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Abstract: Railway is one the most worldwide spread and efficient transportation system for passengers and goods. 
In addition, electric traction railway vehicles present a safe, reliable and much needed alternative solution in a 
world where the need to reduce the use of fossil fuels and emission of greenhouse gases is critical. In this sense, 
making the railway operation as fast and efficient as possible is one of the key aspects to ensure railway 
competitiveness. One factor that has a significative impact on the overall performance of electric railway systems 
is its energy collection, achieved through the interaction between the train, via the pantograph, and the overhead 
electric line, known as catenary or overhead line. Ensuring the quality of this interface is essential to avoid contact 
losses, consequent electric arcing and electromechanical wear. Virtual testing, achieved via numeric simulation of 
the pantograph-catenary interaction, allows for easier, faster and less costly studies by reducing the need for on-
site testing. This work, challenges the current standards for contact quality evaluation, presenting evidence on how 
long track lengths, curves, overpasses or contact wire height gradients, and dimensional defects may affect the 
standard dynamics analysis parameters. In addition, the developed studies address how train speed and the number 
and position of pantographs affects the contact force quality in the pantograph-catenary interaction. Several 
catenary models, based on the Network Rail Great Western Mainline catenary, are built, each with increasing 
complexity. Moreover, the interaction dynamics for each scenario is obtained, processed and analysed, in order to 
access how geometric singularities impact the performance of the pantograph-catenary interface. 
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1 Introduction 

Railway systems are one of the major players in worldwide transportation of goods and passengers. Electric 
traction vehicles present a viable and much needed alternative in a world where there is a need to reduce the use 
of fossil fuels and emission of greenhouse gases. Despite being cost-effective, railways still require a considerable 
initial investment regarding infrastructure, track, vehicle and overhead lines, not only in economic terms but also 
in terms of planning, design and development. Shaping railway operations as efficiently as possible is one of the 
key aspects to ensure railways remain competitive against other means of transportation. Consequently, the 
reduction of operation and maintenance costs, in parallel with increasing operating speeds, is one of the main 
challenges the industry is facing. One factor that impacts operating speed limitations is the interaction between the 
train, via the pantograph, and the overhead electric line, known as catenary, in electrified railway lines. 

The catenary is an overhead, current-carrying, structure composed by a set of wires and supporting 
elements with the task of supplying electricity to the train engines. The pantograph, a mechanism mounted on top 
of the railway vehicle, collects the electric current carried by the catenary via sliding contact between the catenary 
contact wire and the pantographs contact strips. The ability to maintain this contact uninterrupted is paramount to 
ensure sufficient power delivery to the railway vehicles. Higher contact forces in this interface lead to operating 
conditions with higher mechanical wear, leading to higher frequency of maintenance interventions and risk of 
failure. Lower contact forces may cause contact losses, which lead to lower energy collection, limiting the ability 
to maintain higher speeds, and electric arcing with consequent electro-mechanical wear. Virtual testing, achieved 
via simulation of the pantograph-catenary interaction, allows for faster and cheaper studies, reducing the need for 
on-site testing. Computational tools capable of handling the dynamics of this interface are employed not only for 
certification and validation of new vehicles and infrastructures, under varying scenarios, but also to reach 
optimized designs and optimal operating conditions. 

The development and application of computational methods capable of simulating the pantograph-
catenary interaction is currently an active field of research. The problems addressed include optimisation of 
pantograph and catenary designs (Bruni et al., 2012; Gregori et al., 2017), critical catenary sections (Antunes et 
al., 2014; Harèll, Drugge, and Reijm, 2005; Mei et al., 2006), multiple pantograph operation (Bucca et al., 2012; 
Liu et al., 2016; Pombo and Antunes, 2013), influence of aerodynamics effects, vehicle vibration and catenary 
irregularities (Carnicero et al., 2012; Pombo et al., 2009; Van et al., 2014) as well as identification and influence 
of catenary damping (Ambrósio, Antunes, et al., 2012; Nåvik, Rønnquist, and Stichel, 2016). In addition to these 
effects, pantograph-catenary benchmarks demonstrate how existing state-of-the art numerical tools being 
developed deal with, in most cases, simulation of the pantograph-catenary interaction in straight tracks (Bruni et 
al., 2014; Facchinetti and Bruni, 2015). However, real railway tracks are not strictly straight and present curves 
with different radii, track cant and differences in track elevation. Therefore, with particular exceptions such as 
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PantoCat (Ambrósio et al., 2015), most present pantograph-catenary numerical analysis tools cannot fully simulate 
catenary models with realistic geometries. Here, PantoCat presents an unique feature to address numerical analysis 
of general catenary geometries in interaction with the pantograph, further detailed in (Antunes et al., 2019). The 
work developed here employs this computational tool and its numerical procedures to simulate various scenarios, 
in other to better understand contact quality evaluation standards.  

The main objective of this work is to challenge the currently adopted scenarios for contact quality 
evaluation, showing how long track lengths, curves, overpasses or contact wire height gradients, and dimensional 
defects may affect the analysis results. In addition, these studies address how train speed and the number and 
position of pantographs affects the contact force quality in the pantograph-catenary interaction. Various catenary 
models, based on the Network Rail Great Western Mainline catenary, are built. They present increasing 
complexity, from a single 1.2 km catenary section up to a 8 km catenary model with multiple sections, with realistic 
geometry, gradients and geometric defects. A Brecknell-Willis HSX pantograph, modelled as a lumped mass 
pantograph with data obtained from Deutsche Bahn experimental facilities, is used in all simulations. The 
interaction dynamics for the various catenary models is obtained, processed and analysed.  

2 Catenary Dynamic Analysis and Modelling 

Railway catenaries are overhead, current-carrying structures with the purpose of supplying electricity to the trains 
running on tracks below them. In their simplest form, catenaries are composed by two wires, the messenger wire 
and contact wire, tensioned at the supports in the beginning and end of each catenary section. Along the length of 
a section, the wires are periodically mounted on poles, and supported at each one by cantilevers, as seen in Figure 
2.1 (a). The contact wire is supported from above by cable elements, known as droppers, that hang from the 
messenger wire, and allow to control the contact wire sag and elasticity. To ensure contact continuity in the 
pantograph contact strip, some of the terminal spans of a section and initial spans of the following section are 
overlapped, in what is commonly referred to as an overlapping section, as depicted in Figure 2.1 (b). 

 
Figure 2.1: Catenary: (a) structural elements; (b) side and top views of a catenary section 

 
To avoid excessive friction, heat and grooving of the pantograph contact strip, the contact wire is laterally 

displaced, due to the steady arms, so that it sweeps the contact strip as much as possible and distributes wear along 
its surface. This lateral offset is commonly known as stagger, as presented in Figure 2.1 b). The motion of the 
catenary system is characterized by small rotations and deformations, being well represented by linear finite 
element models. All catenary wires and structural components are modelled, in the finite element model, as a 2 
node, 6 degree of freedom, Euler-Bernoulli beam element. An initialisation procedure, based on a minimisation 
problem, is employed to find the undeformed mesh of the catenary finite element system, such that when statically 
load it meets the correct geometrical shape given by the catenary data (Antunes, 2018). An implicit Newmark time 
integration algorithm, with a trapezoidal rule and constant time step, is used to solve the equations of motion. This 
particular method is chosen due to its unconditional stability nature when used implicitly and its proven robustness 
in finite element applications of the type demonstrated in this work (Antunes, 2018).  

The GWML catenary model employed in this work is based on the British Network Rail Series 1 OLE 
system (Furrer+Frey, 2014). The data needed to model this catenary in straight track scenarios is available in the 
literature (BSI - EN 50318 2018). 

3 Pantograph Dynamic Analysis and Modelling 

Railway roof pantographs are systems with the aim to collect electric current from railway catenaries. These systems are 
designed so that the movement of the pantograph head is constrained to be in a straight line, perpendicular to the 
pantograph base. A series of jointed arms and links connect the pantograph head to the base. The pantograph contact 
strip, mounted on each of the pantograph bows, is responsible for the sliding contact with the catenary contact wire. 
Pantographs are mounted in perfect vertical alignment with the centre of the bogies of the vehicle, to ensure that the 
centre of the contact strip does not deviate from the centre of the track, even during banked corners. Pantograph models 
are required to behave realistically in the 0 – 20 Hz frequency range. Pantographs are commonly modelled using 
one of two representations: lumped-mass models and multibody models. Lumped-mass models present a simpler, 
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more commonly used approach to pantograph modelling. These systems are composed by a series of masses 
connected by springs, dampers and actuators. This methodology results in models such as the one depicted in 
Figure 3.1, generally with three mass-spring-damper stages. Unlike the multibody model, the parameters required 
to describe a lumped-mass model cannot be measured from physical characteristics of selected bodies of the real 
pantograph. Instead, the mass, spring and damper characteristics must be identified experimentally. 

 

 
 

 

Stage 
Masses 

[𝑘𝑔] 
Dampers 
[𝑁𝑠 𝑚⁄ ] 

Springs 
[𝑁 𝑚⁄ ] 

Lengths 
[𝑚] 

1 3.53 32.6 0.000 0.20 

2 7.50 0.00 5000 0.15 

3 5.30 70.0 6300 0.10 
 

Figure 3.1: Pantograph lumped-mass model 
 
The lumped-mass models can be evaluated through a multibody formulation (Ambrósio et al., 2015). A 

multibody model is generically defined as a collection of bodies, whose motion is constrained by joints and acted 
on by external forces. The pantograph used in this computational work is the Brecknell-Willis British Rail HSX 
Pantograph, modelled as a 3-mass multibody system, according to the parameters identified by DB, in Munich. 
The car height is assumed to be 4.05 m, for a catenary contact wire nominal height of 4.7 m. Its modelling 
parameters are presented in Figure 3.1. An uplift force 𝐟௨௣, with an intensity dependent on the targeted operation 
velocity of the pantograph, is applied upwards in mass 𝑀ଵ, to ensure that the mean contact force 𝐟௖ in the 
pantograph-catenary interface fulfils that specified for the railway line maximum operational speed 𝐯. According 
to standard EN50367:2012 (CENELEC - EN 50367, 2012), there is a maximum mean value of 𝐟௖ [𝑁] to be 
enforced in each simulation scenario, given by: 

 

𝐟௖,௠௔௫ = ൜
0.00047𝐯ଶ + 90    ,    𝐯 ≤ 200 𝑘𝑚 ℎ⁄

0.00097𝐯ଶ + 70    ,    𝐯 ≥ 200 𝑘𝑚 ℎ⁄
        [𝑁] (3. 1) 

 

4 Identification of Modelling Features for Realistic Catenary Modelling 

The objective of this work is to evaluate how overlaps, curves, gradients and geometric defects affect the results 
of pantograph-catenary dynamics when operating at conventional speeds, in comparison with the usual straight 
track scenarios. The scenarios selected include the catenary of the Great Western Mainline (GWML). Simulations 
are carried for six different scenarios: single straight section, two straight sections with overlap, seven straight 
sections with overlap, and seven sections with realistic track geometry with and without gradients and geometric 
catenary defects. All scenarios are simulated with the same pantograph model, but for single and multiple 
pantograph operations at five different speeds. 

4.1 Track Geometry 

The full track geometry for simulation scenarios with realistic track is described in Table 4.1. The track curvature 
versus track length profile and the track length covered by each section are shown in Figure 4.1, where darker 
shades of grey represent overlapping zones. Sections 1 through 6 have twenty three 55-metre spans, resulting in a 
total section length of 1265 metres, and a total track length of 7975 metres. 

 
Table 4.1: Track geometry for realistic scenarios 

 
 

M3

M2

M1

K3

K2

K1

D3

D2

D1

L3

L2

L1

Zone Zone length (m) Pkm (m) R (m) c (m
-1

) Cant (mm)

0.00000 0.000.00 0.00

Circular Curve 182.20

Transition Curve 445.20
1942.60 2400.00 0.00042 -150.00

1497.40 0.00 0.00000 0.00
Straight Track 1497.40

-150.002124.80 2400.00 0.00042

Transition Curve 227.30
0.002720.70 0.00 0.00000

Straight Track 150.70
0.002570.00 0.00 0.00000

Transition Curve 445.20

127.322948.00 -4700.00 0.00021

Straight Track 2082.60
0.005917.40 0.00 0.00000

Transition Curve 227.30
127.325690.10 -4700.00 0.00021

Circular Curve 2742.10

0.008000.00 0.00 0.00000
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Figure 4.1: Track geometry for realistic scenarios and overall section disposition 

4.2 Stagger in Curves 

The stagger in the contact wire is designed to ensure wear is distributed through all the pantograph contact strip 
and avoid grooving. In addition, it also takes into account the span length, which should be set as long as possible 
to reduce costs .In a straight track the stagger usually takes the form of 𝑏௜ାଵ = −𝑏௜, as depicted in Figure 4.2 (a). 
i.e. alternating lateral deviations from the centre line. However, as the track curvature increases, the offset in the 
inner side of the curve is decreased, in order to keep the contact wire sweep inside the limits enforced by the 
operation safety conditions. In the case of low radius curves it may happen that the offset in the inner side is 
increased to the point of 𝑏௜ାଵ = 𝑏௜, as seen in Figure 4.2 (c). Eventually, there is a point when constant inner 
stagger is not enough to meet operational requirements such as gauging and minimal rate of sweep. In these cases 
the length of the spans is shortened (Antunes et al., 2019; Kiessling et al., 2018). 

 
Figure 4.2: Contact wire stagger: (a) straight track; (b) large radius curves; (c) low radius curves 

 
In the applications developed in this work, the stagger data for curved track for the GWM catenary is not 

available, and therefore, the design rules available and the best engineering judgment is used to build a stagger 
table for this catenary. When designing overhead contact lines, the rules for the stagger 𝑏 at the registration arms 
are (Kiessling et al., 2018): 

 
 Span length as long as possible; 
 Contact wire sweep Δ𝑏௠ > 1.5 mm/m;  
 Contact wire sweep Δ𝑏௠ < 1.5 mm/m is allowed for up to 30% of the span length; 
 Lateral (radial) force at the supports 80 N < 𝐹௟௔௧ < 2000 N; 
 Difference of lateral forces at adjacent supports as low as possible; 

 
The pantograph contact wire sweep can be defined as the derivative of contact wire position in relation 

to the track centreline. The contact wire position in relation to the track centreline, 𝐞஼ௐ , expressed in mm, for span 
𝑗, supported at poles 𝑖 and 𝑖 − 1, is defined in the literature (Kiessling et al. 2018). The sweep Δ𝑏௠, in mm/m, is 
defined as: 

Δ𝑏௠ =
𝑑𝐞஼ௐ

𝑑𝐱
=

𝑏௜ − 𝑏௜ିଵ

𝐿௝

+
𝐿௝ − 2𝐱

2𝑅
(4. 1) 

 
where 𝑏 is the stagger in metres, 𝐿௝ is the span length in metres, 𝑅 is the curve radius in metres, and 𝐱 is the position 
along the track in metres. The lateral forces in the steady arm at poles 𝑖 and 𝑖 + 1, are given by (Kiessling et al. 
2018): 

𝐹௟௔௧ = 𝐻 ቆ
𝐿௝

𝑅
+ 2

𝑏௜ାଵ ± 𝑏௜

𝐿௝

ቇ (4. 2) 

 
where 𝐻 is the contact wire tension expressed in N, and assuming that the stagger is constant at every other pole, 
this is, 𝑏௜ାଶ = 𝑏௜. 

By iteration and tuning, and using the guidelines explained above, a compromise between radius ranges, 
span lengths and staggers is achieved for the GWM catenary. This results in a stagger table for this particular 
catenary, which is presented in Table 4.2. 

 

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0 1000 2000 3000 4000 5000 6000 7000 8000

c 
(m

-1
)

Pkm (m)

SC1          SC2         SC3         SC4      SC5        SC6         SC7

Pole 
i+1

Pole 
i+2

Pole i

+b1

(c)(b)

Pole i
Pole 
i+1 Pole 

i+2
+b1

-b2

(a)

Pole i Pole 
i+1

Pole 
i+2

axis

+b

-b



5 

Table 4.2: Stagger data, lateral forces and rate of pantograph sweep for the GWM catenary 

 

4.3 System Height Reduction 

Along the track structures such as bridges pose geometric constraints to the catenary installation. These obstacles 
limit the free selection of pole positions and greatly limit the wiring geometry, often requiring height reduction of 
the entire catenary geometry. Minimum electrical and physical clearances between the each of the various current-
carrying wires, the rails and the top of the overhead structure, are required to be met (CENELEC - EN 50119 
2013). 

The height reduction required to overcome the overhead obstacles can be achieved by following three 
processes, in which there is a priority on the process selected. This is, the next procedure is only attempted if the 
previous one does not allow for sufficient height reduction. The first procedure is to increase the midspan 
messenger wire sag by extending the span length to the maximum allowed in the area. The second procedure is to 
reduce the system height, i.e. messenger wire encumbrance at the supports, by reducing the dropper length down 
to the minimum acceptable values. The third procedure is to reduce the contact wire height, which must occur 
gradually, over the course of a number of gradient spans. This is to ensure contact continuity between the 
registration strip of the pantograph and the contact wire.  

The data for the scenario under analysis in this work is bounded by the values described by the literature 
(Furrer+Frey, 2014). The regular span length is 55 m, the maximum design span length is 63 m, the minimum 
dropper length is 500 mm, the regular contact wire nominal height is 4.700 m and the minimum contact wire 
nominal height under bridges is 4.190 m. For speeds of 225 km/h, the maximum contact wire gradient is 1:1000 
(1 ‰) and maximum gradient change between consecutive spans is 1:2000 (0.5 ‰). As the data for the real bridge 
over the railway track being studied is unavailable, the worst-case scenario is considered here. The overall gradient 
span arrangement for half of the gradient zone (GZ) can be seen in Figure 4.3, and the span description for half of 
the GZ can be seen in Table 4.3. There are gradients applied in section 4 and section 7 of the realistic track 
geometry, and the overall span arrangement of the sections mentioned is described in Table 4.4 and Table 4.5, 
respectively. 

 
Figure 4.3: General geometry of a gradient zone (GZ); not all middle spans are shown; GZ is symmetrical at the bridge span 

 
Table 4.3: Gradient zone (GZ) definition (only half the zone is shown) 

 
 

<= > min max %bad_s min max %bad_s
∞ 15000 63 230 -230 16500 240.95 -240.95 7.30 7.30 0.00 310.25 -171.65 5.20 9.40 0.00

15000 7500 63 240 -230 16500 315.49 -176.89 5.36 9.56 0.00 384.79 -107.59 3.26 11.66 0.00
7500 6000 63 260 -230 16500 395.27 -118.07 3.58 11.98 0.00 429.92 -83.42 2.53 13.03 0.00
6000 5000 63 320 -230 16500 461.35 -114.85 3.48 13.98 0.00 496.00 -80.20 2.43 15.03 0.00
5000 4000 63 320 160 16500 291.71 124.09 0.00 8.84 23.81 343.68 176.07 0.00 10.41 19.05
4000 3300 63 320 190 16500 327.97 191.78 0.00 9.94 19.05 383.10 246.90 0.00 11.61 15.71
3300 2800 63 320 220 16500 367.38 262.62 0.00 11.13 15.71 423.63 318.87 0.00 12.84 13.33
2800 2500 63 320 250 16500 407.92 334.58 0.00 12.36 13.33 452.47 379.13 0.00 13.71 11.90
2500 2250 63 320 280 16500 436.75 394.85 0.00 13.23 11.90 482.95 441.05 0.00 14.63 10.71
2250 2000 63 320 320 16500 462.00 462.00 0.00 14.00 10.71 519.75 519.75 0.00 15.75 9.52

MAX RADIUS MIN RADIUS
R (m) Span

(m)
b1

(mm)
b2

(mm)
F_lat (N)

i
Tension

(N)
F_lat (N) 

i+1
Δb (mm/m) F_lat (N)

i
F_lat (N) 

i+1
Δb (mm/m)

Span number

Span type

Span length (m)

Span gradient (‰)

CW height (m)

Gradient change (‰)

Support number 105 6 7 8 9

4.315

0.00 0.00 0.00 0.50 0.50 0.00

4.508 4.453 4.398 4.343 4.315

63

-1.00 -1.00 -1.00 -1.00 -0.50 0.00

55 55 55 55 55

9

3TR1 4TR1 5TR1 6TR1 2TR05 BRIDGE

4 5 6 7 8

-0.50

432

0.000.00-0.50

1

321

4.700

0.00

555555

2TR11TR11TR05

4.5634.6184.673

-1.00-1.00
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Table 4.4: Section 4 overall span definition 

 
 

Table 4.5: Section 7 overall span definition 

 
 

 
Figure 4.4: Height reduction: (a) constant system height (SH) reduction; (b) SH and CW height reduction in gradient spans; 

(c) Propagating effect of gradient affected height reduction 
 

The system height and contact wire height reduction in a span is affected not only by its own gradient, 
but also by the gradients of the previous spans, as shown in Figure 4.4 (c). The dropper arrangement of the gradient 
spans was numerical evaluated for the span types detailed in Table 4.3. The length of dropper 𝑖 in span 𝑗 will be: 

 

𝑙௜ =  𝐹𝐹55௜ + ℎ௥,ଵ‰ ቈቆ෍ 𝑔௝

௝ିଵ

ଵ
ቇ + 𝑔௝

𝑝௜

𝐿௝

቉ (4. 3) 

 
where 𝐹𝐹55௜ is the length of dropper 𝑖 in the standard FF55 span, ℎ௥,ଵ‰ is the height reduction per 1‰ gradient 
span, 𝑔௝ is the gradient applied to span 𝑗, 𝑝௜  is the horizontal position of dropper 𝑖 in its span, and 𝐿௝ is the total 
length of span 𝑗. Pre-sag is considered, with maximum sag of 1‰. 

4.4 Geometric Dimensional Defects 

Catenary models generally consider the nominal dimensions of the various catenary structures. However, catenary 
installations exhibit geometric variations from the nominal values as time passes, as a result of the pantograph-
catenary interaction, weather or infrastructure modifications. Infrastructure managers set tolerances on the catenary 
geometric parameters to decide whether the catenary needs maintenance, or if the dimensional defects do not affect 
railway operation and, therefore, do not require intervention. The combination of these dimensional variations 
throughout the catenary wires are acceptable if they remain under the specified tolerances. It may be argued that 
the defect distribution is not purely random but follows a dispersion around a set of specified wave lengths. 
However, as there is no data available regarding this issue, the application of random defects on the parameters 
that describe catenary geometry and pantograph base kinematics is used here as a way to model such deviations. 
Tolerance values for the selected parameters, obtained from the literature, are summarized in Table 4.6 
(Furrer+Frey 2014; Kiessling et al. 2018). 

 
Table 4.6: Tolerances for selected catenary parameters 

CW height [𝑚𝑚] 
± 15, open route 

± 10, bridge areas 
CW stagger [𝑚𝑚] ± 30 

 
The method selected to generate the random numbers is the rand() function in MatLab, which uses the 

Mersenne Twister pseudorandom number generator (Matsumoto and Nishimura 1998). The geometry of the 
contact wire with height and stagger defects for selected sections of scenario S5 can be seen in Figure 4.5 and 
Figure 4.6, respectively. 
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Figure 4.5: Contact wire height for section SC4 of scenario S6 

 

 
Figure 4.6: Contact wire stagger for section SC1 of scenario S6 

5 Simulation Cases 

The objective of this work is to evaluate how realistic catenary geometries, i.e. catenaries including overlaps, 
curves, gradients and defects, affect the results of pantograph-catenary simulation at conventional speeds, 
compared to the usual straight track scenarios. Scenarios 1, 2 and 3 include only straight tracks, despite their 
varying length, while scenarios 4, 5 and 6 use the realistic track geometry, shown in Figure 4.1. To fully evaluate 
how each degree of complexity on the catenary model affects the contact quality, a matrix of simulations is built, 
as seen in Table 5.1. In this table, 1, 2 or 1,2 denotes instances where simulations are evaluated with a single 
pantograph, two pantographs, or both. Scenario S3 is used purely as a benchmark for simulations with a large 
number of sections. This level of complexity, in what the catenary model here considered is concerned, is not 
reported in the literature. Likewise, scenario S6 with a single pantograph is not simulated, as its behaviour is 
similar to that of the leading pantograph in a two-pantograph scenario. For each simulation the contact force results 
are evaluated for a set of zones of interest: the complete catenary and for each individual section. The contact force 
results are analysed only for the trailing pantograph, as it is the pantograph that shows worst contact performance. 

 
Table 5.1: Simulation matrix for one pantograph operation 

 
 

The uplift force to be applied to the pantograph varies with the speed at which the pantograph runs. This and 
other simulation specific parameters are described in Table 5.2. For simulations carried with two pantographs the leading 
pantograph is placed at 218.25 m from the start of the catenary, this is, 100 m in front of the trailing pantograph. 

 
Table 5.2: Simulation parameters 

Speed [%] Speed [𝑘𝑚 ℎ⁄ ] 𝐟௨௣ [𝑁] Panto start length [𝑚] 

110% 247.50 129.4186 118.25 

100% 225.00 119.1063 118.25 

90% 202.50 109.7761 118.25 

75% 168.75 103.3840 118.25 

50% 112.50 95.9484 118.25 

 

S1 S2 S3 S4 S5 S6

Straight
1 section

Straight
2 sections

Straight
7 sections

Realistic
Realistic 

w/ gradients

Realistic 
w/ gradients 
and defects

50% 1,2 1,2 - 1,2 1,2 2

75% 1,2 1,2 - 1,2 1,2 2

90% 1,2 1,2 - 1,2 1,2 2

100% 1,2 1,2 1 1,2 1,2 2

110% 1,2 1,2 - 1,2 1,2 2

SCENARIO

SPEED
(% of max 
catenary 
speed)
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Contact quality is evaluated through statistical measures of the catenary contact force between the contact 
wire and pantograph registration strip(s). The contact force results are filtered in the 0 – 20 Hz range, according to 
the applicable standards. The contact force results are shown as contact force histograms and in statistical parameter 
tables, which include the contact force maximum, minimum, amplitude, mean, standard deviation, statistical 
maximum and statistical minimum, in addition to percentage of contact loss. The verification of quality of current 
collection is achieved by assessing the contact force maximum, mean and standard deviation, as well as the percentage 
of contact loss. The limiting values for the mean contact force are the same as the uplift force values described in 
Table 5.2, which are computed using equation 6.1. Maximum contact force must not exceed 350 N. Standard 
deviation must not exceed 30% of the mean contact force. The percentage of contact loss must not exceed 0.1% for 
speeds up to 250 km/h, and 0.2% for speeds above 250 km/h (Bruni et al. 2014; CENELEC - EN 50367 2012). 

5.1 Influence of curves in the catenary model 

The scenario S4, based on the realistic track geometry with curves, is modelled, using the data shown in the 
previous sections, and its simulation results compared to those obtained for scenario S2. A comparison for the 
trailing pantograph, running at 100% and 110% speeds in these scenarios, is shown in Figure 5.1. It can be seen 
that the contact performance deteriorates for the scenario with realistic geometry, especially for train speed of 
100% of the catenary design speed. The maximum contact force increases and the minimum contact force 
decreases, which also leads to an increase in contact force amplitude. However, the maximum contact force for 
the trailing pantograph in scenario 2, i.e. two straight section with overlap, is much higher than that of the same 
pantograph, at the same speed, in the scenario with realistic geometry. Nevertheless, both values represent poor 
contact performance, as they are above the limit of 350 N. 

 
 

Figure 5.1: Results for trailing pantograph, running at various speeds in scenarios S2 and S4, all sections 

5.2 Influence of gradients in the catenary geometry 

In order to simulate the influence of contact wire gradients in the pantograph-catenary interaction a new scenario, 
based on scenario S4, is modelled. The track and catenary geometry remain the same, apart from sections 4 and 7 
where the gradient zones are applied. Therefore, any variations in the contact force results, with respect to those 
obtained in scenario S4, are a consequence of the existence of gradient sections. The results for the trailing 
pantograph, running at 100% and 110% speed, are shown in Figure 5.2. It can be seen that the variations are 
minimal, which is to be expected if the gradient zones are well designed. 

 
 

Figure 5.2: Results for trailing pantograph, running at various speeds in scenarios S4 and S5, all sections 

5.3 Influence of geometry defects 

In order to simulate the how dimensional defects in the contact wire height and stagger affect the pantograph-catenary 
interaction, a model is developed for a new scenario, based on scenario S5, with these defects applied. Any variations 
in the contact force results are associated to the catenary defects. The contact force results for the trailing pantograph, 
running at 100% and 110% speeds in the scenarios, are shown in Figure 5.3. It can be seen that for the trailing 

S2 S4 S2 S4

Maximum [N] 310.078 332.387 461.095 366.387

Minimum [N] 39.650 20.566 -11.463 -11.228

Amplitude [N] 270.428 311.821 472.558 377.615

Mean [N] 119.090 119.094 129.433 129.412

Standard Deviation [N] 26.986 29.580 41.918 30.140

Statistical Maximum [N] 200.048 207.835 255.189 219.833

Statistical Minimum [N] 38.131 30.353 3.678 38.991

Contact Losses [%] 0.000 0.000 0.062 0.048
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Maximum [N] 332.387 337.615 366.387 356.688

Minimum [N] 20.566 12.237 -11.228 -2.791

Amplitude [N] 311.821 325.378 377.615 359.479

Mean [N] 119.094 119.096 129.412 129.415

Standard Deviation [N] 29.580 29.428 30.140 29.691

Statistical Maximum [N] 207.835 207.381 219.833 218.489

Statistical Minimum [N] 30.353 30.811 38.991 40.340
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pantograph at 110% speed the performance has a noticeable degradation, especially regarding the contact force 
maximum, amplitude and percentage of contact loss. The increasing catenary complexity also impacts the contact 
force distribution, which progressively approaches a shape closer to that of a normal distribution, as seen in Figure 
5.4. SK and EK represent the skewness and excess kurtosis of the contact force distributions, respectively. 

 
 

Figure 5.3: Results for trailing pantograph, running at various speeds in scenarios S5 and S6, all sections 
 

Scenario S2 Scenario S6 

  
Figure 5.4: Force distribution for the leading pantograph, running at 100% speed in scenario S2 and S6, all sections 

6 Conclusions and Future Work 

In this work, six catenary models are developed, from a catenary with a single section in straight line, up to a 
catenary with 7 sections, 8 km of total length, with realistic geometry, gradients and geometric defects applied. 
The interaction between the train pantograph and the contact wire of the catenary for each scenario is simulated 
for five different speeds, in operating conditions of a single and two pantographs, and the contact force results 
compared. For a pantograph separation of 100 m, the leading pantograph behaves in a similar manner to that of a 
single pantograph. However, the trailing pantograph is affected by the propagating wave generated by the leading 
pantograph, and its contact performance is greatly decreased. The trailing pantograph, under operating speed of 
110% of the maximum allowed catenary speed, is the only one to present maximum contact forces above the 
specified limit of 350 N, and the occurrence of contact losses, even if they remain under the specified limit of 0.2% 
for all scenarios. Nevertheless, this shows that evaluating contact performance for a single pantograph cannot be 
extrapolated for operating conditions with two or more pantographs. Catenary models with longer track lengths, 
that include a realistic track geometry, promote larger variations in the pantograph-catenary interaction results. 
Most of the effects of the inclusion of track cant and track curvature are seen in the contact force distributions, 
which take a shape closer to that of a normal distribution as catenary complexity increases. This effect is further 
enhanced by the presence of catenary gradients and geometric catenary defects. Real train operation does not 
happen with perfectly nominal track, pantograph and catenary geometries, and the addition of these singularities 
to the catenary helps achieve a model that more accurately represents what occurs in a more realistic pantograph-
catenary interaction. 

The work here presented details how curves, gradients and geometric defects in the catenary impact the 
pantograph-catenary interaction. However, most of the data required to model these singularities is not publicly 
available, and well justified workarounds are used, such as reconstructing the track geometric information from 
aerial images and track design handbooks, and building stagger tables using the limits for lateral steady arm forces 
and pantograph sweep available in the literature. Models built using actual track and catenary data, provided by 
the infrastructure owners, can take the work here developed even further, by comparing the simulation results of 
accurately built models with actual track line measurements. Likewise, data concerning the pantograph bodies can 
be used to build full multibody pantograph models, which allow for the insertion of pantograph irregularities.  

The catenary geometric defects used in the work here present, at the lack of further information, are based 
on a random distribution of numbers lower than the tolerances specified by the infrastructure owners. Future in 
line tests and measurements may be performed to find more data regarding the propagation of defects in catenary 
wires and track rails, due to train operation. Even if these defects stay below the specified tolerances, their joint 
effect causes a degradation of contact quality between the pantograph and catenary that can be further analysed. 

S5 S6 S5 S6

Maximum [N] 337.615 333.360 356.688 404.963

Minimum [N] 12.237 22.864 -2.791 -14.256

Amplitude [N] 325.378 310.495 359.479 419.219

Mean [N] 119.096 119.094 129.415 129.414

Standard Deviation [N] 29.428 29.600 29.691 30.339

Statistical Maximum [N] 207.381 207.894 218.489 220.431

Statistical Minimum [N] 30.811 30.294 40.340 38.397

Contact Losses [%] 0.000 0.000 0.041 0.095
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