
Cache-Oblivious Nested Loops Based on Hilbert Curves

João Nuno Estevão Fidalgo Ferreira Alves
joao.ferreira.alves@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2019

Abstract

Many fields of computer science, especially data science and artificial intelligence, are becoming
challenged with an immeasurable amount of data to process. The recent work developed by Böhm et
al.[1] presents us a novelty in the field of the algorithms, a Cache-Oblivious Nested For-Loop. This
algorithm allows programmers to optimize the cache behaviour of nested for-loops, without any need
of knowledge about the CPU cache specifications. In this thesis we will provide an efficient alternative
approach to this algorithm, which we called XOR-Hilbert. Our algorithm presents a linear growth-rate
of memory and time. The use of memory makes our algorithm non-stateless, thus allowing the
re-utilization of previously computed Hilbert Space-Filling Curves. Which in allows the time required
to compute another iteration of this curve, or other operations, to be amortized.

Keywords: cache-oblivious algorithms, Hilbert curve, space-filling curves, cache-oblivious for-loop

1. Introduction

Beneath most fields of exact sciences and engineer-
ing, and in particular of computer science, such as
data science, machine learning, and graph theory,
one will find matrices to be one of the inevitable
primitive types, whose operations allow the com-
putation of other more complex algorithms. This
lead us to the reasonable conclusion that by op-
timizing these primitive operations, more complex
operations that make usage of these primitives will
also be optimized. It is also known that the im-
plementation of algorithms, in a physical machine,
presents an overhead in comparison to its mathe-
matical counterpart, due to hardware limitations,
even if the run-time complexity is the same in both
cases. In order to reduce this cost it is required from
the programmer behalf to make smart usage of the
computer components. This can be hard to do in
most cases, since high-level programming languages
tend to have semantics closer to natural language,
thus hiding hardware details from the programmer.

In 1996, in Massachusetts Institute of Technol-
ogy, a new concept was conceived by Charles E.
Leiserson. The notion of a cache-oblivious algo-
rithms. One of the most costly hardware operations
is reading and writing from and to memory. To
minimize this cost the computer processor contains
a cache, that stores recently fetched blocks from
memory, for fast access to data without having to
fetch this information every time it is needed. It is
also important to note that data travels from main

memory to cache in blocks, i.e. if data is fetched
from memory address, the data contained by ad-
jacent memory addresses will also be loaded into
cache. This allows the cache to take advantage of
spatial locality of data in memory, and amortizes
the latency time of reading operations from main
memory. The previously referenced concept, cache-
obliviousness, represents a set of algorithms whose
cache accesses are optimized without any knowl-
edge of cache characteristics, such as line size and
memory hierarchy, thus making this algorithms ex-
tremely portable. In 2016 Böhm et al. [1] presented
a novelle space-filling curve (SFC) able to traverse
matrices with any given dimension. This work de-
picts the first Cache-Oblivious Loop, called FUR-
Hilbert. This nested-loop, based on the Hilbert
Space-Filling Curve (HSFC), preserves cache data
locality better than ordinary orders of traversal,
such as row-Major and column-major orders.

2. Background

It is well-known that traversing a given matrix M
using a row-major [11] or column-major scan [11]
has a large impact on the amount of cache-misses.
Thus degrading the performance of any program
that misuses any of the previous scans. It is only
intuitive that using a different traversal on a given
matrix might impact the performance of an algo-
rithm. Its our belief this was the motivation behind
the work of Böhm et al.[1].

1

2.1. Hilbert Curve Properties and Restrictions

Böhm et al.[1] define a mapping function called the
Hilbert Inverse H−1(x), which maps each point of
an HSFC curve to an entry of our grid. Being the
HSFC part of the FASS family[9], it is guaranteed
that by enumerating any two successive arguments,
this function will return two grid entries that are
horizontally or vertically adjacent to each other.
Thus preserving locality between adjacent entries
of this grid. Although this curve seems ideal in
terms of locality preservation it still presents some
drawbacks. Computing this curve can be computa-
tionally hard, and in order to fill a grid with this
curve, it is required that this grid has dimensions
equal to n × n, where n = 2l and l ∈ N repre-
sents the lth level of recursion, or resolution, of this
curve. However the impossibility of generalizing a
SFC to fill a grid with arbitrary side lengths is com-
mon to all space-filling curves. A pure Peano curve
will only fill squared grids where the side length is
a power of 3, and a pure z-order curve will only fill
squared grids with side length equal to a power of 2.
Even though the restrictions presented by Hilbert
and Peano curve seem identical, the Hilbert curve
presents greater coherence [12], i.e. locality, than
Peano.

2.2. Computing the Hilbert Curve

Most of the well-known approaches that compute
a complete Hilbert curve are decoders that con-
vert the hth entry into a pair of 2d-coordinates,
(x, y). This decoders manipulate the number of bits
present in h in order to return a pair of coordinates,
requiring at least O(log(N)) operations per decod-
ing. Obtaining all coordinates incur inO(N log(N))
operations. Example of these types of decoders are
the Mealy-DFA [2], or other approaches that scan
the bits of current iteration value h, as [10]. Other
approaches can compute this SFC through recur-
sive calls, which present an overhead in the form of
jumps within the function call stack, and cannot be
optimized by most of the compilers, the most well-
known being the Lindenmayer-Systems [8] adapta-
tion. Our study will only be focused on the ap-
proaches presented in [1].

2.2.1 Recursive Lindenmayer-System

These systems are built upon an appropriate
Context-Free Grammar [7], composed by termi-
nal symbols, non-terminal symbols, and production
rules. This approach receives as input the desired
level of recursion or iteration of a given HSFC,
and returns a string describing the directions of
a 2-dimensional Hilbert curve. The Lindenmayer-
System used to compute an arbitrarily large itera-
tion of an HSFC is defined in [1].

Let the set of non-terminal symbols be composed
by A, and B, while the set of terminal symbols

is constituted by 	, ⊕, ., and π (not present in
conventional Systems). Terminal symbols 	 and ⊕
are encoded through the mathematical modulo op-
erator. An 	 command is encoded as statement
d := (d + 1) mod 4, while ⊕ can be encoded by
d := (d+ 3) mod 4. Terminal symbol π can be seen
as a getter method for the current grid entry co-
ordinates, (i, j). Finaly, terminal symbol ., which
symbolizes a step-forward command on current di-
rection d ∈ {0, 1, 2, 3}, can be encoded by the fol-
lowing statements:

.d=0 command⇒ j := j + 1, //move right

.d=1 command⇒ i := i+ 1, //move up

.d=2 command⇒ j := j − 1, //move left

.d=3 command⇒ i := i− 1. //move down

The two production-rules that define this system
are:

A → π| 	 B .⊕A .A⊕ .B	, (1)

B → π| ⊕A .	B . B	 .A⊕ . (2)

Traditionally the starting production rule, or ax-
iom, of a Lindenmayer-System designed to compute
an Hilbert Curve, is either non-terminal symbol A
with initial direction d = 3, or B with initial direc-
tion d = 2. Thus generating either an clockwise, or
anticlockwise oriented curve, respectively. Since is
known a proper encoding is known for every pro-
duction rules and terminal symbol it is quite sim-
ple to translate this Lindenmayer-System to code,
as depicted by Algorithms 1. The encoding for
production-rule B follows the same logic as A.

All terminal symbols, ⊕,	, . and π, are encoded
using a constant number of operations. This leads
to the assumption that exists a constant overhead,
O(1), per element computed. The recursive nature
of this algorithm implies a logarithmic overhead in
the recursion stack. In the worst case scenario, af-
ter every 4k loop iterations the stack-pointer has
to move up or down at least k positions, where
k ∈ [1, logN]. Memory wise, although this code
seems to allocate a constant amount of memory it
actually needs to store the function calls in at least
l stack positions. Thus requiring O(l), or O(logN)
memory slots in the stack. This may also lead to
a stack overflow error. One last drawback of the
recursive nature of this algorithm is that compilers
do not optimize code between functions, as stated
in [1].

2.2.2 A Novelle Iterative Lindenmayer-System
and FUR-Hilbert

In order to overcome the drawbacks presented
by the approaches in Section 2.2, Böhm et al.[1]

2

Algorithm 1: Rule A

Input: l

begin
1 (i, j) := (0, 0);
2 d := 3;

3 if l = 0 then
process entry(i, j)

else
4 d := (d+ 3) mod 4;

5 B(l − 1);

6 i := i+ (d− 2) mod 2;
7 j := j + (d− 1) mod 2;
8 d := (d+ 1) mod 4;

9 A(l − 1);

10 i := i+ (d− 2) mod 2;
11 j := j + (d− 1) mod 2;

12 A(l − 1);

13 d := (d+ 1) mod 4;
14 i := i+ (d− 2) mod 2;
15 j := j + (d− 1) mod 2;

16 B(l − 1);

17 d := (d+ 3) mod 4;

developed two different approaches that compute
a complete HSFC in linear-time. The first ap-
proach emulates the recursion stack of a traditional
Lindenmayer-System based on the observation that
the bit-pairs used to represent h in 4-dic detail
which non-terminal symbol was expanded within a
given production rule.

The second approach called FUR-Hilbert can
generate a pseudo HSFC able to fill any rectangu-
lar grid. This algorithm splices the original grid
originating several sub-grids. The order by which
these sub-grids are processed is defined by the itera-
tive Lindenmayer-System. Finally a Nano-Program
is applied to each of these sub-grids resulting in a
FASS curve able to traverse any rectangular grid.

These Nano-Programs are small pre-processed
FASS curves with size r× s = 2× 2, 2× 3, 2× 4, 3×
4, 4 × 4, as well as single loops 1 × {1, 2, 3, 4}, and
empty loops 0 × {1, 2, 3, 4}. Each Nano-Program
is represented by a sequence of pair of bits, where
each pair represents a direction in Turtle Notation
[5]. The domain of possible directions values is
equal to {0, 1, 2, 3}. Converting a given direction
to a coordinate-pair of our grid follows the same
formula as Section 2.2.1. Nano-Programs are read
from right to left, i.e. the first direction to be pro-
cessed is found in the least-significant pair of bits of
the variable that represents a given Nano-Program,

while the last direction to be processed can be found
in the most-significant pair of bits of this variable.
In order to obtain succeeding directions contained
by a given Nano-Program, one must apply a bit-
wise shift-left (>>) operation by 2, or the equiva-
lent integer division by 4 operation to this sub-path,
followed by a modulus 4 operation.

3. XOR-Hilbert

Through the study of repeated patterns that com-
pose an Hilbert curve, we found out that is possible
to obtain the next iteration of an HSFC through
a sequence of bit-wise exclusive-or operations and
string concatenations. The pseudo-code of this al-
gorithm is presented in Algorithm 2. This algo-
rithm produces the next iteration of a given HSFC
in a incremental fashion. Thus, the first quadrant
of the next iteration is always equal to curve pre-
viously held by variable p, which contains the di-
rections that encode the path for iteration l. The
remaining quadrants are computed by applying an
exclusive-or operation over all elements of p. Func-
tions xorx represent this sequence of bit-wise op-
erations, where x represents the value by which we
”xor” every element of its argument. In order to
compute the whole curve one just needs to link all
quadrants with variables s1, s2, and s3, during the
process of concatenation. The values of these vari-
ables are calculated based on the parity of the iter-
ation number. If one runs this algorithm, starting
from the first iteration of an HSFC, it is possible to
obtain the Lth iteration of this curve in L− 1 itera-
tions of the for-loop present at line 5 of Algorithm
2. For now we are neglecting the process curve.
It is already established from Section 2.2 that it is
possible to process the whole curve in O(N).

3.1. Proof of Correction

In order to prove the correction of Algorithm 2 sev-
eral lemmas were stated and demonstrated in the

Algorithm 2: XOR-Hilbert

Input: L
begin

1 p := 321;
2 s1 := 2;
3 s2 := 3;
4 s3 := 0;

5 for l := 1; l < L; l := l + 1 do
6 p :=

p·s1·xor1(p)·s2·xor1(p)·s3·xor2(p);
7 s1 := s1 ∧ 1;
8 s2 := s2 ∧ 1;
9 s3 := s3 ∧ 1;

10 process curve(p);

3

main document of this thesis. In this extended ab-
stract we will only state and explain what conclu-
sions we can take from these lemmas.

Lemma 3.1.

∀l≥1xor1(Bl
d=3) = Al

d=2 ∩ xor1(Bl
d=1) = Al

d=0.

Lemma 3.1 states that the curve obtained by
expanding Bd=3 l times is the same as the one
obtained by expanding Ad=2 the same amount of
times, after applying xor1 over it. Since Bd=3 and
Ad=2 are present in the first expansion of this gram-
mar, and each of these non-terminal symbols gen-
erate sub-curve that corresponds to the first and
second quadrant of this curve, we conclude that the
curve that represents the second quadrant is equal
to the one contained by the first quadrant after ap-
plying xor1 over each of its elements.

Lemma 3.2.

∀l≥1xor2(Bl
d=3) = Bl

d=1 ∩ xor2(Al
d=2) = Al

d=0.

Lemma 3.2 states that xor2(Bl
d=3) = Bl

d=1 and
xor2(Al

d=2) = Al
d=0, for l ≥ 1. In this case Bd=3

and Bd=1 represent the first and fourth quadrant,
respectively, of a given HSFC where B is used as
axiom. Concluding that the curve contained by the
fourth quadrant is equal to the one obtained by ap-
plying a xor2 curve located at the first quadrant.

Lemma 3.3. The values held by variables s1, s2,
and s3 depend on the parity of the curve iteration.

Corollary 3.3.1.

sEx ∧ 1 = sOx ∩ sOx ∧ 1 = sEx , {x ∈ {1, 2, 3}}.

Combining Lemma 3.3 and Corollary 3.3.1 al-
low us to determine the value of variable sx in a
more efficient and elegant fashion than incurring
on if-else statements. sO and sE state whether
we are computing the value for variable sx in a odd
or even iteration of our loop, line 5 of Algorithm 2.
Corollary 3.3.1 states that a bit-wise exclusive or by
1 establishes a mapping between sEx and sOx . Since
the exclusive or operation is idempotent there is no
need for auxiliary variables to compute a given sx,
as seen in lines 7 to 9 of Algorithm 2.

Lemma 3.4. The time complexity of Algorithm 2
is O(N).

Lemma 3.4 was proven by majoring the sum of
operations required to compute iteration number L
of a given HSFC by a geometric progression known
to have a linear growth rate.

Lemma 3.5. Algorithm 2 ideally requires 2N − 2
bits of memory.

Lemma 3.5 states that our algorithm has memory
complexity O(N), where N is the number of grid
entries.

3.2. Memory Optimization
In contrast with all previous approaches presented
to compute an Hilbert curve, our is the only ap-
proach that presents a linear growth of memory.
The use of memory might be prohibitive for some
applications or computer architectures. This led us
to try to improve the amount of memory required
to run Algorithm 2.

Corollary 3.5.1. The amount of memory required
to run this algorithm can be reduced to N − 2 bits.

Lemmas 3.1 and 3.2 ensure a bijective function
exists between a primitive curve, i.e. HSFC curves
with L = 1, and its first element. Any iteration
L of a given HSFC is composed by 4L−1 primitive
curves. If one represents all primitive curve present
in a HSFC using only the first direction of each of
these curves, the amount of memory needed to run
this approach can be reduced to N − 2 bits.

3.3. Generalizing the Curve
It was noticed that Algorithm 2 is quite similar to
the iterative Lindenmayer-System approach. Both
of these methods generate the same curve results
within their processing loop. The differences arise
outside of the scope of these loops, due to the com-
putation of action code a. This action code can be
easily simulated in our approach, through the use of
a bit-mask array, where the value of each cell is ei-
ther 0 or 1, stating whether the variable holding the
direction value should remain unaltered between it-
erations, or if it should be changed. Computing
this value increases the overhead of this approach
in comparison to Algorithm 2, since another array
must be held in memory. Ideally this array would
contain N − 1 entries and each entry would occupy
exactly 1 bit.

4. Implementation Details
In this section we will briefly detail the most impor-
tant implementation decisions of XOR-Hilbert. All
code was written in C programming language. The
alternative approaches to XOR-Hilbert are com-
pletely detailed in the main document of this thesis.
In order to keep this extended abstract compact we
will only detail the regular XOR-Hilbert approach.

4.1. Bit-array
As previously observed, in Lemma 3.5, each direc-
tion contained by an HSFC can be encoded using
only 2 bits. There is no primitive type in C able to
contain a single direction without wasting storage
space. Creating a structure holding only 2 values is
also not a viable solution, since it is well known that
manipulating primitive types is more efficient than
user-defined types. We opt to store the curve in
a bit-array composed by char type variables. The
size of this primitive type variable is guaranteed to

4

be equal to 8 bits, independently of which machine
architecture or compiler is in use. Thus ensuring
that our approach is portable.

Algorithm 3: XOR-Hilbert

Input: L, and d
Output: p
begin

1 p := malloc(sizeof(char) * N CHARS(L));

2 s1 := 192;
3 s2 := 128;
4 s3 := 64;
5 p := 27;

6 for l := 0; l < L; l := l + 1 do

7 for c := 0; c < 4l−1 − 1; c := c + 1 do

8 p[c + 4l−1] := p[c] ∧ 85dec;

9 p[c + 2(4l−1)] := p[c] ∧ 85dec;

10 p[c + 3(4l−1)] := p[c] ∧ 170dec;

11 tmp := p[4l−2 − 1];

12 p[4l−2 − 1 + 4l−2] := tmp ∧ 21dec;

13 p[4l−2 − 1 + 2(4l−2)] := tmp ∧ 21dec;

14 p[4l−2 − 1 + 3(4l−2)] := tmp ∧ 42dec;

15 p[4l−2 − 1] := p[4l−2 − 1]||s1 ∧ 64dec;

16 p[2(4l−2)−1] := p[2(4l−2)−1]||s2 ∧64dec;

17 p[3(4l−2)−1] := p[3(4l−2)−1]||s3 ∧64dec;

This bit array is represented by variable p, line 1
of Algorithm 3 , and has the following structure:

p = {
d0︷ ︸︸ ︷

b0, b1,

d1︷ ︸︸ ︷
b2, b3,

d2︷ ︸︸ ︷
b4, b5,

d3︷ ︸︸ ︷
b6, b7︸ ︷︷ ︸

char0

, ..., charN−1

Variables dk and bk, represent the kth direction
and bit respectively. This structure will be im-
plemented in all previously described approaches,
changing only in size, depending on which approach
is used. The following sections will detail every step
necessary to understand each phase of Algorithm 3,
which is as close as possible to our C coded imple-
mentation, while remaining compact.

4.1.1 Allocation and Initialization
Allocating bit array p is quite straight forward. One
only needs to know the iteration number of the
desired HSFC. Following Lemma 3.5, we conclude
that the amount of char variables our bit array
must contain in order to be able to store the Lth it-
eration of a given HSFC is equal to 4L−1 char vari-
ables for the regular XOR-Hilbert version. The lay-
out of the directions within our bit array was based
on the order used by the Nano-Programs. Making
it possible to extract directions from our bit array
in the exact same fashion as FUR-Hilbert. The di-
rections values, dk, are laid out in diminishing or-

der to k. Meaning that the 2 least-significant bits
of a given Nano-Program encode the first direction
to be processed. While the 2 most-significant bits,
of this Nano-Program, encode the last direction to
be processed. This layout results in the following
scheme:

p = {d3, d2, d1, d0}︸ ︷︷ ︸
char0

, {d7, d6, d5, d4}︸ ︷︷ ︸
char1

, ... (3)

In order to obtain direction dk, one has to apply a
shift-right operation of 2(k mod 4) bits to p[bk/4c].
In order to initialize bit array p, one just needs to
populate it with the directions of a primitive curve,
l = 1, respecting the previously defined layout.

4.1.2 Computing the Next Iteration
In Section 3 was stated that it is possible to com-
pute all quadrants, and linking directions of the
next iteration of a given HSFC, based on the current
iteration of this curve, using bit-wise exclusive-or
and concatenation operations. In our implementa-
tion all of these functions and operations are con-
tained within lines 7 to 17 of Algorithm 3. If we
view this set of statements as a function, then it
would receives the following variables as input:

• Variable l, the number of the current iteration,

• variables s1, s2, and s3, the linking directions,

• and lastly a reference to p, our bit array.

Identifying which entries of p belong to a given
quadrant of the next iteration is well known. Since
every char variable contains 4 directions, it is pos-
sible to rewrite the previous layout, Formula 3, in
such a way that each cell of p is represented by a
char variable:

p = { char0, · · · , char4l−2−1︸ ︷︷ ︸
quadrant1

,

char4l−2 , · · · , char2(4l−2)−1︸ ︷︷ ︸
quadrant2

,

char2(4l−2), · · · , char3(4l−2)−1︸ ︷︷ ︸
quadrant3

,

char3(4l−2), · · · , char4l−1−1︸ ︷︷ ︸
quadrant4

}.

Variables s1, s2, and s3 are found in the
first 2 bits of char4l−2−1, char2(4l−2)−1, and
char3(4l−2)−1, respectively.

The values held by linking directions, sx, are
defined in Algorithm 2, lines 2, 3 and 4. How-
ever, since these variables are stored in the 2 most-
significant bits of a given char variable they must
be padded by 4 zeroes. This implies that an
exclusive-or by 64 operation must be applied to ev-
ery variable sx in order to compute the value of
these directions for the next iteration.

5

4.2. Computing and Storing New Quadrants
Now that the boundaries of each quadrant are
known, it is possible to apply the proper bit-mask,
and concatenate the newly computed quadrant en-
tries into p. are used to perform bit-wise exclusive-
or operation to the first 4l−2−1 char variables of p.
The values obtained through this operation is then
attributed to the correct entry of p. The computa-
tion of these entries is based on the offset between
the first quadrant and the other three quadrants,
∀k∈[0,4l−2−1]:

p[4l−2 + k] := p[k] ∧ 01010101bin, (4)

p[2(4l−2) + k] := p[k] ∧ 01010101bin, (5)

p[3(4l−2) + k] := p[k] ∧ 10101010bin. (6)

Note that:

01010101bin = 85dec,

10101010bin = 170dec.

It was decided to use decimal representation
within Algorithm 3 for better readability.

Literal values 01010101bin and 10101010bin, lines
12 to 14 of Algorithm 3, are used to compute the
value of the last char variable, in each of the last
three quadrants:

p[2(4l−2)− 1] := p[4l−2] ∧ 00010101bin, (7)

p[3(4l−2)− 1] := p[4l−2] ∧ 00010101bin, (8)

p[4l−1 − 1] := p[4l−2] ∧ 00101010bin. (9)

This corner case exists due to variables s1, s2,
and s3 being added to the curve through bit-wise or
operations, represented by operator ||. It is needed
to ensure that the bits that will hold this variables
remain equal to 0.

5. Processing the Curve
Once that the final iteration of this curve is pro-
duced and stored in our bit array, one must com-
pute the next entry of our grid. This new entry is
computed based on the current pair of coordinates
(i, j) and direction, dk, where 0 ≤ k ≤ 4L − 1, onto
which we must step. The direction values must be
fetch and processed in crescent order in respect to k.
The fetching and processing methods were already
detailed in Section 2.2, resulting in Algorithm 4.

5.1. User-Defined Functions
Our implementation only computes and processes a
given HSFC, defining which path of traversal should
be applied to a given grid. The adaptation of this
traversal to a given application must be done by
the user. Nonetheless, if a naive solution is al-
ready implemented, adapting it to our implemen-
tation should be fairly simple. In order to adapt

the path of traversal created by XOR-Hilbert one
must replace all //process entry comments by the
desired operation or sequence of operations.

Algorithm 4: Process Curve

Input: P , and C

begin
1 (i, j) := (0, 0);

//process entry;
2 for c = 0; c < C − 1; c := c + 1 do

3 p := P [c];

for k := 0; k < 4; k := k + 1 do
4 d := p mod 4;
5 p := p >> 2;
6 i := (d− 2) mod 2;
7 j := (d− 1) mod 2;

//process entry;

8 p := P [C − 1];

9 for k := 0; k < 3; k := k + 1 do

10 d := p mod 4;
11 p := p >> 2;
12 i := (d− 2) mod 2;
13 j := (d− 1) mod 2;

//process entry;

6. Approach Restrictions

Depending on the system architecture, every pro-
gram whose memory complexity is larger than con-
stant, will eventually incur in a run-time error due
to lack of memory. The memory complexity of our
approaches grows linearly in order to N . However
N grows exponentially, implying our system will ex-
haust the available memory rather quickly. This
limitation is bounded to hardware rather than im-
plementation. All of these approaches make use of
unsigned int variable n. This variable stores the
side length of our grid. If variable n is greater than
264−1 will result in improper program behaviour. If
n = 263 it is implied our approaches will compute a
curve that fills a square grid with 463, thus incurring
in a curve containing 2(463 − 1) bits. Concluding
that most modern systems will exhaust available
memory before getting close to this number.

7. Approach Comparison

All approaches, presented in Section 2.2, were im-
plemented using C programming language. The
code implementation of FUR-Hilbert is provided
by a link found in [1]. Within the inner-most for-
loop of this approach one can find the implementa-
tion of the iterative Lindenmayer-System. Adapt-
ing this loop to a stand-alone C program was fairly
straight forward. One just need to follow the in-
structions that were made by its authors. The fol-

6

lowing experiments have been performed on Intel
Xeon E7- 4830 CPU with 2.13GHz and 8 cores.
The cache hierarchy of this CPU consists on lev-
els L1i (32KB), L1d (32KB), L2 (256Kb), and L3
(24576KB). The operative system in use is Debian
GNU/Linux 9 (stretch). The compiler in use is
gcc, version 6.3.0. All programs were compiled with
flag -O2, due to the explicit unrolled loop present
in XOR-Hilbert. The optimizations performed by
this compiler can be found in its documentation
[4]. The main reason for using -O2 instead of -O3
was that -O3 optimizations actually slowed down
the performance of every approach, in comparison
to -O2. All approaches were run 5 times and av-
eraged. Tables 1 and 2, make use of the follow-
ing labels: XOR-Hilbert (XOR), memory optimized
XOR-Hilbert (MEM), XOR-Hilbert generalization
(NAN), FUR-Hilbert (FUR) and finally the itera-
tive Lindenmayer-System (LDN). These labels will
be carried out for the rest of this document. All im-
plementations can be found at https://github.

com/JoaoAlves95/XOR-Hilbert/. Keep in mind
this code might be object of re-factorization.

7.1. Run-Time Analysis

As it can be seen in Table 1, all of our approaches
incur in an initial overhead in comparison to FUR-
Hilbert and the iterative Lindenmayer-System ap-
proach. The Lindenmayer-System based approach
is faster than our approaches for iterations smaller
than 6, i.e. matrices with dimensions smaller than
64 × 64. On the other hand, the run-time perfor-
mance of FUR-Hilbert is surpassed by our approach
for curves with with level higher than 8. From it-
eration number 10 onward, the XOR-Hilbert ap-
proach is at least 7.10 times faster than the itera-
tive Lindenmayer-System approach and 1.27 times
faster than the FUR-Hilbert approach. The peak
performance achieved by XOR-Hilbert is at most
7.42 times faster than the Lindenmayer-System ap-
proach, and 1.33 times faster than FUR-Hilbert.
All approaches based on XOR-Hilbert present an
increase in performance, in comparison to these
other two approaches. However, both the memory
optimized version and the version that makes use
of Nano-Programs present worse performance than
XOR-Hilbert.

7.2. Memory Analysis

The amount of memory used by each ap-
proach was measured by using command
/usr/bin/time -f %M, which returns the maxi-
mum resident set in memory. As expected all of
our approaches present a linear memory growth,
in contrast to the approaches presented by [1],
which require a constant amount of memory. The
memory required to run XOR-Hilbert for iteration
15 is 27.67 times larger than the memory required

to run the previous approach, which is relatively
small given that N grows exponentially. The
memory analysis for the alternative approaches to
XOR-Hilbert are detailed in the main document of
this thesis. It is possible to observe the memory
requirements for XOR-Hilbert, FUR-Hilbert and
the iterative version of the Lindenmayer-System
with more detail in Table 2.

8. Applications Evaluation

The time measurements of each application were
computed using clock function, present in C

time.h library. Only the execution of the appli-
cation was measured, the setup time for matrices
or other variables unrelated to our application were
neglected. All plots depicting the run-time compar-
ison between different approaches were calculated
by applying 100(run-time(Naive)

run-time(App)
− 1). Each bar of

this plot represents the performance gain of HSFC
approaches in comparison to the naive one. It is
important to note that all approaches based on
HSFC present an instruction-wise overhead. The
performance of these approaches will only surpass
the naive approach once the number of cache-misses
avoided compensates the amount of extra instruc-
tions required to run this approaches. Thus justify-
ing why the run-time of the naive approach might
be smaller for the first iterations of our analysis.

A thorough analysis of cache behaviour is present
on the main document of this thesis. Once again,
in order to keep this extended abstract compact we
opted not to present this analysis. Due to the over-
head presented by the cache-oblivious approaches,
if one of these approaches presents an improved
running time in comparison to the naive one it is
implied that this approach improved the cache be-
haviour greatly.

8.1. Out-of-Place Matrix Transposition

The first application to be tested was an out-of-
place matrix transposition. This application scans
a given matrix A while storing its entries in output
matrix B. At the end of this application B shall
contain a matrix equivalent to the transpose of A.

8.1.1 Run-Time Analysis

As previously stated the benefits of these loops
will only be observable when the number of cache-
misses avoided compensates the instruction over-
head of each approach. This tipping point can
be observed at iteration number 10, where XOR-
Hilbert presents a gain of 239% in performance,
while FUR-Hilbert presents a performance gain of
300%, in comparison to the naive approach, label
NAV. In the context of this study. It is our be-
lief that difference in performance reflects a cor-
ner case phenom due to the characteristics of the
machine in use. From iteration number 2 onward

7

https://github.com/JoaoAlves95/XOR-Hilbert/
https://github.com/JoaoAlves95/XOR-Hilbert/

Table 1: Run-time comparison in seconds.

Iteration XOR FUR LDN

1 9.1750e-05 3.25e-06 2.75e-06
2 8.825e-05 3e-06 3.25e-06
3 8.8749e-05 3.5e-06 5.5e-06
4 9.025e-05 5.25e-06 1.6250e-05
5 9.725e-05 1.2750e-05 5.7749e-05
6 0.000119 4.3e-05 0.000225
7 0.000212 0.000163 0.000898
8 0.000585 0.000649 0.003583
9 0.002064 0.002574 0.014346
10 0.008115 0.010312 0.057507
11 0.031826 0.041166 0.230775
12 0.126627 0.167088 0.833475
13 0.507307 0.573634 2.041121
14 1.125117 1.503230 7.001975
15 3.894231 5.0928702 26.61183

Table 2: Memory comparison in bytes.

Iteration XOR FUR LDN

1 1365 1364 1374
2 1368 1355 1371
3 1380 1352 1382
4 1370 1367 1389
5 1378 1397 1412
6 1365 1389 1398
7 1386 1356 1365
8 1369 1382 1341
9 1462 1384 1375
10 1657 1409 1390
11 2384 1373 1375
12 5507 1374 1370
13 17748 1350 1375
14 66957 1386 1375
15 263547 1342 1386

our approach shows greater performance than any
other approach, including FUR-Hilbert except for
iteration number 10. The overhead presented by
the Lindenmayer-System approach would require a
larger test domain to overcome the running time of
the naive approach.

Figure 1: Matrix transposition performance gain.

8.2. Floyd-Warshall Algorithm

Another algorithm used by Böhm et al. [1] to eval-
uate the performance of this cache-oblivious loop
was the Floyd-Warshall algorithm [3]. This algo-
rithm solves the all pair shortest path problem with
time complexity of O(n3) and memory complexity
O(n2), since this algorithm operates over an adja-
cency matrix with dimension n × n. For improved
cache behaviour the adjacency matrix was previ-
ously transposed for all approaches.

8.2.1 Run-Time Analysis

As expected the first iterations of HSFC approaches
present little to no performance gain. The adja-
cency matrix fits completely in cache implying no
misses were avoided. From iteration 5 to 9 it is
possible to observe that the performance gain of
the HSFC approaches grows almost linearly. XOR-
Hilbert presents the best performance gain within
this interval, peaking at iteration number 8 with a
performance gain of 65%. Similarly to what hap-
pens in Section 8.1, it is our belief that iteration
number 9 is the result of a phenom identical to the
one observed in iteration 10 of the matrix transpo-
sition operation. However the approach that bene-
fited from this corner case was XOR-Hilbert. The
only moment FUR-Hilbert outperformed our ap-
proach was in iteration 10, with a performance gain
equal to 71% while our approach presents a per-
formance gain of 67%. At iteration number 12, the
matrix does not fit in cache anymore. All HSFC ap-
proaches present similar results, being slightly out-
performed by XOR-Hilbert with a performance gain
of 93%.

8.3. Matrix Multiplication

In [1], one of the applications used to test the ef-
ficiency of FUR-Hilbert was the matrix multiplica-
tion [3]. In order to perform this analysis we took
a different approach. Instead of just performing a
simple matrix multiplication we opted to measure
the performance of a matrix transposition followed
by the respective multiplication. The time complex-
ity of this operation is O(n3), since matrix trans-
position runs in O(n2) and matrix multiplication
runs in O(n3). The memory complexity is O(n2),
since this application requires four n × n matrices

8

Figure 2: Floyd-Warshall algorithm perfor-
mance gain.

Figure 3: Matrix Multiplication performance
gain.

to be stored in memory. These measurements were
compared against two different naive approaches.
The first approach follows the most naive version
of a matrix multiplication. This approach will be
used as the base case for our comparison. The sec-
ond naive approach consists in the transposition of
matrix B followed by the multiplication procedure.
This optimization allows matrix B to be scanned in
an optimized fashion, since subsequent visited en-
tries will be found in adjacent memory positions, in
contrast with the first naive approach. This opti-
mized approach is referenced by label TRN.

8.3.1 Run-Time Analysis

Similarly to what happens with Floyd-Warshall al-
gorithm, the first iterations of the HSFC approaches
presents little or no gain in performance, Figure 1.
Due to the small size of the matrices it is possible
to completely store them in cache. From iteration
6 to 11 we can observe a slightly increase in perfor-
mance for all approaches. Again, this behaviour was
expected. Our best guess is that the matrices can
still fit completely in cache, however the higher lev-
els of cache should be full, thus most of the matrices
lines are found in the lower levels of cache. Since the
naive approach is required to scan a memory block
per access to matrix B a large amount of memory
blocks must be swapped between higher and lower
levels of cache, degrading the performance of the
naive approach. At iteration number 12 we can fi-
nally observe the benefits of preserving locality us-
ing an Hilbert curve. The performance of HSFC
based approaches keeps growing, while the perfor-
mance of the naive approach optimized by a trans-
position decreases. Our approach, XOR-Hilbert,
only presents better performance than FUR-Hilbert
at iteration number 9 and 10.

9. Conclusions

This work describes several efficient alternatives
to compute a loop based on Hilbert Space-Filling
Curves. Our main approach is competitive against
currently existing solutions. Even though it might
seem paradoxical, the biggest strength of XOR-
Hilbert is the fact that the whole curve is stored in
memory, after being computed. Therefore allowing
for run time amortization of subsequent function
calls, that make use of the same or smaller iterations
of theses curves. It is also important to understand
that these approaches were designed for problems
that most of the time will require a full traversal
of one or more matrices. Therefore the memory
requirements of these algorithms will be O(m.n),
which minimize the limitations of our approach.
These loops seem ideal to run algorithms that inher-
ently use some sort of matrix traversal and present
no data dependencies, such as matrix multiplica-
tion. It is also important to note, as stated by Böhm
et al.[1], that these loops provide a more generalized
interface than most BLAS implementations. These
implementations are bounded to the problem they
seek to solve, while these loops can be used in differ-
ent contexts with minimal modifications. We also
performed a comparison between these approaches
and BLAS in order to compare the performance of
Cache-Oblivious and Cache-Conscious algorithms.
However this study was of no avail, BLAS is not
only a Cache-Conscious algorithm, it also employs
vectorization techniques. Implying no possible com-
parison between the approaches discussed in this
paper and its BLAS equivalent. Even though these
loops improve the spatial and temporal locality of
the CPU cache, additional techniques must be im-
plemented in order to obtain competitive results
against state of the art BLAS. We believe it is pos-

9

sible to obtain similar performance gains to the ma-
trix transposition if one employs some sort of block-
ing technique.

10. Future Work
Now that this thesis is concluded we can identify the
most relevant continuations for this work. It seems
interesting to conduct a different study in order to
establish what other algorithms can be improved by
employing these HSFC based loops. Even more in-
teresting would be designing alternative versions for
algorithms known to have data dependencies, like
LCS and other dynamic programming algorithms,
in a manner that would allow these new versions to
be ran through one of these loops.

We profiled our approach, using perf, and around
20% of the total run-time of XOR-Hilbert is used
to compute to compute the curve. The curve com-
putation of XOR-Hilbert, in contrast to currently
existent approaches, seems like an ideal candidate
for hand-coded vectorization. Our approach com-
putes the curve using only two types of exclusive-or
operations, with no data dependencies within the
same iteration of our main for-loop. The logical
next step to this study would be to implement a
vectorized version of XOR-Hilbert that also applies
blocking techniques, and then compare the perfor-
mance of this approach to the one of FUR-Hilbert
and to a state-of-the-art BLAS, like MKL-BLAS [6].

In this paper we already demonstrated that it is
possible to generalize the curves produced by our
approach making use of Nano-Programs, Section 3.
As previously stated, this approach was only imple-
mented as a proof of concept. In a future paper we
will present a version of XOR-Hilbert designed for
Manycore architectures. Since this architecture has
several CPU caches available there is no need to tra-
verse a matrix using a simple curve. Instead we can
split the original matrix in different sub-matrices
and reduce the traversal problem to a tiling prob-
lem. Each of these tiles will be traversed by a single
HSFC, thus improving the locality of CPU cache as-
sociated with each tile. The details concerning ma-
trix splicing are not yet clear. As previously stated
we can reuse a previously computed curve to tra-
verse a matrix with a number of entries equal or
smaller than the amount of directions contained by
this curve. If we limit the dimensions of the gener-
ated curve with an upper-bound, we will probably
be able to trade memory for run-time performance.

Acknowledgements
I would like to express my gratitude to Prof.
Alexandre Francisco and Prof. Lúıs Russo for their
insight, patience and mentorship. Without their
knowledge it would be impossible to realize this the-
sis. I would also like to thank my parents for all the
support and for making me want to be the best ver-

sion of myself. Last but not the least, I would like
to thank to my girlfriend for being supportive and
caring during one of the most stressful moments of
my life.

References
[1] C. Böhm, M. Perdacher, and C. Plant. Cache-

oblivious loops based on a novel space-filling
curve. In Big Data (Big Data), 2016 IEEE In-
ternational Conference on, pages 17–26. IEEE,
2016.

[2] A. Cavalcanti and D. Dams. FM 2009: For-
mal Methods: Second World Congress, Eind-
hoven, The Netherlands, November 2-6, 2009,
Proceedings, volume 5850. Springer, 2009.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein. Introduction to algorithms. MIT
press, 2009.

[4] GNU Project. Using the gnu compiler
collection (gcc). https://gcc.gnu.org/

onlinedocs/gcc, 2019. (visited on 2019-08-
15).

[5] R. Goldman, S. Schaefer, and T. Ju. Tur-
tle geometry in computer graphics and
computer-aided design. Computer-Aided De-
sign, 36(14):1471–1482, 2004.

[6] Intel. Blas and sparse blas routines. shorturl.
at/blmzA, Sep 2019. (visited on 2019-10-5).

[7] T. Norvell. A short introduction to regular ex-
pressions and context free grammars. Project
report, Nov, 5, 2002.

[8] P.Prusinkiewicz. L-systems: from the theory
to visual models of plants. 1996.

[9] P. Prusinkiewiczl, A. Lindenmayert, and
D. Fracchia. Synthesis of space-filling curves
on the square grid. 1991.

[10] Hilbert curve - rosetta code. https://

rosettacode.org/wiki/Hilbert_curve#C.
(visited on 2019-05-21).

[11] J. W. Suh and Y. Kim. Accelerating MATLAB
with GPU computing: A primer with examples.
Newnes, 2013.

[12] D. Voorhies. Space-filling curves and pace-
filling curves and a measure of coherence.
Graphics Gems II, page 26, 1991.

10

https://gcc.gnu.org/onlinedocs/gcc
https://gcc.gnu.org/onlinedocs/gcc
shorturl.at/blmzA
shorturl.at/blmzA
https://rosettacode.org/wiki/Hilbert_curve#C
https://rosettacode.org/wiki/Hilbert_curve#C

	Introduction
	Background
	Hilbert Curve Properties and Restrictions
	Computing the Hilbert Curve
	Recursive Lindenmayer-System
	A Novelle Iterative Lindenmayer-System and FUR-Hilbert

	XOR-Hilbert
	Proof of Correction
	Memory Optimization
	Generalizing the Curve

	Implementation Details
	Bit-array
	Allocation and Initialization
	Computing the Next Iteration

	Computing and Storing New Quadrants

	Processing the Curve
	User-Defined Functions

	Approach Restrictions
	Approach Comparison
	Run-Time Analysis
	Memory Analysis

	Applications Evaluation
	Out-of-Place Matrix Transposition
	Run-Time Analysis

	Floyd-Warshall Algorithm
	Run-Time Analysis

	Matrix Multiplication
	Run-Time Analysis

	Conclusions
	Future Work

