensive. Hence, instead of computing the gradient

of the loss function for every training example on each iteration of the algorithm (Stochastic Gradient De-

scent (SGD)), it is possible to use a random subset of examples from the training set (called minibatch)

or even a single sample. The �rst method is called mini-batch gradient descent and the second is called

stochastic gradient descent and they are extensions of the gradient descent algorithm [66].

When the algorithm has seen the entire training set it is called an epoch. Having a dataset with N

samples, with the gradient descent method the parameters are only updated after each epoch while

using the stochastic gradient descent, in one epoch, the parameters are updated N times; choosing a

batch-size n, the parameters are updated N /n times per epoch.

The gradient descent method uses the gradient of the loss function (with respect to the weights) to

make a step change in w to lead it towards the minimum of the error curve. This is an iterative method:

each time, every weight and every bias of the network are updated according to the expressions 3.2 and

3.3 [66].

w( l )
ij = w( l )

ij � �
@L(w; b)

@w( l )
ij

(3.2)

b( l )
ij = b( l )

ij � �
@L(w; b)

@b( l )
ij

(3.3)

Where � is the learning rate and L is the loss function. The learning rate, also called step, is a

hyperparameter which controls how much to change the value of the weight in the opposite direction

from the gradient. It is dif�cult to choose an adequate value for it, as if it is too small, it will take many

iterations to reach the minimum loss and it might stop at a local minimum and if it is too large, the

optimization will diverge [60].

There are many algorithms developed to address this problem. Adding a momentum term [67] helps

to accelerate SGD in the relevant direction by adding a fraction of the update vector of the past time-step

to the current update vector, as in expression 3.4. This allows having a faster convergence with reduced

oscillation.

vt = 
v t � 1 + � r � J (� ) (3.4)

� = � � vt (3.5)
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Adaptive Moment Estimation (Adam) [68] is a method that computes adaptive learning rates for each

parameter. It stores an exponentially decaying average of past squared gradients and also keeps an

exponentially decaying average of past gradients mt , similar to momentum.

When working with neural networks, the most commonly used method to compute these gradients is

the backpropagation method [69], an optimizer which uses the chain rule of differentiation for applying

the gradient descent to the equations that de�ne the network.

3.1.2.B Backpropagation

Considering a neural network that only has forward connections between neurons, i.e, a feedforward

neural network (FFNN) [70] (notice that when the networks are extended to include feedback connec-

tions, they are called recurrent neural networks - these will be discussed in section 3.2), the expression

3.6 represents the total input of a node from a hidden layer.

a( l )
i = b( l )

i +
r l � 1X

j =1

wl
ji ol � 1

j (3.6)

Where a( l )
j is the weighted sum of the inputs and bias for node j in layer l , r l is the number of nodes

in layer l and ol � 1
j is the output of the node j in layer l � 1.

In order to compute the partial derivatives from expressions 3.2 and 3.3, the chain rule of differentia-

tion is used as in expression 3.7 [69].

@L

@w( l )
ij

=
@L

@a( l )
j

�
@a( l )

j

@w( l )
ij

= � l
j �

@a( l )
j

@w( l )
ij

(3.7)

Where � k
j is the partial derivative of the loss function with respect to the node's input, called the error

term. From ??,

@a( l )
j

@w( l )
ij

=
@

@w( l )
ij

(b( l )
j

r l � 1X

k=0

wl
kj ol � 1

k ) = ol � 1
i (3.8)

Assuming the network as m layers, the last layer only has 1 node (i.e, there is only 1 output node) and

the loss function is computed as in expression 3.9, the error term is computed as shown in expressions

3.11 and 3.12.

L =
1
2

(ŷ � y)2 (3.9)

For the last layer (l = m)

ŷ = f (a(m )
1 ) (3.10)

� m
1 =

@L
@̂y

�
@̂y

@a(m )
1

= ( ŷ � y) � f 0(a(m )
1 ) (3.11)

And for the rest of the layers 1 � l < m :

� l
j =

X @L

@a( l +1)
k

�
@a( l +1)

k

@a( l )
j

=
r l � 1X

k=1

� l +1
k �

@a( l +1)
k

@a( l )
j

= f 0(a( l )
j )

r l � 1X

k=1

� l +1
k wl +1

jk (3.12)
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3.2 Recurrent Neural Networks

Recurrent Neural Networks or RNNs are a family of neural networks for processing sequential data

[61]. RNNs are neural nets which include feedback connections among hidden units, associated with a

time delay [71]. The key point is that the recurrent connections allow a “memory” of previous inputs to

persist in the network's internal state. RNNs are also trained with backpropagation and the forward pass

of an RNN is identical to that of a feedforward network, except that the hidden layers receive as inputs

both the current external input and the output from the previous timestep [72], as represented in �gure

3.4.

Considering an RNN with I input nodes, a single hidden layer (with H hidden nodes) and an output

layer (with K output nodes), which receives as input a sequence x, the forward pass is as represented

in expressions 3.13 and 3.14 [72].

at
h =

IX

i =1

wih x t
i +

HX

h0=1

wh0h ot � 1
h0 (3.13)

ot
h = f (at

h ) (3.14)

Similarly to what is done in the learning phase when working with FFNN, it is necessary to compute

the partial derivatives of the loss function with respect to the weights, as in 3.7. The most used algorithm

for ef�ciently calculate these derivatives is backpropagation through time (BPTT) [73], which equations

are represented in expressions 3.15 and 3.16 [72]. It is important to notice that the same weights are

used every timestep.

@L
@wij

=
TX

t =1

� t
j �

@atj
@wij

=
TX

t =1

� t
j ot

i (3.15)

with � t
h = f 0(at

h )(
KX

k=1

� t
k whk +

HX

h0=1

� t +1
h0 whh 0) (3.16)

The problem with RNNs is that the inputs cycle around the network's recurrent connections, which

leads us to the problem of learning long-term dependencies [74].

Figure 3.4: Schematic representation of an RNN [61].
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3.2.1 The problem of long-term dependencies

The mathematical challenge of learning long-term dependencies is that gradients propagated over

many timesteps tend to either vanish or explode (being the �rst phenomenon much more probable than

the second).

Recurrent networks involve the chain multiplication of the derivative of the activation function, once

per time step. It is possible to think of the recurrence relation h( t ) = W � h( t � 1) as a very simple

recurrent neural network without a nonlinear activation function and inputs. This recurrence relation

essentially describes the power method and it may be simpli�ed to h( t ) = W t h(0) and if W admits an

eigendecomposition of the form W = Q
V

QT with orthogonal Q, the recurrence may be simpli�ed to

h( t ) = Q
V t QT h(0) . The eigenvalues are raised to the power of t causing eigenvalues with magnitude

less than one to decay to zero and eigenvalues with magnitude greater than one to explode [61].

3.2.2 Long Short-Term Memory (LSTM) Networks

The Long Short-Term Memory (LSTM) method was �rst introduced by Hochreiter and Schmidhuber

in 1997 [75], with the aim of addressing the problem of long-term dependencies, described in section

3.2.1. It is a variant of an RNN with a gated structure, which enables it to handle long input sequences.

The central idea behind the LSTM architecture is a memory cell which can maintain its state over

time, and non-linear gating units which regulate the information �ow into and out of the cell [76]: the

input, output and forget gates.

Figure 3.5: Schematic representation of an LSTM cell [77].

Figure 3.5 illustrates an LSTM cell and the expressions from 3.17 to 3.22 are the equations for the

forward pass. Having as input a sequence x, x t represents the input at the current timestep t and ht � 1

and Ct � 1 represent, respectively, the output and the cell state from the previous timestep. W , b are

the weights and biases and the indexes f , i and o correspond to the forget, input and output gates,

respectively. These multiplicative gates are sigmoid layers and each has a different task. The forget

gate (3.17) takes as input x t and ht � 1 and it is what enables the cell state to be reset, as its output will

20



multiply the previous cell state Ct � 1 (see 3.20). The input gate (3.18) "decides" which values will be

updated and from 3.19 the new values to add to the cell state are computed. Finally, in the output gate

(3.21) it is decided what part of the current cell state is going to be output (3.22).

f t = � ( Wf � [ ht � 1; x t ] + bf ) ( forget gate) (3.17)

i t = � ( Wi � [ ht � 1; x t ] + bi ) ( input gate) (3.18)

~Ct = tanh( WC � [ ht � 1; x t ] + bC ) (candidate values) (3.19)

Ct = f t � Ct � 1 + i t � ~Ct (cell state) (3.20)

ot = � ( Wo � [ ht � 1; x t ] + bo) (output gate) (3.21)

ht = ot � tanh( Ct ) (output) (3.22)

The gates allow LSTM cells to store and access information over long periods of time, mitigating the

vanishing gradient problem. For example, as long as the input gate remains closed (i.e. has an activation

near 0), the activation of the cell will not be overwritten by the new inputs arriving in the network, and

can therefore be made available to the net much later in the sequence, by opening the output gate [72].

The preservation over time of gradient information by LSTM is illustrated in �gure 3.7.

Figure 3.6: Schematic representation of the vanish-
ing gradient problem [72].

Figure 3.7: Schematic representation of the preser-
vation of the information over time with LSTM [72].

3.2.3 Gated Recurrent Units

Another type of RNN with a special gated architecture is the GRU, which was developed in 2014 [78].

The main differences from the LSTMs are that it uses two gates (the update and reset gates) instead of

three and that it doesn't use the cell state to transfer information, but rather the hidden state [79]. It can

be thought of as a modi�cation of the LSTM with a less complex architecture and, consequently, more

computationally ef�cient [60].
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Figure 3.8: Schematic representation of a GRU (adapted from [80]).

Figure 3.8 illustrates the structure of the GRU and its components. The update gate, represented

by zt , "couples" the forget and input gates from the LSTM architecture into one, which simultaneously

controls how much of the previous memory content (ht � 1) to forget and how much of the new content

(x t ) is to be added, through the computation of expression 3.23. The reset gate, r t , allows the unit to

forget the previous hidden states and it is computed as in expression 3.24. The candidate hidden state

(~ht ) is done similarly to that of the the LSTM (expression 3.25) [81]. Finally, at timestep t the state of the

GRU is the linear interpolation between the previous activation (ht � 1) and the candidate hidden state

(~ht ) [79].

zt = � (Wz � [ht � 1; x t ] + bz ) (update gate) (3.23)

r t = � (Wr � [ht � 1; x t ] + br ) ( reset gate) (3.24)

~ht = tanh(W � [ht � 1 � r t ; x t ] + bh ) (candidate activation ) (3.25)

ht = (1 � zt ) � ht � 1 + zt � ~ht (output) (3.26)

Despite its simpler architecture and the fact that it may not have as much representational power

as LSTM, it has been evidenced that it can outperform LSTM networks [79], particularly on smaller

datasets.

3.2.4 State of the Art applications

Recurrent Neural Networks, and in particular LSTM, achieve state-of-the-art results for several real-

world problems which require modeling sequential data, such as those covering natural language pro-

cessing (like speech or handwriting recognition or generation [82], [83]), genomic analysis [84] and

music generation [85].

Although neural networks have long been applied to medical data, the ability of LSTM to recognize

patterns in multivariate time series of clinical measurements was �rst empirically evaluated in 2016,

when these networks were successfully used for multilabel classi�cation of diagnoses, using sensor

22



data and lab test results from patients' Electronic Health Record [86]. It is important to mention that

one great advantage of Deep Learning (not only RNNs, but of all types of neural networks) is that these

algorithms can identify the input features that are most important in mapping to the desired output. This

is very bene�cial in the medical context, as no a priori information is required concerning which features

are relevant towards making a diagnostic or treatment classi�cation decision.

Also regarding biomedical applications, GRU models have been used for predicting Alzheimer's dis-

ease progression [87] and LSTMs have been used in the same task but in the context of Amyotrophic

Lateral Sclerosis, using longitudinal data [88]. Being both neurodegenerative diseases (and ALS an

also very heterogeneous disease), from the achieved results in these studies it is plausible to think that

similar methods could be applied to HD.
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4.1 Technological Materials

Data analysis was executed using Python language [89] with the code interpreter Jupyter Notebook

5.7.8 [90]. For data preprocessing and analysis, the python packages used were Pandas, Numpy and

Scikit-learn. The networks were developed using keras with Tensor�ow backend. Matplotlib [91] and

Seaborn [92] were used for data visualization purposes as these libraries provide interfaces for drawing

informative statistical graphics.

4.2 Data

The data used to develop this study was the Enroll-HD Periodic Dataset (Version 2018-10-R1) pro-

vided to the research community. The dataset includes data from the studies ENROLL and REGISTRY

and also Adhoc data. It represents a data extract of the database of the Enroll-HD multistudy system

from October of 2018.

4.2.1 Studies brief description

Enroll-HD is a global, longitudinal observational study of Huntington's Disease that started in 2011

and includes participants from North America, Europe, Australasia and Latin America [93].

REGISTRY is a longitudinal observational study of HD whose participants are from Europe [94]. The

study started in 2004 and as Enroll-HD was created there was a transition of the REGISTRY participants

into Enroll-HD. Therefore, this dataset includes a subset of participants who initially joined REGISTRY

and have consented to Enroll-HD and to have their REGISTRY data integrated in the Enroll-HD study.

Study procedures include annual assessments conducted during study visits and performed by trained

clinical personnel [95].

Ad hoc is a subset of assessment data that was gathered at routine clinical visits pre-dating the

participant's enrolment into REGISTRY [93].

4.2.2 Participants

Subjects of this study include (1) 11582 individuals who are carriers of the HD gene expansion

mutation, independently of phenotypical manifestation (i.e. pre-manifest or manifest) or of the stage of

the disease and (2) 3719 controls who do not carry the HD expansion mutation and who comprise the

comparator study population. The second group includes genotype negative subjects who are family

members of carriers of the Huntington's Disease mutation.

From the total 15301 participants of Enroll-HD, 3798 were previously part of the REGISTRY study.

In the dataset, there is also Ad hoc information about 258 participants.

4.2.3 Assessments

The provided dataset comprises several data �les and those that were used in the present study

were "pro�le", "adhoc", "registry" and "enroll". The �rst contains general and updated information about
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each participant and the others contain the assessments from the respective studies' visits.

These �les contain data items de�ned by variables, which were used as features of the developed

classi�er. Two examples of these items are: age at the moment of the visit (from the visits data, as it

varies from visit to visit) and ethnicity of the participant (found in "pro�le", as it is a "static" feature). Also,

these items may represent both numerical and categorical variables. It is important to mention that all

categorical features where given in a numeric form (for example, in this case, Caucasian corresponds to

1, American Black to 2, Hispanic to 3, etc) instead of the in the written form.

4.2.3.A Visits assessments - sequential data

The sequential data used in this study comprises all the three visits �les ("adhoc", "registry" and

"enroll"). Some items were excluded:

1) Those in which there was no variability between participants - all given answers were the same.

From this criterion, 12 features were deleted - for example, the frequency of abuse of the drug ritalin.

2) Those which concerned assessments that were not performed on the Enroll-HD visits (i.e, the

variables assessed in the REGISTRY visits but not in the Enrol-HD visits).

The visits �les' items come from the forms that are �lled during those visits. Some are �lled by the

participant, others require performing clinical examinations. A brief description of each is given below

and table 4.1 contains the number of items that compose them.

� Medical History : comprises questions regarding the history of drug (for non-medical reasons),

tobacco and alcohol abuse. It includes a long list of different drugs (for example, heroin, cocaine,

amphetamines, opium, tranquilizers) and keeps information about frequency of abuse.

� Variable Items : general items, like age, anthropometric measurements, habits of drug use for

medical and non-medical reasons, marital status, education and employment.

� UHDRS Motor Diagnostic Con�dence : motor section of the UHDRS - assesses motor features

of HD with standardized ratings of oculomotor function, dysarthria, chorea, dystonia, gait, and

postural stability.

� UHDRS Total Functional Capacity (TFC) and Functional Assessment Independence Scale :

functional section of the UHDRS, used to assess participants' functional status. The Total Func-

tional Capacity scale includes 5 items in the domains of occupation, �nances, domestic chores,

activities of daily living and level of care required by the participant. The Functional Assessment

Independence Scale comprises an extensive list of "yes or no" questions about daily life activities,

such as "could the subject walk/drive/handle �nances without help?".
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Figure 4.1: Part of the "Variable Items" form.

Figure 4.2: Part of the motor section of the UHDRS form.

� Cognitive Assessments : Regarding the assessment of the cognitive functioning, the participants

perform three tests: 1) the Categorical Verbal Fluency Test (neuropsychological test which exam-

ines the ability to spontaneously produce words from a category within a �xed time [96]), 2) the
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Symbol Digit Modality Test (using a reference key, the examinee has 90 seconds to pair speci�c

numbers with given geometric �gures) [97] and 3) the Stroop Color and Word Reading Test (which

involves reading names of colors and naming the colors of the ink of color words - for example, if

the word "red" is printed in green ink, the examinee has to say "green" [98]) [95]. The variables

from this form include, for example, the total of correct given answers and errors of each test.

� Mini Mental State Examination (MMSE) : screening test to identify individuals with cognitive de-

terioration and dementia [99].

� Physiotherapy Outcomes Measures : form regarding the performance of two tests: the "Timed

Up and Go" (TUG) and the "30 Second Chair Stand Test". The �rst is a measurement of mobility,

which includes performing tasks such as walking, turning, stopping, and sitting down. The second

provides a measurement of one's lower body strength.

� Problem Behaviours Assessment - Short (PBA-s) : used to perform assessments related to

behavior symptoms relevant to HD [100], it consists of a short version of the Problem Behaviors

Assessment for HD, a 40-item semistructured interview [57]. This instrument measures frequency

and severity of symptoms related to altered emotions, thought content and coping strategies. It

is an interview that should be performed in the presence of a companion (like the caregiver or

spouse) and it includes items covering an extensive range of behaviors such as depressed mood,

anxiety, suicidal thought, aggressive behavior, irritability, hallucinations and apathy.

� Short Form Health Survey-12 : 12 items that measure the overall health status [101].

� Hospital Anxiety and Depression Scale =Snaith Irritability Scale (HADS-SIS) : The Hospital

Anxiety and Depression Scale (HADS) is a self-report rating scale of depression and anxiety symp-

toms whereas the Snaith Irritability Scale (SIS) is a self-report rating scale of irritability. The items

comprise anxiety, depression and irritability scores.

� Work Productivity and Activity Impairment-Speci�c Health Problem Questionnaire (WPAI-

SHP): questionnaire that measures the effect of the disease on the number of hours missed from

work and on productivity.

� Columbia Suicide Severity Rating Scale (C-SSRS) : questionnaire aimed to assess severity and

monitor suicidal events [102]. It can be administered by a rater following a structured interview.

The items from this form include the answers to questions such as "Have you wished you were

dead or wished you could go to sleep and not wake up?" or "Has there been a time when you

started to do something to try to end your life but you stopped yourself before you actually did

anything?" and others to assess if the participant has suicidal behaviour/thoughts, the severity and

even if there has ever been attempts and how many.

� Missed Visit : answered by phone contact, when participant misses visit - reason for missed visit.

Some of the above mentioned assessments are directly related to the diagnosis of depression and/or

depressive behaviour in the participant (such as depressed mood scores, presence and frequency of
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suicidal thoughts). These items will be referred to as "depression features" or "DEP" throughout this

dissertation. Table 4.1 indicates the number of items (and DEP items) of each form.

Form # Items # DEP

Medical History 29 -

Variable Items 49 -

UHDRS Motor Diagnostic Con�dence
(Motor)

34 -

UHDRS Total Functional Capacity
(TFC)

6 -

UHDRS Functional Assessment
Independence Scale (Function)

28 -

Cognitive Assessments (Cognitive) 40 -

Mini Mental State Examination
(MMSE)

1 -

Physiotherapy Outcomes Measures
(Physiotherapy)

4 -

Problem Behaviours Assessment –
Short (PBA-s)

35 6

Short Form Health Survey-12 10 -

Hospital Anxiety and Depression
Scale Snaith=Irritability Scale

(HADS-SIS)
5 1

Work Productivity and Activity
Impairment-Speci�c Health Problem

Questionnaire (WPAI-SHP)
4 -

Columbia Suicide Severity Rating
Scale (C-SSRS)

30 30

Missed Visit 4 -

Total 284

Table 4.1: Visits' forms and respective number of items and number depression diagnosis related items (DEP).

4.2.3.B "Pro�le" data

The data found in "pro�le" regards general information about the participant, like demographic char-

acteristics, the CAG repeat length, whether the mother/father were affected and at what age they had

the �rst symptoms, if applicable. Also some more disease-related aspects are detailed (if applicable,

evidently): age at onset of HD, �rst symptoms, whether the participant has a medical history of apathy,

irritability, psychosis, signi�cant cognitive impairment or motor symptoms compatible with HD and at

what age have these symptoms been �rst noted.

Also, it was from this data �le, that the item "ccdep" ("Has depression (includes treatment with antide-

pressants with or without a formally-stated diagnosis of depression) ever been a part of the participant's

medical history?") was selected. It is the binary variable that assumes the value 0 if depression was

never part of the person's medical history and 1 otherwise. It is important to mention that there is the

item "at what age did depression begin?" but it was deleted from the dataset, as having any answer for

this question would mean that depression had been a part of the participant's medical history.
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