
A declarative based tool for reasoning about CISCO IOS
firewall configurations

Shams Karim Valibhai

Thesis to obtain the Master of Science Degree in

Computer and Electrical Engineering

Supervisors: Prof. Pedro Miguel dos Santos Alves Madeira Adão
Prof. Carlos Nuno da Cruz Ribeiro

Examination Committee

Chairperson: Prof. Teresa Maria Sá Ferreira Vazão Vasques
Supervisor: Prof. Pedro Miguel dos Santos Alves Madeira Adão

Members of the Committee: Prof. Rui Jorge Morais Tomaz Valadas

July 2019

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

I would like to thank my parents. My mom, for all the support given during these past few years. And

my dad who was always extremely patient and understanding.

A thank you to all my friends who helped me, in any way, during the course of this thesis. Special

thank yous to Francisco Pereira and Miguel Rodrigues dos Santos for all the encouragement they gave

me.

I would also like to acknowledge my supervisor, Prof. Pedro Adão, for all the insight and support.

To everyone who had a role during this thesis – Thank you.

iii

Abstract

One of the mandatory tasks assigned to computer network administrators is to keep unwanted or mali-

cious traffic outside the network. Because of this, firewalls became a vital component in any computer

network connected to the Internet. However, configuring and maintaining a firewall is a complicated and

error-prone process mostly due to the design model used in conventional firewalls, where the ordering

between firewall rules matters.

To simplify these tasks, we propose a low-level abstraction of a router, that is a simplification of

a CISCO IOS device, that contains the concepts of access-lists, rules and policies existent in these

devices. This is accompanied by a semantic allowing both packet filtering and address translation. We

then capitalize on the MIGNIS firewall specification language proposed by Adão et al [1] that is simple

and powerful enough to specify firewall configurations and its semantic is immune to the relative ordering

of rules, and prove a sound translation from this model to our low-level abstraction thus entailing both

simple specification and easy verification of firewall policies. We also provide conditions over the policies

for this translation to be complete. Finally, we developed a tool that translates MIGNIS configurations

into real CISCO IOS configurations.

Keywords

Firewall, Cisco IOS, MIGNIS, Network Security, Firewall semantics, Network Address Translation (NAT)

v

Resumo

Uma das tarefas fundamentais atribuı́das aos administradores de redes de computadores é que qual-

quer tráfego indesejado ou malicioso seja bloqueado da rede. Devido a isto, as firewalls tornaram-se

um componente imprescindı́vel em qualquer rede de computadores ligada à Internet. A configuração e

manutenção de uma firewall é um processo complicado e propenso a erros. Isto deve-se, em grande

parte, ao modelo no qual as firewalls convencionais são desenhadas, onde a ordem entre regras de

firewall é relevante.

De modo a simplificar estas tarefas, propomos um abstracção de um router, que é uma simplificação

de um dispositivo CISCO IOS, contendo os conceitos de access-list, regras e polı́ticas presentes nestes

dispositivos. Esta abstração é acompanhada de uma semântica que permite a filtragem de pacotes e

tradução de endereços (NAT). Reintroduzimos a linguagem de configuração de firewalls MIGNIS pro-

posta por Adão et al [1], que é simples e poderosa o suficiente para especificar a configuração completa

de uma firewall e cuja semântica não depende da ordem das regras. A partir desta linguagem, fornece-

mos uma tradução correta para a nossa abstração do router, permitindo uma configuração simples e

segura. Isto é acompanhado de um conjunto de condições para que a tradução seja também com-

pleta. Finalmente, fornecemos também uma ferramenta que traduz regras da linguagem MIGNIS para

comandos compatı́veis com dispositivos CISCO IOS.

Palavras Chave

Firewall, Cisco IOS, MIGNIS, Segurança de redes, Semântica de firewalls, Network Address Translation

(NAT)

vii

Contents

1 Introduction 1

1.1 The Internet . 3

1.2 Growth of Internet security and firewalls . 4

1.3 Motivation and existing solutions . 4

1.4 Objective . 6

1.5 Document structure . 6

2 Related Work 7

2.1 Shortfalls of conventional firewalls . 9

2.1.1 Consistency . 9

2.1.2 Completeness . 10

2.1.3 Compactness . 10

2.2 Firewall design models . 10

2.2.1 Structured firewall design . 10

2.2.1.A Summary . 13

2.2.2 iptables . 14

2.2.2.A Summary . 15

2.2.3 Model Definition Language . 17

2.2.4 hlfl . 17

2.2.4.A Additional models . 17

2.3 Graphical interface-based firewall configuration . 18

2.3.1 firewalld . 18

2.3.2 Firewall Builder . 21

3 Firewall and NAT in Cisco IOS 23

3.1 Overview of Cisco routers and IOS . 25

3.1.1 Router platforms and configuration interface . 25

3.1.2 IOS features . 25

3.1.3 Life cycle of a packet . 26

ix

3.2 IP access lists . 26

3.3 Zone-based firewall . 27

3.4 Network Address Translation . 28

3.5 Connection tracking . 29

3.6 Order of operation . 30

3.7 Low-level Abstraction of a Router . 30

3.7.1 State abstraction . 31

3.7.2 Access lists and address translation . 32

3.7.3 Semantics . 34

4 MIGNIS 39

4.1 Syntax and Semantics . 41

5 From MIGNIS to Cisco IOS 45

5.1 Intermediate Firewall . 47

5.2 Translating from MIGNIS to the intermediate firewall . 49

5.3 From the intermediate to low-level firewall . 57

5.4 Implementation . 60

6 Conclusion 63

6.1 Conclusions . 65

6.2 System Limitations and Future Work . 65

A High-level to intermediate-level Theorem Proof 71

B MIGNIS configuration example and generated output 79

x

List of Figures

1.1 Various networks and hosts separated by a firewall. 5

2.1 Firewall configuration example from [2]. 9

2.2 FDD example from [2]. 11

2.3 Rules generated from the FDD in Fig. 2.2, taken from [2]. 12

2.4 Steps and algorithms to go from an FDD to a final, equivalent, firewall configuration. Taken

from [2]. 13

2.5 Examples of iptables rules. 14

2.6 Order in which rules are tested when a packet jumps from one chain to another. 15

2.7 Chain traversal in iptables. 16

2.8 Adding source addresses to a zone in firewall-config. 19

2.9 Configuration of the dns service in firewall-config. 19

2.10 Setting up a port forwarding rule in firewall-config. 20

2.11 List of policy rules in Firewall Builder. 21

2.12 List of NAT rules in Firewall Builder. 22

3.1 Order of operations for the relevant features in a Cisco IOS router. 31

4.1 Traffic flow examples. 42

5.1 The presence of rule DAD PC [.] > [INTERNAL IP:7878] WORK PC:22 does not allow

rule WORK PC / DAD PC to be correctly implemented in our intermediate-level firewall. . 50

5.2 The implicit drop rule in the translation of VACATION HOME > [PUBLIC IP:22] SERVER:22

directly contradicts rule VACATION HOME > SERVER:22. 52

xi

xii

List of Tables

3.1 Semantics of the low-level router. 35

4.1 MIGNIS language semantics. 43

5.1 Intermediate firewall semantics. 48

5.2 Translation from a MIGNIS configuration to an intermediate firewall configuration. 49

xiii

xiv

Listings

3.1 Extended access list example. 27

3.2 ZBFW configuration example.. 28

3.3 Static NAT entry. 29

3.4 Dynamic NAT entry. 29

B.1 Example of a MIGNIS configuration file. 80

B.2 Abbreviated output generated from the configuration in Listing A.1. 81

xv

xvi

Acronyms

ACL Access Control List

API Application Program Interface

ARP Address Resolution Protocol

ASA Adaptive Security Appliance

BGP Border Gateway Protocol

CLI Command Line Interface

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

EIGRP Enhanced Interior Gateway Routing Protocol

GUI Graphical User Interface

GRE Generic Routing Encapsulation

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

IP Internet Protocol

ISP Internet Service Provider

L2TP Layer 2 Tunneling Protocol

LAN Local Area Network

MAC Media Access Control

xvii

MDL Model Definition Language

NAT Network Address Translation

NVI NAT Virtual Interface

OSPF Open Shortest Path First

QoS Quality Of Service

RIP Routing Information Protocol

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

TCP Transport Control Protocol

UDP User Datagram Protocol

VPN Virtual Private Network

WAN Wide Area Nework

WFQ Weighed Fair Queuing

ZBFW Zone-based Firewall

xviii

1
Introduction

Contents

1.1 The Internet . 3

1.2 Growth of Internet security and firewalls . 4

1.3 Motivation and existing solutions . 4

1.4 Objective . 6

1.5 Document structure . 6

1

2

In the current age, computer networks and devices have become an integral part of our civilization.

It is estimated that over eleven billion devices [3] are connected to the Internet. Any pair of these

network devices can connect to each other and exchange resources. While global connectivity is one

of the Internet’s main achievements, there are many situations where it is not ideal. In these situations,

network administrators often use a firewall to control the flow of traffic and limit connectivity. The process

of configuring a firewall can be very complex, depending on the security requirements. Maintaining and

updating the configuration is an even more error prone process. In this chapter we will present a brief

overview of the Internet and expand on the use and importance of firewalls. We will then formulate the

problem at hand and explain how we intend to solve it.

1.1 The Internet

The communication networks that preceded the Internet started to be developed in the United States,

in the 1960s. Initially, they were not available to the public and their main uses were for academic and

governmental purposes. Since then, the Internet has been formed and is now available publicly, reaching

almost 50% of the world population [4]. This amounts to almost 4 billion users.

As the name suggests, the Internet is a network of networks, arranged in a close to hierarchical

organization. Computer networks are classified according to their geographical scale and purpose.

A Local Area Network (LAN) connects devices inside a short area, like a home or a building, while

a Wide Area Nework (WAN) provides connection over city or country-wide areas. A Virtual Private

Network (VPN) is a different kind of computer network, it is built upon an already existing computer

network, like the Internet, and provides users with the illusion of being in the same private network.

Operating between computer networks are devices known as routers. These devices are usually con-

nected to two or more networks and are responsible for routing data between those networks, allowing

internetwork communication. The Internet Protocol (IP) is the protocol used between two communicat-

ing network hosts and the information contained in it is used by routers to know where to forward the

data they receive.

In IPv4, the most used version of IP, each network host is identified by a 32 bit address. Routers

use this address in combination with their routing tables to know where to forward network traffic. Above

the IP protocol run two main transport protocols: TCP and UDP. The Transport Control Protocol (TCP)

offers a stateful and reliable transport channel, while the User Datagram Protocol (UDP) serves as a low

overhead and stateless transport method. IPv4 also defines a range of private addresses, which are

meant for private use and are not reachable through the Internet.

Surprisingly for IPv4’s creators, the number of Internet-connected devices has far exceeded the 4.3

billion addresses available with the protocol’s 32 bit address space. The new version, IPv6, fixes this

3

shortage with a 128 bit address space, but its worldwide deployment may still take a few decades to be

complete. In the mean time, Network Address Translation (NAT) is the functionality used to attenuate

the shortage. With NAT, several network hosts may use the same IPv4 address to communicate in

the Internet. Because of this, NAT is mostly used to translate between the private address range of a

network and a public address, provided by an Internet Service Provider (ISP).

1.2 Growth of Internet security and firewalls

As the number of Internet users rises, so does the number of users with mischievous intentions. The

amount of sensible data carried by or accessible the Internet and this malicious group of users creates

a great risk. When speaking of big enterprises, this risk can be quantified up to billions of dollars [5].

One method used by network administrators to increase network security is a firewall. At its most

basic definition, a firewall functions as a packet filter, allowing and dropping packets according to a

configuration. They are usually placed at the border between a private network, with trusted users,

and an untrusted public network like the Internet. While it is outside the scope of this work, it is also

worth noting there exist other types of firewalls, usually placed on the network devices themselves and

blocking traffic at an application level.

The main purpose of a firewall is to limit connectivity between hosts from different networks. Usually,

a firewall is configured to only allow the minimum of traffic possible, as required by the users. This

approach diminishes the effectiveness of external threats, since those would have to use an explicitly

allowed traffic flow.

Due to their position, at the border of a private network, firewalls are also commonly used to employ

NAT. While the translations main motivation is to attenuate IPv4 address shortage, they also serve as a

security measure by hiding the real address of private hosts. In Figure 1.1, we present an example with

a set of networks and a firewall placed between them. In this case we can observe possibly dangerous

traffic flows, like the one between the daughter’s computer and the suspicious website.

1.3 Motivation and existing solutions

Network firewalls can be implemented in a variety of network devices. It is possible to have a com-

puter running a router-like Unix distribution serving as the gateway to a private LAN. In these cases, it is

practical to use that same machine as the network firewall.

While computers can be used, most LANs just use a router as the gateway for all inside traffic. This

requires a firewall to be configured on the router itself.

In any of the previous cases, the configuration of the firewall may not be a simple task. A network

4

Figure 1.1: Various networks and hosts separated by a firewall.

administrator must take several requirements in consideration when configuring a firewall and overlaps

between requirements often happen. The order in which the rules are inserted is often important in

firewall configuration, adding complexity to the process and making the management of firewall configu-

rations almost an art.

Having a difficult time maintaining a firewall does not just result in wasted time. When dealing with a

complex configuration, it is possible for small mistakes such as ordering to result in significant security

risks. As such, providing network administrators with a tool to help with this process will not only save

time, but also reduce the chance of a configuration mistake.

One family of helpful tools includes those that verify and check a firewall configuration for mistakes,

warning about unintended behaviors. [6] and [7] are two examples of tools that do so with a graphical

approach, while [8] follows a non-visual approach. In [9], an expert system-like tool allows users to verify

Cisco access list configurations.

The other family of tools consists of those that help design and apply a firewall configuration. Exam-

ples of such tools are presented in Chapter 2.

In this work we are going to look at MIGNIS [1] that is part of the second family and has a precise

semantics that is order-independent and simple to read syntax which applies to both filtering and NAT

functionalities. It is currently used in the MIGNIS tool [10], offering a translation to iptables commands.

An indispensable aspect of such a tool is that the translation is theoretically proven to comply with the

5

iptables semantics. While this tool is compatible with most Linux distributions, it does not serve any

purpose for the configuration of firewalls in routers.

1.4 Objective

The objective of this work is to provide network administrators with a tool to assist in the configuration

of firewall and NAT functionalities in routers. This tool must, while simplifying the process, ensure the

higher level semantic is followed precisely by the router.

To achieve this, we will make use of the existing MIGNIS semantics, which are well defined and

NAT-aware. Due to the widespread use of Cisco routers, our goal will be to translate MIGNIS configu-

rations into Cisco IOS commands, proving this translation to be sound and complete. The soundness

result would guarantee that all low-level flows have a corresponding high-level flow, and thus captured

by our high-level semantics, whereas the completeness result ensures that all high-level flows are im-

plementable.

1.5 Document structure

In Chapter 2 we describe some problems that arise in the configuration of firewalls, along with several

firewall design models and firewall configuration tools with graphical interfaces. Chapter 3 presents our

target platform, Cisco IOS, going over its main features and introducing an abstraction of its behavior.

The MIGNIS semantic is also formally introduced in Chapter 4. In Chapter 5, we prove the soundness

and completeness of the translation used in our MIGNIS implementation. Finally, in Chapter 6, we draw

conclusions about the work that was done and identify some of the limitations of our solution, along with

possible future work.

6

2
Related Work

Contents

2.1 Shortfalls of conventional firewalls . 9

2.2 Firewall design models . 10

2.3 Graphical interface-based firewall configuration . 18

7

8

This chapter will focus on work done on firewall configuration and correctness. We will start by going

over the flaws of traditional firewall design. After that, several firewall design models will be presented.

The final section will analyze two different firewall configuration tools with graphical interfaces.

2.1 Shortfalls of conventional firewalls

In conventional firewall implementations, the decision to pass or discard a packet is dependent on

a sequence of rules, which specify criteria to match packets against and actions to take in case of a

match. This behavior adds two dimensions to the configuration: the content of each rule and the order

between the rules. The placement of rules in the sequence matters and not always in obvious ways.

In [2], Gouda and Liu present three different categories of problems associated with conventional

firewall design: consistency, completeness and compactness. In order to assist with the explanation of

these problems, we will use the example presented in this same paper, a sequence of four firewall rules,

displayed in Figure 2.1.

Figure 2.1: Firewall configuration example from [2].

In Figure 2.1’s list of rules, I, represents the number of the ingress interface for a packet. S and D

represent, respectively, the source and destination addresses. N represents the destination port and P

the protocol running over IP.

2.1.1 Consistency

The first problem, consistency, stems from the ordering between rules and possible conflicts between

them. By conflicts, we mean overlaps in the criteria used to match packets. If a packet does match

the criteria for several different rules, it will only be affected by the first of those rules, following the

sequence’s order.

9

In the presented example, rule r2 is intended to discard any packet originated from known malicious

hosts and rule r1 accepts any Simple Mail Transfer Protocol (SMTP) packet – more specifically, any TCP

packet addressed to port 25 – destined to the mail server. If we consider a SMTP packet destined to the

mail server but originated from a malicious host, it is possible to see where the rules conflict. Looking

solely at rule r2, it would seem that a packet like this should be dropped but, because of r1, the packet

will instead be accepted by the firewall.

The main takeaway from this problem is that, when checked in a sequence, rules lose their original

meaning. Rule r2’s meaning changes from discard any packet originated from malicious hosts to discard

any packet from malicious hosts that is not SMTP and destined to the mail server. To discern the real

meaning of a rule, it becomes necessary to check the relation between itself and all of the preceding

rules.

2.1.2 Completeness

Another problem that occurs in conventional firewalls is the lack of completeness. This means not

all packets are accounted by the firewall rules. The usual solution is to insert a rule similar to r4 at the

end of the sequence. In this example, the rule accepts all unaccounted for packets, but in other cases

it might drop them instead. However, using such a rule is not a good idea because it is not easy to

remember all possible traffic flows, especially in large networks. This could lead to situations where

traffic gets, accidentally, accepted (or dropped).

2.1.3 Compactness

Conventional firewalls can also contain redundant rules. A redundant rule is a rule that, if removed,

does not change the behavior of the firewall in any way. Removing such rules can lead to a more

compact firewall, improving readability and maintainability. Rule r3, from Figure 2.1, is a redundant rule,

since its removal would not change how packets are treated by the firewall. Any packet reaching and

matching r3 will also reach and match r4 if the former rule is removed.

2.2 Firewall design models

We will now look at different design models, going over their advantages and disadvantages.

2.2.1 Structured firewall design

In [2] Gouda and Liu propose an interesting, diagram-based, representation for firewall rules. A

translation between this design and a sequence of rules is also provided, along with a proof of the

10

sequence’s equivalence to the original design.

A firewall decision diagram (FDD) is a directed graph in the form of a tree, meaning it is acyclic. Each

non-leaf node of the tree is labeled with a field. Fields represent the parameters used by the firewall to

distinguish packets. Each field has its own discrete domain, made up by an interval of integers belonging

to Z+
0 . Using the previous example, we could say the interface field has domain [0,1]. Leaf nodes can

only be labeled with two values: accept or discard.

By definition, a path from the root of the tree to one of its leafs must contain a set of unique node

labels. In other words, traversing from top to bottom we only see each field once, at most.

Edges in the graph are also labeled, but in a different way. Let’s consider L(e) to denote the label of

edge e. Additionally, F (u) will denote the field assigned to a node u. If node u is the tail of edge e, then

L(e) must be a subset of F (u)’s domain. Using a concrete example, if edge e originates from a node

labeled with the interface field, then the label of e must be a subset of [0,1], interface’s domain.

Figure 2.2, taken from the work in question, shows an example of an FDD over two fields, F1 and F2.

Both fields have the same domain: the interval [1, 10].

Figure 2.2: FDD example from [2].

Analyzing Figure 2.2 shows two additional restrictions present in FDDs:

• Consistency : If two edges, e and e′, originate from the same node, then their labels must not

overlap. This can be represented by: L(e) ∩ L(e′) = ∅.

• Completeness: If E(u) is the set of all edges originating from node u, then the union of the labels

from E(u) is equal to F (u)’s domain. A more concise representation would be
⋃
e∈E(u) L(e) =

D(F (u)), where D(f) represents the domain of field f .

We can now make a parallel between this generic explanation and a firewall configuration. As was

explained before, each field in an FDD represents a different attribute for a packet. This attribute can

be the source or destination address, the protocol, the ingress or egress interface, or any other rel-

evant information. Labels represent subsets of these fields’ domains. A label corresponding to the

11

source address field could be, for example, the address block 192.168.1.0/24 represented as a continu-

ous set of integers.

When matching a packet, FDDs are traversed from top to bottom, each node representing a test on

a specific field. Falling back to Figure 2.2, let’s suppose a packet has fields F1 = 5 and F2 = 9 and the

firewall configuration is the FDD pictured. Starting from the root, the first step is to test against field F1,

which is equal to 5. The next step, looking at all outgoing edges, is to follow the one which label contains

this value, which is the leftmost one ([5,6]). We now arrive at a node labeled with field F2 and repeat the

process, taking us to a node labeled with d (discard). This means the packet would be discard by the

firewall.

Any path from the root to one of the leaf nodes is called a decision path. It can be represented as

〈u1e1 · · ·ukekuk+1〉 where u1 is the root and uk+1 is a leaf node. Such path corresponds to the following

firewall rule: F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd −→ 〈decision〉, where we consider our FDD to be over a number of

fields d. The value of Si is defined as follows:

Si =

{
L(ej) if there is a uj in the decision path such that F (uj) is the same as Fi
D(Fi) in all remaining cases.

This definition allows us to create a list of rules from any FDD. The tree in Fig. 2.2 contains six

unique decision paths, so it is possible to extract six unique firewall rules from it. These rules are shown

in Figure 2.3, also taken from the paper in question.

Figure 2.3: Rules generated from the FDD in Fig. 2.2, taken from [2].

From the two restrictions listed before, consistency and completeness, it is possible to deduce that,

for any possible packet, one and only one rule will match against it. More specifically, consistency

assures us that, at maximum, only one rule will be matched by any packet. While completeness sets

the lower bound, making it so that at least one rule is matched.

What has been presented allows for a firewall administrator to design its firewall as an FDD and

convert it to a set of rules accepted by the firewall. This set of rules fixes two of the problems in section

2.1 but still carries the compactness problem. Another problem is also visible in Fig. 2.3, the existence

of non-simple rules. A simple rule is a rule where, for 1 ≤ i ≤ d, Si is a continuous interval of integers.

Most firewalls only accept simple rules, meaning the set of rules in the referenced picture is not ideal,

12

since none of its rules is simple.

With the above problems in mind, the authors propose several additional algorithms which help

attenuate them and generate a set of rules, starting from a regular FDD. The steps taken in this process

are illustrated in Fig. 2.4.

Figure 2.4: Steps and algorithms to go from an FDD to a final, equivalent, firewall configuration. Taken from [2].

Using the terminology from Fig. 2.4 we can say that algorithms 1 and 4 deal with the compactness of

the firewall, while algorithms 2 and 5 are related to the existence and treatment of simple rules. In every

step, the semantic of the firewall does not change, meaning the final firewall keeps the same semantics

as the original FDD.

2.2.1.A Summary

The work presented in [2] sets up an intuitive and easy to use method to create a firewall configu-

ration. It tackles all the problems presented in Section 2.1 and improves on all of those. The definition

used for the firewall configuration is language-agnostic, but it is easily applied to most real firewalls.

While the presented solution is quite effective, it fails to consider stateful firewalls. Most modern fire-

walls use some kind of connection tracker which keeps information about established connections and

takes that into consideration when inspecting packets. On the other side, stateless firewalls, which the

work in question is aimed at, simply follow its configuration and do not have any notion of connections.

This difference in behavior makes it so that it is not possible to apply this work to a stateful firewall.

Another feature not considered is NAT. Many firewalls also serve as address translators for the net-

works they serve, leading many firewall utilities to also provide NAT functionality. Since this solution is

not NAT aware, it does not serve our purposes.

13

2.2.2 iptables

The iptables tool [11], available in most Linux distributions as part of the Netfilter framework, is a

networking software that allows users to configure packet filtering, address translation and other useful

operations over network packets. As a result, this tool allows a Linux machine to be used as a firewall

while also dealing with NAT. While we will be presenting a very implementation focused view of iptables,

the main goal of this section is to expose the firewall design model in which iptables is based.

A firewall rule in iptables follows a very similar structure to the ones in Figure 2.1. However, the

criteria used to match a packet is much more broad. Likewise, the action to be taken is also much

more flexible, allowing a rule to modify a packet in several ways. Figure 2.5 shows a basic iptables

configuration.

Figure 2.5: Examples of iptables rules.

iptables rules are placed in lists, just as in conventional firewalls, which are called chains. These

chains belong to one of five tables: filter, nat, mangle, raw and security. Chains in the filter table

include rules that either drop or let packets through. As the name implies, rules in the nat table serve

to apply NAT, while rules in the mangle table deal with any other kind of packet mangling. The latter two

tables have very specialized uses: raw chains are used when we wish certain packets not to be tracked

and rules in the security table are used in conjunction with Mandatory Access Control.

By default, iptables contains a set of built-in chains which are tested against a packet at spe-

cific moments of its life cycle inside the host. These chains are named PREROUTING, POSTROUT-

ING,INPUT,OUTPUT and FORWARD. A table does not necessarily contain all of the built-in chains.

Figure 2.7 shows how chains and tables are ordered for any possible flow of traffic.

One feature that makes iptables unique, compared to conventional firewalls, is the ability to jump

between chains. A user is allowed to create custom chains and jump to them from any of the built-in

ones. It is also possible to return to the previous chain. This mechanic works similarly to a function stack

in a regular programming language, as can be seen in Figure 2.6.

When a packet matches a rule, the action to be taken is defined by the target of that rule. This target

14

Figure 2.6: Order in which rules are tested when a packet jumps from one chain to another.

can be a simple command, like ACCEPT or DROP, an address translation (for rules in the nat table), a jump

to another chain or a modification to one of the packet’s attributes. The existence of extensions to the

iptables software allows for an almost limitless variety of targets.

While the ACCEPT and DROP targets seem to mirror each other, they do not have exactly opposite

effects. If a packet matches a rule with target ACCEPT, then its traversal in the corresponding table

stops. However, when the target is DROP, the packet stops traversing every table, effectively dropping

the packet. So, if a packet is accepted in one table but dropped in another, it ends up being dropped by

iptables, despite matching an ACCEPT rule.

Another feature present in iptables is connection tracking. This is ensured by the conntrack module

of Netfilter and it introduces a notion of state to the firewall. With conntrack, it becomes possible to use

existing connections as part of the criteria to match a rule. As an example, a user can define a rule that

matches to all packets in an established connection. By default, all packets are tracked. Rules in table

raw allow a packet to be tagged as UNTRACKED, causing it to be ignored by conntrack.

2.2.2.A Summary

As a whole, iptables presents a very complete and versatile solution to firewall configuration. It builds

upon conventional firewall design, adding features like NAT and connection awareness. While doing this,

it also carries the previously presented shortfalls associated with conventional firewall design.

Due to the ability to jump between chains, this design model actually introduces a new problematic

property: the ability to create cycles. In [12], Jeffrey and Samak show that detecting cycles in a config-

uration is an NP-complete problem. This also applies to the detection of unreachable rules1, which falls

under the compactness problem presented earlier.

In conclusion, while the design model followed by iptables allows for a feature-rich configuration, it

does not provide a solution to any of the problems listed earlier. In fact, being able to create cycles

only complicates the act of creating and maintaining a configuration. These conclusions are part of the

1The authors of [13] provide a linear solution to this problem, under the assumption packets have a fixed-length header.

15

reason Adão et al chose iptables, in [1], as the first target of the initial MIGNIS tool.

Figure 2.7: Chain traversal in iptables.

16

2.2.3 Model Definition Language

In [14], Bartal et al present a toolkit that allows high-level firewall configuration while abstracting

users from the low-level firewall syntax and any vendor specific concept. This toolkit includes a Model

Definition Language (MDL) that is used to define the firewall behavior.

The MDL was designed so that firewall rules are fully independent from the network topology. This is

achieved by the definition of roles, which represent all the relevant entities governed by the firewall. The

firewall administrator, the web server, company workers, the Internet, are all examples of roles. Having

defined the roles, it is only necessary to establish the relationship between them. This is what defines

which connections are allowed or not.

As expected, there needs to be an association between a role and real network hosts, where the

network topology becomes relevant. Even so, the definition of roles and their relations being topology

independent greatly improves the portability of a configuration.

One drawback from the MDL is the lack of support for NAT, which has an effect in its usefulness.

2.2.4 hlfl

The High Level Firewall Language (hlfl) [15] is a firewall language focused on simplicity and abstrac-

tion from the syntax used in firewalls. It supports Cisco IOS routers, iptables, ipfilter and more firewall

syntaxes. Rules follow the format:

"protocol" ("local") "operator" ("remote") ["on"] [interfaces] keywords.

An example of a rule is: tcp (172.22.0.1 22) <<=> (any 1000-) [ed2]. In this rule, we allow any

host, with source TCP port equal or greater to 1000, to establish a connection to TCP port 22 in host

172.22.0.1. This rule is only valid for traffic arriving at interface ed2, and allows bilateral communication

after the session is established.

The main drawbacks of hlfl are the lack of NAT support and the fact that rules must still be correctly

ordered, so a rule can not be taken at face value without checking the rest of the configuration.

2.2.4.A Additional models

Several other firewall design languages and models exist. In [16] the authors propose FLIP, a high

level language for policy configuration, along with a translation into a set of conventional firewall rules.

Shorewall [17] is an iptables configuration tool which also carries its own high level syntax in order to

simplify the configuration process. A XML-based high level language is proposed in [18], along with a

translation into iptables rules.

17

2.3 Graphical interface-based firewall configuration

Having looked at firewall design models, we will now look at existing graphical-based software that

aims to facilitate firewall configuration.

2.3.1 firewalld

The firewalld daemon [19] is the result of an open-source project aiming to provide a front-end to

the networking tools available on Linux like iptables and ipset. Its design is split into two layers. A Core

layer, containing several modules, which interfaces with the existing Linux tools and a D-Bus layer, which

provides a common Application Program Interface (API) to everything in the Core layer.

The focus of this section will be on firewall-config, one of the several applications built upon the D-Bus

API, but the only that provides a Graphical User Interface (GUI). However, since all these applications

make use of the firewalld daemon, the concepts we will go over can be applied to any of them.

The configuration of firewalld is focused around the concept of zones and services. By defining

which source addresses and interfaces belong to a zone, a user can decide which types of traffic are

allowed for devices in that zone. Zones can be defined with a default policy, which applies to all traffic

that does not match any rule. Figure 2.8 shows a list of source addresses assigned to a zone, along

with the firewall-config UI.

A service is defined through a combination of port numbers, protocols and destinations addresses.

These allow traffic to be identified and controlled according to its purpose. Figure 2.9 shows how the

dns service is configured.

In order to restrict or modify traffic in a zone-by-zone basis, firewalld provides several different cate-

gories of rules:

Services By assigning a service to a zone, any traffic originating from that zone, which matches the

service in question, is allowed through the firewall.

Source and Destination Ports A user can assign a port, or port range, to a zone. This allows any

incoming traffic from that zone as long as its destination and/or source ports match the ones

defined.

Protocols Layer 3 or 4 protocols can also be used to decide if incoming traffic should be allowed or

not.

Masquerading This rule is implemented as an on/off toggle. If enabled, it masquerades any incoming

traffic forwarded by the firewall host. Masquerading is a source address translation where address

of the outbound interface is used.

18

Figure 2.8: Adding source addresses to a zone in firewall-config.

Figure 2.9: Configuration of the dns service in firewall-config.

19

Port Forwarding This kind of rule allows a user to define address and port translation. The required

arguments for such a rule are a local port and a to port. Any incoming traffic addressed to the

local port of the firewall host has its destination port translated to to port. A rule can also include

a to addr argument, which means the destination address of the traffic also gets translated. Figure

2.10 shows an example of such a rule.

ICMP Filter These rules allow for a fine-tuning of which types of ICMP traffic should be allowed through

the firewall.

Rich Rule Finally, a user can also define a rich rule. These rules allow a user to combine most of the

previous rules, in something which looks more like a traditional firewall rule. Some options only

available with rich rules are: rate-limiting, logging and auditing.

Figure 2.10: Setting up a port forwarding rule in firewall-config.

firewalld also offers a functionality named Direct Configuration where a user can create iptables

chains and rules, following the regular iptables syntax. This is especially useful when a user requires

very specific firewall rules, but is already using firewalld.

Overall, using firewall-config provides a user-friendly and simple approach to the configuration of a

firewall. However, there are some aspects it could improve upon.

While the definition of a zone implies that a network host should not belong to multiple zones, such

restriction is not imposed by the software. This leads to ambiguity when reading the configuration. One

explanation we found noted that the source address of incoming traffic is always checked before its

20

ingress interface. From that information, we can rule that if a certain packet matches zone A through

its ingress interface and zone B through its source address, it will be treated as traffic from zone B.

Unfortunately, if both matches had been through the source address, the firewall-config interface would

not help solving this problem.

The readability of a configuration is also something that needs improvement. Our fresh configuration

of firewalld contains eleven default zones. In firewall-config, each zone contains eight unique tabs, one

for each kind of rule presented earlier. This gives a total of eighty-eight different screens required to

check before assessing the behavior of the firewall.

2.3.2 Firewall Builder

Firewall Builder [20] is a firewall configuration tool developed by NetCitadel. It aims to standardize

the configuration of firewalls across different platforms, providing a fully graphical interface that is as

platform independent as possible. Its target platforms include: Cisco IOS, Cisco ASA, iptables and pf 2.

Along with the abstraction of the syntax used by the firewall, FWBuilder also validates rules, looking

for redundant entries, and automatically deploys a configuration, if the target platform allows it.

Firewall rules in FWBuilder follow a very conventional format. Figure 2.11 shows a list of policy rules.

These are all the rules in our firewall intended to accept or drop traffic, which only excludes NAT rules.

Figure 2.11: List of policy rules in Firewall Builder.

Implementing NAT in the firewall is equally intuitive. Figure 2.12 shows how NAT rules are organized

and displayed.
2A firewall software similar to iptables. Part of the OpenBSD project.

21

Figure 2.12: List of NAT rules in Firewall Builder.

From our experience, FWBuilder does a good job finding a standard interface that fits all its tar-

get platforms, while still being able to implement some platform unique features. It seems especially

useful for users who need to maintain and deploy firewall configurations onto different platforms. The

abstraction of the language used by the firewall is also a positive aspect of the tool.

While the tool does check for redundant rules, all other problems present in conventional firewalls

can also affect a FWBuilder user. This is an inevitable consequence of the model to design the firewall.

22

3
Firewall and NAT in Cisco IOS

Contents

3.1 Overview of Cisco routers and IOS . 25

3.2 IP access lists . 26

3.3 Zone-based firewall . 27

3.4 Network Address Translation . 28

3.5 Connection tracking . 29

3.6 Order of operation . 30

3.7 Low-level Abstraction of a Router . 30

23

24

We will start this chapter by giving an overview of the features and capabilities of the average Cisco

router. After that, the IOS features relevant to this work will be presented, along with an low-level

abstraction of a router, that is a simplification of a CISCO IOS device. Since IOS is a very complex

system, our abstraction will be limited to the relevant features of NAT and packet filtering.

3.1 Overview of Cisco routers and IOS

3.1.1 Router platforms and configuration interface

Cisco’s catalog offers a wide array of specialized routers. From core routers with very high through-

put, like the NCS 5500 platform [21], to virtual routers [22] meant to be deployed on a cloud environment,

there are many options to choose from. The context of this work makes it more relevant to network edge

or branch routers, which are commonly placed at the border of local networks. From the most recent

Cisco catalog, the ISR 880 [23] and the ASR 1000 [24] platforms are two examples of the devices this

work is targeting.

One common feature between a big majority of the available router platforms is the operating system

they are running, Cisco IOS. Being developed since the 1990s, IOS became a staple of Cisco’s routers

and switches. As a result of this policy, almost all platforms share an equal configuration interface. The

Command Line Interface (CLI) offered by IOS allows a network administrator full control over a router’s

features.

The CLI possesses several execution modes, each serving a different purpose. The User EXEC

mode is the default and least privileged mode, serving mostly to consult the status of the router without

revealing any possibly sensitive information. Under the Privileged EXEC mode, usually protected behind

a password, a user can execute all commands that were disabled for a regular user. Both of the previous

modes also allow users to clear tables related to network and physical protocols, like the ARP cache.

The global configuration mode can only be accessed from inside the Privileged EXEC mode and is

where the router’s running configuration can be modified. Inside this mode, a user can configure any of

the features made available by the router, from routing protocols to security features.

3.1.2 IOS features

Given that IOS is deployed in a very diverse array of platforms, its list of features is too extensive for

us to fully present. However, we will go over the main categories of features offered by an IOS router,

giving some examples and showing how they all interact when a packet enters a router.

Starting with network-layer protocols, IOS is compatible with most routing protocols (RIP, OSPF,

EIGRP, BGP) while also offering the ability to setup a DHCP or DNS server. NAT, which is very relevant

25

to this work, is also supported by IOS. Tunneling is also supported, on both network (GRE) and data-link

(L2TP) layers.

Most routers also have access to some data-link features, like 802.1Q compatibility, allowing a user

to setup multiple virtual LANs. The ability to filter traffic using layer 2 properties, like a MAC address, is

very common too.

Another set of features offered by IOS is related to Quality Of Service (QoS). This includes queuing

algorithms, like Weighed Fair Queuing (WFQ) and its variations, which grant the ability to shape traffic

and prioritize certain services.

Finally, security features are also widely available in IOS routers. Support for various forms of VPNs

and IPSec tunneling capabilities is standard. Most platforms also include hardware acceleration for

encryption algorithms, diminishing the performance penalty associated with them. Present alongside

the previous features, and very important to this work, is the zone-based firewall. This feature allows

routers to act as firewalls by policing all traffic that goes through it. Limiting remote access to the router

to Secure Shell (SSH) connections is also an important security option.

3.1.3 Life cycle of a packet

When a packet enters an IOS router, all the features that have been presented need to have access

to it and possibly change something about its state. This is a very complex process, given the number

of features involved. Additionally, since both hardware and software platforms have evolved over time,

the order in which features are applied has also changed. While [25] is the only official and public

documentation we could find that explains this process, and since we are mostly interested in NAT

and packet filtering functionalities, we restrict our simplified router model to the behaviour depicted in

Figure 3.1.

3.2 IP access lists

Access Control Lists (ACLs) are lists of rules with the main purpose of allowing and discarding

packets. They are identified using either a number or a name. IOS provides two types of ACLs, standard

and extended. The former type only allows source address matching and is protocol agnostic, while the

latter is protocol aware and makes use of both source and destination addresses. Due to this difference,

we will use named extended ACLs throughout the remainder of this work. Each rule in an extended

ACL has a well defined syntax, which can be seen in Listing 3.1. Rules are made of five mandatory

parameters:

1. Entry number: A positive integer placed at the start of each rule, it defines the ordering of rules

inside an access list. Rules are checked in increasing order.

26

ip access-list extended example 1
10 permit ip host 192.168.1.50 any
20 permit tcp 192.168.1.0 0.0.0.255 any eq ftp telnet
30 deny udp 192.168.1.0 0.0.0.255 range 1 10000 10.0.0.0 0.255.255.255

Listing 3.1: Extended access list example.

2. Action: Defines the action to take if a packet matches the rule in question. The only options for

this field are permit and deny.

3. Protocol: Specify a protocol to match packets against. It is possible to pick from transport (UDP,

TCP) or network (IGMP, ICMP, OSPF, ...) layer protocols. Keyword ip applies to any network

protocol.

4. Source Address: A network address or block that should match the source address of the packet

being inspected. Blocks are defined using a network address followed by a wildcard mask 1. When

referring to a single host, the keyword host can be placed before the address, removing the need

to insert a ’0.0.0.0’ wildcard mask. Keyword any can also be used in cases where any source

address serves. If TCP or UDP were specified for the rule in question, it is also possible to define

intervals of ports.

5. Destination Address: Works the same way as the source address parameter, but is checked

against the destination fields of the packet.

Users can also add optional parameters at the end of the rule. The log optional keyword is especially

useful to track dropped packets. It is important to note that, if a packet is not matched by any of the

visible rules in an ACL, it hits a final, implicit, deny ip any any rule.

As we will see in Section 3.4, the action parameter of an ACL has a somewhat loose meaning. When

an ACL is used in the context of NAT operations, it simply serves as a way to filter which traffic should

be NAT’ed by a certain NAT rule. In that context, a packet matching a deny rule does not get dropped,

but rather goes through that NAT rule without being translated.

3.3 Zone-based firewall

The Zone-based Firewall (ZBFW) is a Cisco IOS feature providing a stateful firewall which can inspect

traffic between all router interfaces, as well as local router traffic. It is not available on all base IOS

images, so a security license may be needed to access it.

1Wildcard masks work as inverted subnet masks, meaning a 0 in the wildcard mask is the same as a 1 in a subnet mask.

27

ip access-list extended example 1
10 permit ip host 192.168.1.50 any
20 permit tcp 192.168.1.0 0.0.0.255 any eq ftp telnet
30 deny udp 192.168.1.0 0.0.0.255 range 1 10000 10.0.0.0 0.255.255.255

class-map type inspect match-any example cmap
match access-group name example 1

policy-map type inspect example pmap
class type inspect example cmap

inspect
class class-default

drop log

zone-pair security zone1-zone2 source zone1 destination zone2
service-policy type inspect example pmap

Listing 3.2: ZBFW configuration example..

Zones are a fundamental concept in the ZBFW. Each interface can be assigned to a zone and one

zone can support multiple interfaces. Firewall rules are applied, independently, to each directed pair of

zones. The router itself is also represented by a zone, named self.

Firewall rules are defined using a policy-map, which is a structure that applies policies (pass, inspect,

drop to specified classes of traffic, using class-maps. A class-map can use a wide variety of criteria to

classify traffic. Commonly used criteria are application protocols, like HTTP, and ACLs.

By default, a policy-map contains a catch-all policy which drops all traffic, so all packets flowing

through the firewall are dropped, unless explicitly allowed through. The inspect policy allows a packet to

flow through the firewall and opens a pinhole for returning traffic.

For the purpose of this work, using a single ACL inside a class-map is enough to classify all relevant

traffic, which is then applied an inspect policy. Listing 3.2 shows how the access-list in Listing 3.1 would

be used to control traffic from zone1 to zone2.

3.4 Network Address Translation

Address translation in IOS can be achieved through two different features [26]:

Legacy NAT The oldest NAT feature in IOS and also known as inside/outside NAT. Each interface must

be assigned one of two domains, inside or outside and translations only occur when traffic flows

from one domain to another. This asymmetry results in several constraints when defining NAT

rules, the most impactful one being that source address masquerading is not available when going

from an outside interface to an inside one. Another limiting constraint is the existence of only two

domains when dealing with several (three or more) interfaces. In such cases, it is very likely to

28

have two interfaces assigned to the same domain while needing to translate traffic between them.

NAT Virtual Interface (NVI) NVI was introduced to IOS in order to provide a domain-free NAT solution.

It allows translations between all NAT-enabled interfaces, offering a symmetrical approach. As a

result of this, none of the previous constraints is present. However, NVI does also have a downside.

In legacy NAT, static NAT rules can be used in combination with an ACL, causing the translation

to only occur if a packet matches the ACL. In NVI, there is no such option, meaning a static rule is

applied to all relevant traffic.

After considering both options and their constraints, we decided to use NVI for our work. This de-

cision was made mostly because of the masquerading and intra-domain constraints present in legacy

NAT, which felt too restraining compared to NVI’s biggest downside, the global static rules.

Regardless of the NAT feature used, translation rules in IOS can be of two kinds: static or dynamic.

Static rules are always inserted as source address translation rules, but they work on both ways of traffic.

Listing 3.3 shows an example of such rule. This translation can be triggered in two different ways. A

source NAT occurs if a TCP packet with source address 192.168.1.50:80 goes through the router, re-

gardless of the destination address. This source NAT translates the source address to 85.10.10.10:8080.

Conversely, if the destination address of a TCP packet is 85.10.10.10:8080, it gets destination NAT’ed

to 192.168.1.50:80, regardless of the origin of the packet.

ip nat source static tcp 192.168.1.50 80 85.10.10.10 8080

Listing 3.3: Static NAT entry.

Dynamic rules are mostly used for masquerading purposes. Listing 3.4 presents a masquerade NAT

rule. This rule requires the creation of an ACL, which will match all traffic that should be translated.

Matched traffic is then translated using interface g1/0’s address, with the overload keyword specifying

that this address can be used by several hosts, by overloading its ports. The translation that occurs is

always a source address translation.

ip nat source list acl nat 1 interface g1/0 overload

Listing 3.4: Dynamic NAT entry.

3.5 Connection tracking

Both features we have presented are stateful, which means their behavior changes according to

previous events.

29

The firewall, ZBFW, needs to keep track of open connections so it can allow returning traffic through,

implementing the inspect option. While there is no public documentation stating the information kept

by the firewall, we assume it stores the minimum it requires to function: the addresses and ports of the

hosts on both ends of the connection in addition to protocol information.

On the other hand, the NAT service needs to store the addresses of both hosts, as well as the

addresses they are translated to/from and any protocol information.

3.6 Order of operation

Given that IOS is very rich in features, it is necessary to establish an order in which operations

are made over packets. It is important to account for all features we selected and acting on packets,

considering our objective. The operations taken into consideration are: NVI NAT, ZBFW, interface ACLs

and routing decisions. This order was infered from multiple public sources. Figure 3.1 shows how the

previous operations act upon packets.

There are several traffic flows that we must take into consideration. Each of these flows travels

through features in a different order:

1. Forwarded traffic: INGRESS ACL→ DNAT → FIREWALL→ SNAT → EGRESS ACL

2. Host generated traffic: DNAT → FIREWALL→ SNAT → EGRESS ACL

3. Host destined traffic: INGRESS ACL→ DNAT → FIREWALL→ SNAT

It is important to note that, for all non-forwarded traffic, we will only consider traffic which goes through

DNAT and SNAT unchanged. That is, we decided to only consider these flows under the condition that

no translation occurs. We will not consider also any traffic from the router to itself. These decisions were

prompted by the lack of public documentation explicitly referring how NAT and the firewall interact with

this class of traffic.

3.7 Low-level Abstraction of a Router

Having presented IOS and its most relevant features, we will now give a formal abstract model and

a formal semantics of a low-level router, that is a simplified version of a Cisco IOS router. Considering

that this model will be used to match the MIGNIS semantics present in [1], we will follow an approach

as similar to it as possible. In the following definitions and examples, sa(p) and da(p) will denote,

respectively, the source and destination addresses of a packet, including port information if relevant.

prt(p) will also denote the protocol in the packet’s header.

30

Figure 3.1: Order of operations for the relevant features in a Cisco IOS router.

3.7.1 State abstraction

We will start by abstracting the connection tracking components in IOS. In the firewall, each connec-

tion should be represented at least by a tuple (hA, hB , prt) where hA and hB are the addresses of both

hosts in the connection and prt is information about the protocol being use between the hosts. If the

protocol in question uses ports (UDP or TCP), that information is included in hA and hB . A set of these

tuples, sfw, represents the state of our abstract firewall.

As with the firewall, the state kept by the NAT feature can also be represented by a set of tuples, snat.

However, in snat we need at least to account for the translated addresses hence storing more information

(src, dst, src′, dst′, prt). In these tuples, src and dst represent the source and destinations addresses

of the initial packet while src′ and dst′ represent the addresses of the reply packet. prt represents the

protocol.

31

Ideally, we want to consider only one set of tuples for our abstraction of state. While the transition from

a tuple in sfw to a tuple in snat is simple, the problem is that snat does not need to keep information about

all active connections. This is due to the fact that the NAT service only needs to keep information about

connections where packets are translated, while the firewall needs to track all connections. Because of

this, our global state s is populated with tuples from both sets. From the NAT state, snat, we will include

every tuple, since those are the ones which hold more information. Tuples from sfw are only included if

the connection they represent is not in snat, which means NAT is not used. These tuples are transformed

from (hA, hB , prt) to (hA, hB , hB , hA, prt) in order to match the ones from snat.

Definition 1. A packet p belongs to a connection in s if one of the following conditions holds true:

(i) (sa(p), da(p), src, dst, prt(p)) ∈ s

(ii) (src, dst, sa(p), da(p), prt(p)) ∈ s

This relation is denoted as p `s src, dst, where src and dst represent the source and destination ad-

dresses of the p′, the expected reply to p.

3.7.2 Access lists and address translation

As we saw in Section 3.2, both firewall and NAT features in IOS are implemented using access lists.

Considering this, we provide an abstraction for access lists and their entries, which we will refer to as

rules.

In the following definitions, we will use the concept of address ranges. A range is defined as a set of

IP addresses accompanied by a set of ports. When checking if an address addr is part of an address

range n, each component of addr is matched against its corresponding set in n. If the set of ports in n

is empty, or addr does not specify a port, only the IP address needs to be matched.

Definition 2. A basic rule is defined as a tuple (n1, n2, φ, t), where n1 and n2 are address ranges, φ

represents a stateful operation over a packet and t, the target of the rule, is either accept or drop.

As an example, we can use the ACL in Listing 3.1 and, from its second entry, generate the following

basic rule: (192.168.1.0/24:∗, ∗:{21, 23}, tcp, accept), where ∗ matches any IP address or port. We will

now define how a packet matches a basic rule.

Definition 3. A packet p matches, in state s, a basic rule ri = (n1, n2, φ, t) if sa(p) ∈ n1, da(p) ∈ n2
and φ(p, s). We denote this match with the expression p, s |=r ri.

Definition 4. Let R = [r1, r2, ..., rn] be a list of rules. A packet p matches R in state s, with target t, if

∃i≤n : ri = (n1, n2, φ, t) ∧ p, s |=r ri ∧ ∀j<i p, s 6|=r rj

32

This match is denoted by p, s |=R t. Conversely, if a packet does not match any rule in a list, we use the

expression p, s 6|=R.

While a basic rule can represent any ACL entry, it does not account for translation operations, like the

one represented in Listing 3.3. To represent such commands, it is necessary to differentiate between

static and dynamic entries.

Definition 5. A static translation rule is defined as a tuple (la, ga, φ), where la and ga are ranges

of addresses representing, respectively, local and global addresses, and φ is a stateful operation over a

packet.

We can use, as an example, Listing 3.3 to build the static rule (192.18.1.50:80, 85.10.10.10:8080, tcp).

A packet can match these rules in two different ways, since they are used for both source and destination

translations.

Definition 6. A packet p matches, in state s, a static translation rule ti = (la, ga, φ) if:

(i) sa(p) ∈ la ∧ φ(p, s), denoted by p, s |=t ti, snat;

(ii) da(p) ∈ ga ∧ φ(p, s), denoted by p, s |=t ti, dnat.

Static translation rules have a deterministic ordering and can be considered as being part of a list.

Definition 7. Let T = [t1, t2, ..., tn] be a list of static translation rules. A packet p matches T , in state s,

if:

(i) ∃i≤n : ti = (la, ga, φ) ∧ p, s |=t ti, snat ∧ ∀j<i p, s 6|=t tj , denoted by p, s |=ST ga;

(ii) ∃i≤n : ti = (la, ga, φ) ∧ p, s |=t ti, dnat ∧ ∀j<i p, s 6|=t tj , denoted by p, s |=DT la.

The case where any of the presented conditions is not satisfied is denoted by, respectively, p, s 6|=ST or

p, s 6|=DT .

Dynamic NAT rules can only be used for source address translation. However, due to being imple-

mented differently to static rules, they allow for a more fine-tuned packet selection. Like with static rules,

dynamic rules in IOS can be considered as part of a list, with a deterministic ordering.

Definition 8. A dynamic translation rule is defined as a tuple (n1, n2, φ, t), where n1 and n2 are

address ranges, φ represents a stateful operation over a packet and t is the range of addresses used for

translation.

Definition 9. A packet p matches a dynamic translation rule di = (n1, n2, φ, t), in state s, if sa(p) ∈ n1,

da(p) ∈ n2 and φ(p, s). We denote this match with the expression p, s |=d di.

33

Definition 10. Let D = [d1, d2, ..., dn] be a list of dynamic translation rules. A packet p matches D, in

state s, if:

∃i≤n : di = (n1, n2, φ, t) ∧ p, s |=d di ∧ ∀j<i p, s 6|=d dj

We denote this match with p, s |=D t, using p, s 6|=D for the cases where no match is found.

The previous definitions allow us to define our low-level router abstraction that is a simplified version

of a IOS router. This model will take into account both ingress and egress ACLs, the ACLs used between

each directed pair of zones in the ZBFW and all possible NAT entries.

Definition 11. A low-level router F , with n external interfaces, is composed of the following lists of rules:

(i) 2n lists of basic rules, Iid, where d ∈ {in, out} and i ∈ {1, ..., n}. These represent the access lists in

each interface.

(ii) A list of static translation rules, T , and a list of dynamic translation rules, D.

(iii) (n + 1)2 lists of basic rules, F io, where i, o ∈ {1, ..., n} ∪ {l}. These represent the rules between

each zone in the firewall. A list F xy applies to all traffic entering in interface x and leaving through

interface y. The self zone is represented by the letter l.

3.7.3 Semantics

In Table 3.1 we present the semantics for how our low-level router F deals with a packet p in state

s. To help distinguish this semantics from similar ones that will appear throughout this work, we use

the term ll, standing for low-level. Throughout this section we also use the expressions si(p) and di(p),

which denote, respectively, the ingress and egress interfaces of a router, according to its source and

destination addresses. Symbol L is used to denote all addresses assigned to the router’s interfaces as

well as any loopback interface. This definition allows us to distinguish local from non-local traffic.

The first three rules (DEstll, DNewll and DNATll) apply to packets that go through the pre-routing

NAT module. This relation is denoted by (s, p) �δll p̃, where p is the original packet and p̃ is the same

packet after going through the pre-routing translation module, in state s. Each different rule defines a set

of required conditions for the transition to occur. Rule DEstll applies to packets belonging to an already

established connection, using information in s to perform the translation. In this case, the destination

address of the packet is changed to the source address of the expected reply (the internal address of

the destination host). On the other hand, rules DNewll and DNATll apply to packets which do not belong

to an established connection. The former also adds the condition that no match is found in the static

translation table, T , meaning packet p goes unchanged through this transition. The latter implies that

34

p `s src, dst
(s, p) �δll p[da 7→ src]

[DEstll]
p 0s p, s 6|=DT
(s, p) �δll p

[DNewll]

p 0s p, s |=DT t dst ∈ t
(s, p) �δll p[da 7→ dst]

[DNATll]

p `s src, dst
(s, p, p̃) �σll p̃[sa 7→ dst]

[SEstll]
p 0s p̃, s 6|=ST p̃, s 6|=D

(s, p, p̃) �σll p̃
[SNewll]

p 0s p̃, s |=ST t src ∈ t
(s, p, p̃) �σll p̃[sa 7→ src]

[SNATsll]
p 0s p̃, s 6|=ST p̃, s |=D t src ∈ t

(s, p, p̃) �σll p̃[sa 7→ src]
[SNATdll]

sa(p) /∈ L da(p̃) /∈ L i ∈ si(p) o ∈ di(p̃)
p, s |=Iiin accept (s, p) �δll p̃ p `s ∨ p̃, s |=F i

o
accept

(s, p, p̃) �σll p
′ p′, s |=Ioout

accept

s
p,p′−−→ll s] (p, p′)

[Forwardll]

sa(p) /∈ L da(p) ∈ L i ∈ si(p)
p, s |=Iiin accept (s, p) �δll p : [DNewll,DEstll]

p `s ∨ p, s |=F i
l
accept (s, p, p̃) �σll p : [SNewll,SEstll]

s
p,p−−→ll s] (p, p)

[Inputll]

sa(p) ∈ L da(p) /∈ L o ∈ di(p)
(s, p) �δll p : [DNewll,DEstll] p `s ∨ p, s |=F l

o
accept

(s, p, p̃) �σll p : [SNewll,SEstll] p, s |=Ioout
accept

s
p,p−−→ll s] (p, p)

[Outputll]

Table 3.1: Semantics of the low-level router.

35

a match was found in T . Rules in T are of the form (la, ga, φ) and relation p, s |=DT t means a match

was found between the global address, ga, of a rule and the destination address of the packet being

matched. When such match occurs, the destination address is then translated to the local address, la,

of the same rule.

The four following rules (SEstll, SNewll, SNATsll and SNATdll) apply to packets on the post-routing

NAT module, denoted by (s, p, p̃) �σll p′, where p represents the original packet and p̃ represents the

packet after going through the pre-routing NAT module. Rule SEstll follows the same logic as DEstll,

using the information in state s to translate the packet. Unlike with destination NAT, in source NAT we

need to check both static and dynamic translation rules, causing a small difference in the definition of

rule SNewll and the existence of an additional rule, SNATdll, for when a dynamic translation rule is

matched. From SNATsll and SNATdll one can also note that static translation rules take precedence

over dynamic ones.

Finally, the last three rules (Forwardll, Inputll and Outputll) result in the state transition s
p,p′−−→ll

s′, which denotes a transition from state s to s′ and that packet p was accepted by the firewall and

transformed into p′ as the result of address translations. Each rule applies to one of the flows described

earlier in Section 3.6. In all mentioned rules, state s′ is defined as the result of the operation s]

(p, p′). This operation adds the connection established by packet p, translated to p′, to state s. The

new connection can be represented by the tuple (sa(p), da(p), da(p′), sa(p′), prt(p)). State s remains

unchanged if the tuple already exists, which means the connection was established previously.

We can start by looking at rule Forwardll since it’s the most complex one. For a packet p to be

accepted by the firewall and translated to p′ the following conditions must be met:

• p, s |=Iiin accept, it must be accepted by the inbound ACL placed at the ingress interface;

• (s, p) �δll p̃, the packet must go through the pre-routing NAT module. We denote the resulting

packet as p̃, even if no translation occurred;

• p `s ∨ p̃, s |=F i
o
accept, it must either belong to an established connection or have its translated

version, p̃, be explicitly accepted in F io, the list of rules applied to traffic flowing from interface i to

interface o;

• (s, p, p̃) �σll p
′, it must go through the post-routing NAT module. The resulting packet is denoted as

p̃, even if not translated.

• p′, s |=Ioout
accept, the packet accepted by the post-routing NAT module, p′, must be accepted by

the outbound ACL placed at the egress interface.

The two remaining rules follow a similar logic. It is worth remarking that we restrict NAT translations

to the Forwardll rule and force all other flows to be unaffected by any address translation. The syntax

36

used to enforce this behavior is shown in (s, p) �δll p : [DNewll,DEstll], where we mean that packet p is

accepted as p by δ through rule DNewll or DEstll. This decision was motivated by the unpredictability

and lack of documentation concerning NAT for locally generated or addressed traffic.

37

38

4
MIGNIS

Contents

4.1 Syntax and Semantics . 41

39

40

In [1], the authors present the MIGNIS tool. Its purpose is to assist in the configuration of iptables,

a firewall and NAT utility available in most Linux distributions. MIGNIS’ main feature is the translation

from a firewall specification language, defined by the authors, to iptables compatible commands. To

achieve the purpose of this work, we will make use of the same specification language, which we will

denote as the MIGNIS language.

The MIGNIS language was designed in a way to avoid some of the problems presented in Section

2. It can be described as a declarative language, where the order between rules does not matter. Rules

are also very simple to read and interpret, allowing any reader to easily understand the purpose of each

rule.

4.1 Syntax and Semantics

The four types of rule available in MIGNIS syntax are:

n1 / n2 | φ (DROP rule)

n1 > n2 | φ (ACCEPT rule)

n1 > [n2] nt | φ (DNAT rule)

n1 [nt] > n2 | φ (SNAT rule)

The name given to the rules is descriptive enough to understand their purpose, but we will take a closer

look at the syntax of each rule. A DROP rule forbids all traffic from n1 to n2, as long as φ is satisfied. It

is important to note that this rule takes priority over any other rule in a MIGNIS configuration and even

applies to packets in established connections. In practice, this means we can block incoming traffic from

a malicious host even if there is an ACCEPT rule that allows it. In case any NAT occurs, we consider

n1 and n2 as the real addresses for the hosts communicating. In other words, n1 and n2 are to be

checked after destination NAT has occurred and before source NAT occurs. An ACCEPT rule allows n1

to establish a connection with n2, if φ holds. This rule also implicitly allows n2 to communicate with n1, as

long as n1 is the one starting the connection. Rules DNAT and SNAT follow the same logic, combining

it with NAT operations. Rule DNAT allows n1 to establish a connection with nt by addressing n2, as long

as φ is satisfied. Rule SNAT allows n1 to establish a connection with n2, if φ holds, and applies a source

address translation from n1 to nt to all traffic in this flow

Figure 4.1 presents simple examples that can be used to demonstrate MIGNIS usage. In Figure 4.1a

a rule that would allow the dad’s PC to access the server would be DAD PC > SERVER. Dropping all

traffic from the daughter’s PC to the dangerous website, as shown in Figure 4.1b would be achieved

41

through rule DAUGHTER PC / UNSAFE SITE. The destination NAT in Figure 4.1c is implementable

through rule VACATION HOME > [PUBLIC IP:22] SERVER:22. A masquerade, like the one in Figure

4.1d, can be achieved with rule HOME [.] > INTERNET. One example not present in the figures

concerns a double NAT. We can represent a double NAT as a merge of the DNAT and SNAT rules.

Using the example in the previous figures, we would implement a double NAT from the dad’s PC to the

work PC as rule DAD PC [.] > [INTERNAL IP:7878] WORK PC:22.

(a) Allow the dad’s PC to access the server.
(b) Drop all traffic from the daughter’s PC to the dan-

gerous website.

(c) Allow the vacation house to access the server
through a destination NAT.

(d) Allow and masquerade all traffic from home to the
Internet.

Figure 4.1: Traffic flow examples.

The semantics for the MIGNIS language are presented in Table 4.1. For simplicity, we use a similar

notation as the one in Chapter 3. A set of MIGNIS rules is defined as a configuration, denoted by C. If a

RULE in C matches a packet p in state s, this is denoted by p, s |=C RULE. If the rule in question implies

address translation (DNAT and SNAT rules), we also include the target address nt in the notation. These

cases are denoted by p, s |=C RULE(nt). If a packet p in state s does not match a specific rule, we use

the notation p, s 6|=C RULE.

In this table we present two new relations. (s, p) �hl p′ denotes that packet p is accepted as p′ by a

firewall in state s. Four different rules lead to this relation: ACCEPThl, DNAThl, SNAThl and DSNAThl.

The semantics present in those rules follow the already explained logic for the MIGNIS language. It

is worth noticing that, in each of the mentioned rules, we always check if the packet does not match

42

p, s |=C ACCEPT p, s 6|=C DROP
(s, p) �hl p

[ACCEPThl]

p, s |=C DNAT(nt) dst ∈ nt p[da 7→ dst], s 6|=C DROP, SNAT
(s, p) �hl p[da 7→ dst]

[DNAThl]

p, s |=C SNAT(nt) src ∈ nt p, s 6|=C DROP, DNAT
(s, p) �hl p[sa 7→ src]

[SNAThl]

p, s |=C DNAT(nt) dst ∈ nt p̃ = p[da 7→ dst] p̃, s 6|=C DROP
p̃, s |=C SNAT(n′t) src ∈ n′t

(s, p) �hl p̃[sa 7→ src]
[DSNAThl]

p 0s (s, p) �hl p′

s
p,p′−−→hl s] (p, p′)

[Newhl]

p `s src, dst p̃ = [da 7→ src] p̃, s 6|=C DROP p′ = p̃[sa 7→ dst]

s
p,p′−−→hl s

[Esthl]

Table 4.1: MIGNIS language semantics.

43

a DROP rule in the MIGNIS configuration, since that would always take precedence. Rule DSNAThl

applies to packets matching both a DNAT and an SNAT rule in the configuration.

The other relation is s p,p′−−→hl s
′, which denotes the firewall’s state transition from state s to state

s′, while accepting packet p as p′. This relation is a result of the rules Newhl and Esthl. The first one

applies to packets that do not belong to any active connection and are accepted by the firewall with

relation (s, p) �hl p′. This rule implies a state change, denoted by s] (p, p′). The second rule, Esthl,

applies to packets in established connections. In this situation, the only requirement is that the packet,

after destination NAT, does not match any DROP rule in the MIGNIS configuration.

44

5
From MIGNIS to Cisco IOS

Contents

5.1 Intermediate Firewall . 47

5.2 Translating from MIGNIS to the intermediate firewall 49

5.3 From the intermediate to low-level firewall . 57

5.4 Implementation . 60

45

46

Having presented both the low-level firewall abstraction and the high-level MIGNIS language, we

now offer a translation from a MIGNIS configuration to IOS commands. To achieve this, we will define an

intermediate-level firewall, with similarities to the other two firewalls. This firewall will act as a middle step

in our translation, splitting the translation into two: one from the MIGNIS semantics to our intermediate

semantics, and another from this to the low-level router abstraction. We then translate the low-level

router rules to CISCO IOS commands.

5.1 Intermediate Firewall

Definition 12. An intermediate firewallFI is composed by 6 sets of rules {SD1 , SSTT , SDYN , SD, SA, SD2}.

Sets SD1
, SD and SD2

contain basic rules with target drop while set SA contains basic rules with target

accept. Set SSTT contains static translation rules and set SDYN contains dynamic translation rules. All

these rules follow the definitions established in Chapter 3.

One main difference between this firewall and the low-level one is the use of sets instead of lists.

This requires us to define how a packet matches a set, since our previous low-level definitions concern

lists of rules.

Definition 13. Let S = {r1, r2, ..., rn} be a set of basic rules. We define that packet p matches set S, in

state s, with target t if:

∃ri ∈ S : ri = (n1, n2, φ, t) ∧ p, s |=r ri

This relation is denoted by p, s |=ilS t. If no match occurs, we use p, s 6|=ilS .

Definition 14. Let S = {t1, t2, ..., tn} be a set of static translation rules. We define that packet p matches

set S, in state s, with target t if:

(i) ∃ti ∈ S : ti = (la, ga, φ) ∧ p, s |=t ti, snat, denoted by p, s |=ilS ga, snat

(ii) ∃ti ∈ S : ti = (la, ga, φ) ∧ p, s |=t ti, dnat, denoted by p, s |=ilS la, dnat

In case one of the previous conditions is not satisfied, we write, respectively, p, s 6|=ilS snat or p, s 6|=ilS dnat.

Definition 15. Let S = {d1, d2, ..., dn} be a set of dynamic translation rules. We define that packet p

matches set S, in state s, with target t if:

∃di ∈ S : di = (n1, n2, φ, t) ∧ p, s |=d di

This relation is denoted by p, s |=ilS t. If no match occurs, we use p, s 6|=ilS .

47

p `s src, dst
(s, p) �DNAT

il p[da 7→ src]
[DEstil]

p 0s p, s 6|=ilSSTT
dnat

(s, p) �DNAT
il p

[DNewil]

p 0s p, s |=ilSSTT
t, dnat dst ∈ t

(s, p) �DNAT
il p[da 7→ dst]

[DNATil]

p `s src, dst
(s, p, p̃) �SNAT

il p̃[sa 7→ dst]
[SEstil]

p 0s p, s 6|=ilSSTT
snat p, s 6|=ilSDY N

(s, p, p̃) �SNAT
il p̃

[SNewil]

p 0s p, s |=ilSSTT
t, snat src ∈ t

(s, p, p̃) �SNAT
il p̃[sa 7→ src]

[SNATsil]
p 0s p, s 6|=ilSSTT

snat p, s |=ilSDY N
t src ∈ t

(s, p, p̃) �SNAT
il p̃[sa 7→ src]

[SNATdil]

sa(p) /∈ L da(p̃) /∈ L
p, s 6|=ilSD1

(s, p) �DNAT
il p̃ p `s ∨ p̃, s 6|=ilSD

p `s ∨ p̃, s |=ilSA
(s, p, p̃) �SNAT

il p′ p′, s 6|=ilSD2

s
p,p′−−→il s] (p, p′)

[Forwardil]

sa(p) /∈ L da(p) ∈ L
p, s 6|=ilSD1

(s, p) �DNAT
il p : [DNewil,DEstil]

p `s ∨ p, s 6|=ilSD
p `s ∨ p, s |=ilSA

(s, p, p̃) �SNAT
il p : [SNewil,SEstil]

s
p,p−−→il s] (p, p)

[Inputil]

sa(p) ∈ L da(p) /∈ L
(s, p) �DNAT

il p : [DNewil,DEstil] p `s ∨ p, s 6|=ilSD
p `s ∨ p, s |=ilSA

(s, p, p̃) �SNAT
il p : [SNewil,SEstil] p, s 6|=ilSD2

s
p,p−−→il s] (p, p)

[Outputil]

Table 5.1: Intermediate firewall semantics.

48

In Table 5.1 we present the semantics associated with our intermediate level firewall. We can see

many similarities to our low level firewall. Firstly, we split NAT rules into two kinds, static and dynamic.

The second similarity is the inability that, after DNAT and before SNAT have occurred, we can not drop

packets in established connections. This is an important difference from the MIGNIS semantics, where

such drop is possible. Finally, the last similarity is that we do not consider traffic flows where NAT occurs

and the router is one of the endpoints of the communication.

5.2 Translating from MIGNIS to the intermediate firewall

Table 5.2 defines the translation between rules in a MIGNIS configuration C and rules in an interme-

diate firewall FI .

n1 > n2 | φ
(n1, n2, φ, accept) ∈ SA

n1 / n2 | φ
(n1, n2, φ, drop) ∈ SD1 , SD, SD2

n1 > [n2] nt | φ ∧ nt [n2] > n1 | φ ∧ n2 6= ε ∧ n1 = ∗
(n1, nt, φ, drop) ∈ SD1

(n1, nt, φ, accept) ∈ SA (nt, n1, φ, accept) ∈ SA
(nt, n2, φ) ∈ SSTT

n1 [nt] > n2 | φ ∧ nt = ε

(n1, n2, φ, accept) ∈ SA (n1, n2, φ, ε) ∈ SDYN

Table 5.2: Translation from a MIGNIS configuration to an intermediate firewall configuration.

The translations in Table 5.2, besides the ACCEPT one, are not immediate. We will start by looking

at the DROP one, which adds a drop rule to all drop sets in FI . The reason behind this decision is

the behavior of the intermediate firewall towards packets in established connections. As we can see in

Table 5.1, packets belonging to established connections are immune to rules in SD, which contradicts

the higher level MIGNIS semantics. Our attempt to fix this is to drop the packet at SD1
, before any DNAT,

or at SD2 , after all SNAT. This solution works when p̃ = p (no DNAT) or p̃ = p′ (no SNAT), but fails when

a packet is translated twice. As a result, we will need to forbid any drop rules that apply to the return flow

of a double NAT connection. This constraint is necessary to achieve the soundness of the translation,

and is enforced by condition (i) of Definition 16.

The first NAT translation only accepts DNAT and SNAT pairs. This approach was motivated by the

semantics of static translation rules SSTT (Definition 14), that implements any DNAT as a rule that also

serves as an SNAT. This is another difference between the intermediate semantic and the MIGNIS

49

semantics, since the latter allows for non-symmetrical NAT rules (Definition 17).

One other important detail is the drop rule added to SD1
, which serves to block direct connections

between n1 and nt. If this rule was not added, n1 could establish direct connections with nt as a result

of rule n1 > [n2] nt | φ. Again, this carries implications in the completeness of our translation, but is

required if we are to maintain its soundness (condition (i) of Definition 18).

The final translation deals with all SNAT rules where nt is empty (represented by ε). It represents all

masquerade SNAT rules, which are the only ones we implement as dynamic translations.

We can now define our requirements for a translation to be sound and complete. The necessity of

these requirements is related to the differences between the MIGNIS and the low-level semantics. While

MIGNIS comes with very flexible semantics, this is not matched by our low-level router abstraction (and

consequently our target implementation CISCO IOS). To achieve soundness, we will require a MIGNIS

configuration C to be safe and nat-complete.

A safe configuration tackles the previously presented problems where our semantics can not drop a

packet that is both part of an established connection and that goes through a double NAT. We achieve

this by forbidding drop rules that could possibly match a packet on the reply flow of a double NAT

conversation (condition (i) of Definition 16). In Figure 5.1 we show a situation where a double NAT

rule between the dad’s PC and the work PC (DAD PC [.] > [INTERNAL IP:7878] WORK PC:22) would

conflict with a drop rule in the opposite direction (WORK PC / DAD PC). This combination results in an

unsafe configuration. A safe configuration is also free of local to local rules (condition (ii) of Definition 16).

This restriction is necessary since we do not consider this kind of packets in our intermediate semantics.

Figure 5.1: The presence of rule DAD PC [.] > [INTERNAL IP:7878] WORK PC:22 does not allow rule
WORK PC / DAD PC to be correctly implemented in our intermediate-level firewall.

50

Definition 16. A MIGNIS configuration C is safe iff:

(i) For every possible double NAT (both source and destination address translation) flow, there is no

DROP rule trying to drop traffic in its reply direction. In terms of syntax, we can define this restriction

in the following way: for every pair of rules n1 > [n2] nt | φ and n′1 [n′2] > n′t | φ′ in C, we define

n1 ∩ n′1 = na and nt ∩ n′t = nb. If na 6= ∅, nb 6= ∅ and there exists a packet p for which φ(p, s)

and φ′(p, s) both hold, then any host in na can initiate a double NAT connection with any host in nb.

Therefore, we require that, for every nx / ny | φ′′ in C, nx ∩ nb = ∅ or ny ∩ na = ∅.

(ii) There is no ACCEPT, DNAT or SNAT rule where both endpoints are local addresses. This can be

syntactically enforced by checking that for every n1 > [nt] n2 | φ , n1 [nt] > n2 | φ or n1 > n2 | φ

rules, in C, it holds true that n1 ∩ L = ∅ or n2 ∩ L = ∅.

Nat-completeness is also necessary for a sound translation. This constraint forces every NAT rule in

a MIGNIS configuration to match one of the translations in Table 5.2. With this, we are sure that there are

no untranslated NAT rules. This is critical to achieve soundness because a high-level NAT rule without

an intermediate-level equivalent could cause a similar packet to be treated in different ways. Using the

example in Figure 5.1, this means that if a rule allowing the server to be accessed from everywhere

through a DNAT (∗ > [PUBLIC IP:22] SERVER:22) is present in our configuration, the symmetric rule

must also be explicitly present (SERVER:22 [PUBLIC IP:22] > ∗).

Definition 17. A MIGNIS configuration C is nat-complete iff each non-masquerade SNAT rule is accom-

panied by its equivalent (opposite direction) DNAT rule and vice-versa. Additionally, all non-masquerade

SNAT rules must use a wildcard as the destination address and DNAT ones must use a wildcard as the

source address. Syntactically, we can enforce that for each nt [n2] > n1 | φ rule, where n2 6= ε, n1 should

be ∗ and there must be another n1 > [n2] nt | φ rule, and vice-versa.

When it comes to the completeness of our translation, we require several more constraints on our

configuration C.

A well-formed MIGNIS configuration (Definition 18) covers several combinations of rules that could

affect the completeness of a translation.

The first case (i) concerns the drop rule inserted in SD1 when a DNAT rule is translated. To achieve

completeness, we do not allow any other rule that would try to accept a packet matching the already

placed drop rule. Figure 5.2 shows an example where the translation of a DNAT rule from the vacation

house to the server (VACATION HOME > [PUBLIC IP:22] SERVER:22) would result in an intermediate-

level rule that drops any direct packets in the same path. Because of this, implementing a direct com-

munication rule (VACATION HOME > SERVER:22) is not possible.

The second case (ii) relates to our aggressive translation of high-level DROP rules. In order to avoid

accidentally dropping traffic, we need to check if any of the DROP rules is not indirectly dropping a DNAT

51

packet before its destination address is translated or an SNAT packet after its source address has been

translated. We recall that, intuitively, the addresses used in a DROP rule refer to the real addresses of

endpoints and that the previous cases would result in the DROP rule taking effect when at least one of

the addresses in the packet is translated.

Finally, condition (iii) restricts NAT rules to non-local traffic, since our intermediate semantics does

not contemplate translated packets in non-forward rules.

Figure 5.2: The implicit drop rule in the translation of VACATION HOME > [PUBLIC IP:22] SERVER:22 directly
contradicts rule VACATION HOME > SERVER:22.

Definition 18. A MIGNIS configuration C is well-formed iff:

(i) For every DNAT rule between na and nb, there must be no other DNAT, SNAT or ACCEPT rule that

also allows connections from any subset of na to any subset of nb. Syntactically, this rule can be

expressed as follows. Let n1 > [n2] nt | φ be any of the DNAT rules in C. We require that n1∩n′1 = ∅

or nt ∩ n′2 = ∅ for each DNAT (n′1 > [n′2] n
′
t | φ′), SNAT (n′1 [n′t] > n′2 | φ′) or ACCEPT (n′1 > n′2 | φ′)

rule in C. This condition is verified for all DNAT rules in C;

(ii) For every DROP rule, na / nb | φ, in C, there must be no DNAT (n1 > [n2] nt | φ′) or SNAT

(nt [n1] > n2 | φ′) rules where na ∩ n1 6= ∅, nb ∩ n2 6= ∅ and φ(p, s) ∧ φ′(p, s) for some packet p and

state s.

(iii) Every DNAT or SNAT rule in C must not use any local address as an endpoint. This is syntactically

expressed by: for every n1 > [nt] n2 | φ or n1 [nt] > n2 | φ rule, it must hold true that n1 ∩ L = ∅

and n2 ∩ L = ∅.

52

Another necessary condition for completeness is reply-awareness. This constraint is related to

the conditions (i) and (ii) in the definition of well-formedness, which exist because of the translation

of DNAT (i) and DROP (ii) rules indirectly dropping traffic. A reply-aware configuration applies this logic

to traffic on the return flow of an already established connection. This makes it so that the return traffic

is not accidentally dropped.

Definition 19. A MIGNIS configuration C is reply-aware iff:

(i) For every ACCEPT rule, n1 > n2 | φ, in C, there must not be another rule indirectly dropping its

reply traffic. This means there can be no DNAT rule (nb > [nx] na | φ′) where na∩n1 6= ∅, nb∩n2 6= ∅

and φ(p, s) ∧ φ′(p, s).

(ii) For every DNAT rule, n1 > [n2] nt | φ, in C, there must not be any other rule indirectly dropping its

reply traffic. In terms of syntax, we can say that there must not exist any DROP rule (nb / na | φ′)

where na ∩ n1 6= ∅, nb ∩ n2 6= ∅ and φ(p, s) ∧ φ′(p, s), for some packet p and state s. Additionally, a

DNAT rule (nb > [nx] na | φ′) where na ∩ n1 6= ∅, nb ∩ nt 6= ∅ and φ(p, s) ∧ φ′(p, s), for some packet

p and state s, is also forbidden.

(iii) For every SNAT rule, n1 [nt] > n2 | φ, in C, there must not be any other rule indirectly dropping its

reply traffic. Syntactically, this can be expressed by saying that there must not exist any DROP rule

(nb / na | φ′) where na ∩ nt 6= ∅, nb ∩ n2 6= ∅ and φ(p, s) ∧ φ′(p, s), for some packet p and state s.

DNAT rules (nb > [nx] na | φ′) where na ∩ nt 6= ∅, nb ∩ n2 6= ∅ and φ(p, s)∧ φ′(p, s), for some packet

p and state s, are also forbidden.

Our final constraint is nat-consistency, which removes ambiguity from a configuration, not allowing a

packet to match both a translating and non-translating rule at the same time.

Definition 20. A MIGNIS configuration C is nat-consistent iff, for any packet p and state s we have that

p, s |=C ACCEPT iff p, s 6|=C DNAT and p, s 6|=C SNAT.

We now propose a Lemma that makes use of both the translation in Table 5.2 and the previous

definitions to establish a relation between rules in our high-level and intermediate-level semantics. These

relations are a key part in proving the soundness and completeness of the translation.

Lemma 1. Let C be a MIGNIS configuration and FI an intermediate firewall. It holds true that:

(i) if p, s |=ilSSTT
nt, snat, then p, s |=C SNAT(nt) ∧ nt 6= ε;

(ii) if p, s |=ilSSTT
nt, dnat, then p, s |=C DNAT(nt) ∧ nt 6= ε;

(iii) p, s |=ilSDY N
nt iff p, s |=C SNAT(nt) ∧ nt = ε;

(iv) p, s 6|=ilSD
, p, s 6|=ilSD2

iff p, s 6|=C DROP;

53

(v) if p, s 6|=ilSD1
, then p, s 6|=C DROP;

Additionally, if C is nat-complete:

(vi) if p, s |=C SNAT(nt) ∧ nt 6= ε, then p, s |=ilSSTT
nt, snat;

(vii) if p, s |=C DNAT(nt) ∧ nt 6= ε, then p, s |=ilSSTT
nt, dnat.

If C is well-formed :

(viii) if p, s |=C DNAT, then p, s 6|=ilSD1
;

(ix) if p, s |=C SNAT(nt), then p[sa 7→ src], s 6|=ilSD2
, where src ∈ nt.

Proof. We will look at (i) and (vi) simultaneously:

p, s |=ilSSTT
nt, snat

⇐⇒ ∃(n1, nt, φ) ∈ SSTT · p, s |=ilSSTT
(n1, nt, φ), snat

⇐⇒ ∃(n1, nt, φ) ∈ SSTT · sa(p) ∈ n1 ∧ φ(p, s)

⇒ /⇐∗ ∃ n1 [nt] > n2 | φ ∈ C · sa(p) ∈ n1 ∧ da(p) ∈ n2 ∧ φ(p, s) ∧ nt 6= ε

⇐⇒ p, s |=C SNAT(nt) ∧ nt 6= ε

All the equivalences in the above equation follow the given definitions, except for the step between

the third and fourth lines, which is not obvious. The⇒ direction can be proved by looking at the transla-

tions in Table 5.2 and noticing that a rule in SSTT can only come from a pair of DNAT and SNAT rules,

with nt 6= ε, in C. One restriction for this translation is that n2 = ∗, which allows us to add da(p) ∈ n2
in the fourth line. The opposite direction, ⇐∗ is marked with a * because it only holds true when C is

nat-complete. If C does not follow this condition, a SNAT rule may not be translated, since it may not

belong to a pair of rules matching our translation requirements. However, when the condition holds, all

SNAT rules are translated according to the referenced table and result in a rule in SSTT .

We can now do the same for (ii) and (vii):

p, s |=ilSSTT
nt, dnat

⇐⇒ ∃(nt, n1, φ) ∈ SSTT · p, s |=ilSSTT
(nt, n1, φ), dnat

⇐⇒ ∃(nt, n1, φ) ∈ SSTT · da(p) ∈ n1 ∧ φ(p, s)

⇒ /⇐∗ ∃ n2 > [n1] nt | φ ∈ C · da(p) ∈ n1 ∧ sa(p) ∈ n2 ∧ φ(p, s) ∧ nt 6= ε

⇐⇒ p, s |=C DNAT(nt) ∧ nt 6= ε

54

The proof is similar to the previous one. The ⇐ direction follows the translation in Table 5.2 and its

associated restrictions, while⇒∗ relies on C being nat-complete.

Looking solely at (iii):

p, s |=ilSDY N
nt

⇐⇒ ∃(n1, n2, φ, nt) ∈ SDYN · p, s |=ilSDY N
(n1, n2, φ, nt)

⇐⇒ ∃(n1, n2, φ, nt) ∈ SDYN · sa(p) ∈ n1 ∧ da(p) ∈ n2 ∧ φ(p, s)

⇐⇒ ∃ n1 [nt] > n2 | φ ∈ C · sa(p) ∈ n1 ∧ da(p) ∈ n2 ∧ φ(p, s) ∧ nt = ε

⇐⇒ p, s |=C SNAT(nt) ∧ nt = ε

As in the previous examples, all equivalences are immediate besides the one between the third and

fourth lines. In that equivalence, we rely on the translation provided in Table 5.2. Unlike in the previous

examples, the equivalence does not depend on C being nat-complete, since SNAT masquerade rules

are always translated.

Finally, we look at (iv):

p, s 6|=ilSD

⇐⇒ ∀(n1, n2, φ, t) ∈ SD · p, s 6|=ilSD
(n1, n2, φ, t)

⇐⇒ ∀(n1, n2, φ, t) ∈ SD · sa(p) /∈ n1 ∨ da(p) /∈ n2 ∨ ¬φ(p, s)

⇐⇒ ∀ n1 / n2 | φ ∈ C · sa(p) /∈ n1 ∨ da(p) /∈ n2 ∨ ¬φ(p, s)

⇐⇒ ∀ n1 / n2 | φ ∈ C · p, s 6|= n1 / n2 | φ

⇐⇒ p, s 6|=C DROP

All the equivalences, except the one between the third and fourth lines, follow the definitions. For this

equivalence, we need to look at the translations in Table 5.2. A rule in SD can only come from a DROP

rule in C, proving the ⇒ direction. The same translation also tells us that a DROP rule in C is always

translated to SD, which gives us⇐. Proving the equivalence for p, s 6|=ilSD2
is exactly the same, since the

set is part of the same translation.

Line (v) uses a similar proof to the one above, but between the third and fourth lines, only the ⇒

direction holds true. This is proved by remembering that all DROP rules are translated to SD1 , so if

there is no rule in that set, it is implied that there was no DROP rule. However, ⇐ does not hold true,

since a packet not matching any DROP rules in C can match a rule in SD1
if such rule comes from the

translation of a DNAT rule.

�

55

In Theorem 2, we formally prove the soundness and completeness of the translation in Table 5.2,

along with the necessary constraints. We note that the (i) clause of the theorem concerns the soundness

of the translation. This means that an il flow will always be captured by a hl flow. Such behavior is

fundamental when evaluating the translation from a security standpoint as it guarantees that we are not

ignoring any potential malicious flow just by considering the hl abstraction. On the other hand, the (ii)

clause shows the completeness of the translation, which is important from a functionality standpoint,

but does not affect the security aspect. An incomplete translation, would result in some of the hl flows

missing their il counterparts. The following proof is a simplified version of the full proof in Appendix A.

Theorem 2. Let FI be the intermediate firewall obtained from applying the translation in Table 5.2 to a

safe and nat-complete MIGNIS configuration, C. We have that, for any packets p, p′ and states s, s′:

(i) if s p,p′−−→il s
′, then s p,p′−−→hl s

′;

(ii) if C is also well-formed, reply-aware, nat-consistent and s p,p′−−→hl s
′, then s p,p′−−→il s

′.

Proof. (il∗ =⇒ hl) We begin by looking at (i), s p,p′−−→il s
′ =⇒ s

p,p′−−→hl s
′, if C is safe and nat-complete.

There are three different il rules that result in s p,p′−−→il s
′: Forwardil and Inputil, Outputil.

Since p, p′ can be any packets and s, s′ can represent any states, it is necessary to consider two

different cases: [p `s] and [p 0s].

Case p `s For rule Forwardil we make use of the safeness of the configuration and Lemma 1 (line

(v)) to reach the ESThl rule. Remaining rules Inputil and Outputil can reach ESThl by using the same

logic followed for Forwardil, alongside Lemma 1.

Case p 0s When p is not in an established connection, the only way to obtain s p,p′−−→hl s
′ is through

the use of rule Newhl which requires the hl transition (s, p) �hl p′. This transition can be the result of

rules ACCEPThl, SNAThl, DNAThl and DSNAThl. To prove this, we start with rule Forwardil and analyze

its hypothesis for several different cases: p = p̃ = p′, p 6= p̃ 6= p′, p 6= p̃ = p′ and p = p̃ 6= p′. Using both

Lemma 1 and the fact that C is nat-complete, we reach (s, p) �hl p′ and, consequently, s p,p′−−→hl s
′. The

proof for rules Inputil and Outputil is similar, without the requirement for a nat-complete configuration.

(hl′ =⇒ il) We now look at the Theorem’s second line, which states that s p,p′−−→hl s
′ =⇒ s

p,p′−−→il s
′,

if C is safe, nat-complete, well-formed, reply-aware and nat-consistent.

There are only two ways to reach s p,p′−−→hl s
′, rules Newhl and Esthl. Each one raises its hypotheses

which are used to reach s p,p′−−→il s
′. In both cases, we can reach rules ACCEPThl, SNAThl, DNAThl and

DSNAThl. From there we can reach Forwardil. When starting from Newhl, we use Lemma 1 and the

fact C is well-formed. With Esthl, the fact that C is reply-aware is crucial, along with Lemma 1. �

56

5.3 From the intermediate to low-level firewall

We can now present the translation from an intermediate firewall FI to a low-level router F with n

interfaces.

Definition 21. Let FI be an intermediate firewall made up by sets {SD1
, SSTT , SDYN , SD, SA, SD2

} and

let F be a low-level router made up by lists of basic rules Iid, where d ∈ {in, out} and i ∈ {1, ..., n}, list of

static translation rules T , list of dynamic rules D and lists of basic rules F io, where i, o ∈ {1, ..., n} ∪ {l}.

The translation from FI to F is defined as follows:

(i) Let Iiin, for i ∈ {1, ..., n}, be any possible sorting of set SD1 and add basic rule (∗, ∗, T rue, accept)

at the end of the list;

(ii) Let Iiout, for i ∈ {1, ..., n}, be any possible sorting of set SD2
and add basic rule (∗, ∗, T rue, accept)

at the end of the list;

(iii) Let F io, for i, o ∈ {1, ..., n} ∪ {l}, be any possible sorting of set SD followed by any possible sorting

of set SA and add basic rule (∗, ∗, T rue, drop) at the end of the list;

(iv) Let T be any possible sorting of the set SSTT ;

(v) Let D be any possible sorting of the set SDYN .

Because of the similarities between both firewalls, the translation is very simple. It is important to

remark that the F io lists in F are purposefully overpopulated. The only reason this is done is to simplify

both the translation and the proofs present in this work. We can propose an algorithm to simplify and

make the lists more efficient.

Proposition 3. Let F be a low-level router with n interfaces and sn(intf) to denote the subnet of

interface intf . We can define, for i, o ∈ {1, ..., n} ∪ {l}:

F io = {r | r = (n1, n2, φ, t) ∈ F io ∧ n1 ∩ sn(i) 6= ∅ ∧ n2 ∩ sn(o) 6= ∅}

We can then say that p, s |=F i
o
t iff p, s |=

F i
o
t.

Proof. From the ll rules in Table 3.1 it is immediate that a packet p is only matched against Fnm if

n1 ∈ sn(n) ∧ n2 ∈ sn(m). Therefore our definition of F io does not change anything for packets being

matched against it. �

Another important aspect of the translation is the transition from sets to lists. While the latter have

defined ordering and imply determinism, the former could lead to non-determinism. For example, with

a MIGNIS firewall C one could have p, s |=C SNAT(nt) ∧ p, s |=C SNAT(n′t) while nt ∩ n′t = ∅. To tackle

this disparity, we present the following definition.

57

Definition 22. A MIGNIS configuration C is considered deterministic if p, s |=C n1 [nt] > n2 | φ∧p, s |=C
p, s |=C n′1 [n

′
t] > n′2 | φ′, then we have that nt = n′t. The same must hold true for any pair of DNAT rules.

A syntactic approach to this definition is to check if n1 ∩ n′1 = ∅ ∨ n2 ∩ n′2 = ∅ ∨ nt = n′t.

We can also extend this definition to our intermediate level firewall.

Definition 23. An intermediate firewall FI is deterministic if, for each pair of rules r, r′ ∈ SSTT , where

r = (n1, n2, φ, t) and r = (n′1, n
′
2, φ
′, t′), if p, s |= r, dnat ∧ p, s |= r′, dnat, then t = t′. Additionally,

let p, s |=il SNAT(t) denote either p, s |=ilSSTT
t, snat or p, s |=ilSDY N

t. Then we also require that if

p, s |=il SNAT(t) ∧ p, s |=il SNAT(t′), then t = t′.

Proposition 4. Let C be a MIGNIS firewall and FI be an intermediate firewall obtained from the trans-

lation of C.

• if C is deterministic then FI is deterministic.

• if FI is deterministic and C is nat-complete, then C is deterministic.

Proof. From Lemma 1 we have that, if C is nat-complete, p, s |=ilSSTT
nt, dnat iff p, s |=C DNAT(nt). For

SNAT we have an equivalent statement, p̃, s |=ilSSTT
nt, snat ∨ p̃, s |=ilSDY N

nt iff p, s |=C SNAT(nt).

Coupling these with the Definitions 22 and 23, it is immediate to note that if C is deterministic then

FI is deterministic, and vice-versa. �

We now present a Lemma that, similarly to Lemma 1, is used to establish a relation between rules in

the il configuration and the ll configuration.

Lemma 5. Let F be a low-level router generated from the translation of intermediate firewall FI accord-

ing to Definition 21. We have, for any state s and packets p, p̃, p′, that:

(i) (s, p) �δll p̃ ⇒ /⇐∗ (s, p) �DNAT
il p̃;

(ii) (s, p, p̃) �σll p
′ ⇒ /⇐∗ (s, p, p̃) �SNAT

il p′;

Where⇐∗ only holds if FI is a deterministic intermediate firewall.

Proof. DEstil ⇐⇒ DEstll and SEstil ⇐⇒ SEstll: Since p `s src, dst is defined the same way for both

semantics and acts in a deterministic way, we have that both pairs of rules are equivalent.

DNewil ⇐⇒ DNewll and SNewil ⇐⇒ SNewll: From the translation in Definition 21 we have that

T is simply a random arrangement of SSTT , likewise for D and SDYN . Therefore, if there is no match at

ll, there will be no match at il, and vice-versa.

DNATil ⇒∗ DNATll and SNATsil ⇒∗ SNATsll: If there are two rules r, r′ in SSTT such that p, s |=

r, dnat and p, s |= r′, dnat, for r = (t, ga, φ) and r′ = (t′, ga′, φ′), then we have, by determinism, that

58

t = t′. When matching p against T , regardless of which rule is matched first, we will have p, s |=T t, dnat.

The proof for SNATs uses the same logic.

DNATil ⇐ DNATll and SNATsil ⇐ SNATsll: If p, s |=T t, dnat, then it means there is a rule r in T such

that p, s |= r, dnat. This implies r ∈ SSTT , according to the translation between both sets. Therefore, we

have that p, s |=ilSSTT
t, dnat. Proving for SNATs is similar.

SNATdil ⇒∗ / ⇐ SNATdll: The proof for both directions uses the same reasoning as the ones

before, the only difference being that rules are placed in D and SDYN , instead of T and SSTT . �

In Theorem 6, we prove the conditions for the soundness and completeness of the translation from

the intermediate configuration to a low-level one. Like in Theorem 2, clause (i) is the one that is important

from a security point of view, since it is the one that requires the existence of an il flow for any ll flow.

Theorem 6. Let F be the low-level router obtained from applying the translation in Definition 21 to an

intermediate firewall FI . We have that, for any packets p, p′ and states s, s′:

(i) if s p,p′−−→ll s
′, then s p,p′−−→il s

′;

(ii) if FI is deterministic and s p,p′−−→il s
′, then s p,p′−−→ll s

′.

Proof. (ll =⇒ il) We will start by proving s
p,p′−−→ll s

′ =⇒ s
p,p′−−→il s

′. To do so, we will go through

Forwardll, Inputll and Outputll.

• We start with Forwardll, which means sa(p) /∈ L and da(p̃) /∈ L. We have (A) p, s |=Iiin accept, (B)

(s, p) �δll p̃, (C) p `s ∨ p̃, s |=F i
o
accept, (D) (s, p, p̃) �σll p′ and (E) p′, s |=Ioout

accept, where i = si(p)

and o = di(p̃).

From the translation in Definition 21, we have that Iiin is populated with all rules in SD1
, followed by a

rule ra = (∗, ∗, T rue, accept). (A) gives that p must have matched ra, since all rules originating from SD1

have target drop. With this, we have p, s 6|=ilSD1
.

Combining (B) and Lemma 5 immediately gives (s, p) �DNAT
il p̃. Similarly, (D) and the same Lemma

give (s, p, p̃) �SNAT
il p′.

From (C) one can reach p `s ∨ p̃, s 6|=ilSD
and p `s ∨ p̃, s |=ilSA

. To do so, let us consider both possible

cases. If p `s the conclusion is immediate. In the case where p 0s, we have p̃, s |=F i
o
accept. List F io

is populated with rules from both SD (only drop rules) and SA (only accept rules). All rules from SD are

placed before the ones from SA, which means that if p̃, s |=F i
o
accept, then p̃ did not match any rule from

SD, giving p̃, s 6|=ilSD
. In the same way, the only rules in F io with target accept come from SA, so we also

have p̃, s |=ilSA
.

Following the same reasoning as we did for (A), it is immediate to see that (E) gives p′, s 6|=ilSD2
.

With this, we can apply rule Forwardil and reach s p,p′−−→il s
′.

• The proof for the remaining ll rules, (Inputll and Outputll,follows a similar logic as the previous one,

since all these share the same similarities with their il counterparts.

59

(il =⇒∗ ll) We now prove that s p,p′−−→il s
′ =⇒ s

p,p′−−→ll s
′, as long as FI is deterministic. As before, we

will go through the three rules which result in the desired state transition: Forwardil, Inputil and Outputil.

• If Forwardil was applied, we know that sa(p) /∈ L and da(p̃) /∈ L. We also have (a) p, s 6|=ilSD1
. (b)

(s, p) �DNAT
il p̃, (c) p `s ∨ p̃, s 6|=ilSD

, (d) p `s ∨ p̃, s |=ilSA
, (e) (s, p, p̃) �SNAT

il p′ and (f) p′, s 6|=ilSD2
.

All rules in Iiin, for i ∈ {1, ..., n}, come from SD1
, except for the last one which is ra = (∗, ∗, T rue, accept).

From (a), we can see that p will not match any of the rules in Iiin originating from SD1
, which means it

will reach ra. By definition, p, s |=r ra, which gives p, s |=Iiin accept. An equivalent reasoning can be

followed to reach p′, s |=Ioout
accept from (f).

By Lemma 5 and (b), we have (s, p) �δll p̃. The same Lemma and (e) also give (s, p, p̃) �σll p
′. Both

steps use the fact that FI is deterministic.

The only thing left is to deduce p `s ∨ p̃, s |=F i
o
accept, for i, o ∈ {1, ..., n}, from (c) and (d). Like in

the previous proof, if p `s the conclusion is trivial. The other case leaves us with p̃, s 6|=ilSD
and p̃, s |=ilSA

.

Regardless of i and o, we know that F io will be populated with all rules from SD followed by all rules from

SA. From p̃, s 6|=ilSD
, we have that p̃ will not match any of the rules in the first group. Conversely, from

p̃, s |=ilSA
we have that p̃ will match a rule in the second group, The matched rule has target accept, since

it originates from SA, which gives p̃, s |=F i
o
accept.

Having met all conditions for rule Forwardll, we can then state s p,p′−−→ll s
′.

• As with the proof in the inverse direction, the reasoning used for Inputil and Outputil is the same

as the one just presented. Again, this is due to the similarity between il and ll rules. �

5.4 Implementation

Our implementation of the translations presented throughout this work is available as a Python pro-

gram. This program is an extension of the already developed MIGNIS tool, making use of its already

existing code structure and adding most IOS related code in a separate file. In the rest of this section,

we will also refer to our implementation as MIGNIS.

In order to achieve its desired functionality, MIGNIS starts by taking a firewall configuration file. This

file is composed of multiple sections, one of them destined to MIGNIS rules.

The first section is OPTIONS, where a user can define an address and port corresponding to the

target router. As the name implies, these not mandatory parameters. In INTERFACES, a user should

define all the router’s relevant interfaces, along with their alias and subnet. Section ALIASES is used to

assign aliases to addresses, improving the readability of the configuration. Finally, FIREWALL is where

the MIGNIS rules are specified. In Appendix B, we present an example of a small configuration file and

the IOS commands generated from that file.

60

After parsing the configuration file, MIGNIS looks for any rule, or combination of rules, that could

compromise the soundness and completeness of the translation. In other words, MIGNIS verifies if the

provided configuration meets all conditions required in Theorem 2 and Theorem 6. There is one thing

to note about this verification, concerning the nat-completeness of a configuration. Due to the overly

restrictive nature of this definition, we made it so that MIGNIS does not check if the destination of a

SNAT rule, or the source of a DNAT rule, is equal to ∗. This change can lead to translations that are not

sound, but we warn the user in such cases.

Regarding the MIGNIS rules, the accepted syntax expands upon the one presented in Section 4.1.

A user can define a rule including both a destination and source translation (n1 [nt] > [n′t] n2 | φ). Such

rule is equivalent to the pair of rules n1 > [n′t] n2 | φ and n1 [nt] > n2 | φ, but becomes much easier to

interpret. The φ component of a rule can only be used to restrict a rule to a certain transport protocol

(UDP or TCP) or network protocol. When writing a rule, it is also possible to use the alias of an interface

to refer to its entire subnet.

The transformation of a low-level router rule into a real IOS command is as follows:

• A basic rule (n1, n2, φ, t) is translated into:

t φ∗ n∗
1 n∗

2

If the rule is present in Iid, this command is placed inside the following context:

ip access-list extended acl intf [alias] [direction]

where [alias] is the alias assigned to interface i and [direction] refers to d. n∗1 is the IOS

representation of n1, which follows the formats shown in Listing 3.1, likewise for n∗2. As stated

before, φ can only be used to restrict the protocol being used, so φ∗ can either specify the protocol

or, if φ is empty, be ip, meaning the rule applies to all packets.

Firewall basic rules, like those in F io, are placed inside the context:

ip access-list extended acl [alias i]-[alias o]

where [alias i] and [alias o] represent the aliases of interfaces i and o, respectively.

• A static translation rule (la, ga, φ), in T , is translated into:

ip nat source static φ la ga

This command is executed at a global configuration context, separating it from any specific inter-

face or interface pairing. In this case, φ is an optional parameter in the IOS command, allowing it

to be empty or assume values udp or tcp.

• A dynamic translation rule (n1, n2, φ, t), in D, is translated into:

ip nat source list acl nat [num] interface [intf] overload

61

This command is also executed at a global configuration context. The acl nat [num] part matches

an access-list implementing the basic rule (n1, n2, φ, accept). The restrictions to φ are the same as

the ones presented for basic rules, due to the similarity in implementation.

In addition to the above translations, MIGNIS runs an extra set of commands so that all used features

are correctly initialized.

• For each interface [intf], with alias [alias], the following commands are executed in the

interface [intf] context:

ip access-group acl intf [alias] in in

ip access-group acl intf [alias] out out

zone-member security [alias]

ip nat enable

The first two commands assign the Iid access-lists to the matching interface. The remaining two

assign the interface to a ZBFW zone and enable NAT, respectively.

• For each ZBFW zone, [zone], that in our case corresponds to each interface, the following com-

mand is executed at a global context:

zone security [zone]

In our case, the number of ZBFW zones is the same as the number of interfaces present in the

MIGNIS configuration.

• For each directed pair of ZBFW zones, [zone 1] and [zone 2], the following commands are exe-

cuted at a global context:

class-map type inspect match-any cmap [zone 1]-[zone 2]

match access-group name acl [zone 1]-[zone 2]

policy-map type inspect pmap [zone 1]-[zone 2]

class type inspect cmap [zone 1]-[zone 2]

inspect

class class-default

drop log

zone-pair security [zone 1]-[zone 2] source [zone 1] destination [zone 2]

service-policy type inspect pmap [zone 1]-[zone 2]

The above commands are responsible for linking the F io access-lists to their matching pair of zones.

62

6
Conclusion

Contents

6.1 Conclusions . 65

6.2 System Limitations and Future Work . 65

63

64

6.1 Conclusions

Firewall specification languages have been studied and improved over time, in attempts to improve

both their readability and ease of use. Throughout this work we looked at a few different approaches

to this subject, focusing especially on MIGNIS. Due to its declarative nature, the language allows the

configuration of a firewall through rules that do not depend on their ordering. In addition to this, MIGNIS

rules have a very simple and explicit syntax. Both these features make it so that MIGNIS configurations

are easy to read and to check and reason about potential security issues.

Our contribution to this problem was to expand the existing MIGNIS software and make it compatible

with Cisco IOS routers. To achieve this, we presented formal definitions and semantics for both MIGNIS,

the high-level language, and a low-level abstraction of a router, that is a simplification of Cisco IOS for

NAT and packet filtering. We then proved the correctness and completeness of the translations used

between both languages. Our proof consisted in showing that, given our proposed translation, a low-

level flow implies a high-level one, and vice-versa. With this proof, we can write rules in the high-level

language, MIGNIS, and be confident that our low-level router will allow no more flows than the ones

allowed by the high-level semantics, while abstracting all the low-level details. The proposed translation

was implemented using Python, making use of the already existing MIGNIS software.

6.2 System Limitations and Future Work

In Chapter 5 we presented the proofs that assure the soundness and completeness of our translation.

These proofs require our initial MIGNIS configuration to satisfy a set of constraints. While some of the

constraints are reasonable, others look too demanding. This applies especially to our definitions of safe

and nat-complete.

The first one forbids a very specific, but still legitimate, use of DROP rules. Due to how the ZBFW

works, it is impossible to drop packets inside an established double NAT connection. This implies that

any DROP rule in the reply direction of such connection is useless, meaning we had to exclude those

from valid configurations. While this constraint is undesirable, its inconvenience to a MIGNIS user seems

acceptable, since it will only be relevant in very specific cases.

The second constraint stems from the fundamental differences between how both languages deal

with NAT. While MIGNIS allows fine-tuned translations, NAT commands in IOS, except for the mas-

querade ones, always implement bidirectional translations, often leading to unwanted translations. The

definition of nat-completeness ensures that every non-masquerade NAT statement in a MIGNIS configu-

ration is accompanied by its symmetric counter-part. Unfortunately, this constraint significantly changes

the way a MIGNIS configuration is written.

It is worth nothing that these constraints result from the fact that MIGNIS and our low/level router

65

(and consequently CISCO IOS) have different semantics. To ensure a sound and complete translation

we need to restrict our configurations to those that behave the same way in both models.

It would be interesting to see, in case of another MIGNIS extension targeted at Cisco devices, a

translation into ASA commands. ASAs are dedicated firewall devices, created by Cisco, which also offer

NAT functionality.

Another possible line of future work is to do the reverse path, that is, starting from a low-level configu-

ration generate an equivalent MIGNIS configuration. This would allow sharing of existing configurations

among different platforms.

66

Bibliography

[1] P. Adão, C. Bozzato, G. Dei Rossi, R. Focardi, and F. L. Luccio, “Mignis: A semantic based tool

for firewall configuration,” Proceedings of the Computer Security Foundations Workshop, vol. 2014-

Janua, pp. 351–365, 2014.

[2] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer Networks, vol. 51, no. 4, pp.

1106–1120, 2007.

[3] Gartner, “Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in 2017, Up 31 Percent From

2016.” [Online]. Available: http://www.gartner.com/newsroom/id/3598917

[4] ITU, “Facts and figures,” Tech. Rep., 2017. [Online]. Available: https://www.itu.int/en/ITU-D/

Statistics/Documents/facts/ICTFactsFigures2017.pdf

[5] H. Cavusoglu, B. Mishra, and S. Raghunathan, “The Effect of Internet Security Breach Announce-

ments on Market Value: Capital Market Reactions for Breached Firms and Internet Security

Developers,” International Journal of Electronic Commerce, vol. 9, no. 1, pp. 69–104, 2004. [Online].

Available: https://pdfs.semanticscholar.org/2390/d0ba96c89d60a15e1940c80a05f026508a39.pdf

[6] F. Mansmann and W. Cheswick, “Visual analysis of complex firewall configurations,” Proceedings of

the Ninth International Symposium on Visualization for Cyber Security - VizSec ’12, pp. 1–8, 2012.

[7] R. Boutaba, “PolicyVis: Firewall Security Policy Visualization and Inspection,” System, pp. 1–16,

2008. [Online]. Available: http://en.scientificcommons.org/42283650

[8] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li, “An automated framework

for validating firewall policy enforcement,” Proceedings - Eighth IEEE International Workshop on

Policies for Distributed Systems and Networks, POLICY 2007, pp. 151–160, 2007.

[9] P. Eronen and J. Zitting, “An expert system for analyzing firewall rules,” Proceedings of the 6th

Nordic Workshop on Secure IT Systems (NordSec 2001), p. 100–107, 2001. [Online]. Available:

http://www.site.uottawa.ca/∼luigi/firewalls/expertsystemfirewall.pdf

67

http://www.gartner.com/newsroom/id/3598917
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2017.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2017.pdf
https://pdfs.semanticscholar.org/2390/d0ba96c89d60a15e1940c80a05f026508a39.pdf
http://en.scientificcommons.org/42283650
http://www.site.uottawa.ca/~luigi/firewalls/expertsystemfirewall.pdf

[10] secgroup, “Mignis.” [Online]. Available: https://github.com/secgroup/Mignis

[11] netfilter.org project, “iptables.” [Online]. Available: https://www.netfilter.org/

[12] A. Jeffrey and T. Samak, “Model checking firewall policy configurations,” Proceedings - 2009 IEEE

International Symposium on Policies for Distributed Systems and Networks, POLICY 2009, no. 1,

pp. 60–67, 2009.

[13] L. Yuan, H. Chen, J. Mai, C. N. Chuah, Z. Su, and P. Mohapatra, “FIREMAN: A toolkit for firewall

modeling and analysis,” Proceedings - IEEE Symposium on Security and Privacy, vol. 2006, pp.

199–213, 2006.

[14] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato,” ACM Transactions on Computer Systems,

vol. 22, no. 4, pp. 381–420, 2004. [Online]. Available: http://portal.acm.org/citation.cfm?doid=

1035582.1035583

[15] “High Level Firewall Language.” [Online]. Available: https://www.cusae.com/hlfl

[16] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Specifications of a high-level

conflict-free firewall policy language for multi-domain networks,” Proceedings of the 12th ACM

symposium on Access control models and technologies - SACMAT ’07, p. 185, 2007. [Online].

Available: http://portal.acm.org/citation.cfm?doid=1266840.1266871

[17] “Shorewall.” [Online]. Available: http://www.shorewall.net/

[18] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège, “A Formal Approach to Specify and

Deploy a Network Security Policy,” Formal Aspects in Security and Trust, pp. 203–218.

[19] firewalld.org project, “firewalld.” [Online]. Available: https://firewalld.org/

[20] NetCitadel, “Firewall Builder.” [Online]. Available: http://fwbuilder.sourceforge.net/

[21] Cisco, “Cisco ASR 1000 Series Aggregation Services Routers Data

Sheet.” [Online]. Available: https://www.cisco.com/c/en/us/products/collateral/routers/

asr-1000-series-aggregation-services-routers/datasheet-c78-731632.html

[22] ——, “Cisco Network Convergence System 5500 Series Data

Sheet.” [Online]. Available: https://www.cisco.com/c/en/us/products/collateral/routers/

network-convergence-system-5500-series/datasheet-c78-736270.html

[23] ——, “Cisco Cloud Services Router 1000v Data Sheet.” [Online]. Available:

https://www.cisco.com/c/en/us/products/collateral/routers/cloud-services-router-1000v-series/

datasheet-c78-733443.html

68

https://github.com/secgroup/Mignis
https://www.netfilter.org/
http://portal.acm.org/citation.cfm?doid=1035582.1035583
http://portal.acm.org/citation.cfm?doid=1035582.1035583
https://www.cusae.com/hlfl
http://portal.acm.org/citation.cfm?doid=1266840.1266871
http://www.shorewall.net/
https://firewalld.org/
http://fwbuilder.sourceforge.net/
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/datasheet-c78-731632.html
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/datasheet-c78-731632.html
https://www.cisco.com/c/en/us/products/collateral/routers/network-convergence-system-5500-series/datasheet-c78-736270.html
https://www.cisco.com/c/en/us/products/collateral/routers/network-convergence-system-5500-series/datasheet-c78-736270.html
https://www.cisco.com/c/en/us/products/collateral/routers/cloud-services-router-1000v-series/datasheet-c78-733443.html
https://www.cisco.com/c/en/us/products/collateral/routers/cloud-services-router-1000v-series/datasheet-c78-733443.html

[24] ——, “Cisco 880 Series Integrated Services Routers - Data Sheet.” [Online]. Avail-

able: https://www.cisco.com/c/en/us/products/collateral/routers/887-integrated-services-router-isr/

data sheet c78 459542.html

[25] ——, “NAT Order of Operation.” [Online]. Available: https://www.cisco.com/c/en/us/support/docs/ip/

network-address-translation-nat/6209-5.html

[26] ——, “P Addressing: NAT Configuration Guide, Cisco IOS Release 15.” [On-

line]. Available: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr nat/configuration/15-mt/

nat-15-mt-book/iadnat-addr-consv.html

69

https://www.cisco.com/c/en/us/products/collateral/routers/887-integrated-services-router-isr/data_sheet_c78_459542.html
https://www.cisco.com/c/en/us/products/collateral/routers/887-integrated-services-router-isr/data_sheet_c78_459542.html
https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/6209-5.html
https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/6209-5.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/15-mt/nat-15-mt-book/iadnat-addr-consv.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/15-mt/nat-15-mt-book/iadnat-addr-consv.html

70

A
High-level to intermediate-level

Theorem Proof

71

Restatement of Theorem 2. Let FI be the intermediate firewall obtained from applying the translation

in Table 5.2 to a safe and nat-complete MIGNIS configuration, C. We have that, for any packets p, p′ and

states s, s′:

(i) if s p,p′−−→il s
′, then s p,p′−−→hl s

′;

(ii) if C is also well-formed, reply-aware, nat-consistent and s p,p′−−→hl s
′, then s p,p′−−→il s

′.

Proof. (il∗ =⇒ hl) We begin by looking at (i), s p,p′−−→il s
′ =⇒ s

p,p′−−→hl s
′, if C is safe and nat-complete.

There are three different il rules that result in s p,p′−−→il s
′: Forwardil. Inputil and Outputil.

Since p, p′ can be any packets and s, s′ can represent any states, it is necessary to consider two

different cases: [p `s] and [p 0s]. We will start with the former.

Case p `s The first il rule we will look at is Forwardil. This means that sa(p) /∈ L and da(p̃) /∈ L.

Case p `s • Forwardil Let’s suppose that (A1) p `s src, dst. Looking at Forwardil, this means we

also have (B1) p, s 6|=ilSD1
, (C1) (s, p) �DNAT

il p̃, (D1) (s, p, p̃) �SNAT
il p′ and (E1) p

′, s 6|=ilSD2
.

One can immediately tell from (A1), (C1) and (D1) that the rules used in both NAT modules were

DEstil and SEstil. This means we can define p̃ = p[da 7→ src] and p′ = p̃[sa 7→ dst].

If p 6= p̃ 6= p′, we need to recall that C is safe, which means a packet in the reply direction of a double

NAT can not be subject to a DROP rule. This gives us p̃, s 6|=C DROP in the reply direction. In the original

direction, we can say that if p̃, s |=C DROP, then p `s would be a contradiction, since the connection

would never be established. Therefore we can also conclude that p̃, s 6|=C DROP.

When p = p̃ 6= p′, it comes from Lemma 1 (line (v)) and (B1) that p, s 6|=C DROP, which is equal to

p̃, s 6|=C DROP. If p 6= p̃ = p′, we can apply the same logic using line (iv) from Lemma 1 and (E1) and

end up with p̃, s 6|=C DROP. The remaining case, p = p̃ = p′ follows the same reasoning as the previous

cases.

From p̃, s 6|=C DROP and (A1) we can use rule ESThl to reach s p,p′−−→hl s
′.

Case p `s • Inputil Rule Inputil has similar hypotheses, excluding (E1), but adds additional con-

straints. From (s, p) �DNAT
ll p : [DNewil,DEstil] and (s, p, p̃) �SNAT

ll p : [SNewil,SEstil], we have that

p = p̃ = p′. Additionally, (A1) gives that both NAT rules used were DEstil and SEstil. Reaching

p̃, s 6|=C DROP follows the same reasoning used in case p = p̃ 6= p′ of the Forwardil rule.

Case p `s • Outputil For rule Outputil the proof is the same as the one for Inputil, but following the

p 6= p̃ = p′ case of Forwardil.

Case p 0s When p is not in an established connection, the only way to obtain s p,p′−−→hl s
′ is through

the use of rule Newhl which requires the hl transition (s, p) �hl p′. This transition can be the result of

rules ACCEPThl, SNAThl, DNAThl and DSNAThl.

Case p 0s • Forwardil As before, we will first look at rule Forwardil, which raises the following

hypotheses: (A2) p 0s, (B2) p, s 6|=ilSD1
, (C2) (s, p) �DNAT

il p̃, (D2) p̃, s 6|=ilSD
, (E2) p̃, s |=ilSA

, (F2)

72

(s, p, p̃) �SNAT
il p′ and (G2) p

′, s 6|=ilSD2
.

From Lemma 1 (line (iv)) and (D2) it is immediate that (H2) p̃, s 6|=C DROP.

Case p 0s • Forwardil • p = p̃ = p′ The first case to consider is when p = p̃ = p′. Looking at (C2)

(s, p) �DNAT
il p̃ gives two possible cases: either p got accepted by rule DNewil or DNATil. Looking at the

latter rule, we can see that p, s |=ilSSTT
t, dnat, matching a rule (t, ga, φ) ∈ SSTT , and da(p) = da(p̃) =

dst ∈ t. However, recalling the translations in Table 5.2 also tell us that there must have been a pair of

rules in C matching n1 > [ga] t | φ ∧ t [ga] > n1 | φ ∧ ga 6= ε ∧ n1 = ∗. Such translation would

also result in a rule (n1, t, φ, drop) ∈ SD1
. Combining the previous rule with the fact that da(p) = dst ∈ t

means p, s |=ilSD1
, directly contradicting (B2). As a result of this contradiction, we conclude that only

rule DNewil could have been applied, which gives p, s 6|=ilSSTT
dnat and, by Lemma 1 we also have that

p, s 6|=C DNAT.

Having concluded that rule DNewil was used, we now follow the same train of thought for the SNAT

translation in (F2) (s, p, p̃) �SNAT
il p′. There are rules that could have been used: SNewil, SNATsil and

SNATdil

The first rule, SNewil, implies that p, s 6|=ilSSTT
snat and p, s 6|=ilSDY N

. By Lemma 1 it stands that p, s 6|=C
SNAT. From (E2) and p = p̃ one can say that p, s |=ilSA

, meaning there is a rule ra = (n1, n2, φ, accept) ∈

SA such that p, s |=r ra. Recalling the translation table, there are three possible MIGNIS translations

that could have resulted in ra. The first one would be n1 > n2 | φ, where it is immediate that p, s |= n1 >

n2 | φ. In this case, we can use rule ACCEPThl to reach (s, p) �hl p′, since (H2) and p = p̃ also means

that p, s 6|=C DROP. Another way to reach ra would be a pair of rules of the form n1 > [nt] n2 | φ ∧

n2 [nt] > n1 | φ ∧ nt 6= ε ∧ n1 = ∗. However, such translation would imply a rule (n1, n2, φ, drop) ∈ SD1 ,

which would match p, giving p, s |=ilSD1
, a direct contradiction to (B2). A third way to reach ra would be

the translation of n2 > [nt] n1 | φ ∧ n1 [nt] > n2 | φ ∧ nt 6= ε ∧ n1 = ∗. In this case, it is immediate

that p, s |= n1 [nt] > n2 | φ, contradicting p, s 6|=C SNAT.

Having exhausted all the possibilities for SNewil, it is time to look at situations where SNATsil is

applied. We immediately have that p, s |=ilSSTT
t, snat. This means there is a rule rs = (la, t, φ) ∈ SSTT

such that sa(p) ∈ la. Recalling our translation table, the only way to reach rS would be through the

translation of n1 > [t] la | φ ∧ la [t] > n1 | φ ∧ t 6= ε ∧ n1 = ∗. Using the fact that n1 = ∗, it

becomes obvious that p, s |= la [t] > n1 | φ. This takes us to rule SNAThl and gives (s, p) �hl p′, where

p′ = p[sa 7→ src] and src ∈ t.

The only remaining way to achieve (s, p, p̃) �SNAT
il p′ is by using rule SNATdil. This rule implies that

p, s |=ilSDY N
t. We can express this by saying that there is a rule rd = (n1, n2, φ, t) ∈ SDYN and that

p, s |=d rd. However, it comes from the translation table that all rules placed in SDYN have t = ε, which

means (s, p, p̃) �SNAT
il p[sa 7→ ε]. Since p = p′ and sa(p) 6= ε, we can see that rule SNATdil would lead to

a contradiction.

73

Case p 0s • Forwardil • p 6= p̃ 6= p′ We now look at the cases where p 6= p̃ 6= p′. There are only two

possible ways for this situation to happen. The first one is applying rules DNATil and SNATsil, while the

second keeps rule DNATil and applies SNATdil.

The first case implies p, s |=ilSSTT
t, dnat and p̃, s |=ilSSTT

t′, snat. Looking at p, s |=ilSSTT
t, dnat, we

can deduce that there is a rule rs = (t, ga, φ) ∈ SSTT and that p, s |=s rs. It is mandatory that rs must

result from the translation of a rule n1 > [ga] t | φ (accompanied by the restrictions we have shown

earlier). Since n1 = ∗, we can see that p, s |= n1 > [ga] t | φ.

Interpreting p̃, s |=ilSSTT
t′, snat is a similar process. There is a rule r′s = (la, t′, φ′) ∈ SSTT , which

implies the presence of a MIGNIS rule la [t′] > n′1 | φ′, where n′1 = ∗. It becomes immediate to see that

p̃, s |= la [t′] > n′1 | φ′.

The previous two paragraphs have concluded p, s |=C DNAT (t) and p̃, s |=C SNAT (t′), which,

recalling (H2) gives all conditions for rule DSNAThl to be applied. Considering dst ∈ t and src ∈ t′, we

can say that (s, p) �hl p′ = p̃[sa 7→ src] = p[da 7→ dst, sa 7→ src].

The second case implies p, s |=ilSSTT
t, dnat and p̃, s |=ilSDY N

t′. The first relation has already been

explored and results in p, s |= n1 > [ga] t | φ.

p̃, s |=ilSDY N
t′ tells us that there is a rule rd = (n′1, n

′
2, φ
′, t′) ∈ SDYN such that p̃, s |=d rd. Such rule

could only result from the translation of a MIGNIS rule n′1 [t′] > n′2 | φ′, where t′ = ε. From this follows

that p̃, s |= n′1 [t′] > n′2 | φ′.

This case ends in the same way as the previous one, since all the conditions for rule DSNAThl to be

applied have been met.

Case p 0s • Forwardil • p 6= p̃ = p′ When p 6= p̃ = p′ we can recall our previous cases and affirm

that DNATil was used, since p 6= p̃. This implies that there is a rule rC = n1 > [n2] nt | φ in C and that

p, s |= rC . It is also immediate that p̃ = p[da 7→ dst], where dst ∈ nt.

p̃ = p′ can be the result of SNewil or SNATsil. We exclude SNATdil because, as we’ve seen

earlier, it would imply p̃ 6= p′. If SNewil was applied, then p̃, s 6|=C SNAT and the hl rule leading to

(s, p) �hl p′ = p̃ is DNAThl. Else, we have that SNATsil was applied, this implies the existence of

a rule r′C = n′1 [n′t] > n′2 | φ′ in C and p̃, s |= r′C . In this case rule DSNAThl is applied, leading to

(s, p) �hl p̃[sa 7→ src], where src ∈ n′t.

Case p 0s • Forwardil • p = p̃ 6= p′ The last remaining case is p = p̃ 6= p′. From the p = p̃ = p′

case we can immediately see that p = p̃ implies p, s 6|=C DNAT. Since p̃ 6= p′, it is possible that either

of SNATsil or SNATdil was applied. The former possibility was already contemplated in the p = p̃ = p′

case, where we conclude that p, s |=C SNAT, which implies hl rule SNAThl. For rule SNATdil to be

applied we can follow the same logic as in the second branch of p 6= p̃ 6= p′, which also takes us to rule

SNAThl.

Case p 0s • Inputil ◦ Outputil Rules Inputil and Outputil immediately give p = p̃ = p′. From the

74

similarity in hypotheses to the Forwardil case, we can use its p = p̃ = p′ branch as a proof for both these

rules. It is worth noting that, unlike previously, only rules DNewil and SNewil could have been used.

This means that in both input and output cases, the hl rule used must have be ACCEPThl.

(hl′ =⇒ il) We now look at the Theorem’s second line, which states that s p,p′−−→hl s
′ =⇒ s

p,p′−−→il s
′,

if C is safe, nat-complete, well-formed, reply-aware and nat-consistent.

We will start by exploring all cases where sa(p) /∈ L and da(p) /∈ L, and then show the differences to

the other cases.

There are only two ways to reach s p,p′−−→hl s
′, rules Newhl and Esthl. Each one raises its hypotheses

which will be used to reach s p,p′−−→il s
′.

Case Newhl When the hl rule used is Newhl, the hypotheses are (a2) p 0s and (b2) (s, p) �hl p′.

In the hl semantics, there are four different rules leading to (s, p) �hl p′. We will go through all four and

reach s p,p′−−→il s
′ for each one.

Case Newhl • ACCEPThl Rule ACCEPThl gives (a3) p, s |=C ACCEPT, (b3) p, s 6|=C DROP and

(c3) p, s 6|=C DNAT,SNAT. It is also immediate that p = p′.

Combining Lemma 1 with (b3) gives p, s 6|=ilSD
and p, s 6|=ilSD2

. Adding the definition of well-formedness

to (b3) also means p, s 6|=ilSD1
. To prove the last sentence, suppose that p, s |=ilSD1

, then there is a

ri = (n1, n2, φ, drop) in SD1 such that p, s |= ri. From (b3) it is clear that ri did not originate from a DROP

rule, since then p, s |=C DROP, a direct contradiction to (b3). The only other way to generate ri would

be from the translation of a DNAT rule n1 > [nt] n2 | φ, which goes against the well-formedness of C.

From (c3) and Lemma 1 we have p, s 6|=ilSSTT
dnat, p, s 6|=ilSSTT

snat and p, s 6|=ilSDY N
. Adding (a2) we

can apply rules DNewil and SNewil, giving �DNAT
il p̃ and (s, p, p̃) �SNAT

il p′, where p = p̃ = p′.

From (a3) we have that there is a rule ra = n′1 > n′2 | φ′ in C such that p, s |=C ra. Since ra is

translated to SA as (n′1, n
′
2, φ
′, accept), we also have that p, s |=ilSA

.

Having met all requisites for rule Forwardil, we reach s p,p′−−→il s
′.

• For cases where either sa(p) ∈ L or da(p) ∈ L, the proof is the same, resulting in Outputil or Inputil,

respectively. Both these rules can only be applied if p = p̃ = p′, which is the case. The case where

sa(p) ∈ L and da(p) ∈ L is disregarded, since the safeness of C does not allow local rules.

For all remaining hl rules, we will only consider cases where sa(p) /∈ L and da(p) /∈ L. Since C is

well-formed, it is clear that the following rules can not apply when sa(p) ∈ L or da(p) ∈ L, as that would

contradict the third clause in the definition of well-formedness.

Case Newhl • DNAThl If DNAThl is applied, then we have that (a4) p, s |=C DNAT(nt), (b4) p′, s 6|=C
DROP and (c4) p

′, s 6|=C SNAT, for p′ = p[da 7→ dst] where dst ∈ nt.

Recalling that C is well-formed, and with (a4), we have that p, s 6|=ilSD1
by Lemma 1. By the same

Lemma and (b4) we have p′, s 6|=ilSD
and p′, s 6|=ilSD2

.

From (a4) we know there is a rule rn = n1 > [n2] nt | φ in C such that p, s |=C rn. By Lemma 1 we

75

have p, s |=ilSSTT
nt, dnat, leading to rule DNATil and �DNAT

il p̃, where p̃ = p[da 7→ dst] = p′, for dst ∈ nt.

From p′ = p̃ we also have p̃, s 6|=ilSD
, as we already had that p′, s 6|=ilSD

.

By Lemma 1, (c4) and p′ = p̃ we have p̃, s 6|=ilSSTT
snat and p̃, s 6|=ilSDY N

. Combining (a2) we can apply

rule SNewil and reach (s, p, p̃) �SNAT
il p′ = p̃.

The translation of rn results in a rule (n1, nt, φ, accept) being placed in SA. Since p̃ = p[da 7→ dst]

and dst ∈ nt, we can see that if p, s |=C rn then p̃, s |=ilSA
.

This completes all conditions for Forwardil and s p,p′−−→il s
′.

Case Newhl • SNAThl Applying SNAThl gives the following hypotheses: (a5) p, s |=C SNAT(nt),

(b5) p, s 6|=C DROP and (c5) p, s 6|=C DNAT, for p′ = p[sa 7→ src] where src ∈ nt.

Combining (a4) with Lemma 1 and C ’s well-formedness gives p′, s 6|=ilSD2
. Additionally, with (b5) we

have that p, s 6|=ilSD
. One additional conclusion is that p, s 6|=ilSD1

. To prove this last sentence, we recall

that any rule in SD1
results of the translation of either a DNAT or a DROP rule. From (a5) and the first

clause in the definition of well-formedness, it comes that no DNAT translation will result in a rule that can

drop p in SD1 . From (b5) we also have that the translation of any DROP rule to SD1 will not drop p.

From (c3) and Lemma 1 one can reach p, s 6|=ilSSTT
dnat, which coupled with (a2) gives �DNAT

il p̃ = p

through rule DNewil. This gives p̃, s 6|=ilSD
, since the same conclusion had already been reached for p.

(a5) implies there is a rule rs = n1 [nt] > n2 | φ in C such that p, s |=C rs. By Lemma 1, this gives

p̃, s |=ilSSTT
nt, snat ∨ p̃, s |=ilSDY N

nt. Depending on which one is true, we can apply one of SNATsil and

SNATdil to reach (s, p, p̃) �SNAT
il p′ = p[sa 7→ src], for src ∈ nt.

Translating rule rS results in a rule (n1, n2, φ, accept) in SA. Since p, s |=C rs and p̃ = p, it is immediate

that p̃, s |=ilSA
.

From all this follows s p,p′−−→il s
′, by rule Forwardil.

Case Newhl • DSNAThl When rule DSNAThl is applied, we have hypotheses (a6) p, s |=C DNAT(nt),

(b6) p̃, s 6|=C DROP and (c6) p̃, s |=C SNAT(n′t), for p′ = p[sa 7→ src, da 7→ dst] and p̃ = p[da 7→ dst] where

dst ∈ nt and src ∈ n′t.

By (a6) and Lemma 1 we have that p, s 6|=ilSD1
. This conclusion relies on C being well-formed. As

seen in the previous case, the first clause of well-formedness assures that no rule in SD1 , resulting from

a hl DNAT rule, will match p. The second clause of the definition covers the translation of DROP rules,

making it so that no hl DROP rule will match p. This covers all rules in SD1
, allowing us to reach the

previous conclusion.

Also by Lemma 1, (b6) and (c6) give us p̃, s 6|=ilSD
and p′, s 6|=ilSD2

, the latter relying on C ’s well-

formedness.

From (a6) there must be a rule rd = n1 > [n2] nt | φ in C such that p, s |=C rd. By Lemma 1 we have

p, s |=ilSSTT
nt, dnat, leading to rule DNATil and �DNAT

il p̃.

Also from rd we can say there is a rule (n1, nt, φ, accept) in SA. Since p̃ = p[da 7→ dst] and dst ∈ nt,

76

we can see that if p, s |=C rs then p̃, s |=ilSA
.

(c6) implies there must be a rule rs = n′1 [n′t] > n′2 | φ′ in C such that p̃, s |=C rs. By Lemma 1, this

gives p̃, s |=ilSSTT
nt, snat ∨ p̃, s |=ilSDY N

nt.

With all this we can apply rule Forwardil, giving s p,p′−−→il s
′.

Case Esthl If Esthl was used, we have hypotheses (a1) p `s src, dst and (b1) p[da 7→ src], s 6|=C
DROP. From (a1) it follows that rules DEsthl and SEsthl are applied, which means �DNAT

il p̃ and

(s, p, p̃) �SNAT
il p′, where p̃ = p[da 7→ src] and p′ = p̃[sa 7→ dst]. The only two conditions not im-

mediate from (a1) are p, s 6|=ilSD1
and p′, s 6|=ilSD2

. To reach these conditions, we will consider the two

directions that packet p may be taking: the original direction and the reply direction.

From (a1), we know that p belongs to an established connection. The only way to establish this

connection is through the Newhl rule, which in turn implies one of the four following rules: ACCEPThl,

SNAThl, DNAThl or DSNAThl. Let’s assume there was a packet pi which lead to the execution of rule

Newhl and established the connection to which p belongs. Whichever of the four rules was applied to

pi, it holds true that the same rule should apply to p if it is going in the same direction as pi, the original

direction. In this case, proving the two remaining conditions follows the same logic used in the Newhl

section of the proof.

When p is in the reply direction of the connection, the previous logic does not apply. This is where C

being reply-aware comes in. To prove this part, we will go over the four rules that could have lead to this

established session: ACCEPThl, SNAThl, DNAThl or DSNAThl.

Case Esthl • ACCEPThl If the applied rule was ACCEPThl, then we can immediately say that p =

p′ = p[da 7→ src]. From (b1) and Lemma 1 we have p′, s 6|=ilSD2
. To prove the other condition, p, s 6|=ilSD1

,

we show that it is impossible to reach p, s |=ilSD1
. From (b1) we have that no DROP rule affecting p exists

in our configuration, which means the only rules in SD1 that could match p must be resulting from the

translation of a DNAT statement. However, the existence of such DNAT statement would go against the

reply-awareness of C.

Case Esthl • DNAThl If DNAThl was applied when establishing the connection, the returning traffic

is being source translated, so we have p = p[da 7→ src]. Following the same logic as in the previous

case, this gives that only a DNAT statement could insert a rule in SD1 such that p, s |=ilSD1
. Again,

this would go against the reply-awareness of C, giving us p, s 6|=ilSD1
. To prove p′, s 6|=ilSD2

, we note

that p′ = p[sa 7→ dst]. If there was a DROP rule such that p′, s |=C DROP, C would not be reply-

aware (according to the second clause of the definition). From Lemma 1 and p′, s 6|=C DROP we have

p′, s 6|=ilSD2
.

Case Esthl • SNAThl In the cases where the initially used rule was SNAThl, the returning traffic is

going through a destination translation, giving p[da 7→ src] = p′. This immediately gives p′, s 6|=ilSD2
from

(b1) and Lemma 1. Proving p, s 6|=ilSD1
is similar to what was done previously. In this case, the third

77

clause of the reply-awareness definition ensures that p, s 6|=C DROP. Combining this with Lemma 1, we

return to the previous situation where the only way to achieve p, s |=ilSD1
would be through the translation

of a DNAT statement. This, however, also goes against the definition of reply-awareness. This gives

p, s 6|=ilSD1
.

Case Esthl • DSNAThl The proof for cases where the applied rule was DSNAThl is simply a com-

bination of the previous DNAThl and SNAThl cases. Since, in this case, we have both a DNAT and an

SNAT rule, the fact that C is reply-aware become more constraining, allowing to follow the logic used in

both previous cases. �

78

B
MIGNIS configuration example and

generated output

79

OPTIONS

router address localhost

router port 5019

INTERFACES

lan g1/0 10.0.0.0/24

ext g2/0 0.0.0.0/0

neighbor g3/0 30.0.0.0/24

ALIASES

PC1 10.0.0.10

PC2 10.0.0.20

MAL1 50.0.0.10

MAL2 60.0.0.20

r ext ip 20.0.0.1

FIREWALL

#allow and masquerade traffic to the internet

lan [.] > ext

#setup a NAT for an HTTP server inside our LAN to be accessible from external networks

* > [r ext ip:80] PC1:80 tcp

PC1:80 [r ext ip:80] > * tcp

#allow full communication between these networks

lan <> neighbor

#Block malicious hosts from communicating with our local network

MAL1 / lan

MAL2 / lan

Listing B.1: Example of a MIGNIS configuration file.

80

zone security lan

!

zone security ext

!

zone security neighbor

!

ip access-list extended acl intf g1/0 lan in

permit ip 10.0.0.0 0.0.0.255 any

!

ip access-list extended acl intf g1/0 lan out

deny ip 60.0.0.20 0.0.0.0 10.0.0.0 0.0.0.255

deny ip 50.0.0.10 0.0.0.0 10.0.0.0 0.0.0.255

permit ip any any

!

ip access-list extended acl intf g2/0 ext in

deny tcp 0.0.0.0 255.255.255.255 10.0.0.10 0.0.0.0 eq 80

deny ip 60.0.0.20 0.0.0.0 10.0.0.0 0.0.0.255

deny ip 50.0.0.10 0.0.0.0 10.0.0.0 0.0.0.255

permit ip 0.0.0.0 255.255.255.255 any

!

ip access-list extended acl intf g2/0 ext out

permit ip any any

!

ip access-list extended acl intf g3/0 neighbor in

deny tcp 30.0.0.0 0.0.0.255 10.0.0.10 0.0.0.0 eq 80

permit ip 30.0.0.0 0.0.0.255 any

!

ip access-list extended acl intf g3/0 neighbor out

permit ip any any

!

ip access-list extended acl ext-self

deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

!

ip access-list extended acl ext-lan

deny ip 60.0.0.20 0.0.0.0 10.0.0.0 0.0.0.255

deny ip 50.0.0.10 0.0.0.0 10.0.0.0 0.0.0.255

permit tcp 0.0.0.0 255.255.255.255 10.0.0.10 0.0.0.0 eq 80

!

81

ip access-list extended acl ext-neighbor

!

ip access-list extended acl self-ext

permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

!

ip access-list extended acl self-lan

permit ip 0.0.0.0 255.255.255.255 10.0.0.0 0.0.0.255

permit tcp 0.0.0.0 255.255.255.255 10.0.0.10 0.0.0.0 eq 80

!

ip access-list extended acl self-neighbor

permit ip 0.0.0.0 255.255.255.255 30.0.0.0 0.0.0.255

!

ip access-list extended acl lan-ext

permit ip 10.0.0.0 0.0.0.255 0.0.0.0 255.255.255.255

permit tcp 10.0.0.10 0.0.0.0 eq 80 0.0.0.0 255.255.255.255

!

ip access-list extended acl lan-self

permit tcp 10.0.0.10 0.0.0.0 eq 80 0.0.0.0 255.255.255.255

!

ip access-list extended acl lan-neighbor

permit ip 10.0.0.0 0.0.0.255 30.0.0.0 0.0.0.255

permit tcp 10.0.0.10 0.0.0.0 eq 80 30.0.0.0 0.0.0.255

!

ip access-list extended acl neighbor-ext

!

ip access-list extended acl neighbor-self

!

ip access-list extended acl neighbor-lan

permit ip 30.0.0.0 0.0.0.255 10.0.0.0 0.0.0.255

permit tcp 30.0.0.0 0.0.0.255 10.0.0.10 0.0.0.0 eq 80

!

ip access-list extended acl nat 2

deny ip 10.0.0.0 0.0.0.255 30.0.0.0 0.0.0.255

permit ip 10.0.0.0 0.0.0.255 0.0.0.0 255.255.255.255

!

!

!

class-map type inspect match-any ext-self cmap

82

match access-group name acl ext-self

!

[... Creating all the class-maps and matching the corresponding ACL ...]

!

class-map type inspect match-any neighbor-lan cmap

match access-group name acl neighbor-lan

!

!

!

policy-map type inspect ext-self pmap

class type inspect ext-self cmap

inspect

class class-default

drop log

!

[... Creating all the policy-maps and matching the corresponding class-map ...]

!

policy-map type inspect neighbor-lan pmap

class type inspect neighbor-lan cmap

inspect

class class-default

drop log

!

!

!

zone-pair security ext-self source ext destination self

service-policy type inspect ext-self pmap

!

[... Creating all the zone-pairs and matching the corresponding policy-map ...]

!

zone-pair security neighbor-lan source neighbor destination lan

service-policy type inspect neighbor-lan pmap

!

!

!

interface g1/0

ip access-group acl intf g1/0 lan in in

ip access-group acl intf g1/0 lan out out

83

zone-member security lan

ip nat enable

!

interface g2/0

ip access-group acl intf g2/0 ext in in

ip access-group acl intf g2/0 ext out out

zone-member security ext

ip nat enable

!

interface g3/0

ip access-group acl intf g3/0 neighbor in in

ip access-group acl intf g3/0 neighbor out out

zone-member security neighbor

ip nat enable

!

ip nat source static tcp 10.0.0.10 80 20.0.0.1 80 extendable

!

ip nat source list acl nat 2 interface g2/0 overload

Listing B.2: Abbreviated output generated from the configuration in Listing A.1.

84

	Titlepage
	Declaration
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 The Internet
	1.2 Growth of Internet security and firewalls
	1.3 Motivation and existing solutions
	1.4 Objective
	1.5 Document structure

	2 Related Work
	2.1 Shortfalls of conventional firewalls
	2.1.1 Consistency
	2.1.2 Completeness
	2.1.3 Compactness

	2.2 Firewall design models
	2.2.1 Structured firewall design
	2.2.1.A Summary

	2.2.2 iptables
	2.2.2.A Summary

	2.2.3 Model Definition Language
	2.2.4 hlfl
	2.2.4.A Additional models

	2.3 Graphical interface-based firewall configuration
	2.3.1 firewalld
	2.3.2 Firewall Builder

	3 Firewall and NAT in Cisco IOS
	3.1 Overview of Cisco routers and IOS
	3.1.1 Router platforms and configuration interface
	3.1.2 IOS features
	3.1.3 Life cycle of a packet

	3.2 IP access lists
	3.3 Zone-based firewall
	3.4 Network Address Translation
	3.5 Connection tracking
	3.6 Order of operation
	3.7 Low-level Abstraction of a Router
	3.7.1 State abstraction
	3.7.2 Access lists and address translation
	3.7.3 Semantics

	4 MIGNIS
	4.1 Syntax and Semantics

	5 From MIGNIS to Cisco IOS
	5.1 Intermediate Firewall
	5.2 Translating from MIGNIS to the intermediate firewall
	5.3 From the intermediate to low-level firewall
	5.4 Implementation

	6 Conclusion
	6.1 Conclusions
	6.2 System Limitations and Future Work

	Bibliography
	Appendix A

	A High-level to intermediate-level Theorem Proof
	Appendix B

	B MIGNIS configuration example and generated output

