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Abstract

Huntington’s Disease (HD) is a neurodegenerative disorder characterized by motor, cognitive and
psychiatric progressive dysfunctions, caused by a genetic mutation on a protein whose function remains
incompletely understood. The evolution of HD through time is marked by great variability, which
makes it of difficult management. One highly incident psychiatric impairment in HD is depression,
which, unlike other symptoms of the disease, is not correlated to disease progression, but has been
linked to greater functional damage and worse cognitive performance, while having an extreme impact
on the quality of life of both the patient and family. In the present study, a Deep Learning model for
detecting if depression was ever a part of a patient’s medical history, based on sequential clinical data was
developed. Longitudinal data of 9474 HD patients and 1481 controls from the Enroll-HD database was
used, comprising information from annual clinical visits where several questionnaires are answered and
exams are performed, regarding the evaluation of all clinical aspects of HD. Several Recurrent Neural
Network architectures were tested and it was observed that adding profile data about the patient and
family contributed to an enhanced detection ability. With the implementation of a GRU model an

accuracy of 80% was achieved, with a sensitivity of 85% and a specificity of 69%.
Keywords: Huntington’s Disease, Depression, Deep Learning, Recurrent Neural Networks.

1. Introduction

HD is a rare neurodegenerative disease for which
there exists no cure. The evolution of the disease is
extremely heterogeneous, being characterized by a
progressive course of a combination of motor, cog-
nitive and behavioural impairments, which lead to
an increasing dependency in daily life, resulting in
patients requiring full-time care, and finally death
[1], [2]. The onset of the symptoms usually occurs
between the ages of 30 to 50 [1].

The most frequently occurring psychiatric sign is
depression but no relation to disease progress has
been evidenced [3], [4]. Very often the neuropsy-
chiatric symptoms are described as one of the most
distressing aspect of Huntington’s disease, having a
great impact in quality of life and contributing to
functional decline [5]. Suicide is estimated to be the
cause of 5-10% of the deaths in HD [6].

Depression, despite being one of the most com-
mon mental disorders worldwide, after decades of
research is also still incompletely demystified and
many different physiological mechanisms have been
linked to it [7]. Consequently, it is difficult to lo-
calize the anomalies and to make a diagnosis based
on objective parameters, being usually made using
standardized questionnaires and interviews which
are often of subjective interpretability [8]. Like HD,
it is characterized by a heterogeneous symptomatol-

ogy. Hence, the clinical treatment approach is usu-
ally a trial and error approach, which is extremely
unadvantageous as antidepressants may have ad-
verse secondary effects [9]. Moreover, depression
has been linked to cognitive decline [10], [11].

In the presence of HD, depression is even more
difficult for a clinician to diagnose as apathy, lack
of initiative and weight loss are also frequent signs
of HD [12], [13]. Many hypothesis have been formu-
lated for the prevalence of this psychiatric disorder
in HD but no conclusions have been found. There
exists, this way, the necessity to understand if there
are specific patterns in the disease that are linked
to depression and to develop objective mechanisms
for this purpose. Machine learning offers the ability
to recognize these patterns in what is, for the hu-
man perspective, simply heterogeneous information
and model it, creating high-level abstractions, and
finally giving useful outputs [14].

While most studies regarding this issue focus on
statistically associating specific phases of the dis-
ease and/or specific symptoms and signs to depres-
sion, in this work we aim to use Deep Learning
(more concretely, Recurrent Neural Networks) for
processing longitudinal clinical data to detect cases
where depression (with or without a formally-stated
diagnosis) has been a part of the medical history.



2. Background
2.1. Huntington’s Disease and depression

HD is an autosomal dominant inherited disease
caused by an expanded CAG repeat (36 repeats or
more) on the short arm of chromosome 4pl16.3 in
the Huntingtin (HTT) gene (gene IT-15) [1]. CAG
is a trinucleotide that codes for the amino acid glu-
tamine. Although the exact function of the HTT
protein remains uncompletely understood, it ap-
pears to have an important role in the neurons func-
tioning, being found in all neurons of the brain, as
well as glial cells [15]. The presence of the expanded
CAG segment leads to the production of an abnor-
mally long version of the huntingtin protein [2], re-
sulting in a cascade of cell death and cerebral de-
generation. Although other parts of the brain are
also affected, the basal ganglia appears to be the
most heavily damaged [12].

In the past, the diagnosis was only suggested after
the first motor signs had started. However, it has
become clear that psychiatric and cognitive changes
can be the first signs, even many years before mo-
tor impairments become visible [16], [17]. Common
cognitive decline features in HD include deficits in
attention, emotion recognition, visuomotor process-
ing, decreased ability to learn and retrieve new in-
formation [17], [18], [19]. These cognitive impair-
ments with simultaneous psychiatric problems re-
sult many times in lack of initiative, social disen-
gagement, impulsivity and lack of awareness [20].

Psychiatric symptoms, particularly depression,
can develop during the prodromal stage or when
the disease is manifest [21]. Apathy is correlated to
disease progress (cognitive deterioration and func-
tional decline), whereas anxiety and depression are
not [4].

The etiology of HD depression is unclear and
may be due to a number of factors: the develop-
ment of depressive symptoms in Huntington’s dis-
ease could be a direct result of cerebral degener-
ation, for which several neuropathological mecha-
nisms have been proposed [3], [22], it could be re-
lated to the disease associated alterations in the
neurotransmitters in the brain that regulate mood
[12] or it could be a psychological reaction to be-
ing at risk for Huntington’s disease, having grown
up in an insecure and harmful environment, and/or
the awareness of disease onset [23].

The Unified Huntington’s Disease Rating Scale
(UHDRS) is a standardized clinical rating scale to
assess four domains of clinical performance and ca-
pacity in HD: motor function, cognitive function,
behavioral abnormalities, and functional capacity
[24].

2.2. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a family of
neural networks for processing sequential data [25],

as they include feedback connections among hid-
den units, associated with a time delay [26]. The
key point is that the recurrent connections allow a
“memory” of previous inputs to persist in the net-
work’s internal state. RNNs, like other neural net-
works, are trained with backpropagation and the
forward pass of an RNN is identical to that of a
feedforward network, except that the hidden layers
receive as inputs both the current input and the out-
put from the previous timestep [27], as represented
in figure 1.
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Figure 1: Schematic representation of an RNN [25].

The problem with RNNs is that the inputs cycle
around the network’s recurrent connections, leading
to the problem of learning long-term dependencies:
gradients propagated over many timesteps tend to
vanish (or, more rarely, explode) [28].

The Long Short-Term Memory (LSTM) method
was first introduced by Hochreiter and Schmidhu-
ber in 1997 [29], with the aim of addressing the
problem of long-term dependencies. It is a variant
of an RNN with a gated structure, which enables it
to handle long input sequences.

The central idea behind the LSTM architecture
is a memory cell (represented in figure 2) which can
maintain its state over time, and non-linear gating
units which regulate the information flow into and
out of the cell [30]: the input, output and forget
gates.
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Figure 2: Schematic representation of an LSTM cell
[31].

Having as input a sequence x, x; represents the
input at the current timestep ¢t and h;_1 and Cy_1
represent, respectively, the output and the cell state



from the previous timestep. W, b are the weights
and biases and the indexes f, i and o correspond
to the forget, input and output gates, respectively.
These multiplicative gates are sigmoid layers and
each has a different task. The forget gate (from ex-
pression 1) takes as input z; and h;—; and it is what
enables the cell state to be reset, as its output will
multiply the previous cell state C;_; (from expres-
sion 4). The input gate (2) ”decides” which values
will be updated; the new values to add to the cell
state are computed using expression 3. Finally, in
the output gate (5) it is decided what part of the
current cell state is going to be output (6).

fe=0(Wg-[hi1, m]+ by) (1)
iv=0( Wi [ hi—1, 2] + ) (2)
Cy =tanh( We - [ he—1, ] + bo) (3)
Ci= fix Co1+ iy % C, (4)
op=0( W[ hi—1, &)+ bo) (5)
ht = op x tanh(C}) (6)

Another type of RNN with a special gated ar-
chitecture is the Gated Recurrent Unit (GRU) (il-
lustrated in figure 3), which was developed in 2014
[32]. It can be thought of as a modification of the
LSTM with a less complex architecture [33], once it
uses two gates (the update and reset gates) instead
of three and it doesn’t use the cell state to transfer
information, but rather the hidden state [34].
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Figure 3: Schematic representation of a GRU
(adapted from [35]).

The update gate, z;, "couples” the forget and
input gates from the LSTM architecture into one,
which simultaneously controls how much of the pre-
vious memory content (h¢—1) to forget and how
much of the new content (x;) is to be added,
through the computation of expression 7. The re-
set gate, ry, allows the unit to forget the previous
hidden states and it is computed as in expression 8.
The candidate hidden state (h¢) is done similarly to
that of the the LSTM (expression 9) [36]. Finally,

at timestep ¢ the state of the GRU is the linear in-
terpolation between the previous activation (h;—1)
and the candidate hidden state (h;) [34].

2y = ‘7( W, - [ hi—1, mt] + bZ) (7)
(8)
(9)

(10)

Tt = U( W’r . [ ht—la xt} + bT)
hy = tanh( W - [ hy_1 % ¢, x4] + bp)
ht:(l—zt)*ht_l—FZt*i’Lt

RNNs achieve state-of-the-art results for several
real-world problems which require modeling sequen-
tial data, such as those covering natural language
processing (like speech or handwriting recognition
or generation [37], [38]), genomic analysis [39] and
music generation [40].

GRUs have also been wused for predicting
Alzheimer’s disease progression [41] and LSTMs
have been used in the same task but in the con-
text of Amyotrophic Lateral Sclerosis [42].

3. Methods

The present work was executed using Python lan-
guage and the networks were developed using keras
with Tensorflow backend.

3.1. Data
The data used to develop this study was the Enroll-
HD Periodic Dataset (Version 2018-10-R1) pro-
vided to the research community. The dataset
includes data from the studies Enroll and REG-
ISTRY [43] and also Adhoc data . Enroll-HD is a
global, longitudinal observational study of Hunting-
ton’s Disease that started in 2011 and includes par-
ticipants from North America, Europe, Australasia
and Latin America [44]. Study procedures include
annual assessments conducted during study visits
and performed by trained clinical personnel [45].

Subjects from the Enroll-HD database include (1)
11582 individuals who are carriers of the HD gene
expansion mutation, independently of phenotypical
manifestation (i.e. pre-manifest or manifest) or of
the stage of the disease and (2) 3719 controls who
do not carry the HD expansion mutation and who
comprise the comparator study population. For the
present study, from the whole dataset, those who
didn’t have any information regarding if depression
had been part of their medical history were ex-
cluded, just like those only attended one visit (since
this study is intended to be based on longitudinal
data); also, the entries where the age at the moment
of the visit wasn’t specified were deleted. Table 1
describes the number of participants of the present
study.

Two different types of data were used: sequential
data (from the visits) and static data (the ”profile”
data).



I N | % female | #visits
HD 9474 46% 4.44 £+ 2.57
controls || 1481 40% 3.47 £ 1.48

Table 1: Final number of participants of each group
and correspondent percentage of female subjects
and mean number of visits per participant.

The visits’ data comprise several items that cor-
respond to the assessments made during each an-
nual visit and include results from clinical examina-
tions (such as cognitive, motor or psychiatric tests)
and questions answered by the participant (regard-
ing, for example, the activities of daily life, med-
ical history, drug use, suicidal tendencies). These
items come from a list of forms, which includes,
for example, the UHDRS motor and functional sec-
tions, the Cognitive Assessments (result scores from
3 cognitive tests: Stroop Color and Word Read-
ing Test [46], Symbol-Digit Modality Test [47] and
Categorical Verbal Fluency Test [48]), the Problem
Behaviours Assessment - Short (PBA-s) (frequency
and severity of symptoms related to altered emo-
tions, thought content and coping strategies [49]),
the Short Form Health Survey-12 (overall health
status [50]) and the Columbia Suicide Severity Rat-
ing Scale (C-SSRS) (aimed to monitor suicidal
events [51]). Some of these assessments are directly
related to the diagnosis of depression and/or de-
pressive behaviour (such as depressed mood scores,
presence and frequency of suicidal thoughts): these
items will be referred to as ”depression features” or
” DEP” .

The profile data contains general non-temporal
information about the participant, like demo-
graphic characteristics, the CAG repeat length,
whether the mother/father were affected and at
what age they had the first symptoms, age at onset
of HD. The binary variable ”ccdep” (”Has depres-
sion (includes treatment with antidepressants with
or without a formally-stated diagnosis of depres-
sion) ever been a part of the participant’s medical
history?”) was selected from this data file.

3.2. Data Pre-Processing

As different features range between different values,
it was necessary to perform standardization in order
to set a common a scale [52]. Each column was sep-
arately standardized using the formula presented in
expression 11 (z-normalization), where z; represents
the sample z; after normalization and T and o are
the mean and standard deviation of the feature, re-
spectively [53]. After applying this transformation,
each feature has a mean of 0 and a standard devia-
tion of 1.
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Once the data described in the previous section
includes both numerical and categorical features
(although all were provided integer encoded, there
often is no ordinal relationship between the values
that the variable assumes), another standardization
method for the categorical items was tested: one-
hot encoding. This consists of converting each cat-
egorical feature in n binary features, with n being
the number of possible categories [54]. Both meth-
ods were used and compared because the one-hot
encoding approach implies increased computational
complexity, as the feature dimensionality expands
considerably.

Missing values represent a large portion of the
dataset entries. Hence, it was not viable to remove
all the rows nor columns that contained missing
observations and it was necessary to handle them.
For categorical features, when the one hot encod-
ing method was applied, the solution was to add
the category “missing value”. For non-categorical
features and for the categorical when only integer
encoding was used, two things were done: filling the
NaN with previous valid observation (when applica-
ble) and then replace the remaining missing entries
with 70’s”.

Finally, in order to use the visits’ data as input
of the RNNs, it was necessary to transform it into
a 3D matrix with fixed dimensions ( # samples, #
time-steps, # features), as represented in figure 4.
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Figure 4: Representation of the visits’ data as a 3D
tensor.

Two different methods were used, in order to un-
derstand which worked better: (1) to correspond
each sample to one participant; (2) to correspond
each set of 3 time-steps to a sample (i.e., from each
participant, n — 2 samples are originated, with n
representing the number of visits attended: for ex-
ample, a participant who attended to 4 visits orig-
inates 2 samples: one corresponding to the first to
the third visits and the other from the second to the
fourth). As the number of visits attended per par-
ticipant varied largely, in the first approach, each
sample has 15 time-steps and is pre-padded with 0’s.
The second approach has the advantage of originat-
ing a larger number of samples and of not requiring



long padding sequences.

3.3. Deep Learning Model
All developed models include an RNN with a
”many-to-one” structure (as illustrated in figure 5),
which receives as input the 3D matrix described in
the previous section. The first layer is a masking
layer for masking the time-steps filled with ”0’s”
and the last layer is a Dense layer: a feed-forward
layer, which outputs the computation of an activa-
tion function to its inputs.

The first architecture consists of a stack of LSTM
layers, for processing the visit’s data only.
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Figure 5: LSTM network ”many-to-one” architec-
ture.

In order to add the profile data, as this is a dif-
ferent type of data, a multi-input model was de-
veloped. For that, keras Functional API was used
[65]. The single-input LSTM was developed using
keras Sequential model [56]. Figure 6 illustrates the
difference between the two architectures.

The purpose of the multi-input model is to pro-
cess the different types of data accordingly. The
sequential data is processed by an RNN and the
profile data passes through a Dense layer with a lin-
ear activation, whose output will be concatenated
with the RNN’s output, as illustrated in figure 6(b).

GRUs and standard RNNs results were compared
to those obtained with LSTMs.

3.4. Training and Testing the Deep Learning mod-
els

The data was randomly divided into training and
testing sets, in a proportion of 80 to 20 percent, re-
spectively. 20 % of the training data was used to
create a validation set. During the training phase,
after each epoch, the model is tested on this set of
data and the loss is measured, so that when the loss
value starts increasing, the training stops. This is
done using callback functions: early stopping, that
grants that the training phase stops when the val-
idation loss starts increasing (more precisely, after
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Figure 6: Schematic representations of the keras (a)
sequential and (b) funcional API models (adapted
from [33]).

waiting 12 epochs without any improvement), model
checkpoint that saves the network’s parameters each
time the validation loss improves so that the best
model (i.e., the parameters that lead to the lowest
validation loss) is used.

In order to find an appropriate model size, i.e. an
adequate number of layers and nodes, the approach
carried out was to start with a simple network, with
few units and parameters, and increase its complex-
ity until the addition of parameters no longer added
representational power and the performance stops
improving. The reason for this is the fact that hav-
ing more parameters, despite allowing to learn more
complex representations, is not only more compu-
tationally expensive but also may lead to learning
patterns specific from the training data, leading to
overfitting, instead of greater generalization power.
Regarding the nodes, each layer had a number of
nodes corresponding to a power of 2 (32, 64, 128,...),
with deeper layers having fewer nodes (in a ”trian-
gular” shape). For each number of layers, the model
was trained with different sets of nodes and the one
that lead to the lowest validation loss value would
be selected.

Since we are predicting a binary outcome, the
used loss function was the binary cross entropy (ex-
pression 13) and the activation function of the last
layer of the neural network was the sigmoid func-
tion (as, from expression 12, it results in a value
between 0 and 1, encoding a probability of the sam-
ple belonging to class 71”7, i.e., to have a medical
history of depression) [33]. The used optimizer was
the Adam optimizer [57].

(12)



Where y; is the true class (0 or 1) and y; is the
predicted value for the sample 7.

The data being used to develop the classifier is
imbalanced (see table 2), hence, it was necessary to
deal with this problem in order to attenuate it. Ac-
cordingly, each class was mapped to a value (based
on the representativity of the class) used for weight-
ing the loss function (during training only). This
way, samples from an under-represented class had
a greater impact on the loss function.

N cedep=1 cedep=0
(%) (%)
HD 9474 66.6 33.4
control 1481 35.4 64.6
HD + control || 10955 62.3 37.7

Table 2: Classes representativity in each group of
participants.

Another regularization technique used was to add
dropout to the network. Complex models, ie, mod-
els that have many parameters, are very likely to
overfit to the training data. Dropout consists of
randomly and temporarily dropping out (by setting
to zero) units along with their connections from
the network during training [58]. It is important
to mention that the dropout was applied to the
input connections (non-recurrent connections), as
standard dropout does not work well on RNNs [59].

3.5. Performance Evaluation

In binary classification, a nomenclature we can
use to distinguish the outputs is between Positive
and Negative. In this study, the positives repre-
sent those with a medical history of depression (or
71s”).

The first metric used for evaluating the developed
model was Accuracy, the most common metric for
classifier evaluation, which assesses the overall effec-
tiveness of the algorithm by computing the proba-
bility of the correct prediction [60], using the for-
mula presented in expression 14 (where TP stands
for True Positive, FP is False Positive, TN is True
Negative and FN is False Negative) [61].

Since we are evaluating a binary classifier on an
imbalanced dataset, accuracy alone can be mislead-
ing [60]. Hence, besides accuracy, two other metrics
were used: the True Positive Rate (TPR) and the
True Negative Rate (TNR). The TPR or sensitiv-
ity is the rate of participants belonging to the pos-
itive class who were correctly predicted as positive
(computed as in expression 15) whereas the TNR
or specificity is the rate of participants belonging
to the negative class who were correctly predicted
as negative (16). Balanced accuracy is the mean

value of these two metrics (17), so we can summar-
ily say that the objective is to achieve the highest
balanced accuracy with the smallest difference be-
tween the TPR and the TNR.

TP+ TN

Accuracy:TP+TN+FP+FN (14)
TP

TPR = TPLFN (15)
TN

TNR = ——— 1
R TN+ FP (16)
TPR+TNR
Balanced Accuracy = SR U AL (17)
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The different types of the described RNN archi-
tectures were optimized using only the data regard-
ing HD participants and the network architecture
which gave the best results was, afterwards, also
trained and tested using the whole dataset (HD +
controls) and using only the control dataset. Fi-
nally, in order to better understand the impact of
the clinical observations on the predictability of this
condition, some experiments were conducted using
different combinations of features. In the following
section, preceding the networks results, some of the
features’ distributions are presented.

4. Results
4.1. Feature Analysis

cedep=1 age

age count 20205.000000

mean 58.592193
0o 3::& std 12.784351
min 18.6800000
25% 41.0600800
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0.04 cedep=0 age
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min 18.@0820
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20 ) a0 50 & 0 a0 75% 59.00080
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Figure 7: Density distributions of the participants’
ages from the two classes.

HD is a progressive disease and, as such, the symp-
toms and impairments get worse with time. The
distribution of the patients’ age from the 2 classes
is shown in figure 7: the ages range between roughly
the same values and their mean values are of 50.6
and 48.1. There’s, nonetheless, a slight deviation
to the younger ages in the negative class (this is
important for the stated reason that the age influ-
ences the deterioration state and some of the found
differences in the other variables distributions could
be due to this).

From the distributions of the depression scores
(figure 8(a),(b)), where higher score values indi-
cate higher severity of depressive symptoms, it is
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Figure 8: Density distributions of variables from the dataset, distinguishing the two classes ccdep=1
(green) and cedep=0 (violet). (a) and (b) show the distributions of two depression scores, from the HADS-
SIS and PBA-s forms, respectively. (c), (d) and (e) regard functional assessments: emplany is the binary
variable wich answers the question ”Could subject engage in any kind of gainful employment?”, chores
is the categorical variable regarding the capability to do the domestic chores (0- unable; 1- impaired;
2- normal) and {fescore Total Functional Capacity Score (from the UHDRS). Dysttrnk (f) and chorface
(g) are motor assessments regarding the trunk dystonia and facial choreatic movements, respectively (0-
absent; 1- slight intermittent; 2- mild common or moderate intermittent; 3- moderate common; 4- marked
prolonged). swrt (h) and sdmt (i) are the scores (total number of correct answers) obtained in the stroop
word reading and symbol-digit modality tests.
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possible to observe that there are many samples
from ccdep=1 with very low values of depression
scores. First, it is important to retain that these
values come from sequential data and that we are
distinguishing people that have never had depres-
sion from those that did and the data regarding
those that did is not only from the period of time
while they were experiencing it - in other words, in
the data from ccdep=1 there is information about
moments prior and/or posterior to depression, ex-
plaining what was observed. On the other hand,
there’s also a considerable quantity of high depres-
sion scores from participants with ccdep=0 which
might indicate that some people were not aware
that they might have had this disorder, or that these
scores are not completely accurate or even the dis-
cussed hypothesis that these parameters are sub-
jective and may be interpreted in different ways by
different people (making it important to have addi-
tional information and to use objective automatic
methods and not only human interpretation).

Figures 8 (c), (d) and (e) illustrate the distribu-
tions of three functional assessments, corroborat-
ing the idea that depression is associated to greater
functional impairment, as there is a clear ”shift”
of the distributions of the positive class to worse
functional performances, comparing to those of the
negative class. Regarding the motor assessments,
the inter-class variation in the distribution plots is
not so evident, as shown in figures 8 (f) and (g).
Nonetheless, there is a higher percentage of assess-
ments where there’s absent dystonia or facial chore-
atic movements in the negative class than in the
other. Figures 8 (h) and (i) evidence that among
those who have had depression there is a higher
tendency to perform worse in cognition evaluation
exams, such as the stroop word reading test and the
symbol-digit modality test.

4.2. Deep Learning results using LSTM

Figure 9 shows the learning and validation loss
curves from training an LSTM Sequential model
with 3 layers, each curve from training it with a
different set of nodes.

From the curves shown in figure 9, it is possible
to see that the network with 512, 256, 128 nodes
(curve in red) overfits to the training data not only
early in the training (the validation loss starts in-
creasing from the 4th epoch) but also very rapidly
(by 18th epoch, the validation loss is the double
of that after the 1st epoch). Regarding the small-
est network from these 3 (represented by the green
curves), although it is the one with the least overfit-
ting tendency (from the 6th epoch forward, it pro-
vides the lowest validation loss of the three curves),
it never reaches a loss value in the validation set
as low as the blue line in the 4th epoch (of 0.465),

Training and validation loss
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Figure 9: Comparison of the validation and training
loss curves from training 3 LSTM networks differing
in the number of nodes. Each is composed of 3
layers with the following number of nodes: red: 512,
256, 128; blue: 256, 128, 62; green: 128, 64, 32.

which indicates lower representational power.

Table 4 summarizes the results obtained using the
different approaches described in Methods. Regard-
ing the matter of whether it was more advantageous
to use samples of 3 time-steps or longer sequences,
each representing the total longitudinal information
of each participant, the results are shown in the
first two lines of table 4 and from these values, it is,
undoubtedly, advantageous to use the longer sam-
ples. Hence, having more longitudinal information
outperforms the advantage of having more samples,
and so, more training data (the number of samples
available using the two methods is indicated in table
3).

# ts ‘ # training samples

3 14787
15 6063

Table 3: Number of data samples available for train-
ing, validation and testing, when using samples of
3 and 15 timesteps.

Also, in table 4 it is evidenced that encoding the
categorical features with a one-hot scheme lead to
an improved performance of the model (all perfor-
mance measures increased).

Adding dropout allowed to reduce considerably
the overfitting phenomenon. The curves presented
in figure 10 were obtained during training of the
LSTM network, after encoding the categorical fea-
tures using the one-hot scheme.

Finally, in table 4 we can also find the results
obtained after adding the profile information about
the patient to the model (with the adjacent neces-
sary changes, explained in Methods). All of the per-
formance measures improved, supporting the idea
that this data (such as, the medical history of the
parents, first symptoms noted, age at which they
have been first noted) is informative for our pur-



Model 4 ts caéi%ﬁ‘;‘;al Acc | TPR | TNR | BAcc
LSTM - seq 3 stand 0.738 | 0.840 | 0.482 | 0.661
LSTM - seq 15 stand 0.751 | 0.804 | 0.651 | 0.728
LSTM - seq 15 one-hot 0.772 | 0.821 | 0.672 | 0.747

LSTM - seq+stat 15 one-hot 0.792 | 0.845 | 0.687 | 0.766

Table 4: Performance comparison of the proposed models.

Training and validation acc

@ Nodropout (train)
= No dropout {val)
08 @ Dropout=0.1 (train)
—— Dropout=0.1 (val)
o7 @ Dropout=0.2 (train)
—— Dropout=0.2 (val)

09

06
05
1800

04 ’. *$833.,.,
® . H

03 . .

e

0z ® e

01

Figure 10: Comparison of the validation and train-
ing loss curves from training the same network with-
out dropout (blue), with a dropout rate of 0.1 (red)
and with a dropout rate of 0.2 (green).

pose.

4.3. GRU and standard RNN

Table 5 shows the results obtained with the different
RNNs. The type of RNN that achieved the best
performance was the GRU.

Model ‘ Acc ‘ TPR ‘ TNR ‘ BAcc
LSTM 0.792 | 0.845 | 0.687 | 0.766
Simple RNN | 0.794 | 0.856 | 0.668 | 0.762
GRU 0.796 | 0.850 | 0.690 | 0.770

Table 5: Performance comparison of different RNN
models.

Starting with the comparison between the LSTM
model and the standard RNN (or ”SimpleRNN" as
the Keras layer is called), the performance slightly
worsened. Although the accuracy improved by
0.2%, it did at the cost of a worse specificity: as
previously discussed, in an imbalanced dataset ac-
curacy alone can be misleading as an improvement
could be achieved by simply having an increase in
the number of samples being classified as belonging
to the most common class. Nonetheless, the differ-
ence between performances was very small, indicat-
ing that the number of time-steps was low enough
for not being notoriously affected by the vanishing

gradient phenomenon.

GRUs are similar to LSTMs, as they are both
gated structured RNNs developed with the pur-
pose of solving the vanishing gradient problem. The
main difference relies on the complexity of the ar-
chitectures - the GRU can be thought of as a sim-
pler version of the LSTM. As it was observed, the
standard RNN’s (the simplest of the networks, a
simple tanh) performance did not differ much from
the LSTM, giving the idea that learning this data
for the present task does not require a very com-
plex algorithm, which may be the reason for the
GRU model to achieve better results.

4.4. HD vs controls
So far, the results that have been shown only regard
the detection of depression in HD patients.

As it is possible to observe from table 6, the accu-
racy and the balanced accuracy of the model wors-
ens when using the controls data, which can be due
to a number of factors. First, the amount of training
data is very small (1481 x 0.8 x 0.8 = 948), which
is a limiting factor in Deep Learning [25]. Secondly,
the used data comes from a database developed for
purposes of studying the HD and the information
gathered is, therefore, probably not ideal for the ob-
jective of distinguishing healthy people from having
or not a medical history of depression. There was
an increase in the TNR and a decrease in the TPR,
probably due to the classes representativity in the
control group (indicated in table 2), showing that
the method used during training to deal with the
imbalance did not completely prevent the model’s
tendency to classify a sample as belonging to the
over-represented class.

Concerning the results from using the entire
dataset (HD+control), although we had a larger
training set and a diminished imbalance problem,
the performance worsened, leading to the conclu-
sion that the two groups differ in what is indicative
of the class their participants belong to.

4.5. What is giving useful information to the net-
work?

From table 7, we see that using the depression re-
lated features (DEP) along with the profile, the ac-
curacy slightly increases (about 0.8%) comparing



Dataset 7 training Acc | TPR | TNR | BAcc
samples

HD 6063 0.796 | 0.850 | 0.690 | 0.770

Controls 948 0.728 | 0.668 | 0.764 | 0.716

HD + Controls 7011 0.772 | 0.822 | 0.689 | 0.756

Table 6: Model performance comparison between groups.

fe\;flﬁzs Profile | Acc TPR TNR BAcc
All Yes 0.796 | 0.850 0.690 0.770
All No 0.772 | 0.822 0.672 0.747
All\DEP Yes 0.770 |  0.831 0.648 0.740
All\DEP No 0.740 |  0.820 0.580 0.700
DEP Yes 0.804 | 0.875 0.665 0.770
DEP No 0.774 |  0.831 0.659 0.745

; Yes 0.772 | 0.861 0.592 0.727

Table 7: Performance metrics obtained using different sets of features.

with the use of all features; nonetheless, the speci-
ficity of the model worsens (by about 2.5%); the bal-
anced accuracy remains because the TPR increased
by the same percentage as the TNR decreased. This
means that the model became less capable of detect-
ing the samples from the underrepresented class.
The presented values corroborate the idea that the
DEP assessments benefit from being complemented
with more objective data about the patient as a
tool in detecting depression and should not be used
alone.

5. Conclusions and future work
The main objective of the dissertation was to build
a model able to detect, from clinical longitudinal
data, cases where depression had been a part of the
medical history. From the results obtained with it,
overall, we can say that the applied method fits the
proposed task and that, with further improvements,
it is very plausible that it could be used in clinical
practice (as we are dealing with a disease that leads
to dementia, the patients may reach a point where
they may not be able to tell if they have had or
not been through depression and in that case this
could be useful). Furthermore, the obtained results
show that the approach of using clinical data (not
only from neuropsychiatric tests but also regarding
cognitive, motor, functional aspects and more gen-
eral personal data) is informative for the purpose of
detecting depression and that RNNs are able to use
this data and extract useful outputs.

The original idea was to use LSTM networks in
this dissertation, as it is the state of the art Recur-

rent Neural Network with greatest representational
power. Nonetheless, the GRUs lead to the best re-
sults (although the performances were very similar).

One of the limitations of this work is the fact that
only two classes were distinguished, using classes
built on more restrict criteria would likely bene-
fit the classification task. To improve the used
method, it could be tested to add different data to
the multi-input model (for example, imaging data).

One of the big questions that remain (which was
not the purpose of the developed work) is what is
behind this strict relation between HD and depres-
sion. Having a better understanding of the tempo-
ral patterns, possibly detected by the RNN, could
bring great insights regarding this issue: is depres-
sion prior to a specific pattern of clinical evolution?
Is it a consequence of it? For that, mining algo-
rithms built with the purpose of finding sequential
patterns would be interesting to use in our context.

Finally, a very similar approach could be used for
predicting if the person will have depression in the
future.
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